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Second generation sequencing and
morphological faecal analysis reveal
unexpected foraging behaviour by Myotis
nattereri (Chiroptera, Vespertilionidae) in winter
Paul R Hope1,2*†, Kristine Bohmann1,3†, M Thomas P Gilbert3, Marie Lisandra Zepeda-Mendoza3, Orly Razgour1

and Gareth Jones1
Abstract

Background: Temperate winters produce extreme energetic challenges for small insectivorous mammals. Some bat
species inhabiting locations with mild temperate winters forage during brief inter-torpor normothermic periods of
activity. However, the winter diet of bats in mild temperate locations is studied infrequently. Although microscopic
analyses of faeces have traditionally been used to characterise bat diet, recently the coupling of PCR with second
generation sequencing has offered the potential to further advance our understanding of animal dietary composition
and foraging behaviour by allowing identification of a much greater proportion of prey items often with increased
taxonomic resolution. We used morphological analysis and Illumina-based second generation sequencing to study
the winter diet of Natterer’s bat (Myotis nattereri) and compared the results obtained from these two approaches. For
the first time, we demonstrate the applicability of the Illumina MiSeq platform as a data generation source for bat
dietary analyses.

Results: Faecal pellets collected from a hibernation site in southern England during two winters (December-March
2009–10 and 2010–11), indicated that M. nattereri forages throughout winter at least in a location with a mild winter
climate. Through morphological analysis, arthropod fragments from seven taxonomic orders were identified. A high
proportion of these was non-volant (67.9% of faecal pellets) and unexpectedly included many lepidopteran larvae.
Molecular analysis identified 43 prey species from six taxonomic orders and confirmed the frequent presence of
lepidopteran species that overwinter as larvae.

Conclusions: The winter diet of M. nattereri is substantially different from other times of the year confirming that this
species has a wide and adaptable dietary niche. Comparison of DNA derived from the prey to an extensive reference
dataset of potential prey barcode sequences permitted fine scale taxonomic resolution of prey species. The high
occurrence of non-volant prey suggests that gleaning allows prey capture at low ambient temperatures when the
abundance of flying insects may be substantially reduced. Interesting questions arise as to how M. nattereri might
successfully locate and capture some of the non-volant prey species encountered in its faeces. The consumption of
lepidopteran larvae such as cutworms suggests that M. nattereri eats agricultural pest species.
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Background
The onset of winter with associated decreases in ambient
temperature leads to increased energetic challenges for
mammals in many temperate regions. Small insectivorous
mammals face two key challenges. First, their high
surface area-to-volume ratio renders them vulnerable
to high levels of heat loss and energy expenditure at
low temperatures [1,2]. Second, they face a reduction
in available prey because reduced temperatures reduce
arthropod abundance and activity [3,4]. Heterothermic
mammals such as bats cope with these challenges using
hibernation, that is, by lowering their body temperature,
metabolic rate and therefore energetic requirements over
extended periods of time [2].
All hibernators arouse periodically, probably to meet

behavioural or physiological requirements that are brought
about by their reduced metabolism [5]. Studies on
hibernating bats in cold continental locations (where
winter temperatures rarely rise above freezing) show that
although arousals do occur, they are relatively infrequent
[6-8]. In contrast, bats arouse from hibernation more
frequently in locations where winters are mild [9-13].
The relatively high energetic costs of winter arousal
[2,14] will dictate that periods of euthermia are kept
to the minimum necessary.
To obtain a net energetic gain from foraging, insect

prey need to be available in sufficient quantities to offset
the costs of activity. Insect flight activity declines
dramatically as ambient temperature drops below 6-10°C
[3,15], but some arthropods remain active on the ground
or amongst foliage at temperatures below those suitable
for flight [3,16,17]. The sensory ecology of a predator,
and therefore the range of foraging techniques that it
may utilise, will play an important role in its ability to
exploit potential opportunities for feeding in winter
[17,18]. For example, foraging may remain profitable for
bats that glean prey from vegetation (gleaning bats) even
during nights when ambient temperatures drop below
the threshold for insect flight [13].

Evidence for winter foraging
In temperate locations where winter temperatures are
relatively mild, bat activity outside of the hibernacula
occurs frequently during winter. For instance, in New
South Wales, Australia, tree-roosting bats, Nyctophilus
geoffroyi and N. gouldi, were active for longer on warmer
winter nights suggesting occasional winter foraging [11].
Similarly, in the south of England, feeding buzzes
(increase in echolocation pulse rate as a bat attempts to
catch prey) were recorded during winter from foraging
pipistrelles (Pipistrellus spp.) [19] and noctules (Nyctalus
noctula) [20], and a single Natterer’s bat (Myotis nattereri)
was radio tracked foraging outside of the hibernaculum
over ten winter nights in the south of England [13].
Furthermore, studies on the winter diet of rhinolophid
bats confirmed that these species feed throughout the
winter in the United Kingdom [21,22] and continental
Europe [23]. The majority of arousals [10,13] and peaks in
subsequent activity [24,25] are synchronised around
sunset, when insects will be most abundant [11,26].
Activity is also more likely on milder nights when insect
abundance and activity is greater [27]. In contrast, arousals
[8] and subsequent activity [28] in cold continental
climates do not appear to be synchronised with zeitgebers
such as photoperiod or temperature.
Until now, the winter diet of vespertilionid bats in

locations with mild temperate climate has been largely
overlooked, but studies of the activity and diet of winter
flying northern bats (Myotis septentrionalis) and little brown
bats (Myotis lucifugus) in Indiana, USA, demonstrated
that these bats did not feed during the winter [29,30].
Dehydration or the selection of more suitable roosting
location may be a driving force behind the winter
flights of bats in such cold continental regions [31].

Studies of trophic ecology
Traditionally, microscopic analysis has been used to
identify prey insects remains in faecal pellets produced
by insectivorous bats [32]. This technique is complicated
by the bats’ tendency to rapidly and thoroughly chew
their prey and spit out hard parts, resulting in limited
taxonomic resolution of the diet [33]. Consequently,
during the last five years, molecular diet analyses, which
can yield great taxonomic resolution of prey if the reference
database is comprehensive, have increased in popularity.
Initially, such molecular studies of bat diet were typically
conducted by PCR amplification of prey DNA followed by
molecular cloning so as to enable subsequent Sanger
sequencing of the composite prey sequences (e.g. [34,35]).
Subsequently, however, the introduction of second gener-
ation sequencing approaches such as the GS FLX [36,37]
and Ion-torrent PGM [38-40] increased sequencing power
while decreasing the cost of metabarcoding, and were
therefore rapidly adopted for bat diet analyses. To our
knowledge, at the time of writing, the current study is the
first time the Illumina MiSeq platform is used as a data
generation source for bat dietary analyses.
In this study, we used both Illumina MiSeq-based second

generation sequencing and microscope-based morpho-
logical analyses to identify the constituent prey in faecal
pellets from Myotis nattereri sensu stricto [41] collected
during two winters. The overall aim was to investigate the
winter diet of M. nattereri at this hibernation site, while
comparing the scope of the two analytical techniques. We
find that quantitative representation of diet scored by
morphological and molecular analyses are significantly
positively correlated at the order level, and thatM. nattereri
feed on a high proportion of non-flying invertebrates in
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winter, indicating a gleaning foraging strategy. We discuss
the potential challenges that M. nattereri may face in
detecting non-flying invertebrate prey items.

Results
Amplified Cyt b sequences were successfully obtained
from 73 (81%) of the 90 extracted faecal samples. A
match to bat species (using the criteria set out in
Methods) was obtained for 71 (79%) of these, with 62
identified as Myotis nattereri sensu stricto and the
remainder as Myotis daubentonii (GenBank accession
numbers: KJ719267- KJ719283). Samples that yielded no
positive match to a single bat species were discarded.
All subsequent DNA and morphological analyses were
conducted using only the M. nattereri samples. Of
these 62 analysed droppings, 25 (40%) were collected
in December, 21 (34%) in January and February and
16 (26%) during March. Each period included samples
collected during both winters (2009–10 and 2010–11)
of the study.

Morphological analysis
Microscopic analysis revealed arthropod fragments from
seven taxonomic orders (Table 1). When all samples were
pooled (n = 62) representing both winters, Lepidoptera
was the most frequently occurring order measured by %
occurrence (%O) (Table 1), though a high proportion of
these remains were attributed to lepidopteran larvae.
Araneae was the next most frequently encountered order
in pellets, followed by Isopoda and Diptera. Coleoptera,
Hymenoptera and Hemiptera were less frequently
encountered over the entire winter period. By proportion
of pooled data (%F), 67.9% of taxa recorded were either
non-volant invertebrates or identified as being in a non-
volant stage of their life cycle (i.e. lepidopteran larvae).
The percentage frequency (%F) of adult Lepidoptera

was highest during January and February (26%), while
Table 1 Percentage of prey orders encountered within
M.nattereri faecal pellets

Order Morphological Molecular

% O % F % O† % F†

Araneae 59.7 28.2 56.5 17.9

Isopoda 32.3 15.3 90.3 28.7

Lepidoptera 88.7 42.0 98.5 31.3

Hymenoptera 1.6 0.7 3.2 1.0

Hemiptera 1.6 0.8 - -

Coleoptera 3.2 1.5 14.5 4.6

Diptera 24.2 11.5 51.6 16.4

Percentage occurrence (%O) of prey orders in M. nattereri faecal pellets
gathered in Greywell tunnel during winters (December-March) 2009–10 and
2010–11. Also shown are the proportions (%F) of prey orders in the diet. † OTUs
identified to species using BOLD then assigned to individual pellets.
the proportion of lepidopteran larvae increased as
winter progressed from 18% in December, to 26% in
January/February up to 34% in March. The percent-
age frequency (%F) of Diptera was highest during
December (20%), and then dropped to its lowest value
during January and February (2%). The proportion (%F)
of non-volant invertebrates was at its highest during
January/February (70%).

Molecular analysis
A total of 99 Operational Taxonomical Units (OTUs) were
identified in the 62 Myotis nattereri faecal droppings
sequenced on the Illumina MiSeq platform. The assigned
OTUs were divided into three main groups: Arachnida,
Insecta, and Malacostraca; which contained 297, 968, and
897 collapsed haplotypes respectively. Furthermore, 1,834
collapsed haplotypes could be assigned to species level.
The number of prey taxa (OTUs) per faecal sample ranged
between one and 21 with a mean of 8.1 (SD � 3.9). We
successfully identified arthropod DNA from six taxonomic
orders (Table 1), and were able to assign OTUs to 43
arthropod species (and an additional six OTUs to one of
two species) from 24 families (Table 2). DNA analysis
failed to identify only one order (Hemiptera) that had
been identified through morphological analysis.
The percentage frequency of arthropod orders shows a

similar seasonal trend to the morphological results. The
proportion (%F) of Lepidoptera remained relatively stable
over the winter (December: 30%; January/February: 32%;
March: 33%), while the proportion (%F) of arachnids de-
creased in early spring (December: 23%; January/February:
20%; March: 6%). The proportion (%F) of Diptera decreased
from December (18%) to 13% in January/February then
increased again during March (18%).
Isopods comprised a substantial part of the diet

throughout the sampling period and were recorded in all
but three (n = 59) of the faecal samples. The large numbers
of isopods found conflicts with the results from the
morphological analysis where this order was recorded
in less than one-third (n = 20) of all faecal samples.
Coleoptera, Hymenoptera and Hemiptera formed a
very small component part of the winter diet of M.
nattereri making up <4% of morphological and <6%
of molecular dietary composition.
The molecular results show that the percent frequency

(%F) of lepidopteran larvae identified was greater than that
of adults in all winter months (Figure 1a). Morphological
findings (Figure 1b) suggest a higher proportion of larvae
in December and March compared to adults.
The proportion of Lepidoptera (%F) by species

(Figure 2) shows that the putative larval sequences
identified were dominated by the square spot rustic,
Xanthia xanthographa, and the large yellow underwing,
Noctua pronuba.



Table 2 List of prey identified within M.natterei faecal pellets through high-throughput sequencing

Order Family Species Confidence Sequence Number of faecal
pellets in which foundlevel Similarity %

Lepidoptera Geometridae1 Agriopis marginaria 2 100 4

Alcis resplandata 2 100 2

Operophtera brumata 1 100 19

Noctuidae1 Unknown 4 100 7

Anaplectoides prasina 2 100 1

Apamea epomidion 1 100 1

Apamea crenata/epomidion 3 100 2

Conistra vaccinii/ligula 3 98.72 2

Diarsia rubi 2 100 2

Noctua sp. 1 100 3

Noctua janthe 3 100 1

Noctua pronuba 3 100 39

Omphaloscelis lunosa 1 100 2

Orthosia incerta 2 100 6

Phlogophora meticulosa 2 100 1

Xestia c-nigrum 2 100 12

Xestia sextrigata 2 100 8

Xestia triangulum 2 100 13

Xestia xanthographa 2 100 50

Torticidae Tortricodes alternella 1 100 9

Ypsolophidae Ypsolopha ustella 2 100 1

Diptera Calliphoridae Pollenia rudis 1 100 4

Pollenia pediculate 1 99.36 1

Pollenia sp. 1 100 14

Chironomidae Prodiamesa olivacea 1 98.72 1

Culicidae Culex torrentium/pipiens 3 100 1

Muscidae Eudasyphora cyanicolor 1 99.36 1

Musca autumnalis 1 100 2

Phaonia tuguriorum 1 100 1

Scathophagidae Scathophaga stercoraria 1 99.28 6

Tachinidae2 Ramonda spathulata 1 100 7

Coleoptera Cantharidae Cantharis cryptica 1 100 1

Cantharis decipiens 1 100 1

Cantharis livida/pellucida 3 100 1

Carabidae Notiophilus biguttatus 1 99.36 1

Curculionidae Sitona lineatus/suturalis 3 100 5

Hymenoptera Tenthredinidae Tenthredopsis sp. 4 99.36 1

Isopoda Philosciidae Philoscia muscorum 1 100 59

Araneae Anyphaenidae Anyphaena accentuate 1 100 3

Araneidae Cyclosa conica 1 99.36 1

Zygiella x-nonata 1 100 2

Linphilidae Linyphia hortensis 1 100 3

Neriene peltata 1 100 2
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Table 2 List of prey identified within M.natterei faecal pellets through high-throughput sequencing (Continued)

Neriene montana 1 100 2

Lycosidae Pardosa sp. 1 100 1

Philodromidae Philodromus aureoles 1 100 1

Philodromus cespitum 1 100 1

Philodromus dispar 2 99.35 1

Pisauridae Pisaura mirabilis 1 100 2

Tetragnathidae Metellina segmentata 1 100 10

Theridiidae Unknown 1 100 1

Phylloneta impressa 1 100 2

Paidiscura pallens 1 100 2

Thomisidae Diaea dorsata 1 100 3

Xysticus sp. 1 100 2

List of prey identified in 62M. nattereri faecal pellets collected within Greywell Tunnel between December–March 2009–10 and 2010–11. Confidence levels follow
Razgour et al. [37] and are based on the BOLD identification system, whereby confidence level 1 = solid match to one species or genus (>98.5%); level = 2 match
to more than one species (98.5%), only one of which was a UK species; level 3 = matched to two UK species of the same family (>98.5%) and level 4 = match to
several species of different genera, or to reference sequences only identified to family (>98%). Superscript indicates families where species are known to possess
tympanate hearing organs 1[42], 2[43].
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We compared the percentage frequency (%F) of prey
orders in faecal pellets between the morphological
and molecular data (Figure 3). Although Isopoda were
proportionately more frequent in the molecular analysis,
there was nevertheless a significant positive correlation
in the occurrence of prey orders described by the two
methods (r = 0.816, n = 6, P <0.05).

Discussion
Using second generation sequencing approaches to
assess diet can be a very powerful tool [36,46-49], also
see review by Pompanon et al. [50]. These approaches can
detect prey items that are not visible under a microscope,
and if the reference database is comprehensive, they can
be used to identify prey species at a much finer taxonomic
level than morphological analysis [34]. If the reference
database is not comprehensive, however, the difference
between morphological and molecular analyses in the
taxonomic level of prey identification becomes less
pronounced and as with morphological analysis, the
results from the molecular analysis will have to be
presented at order or family level while species numbers
will have to be inferred by OTUs [36]. Despite the data
generation power of second generation sequencing and
the ability to present results at a much higher taxonomic
resolution, it does have its shortcomings compared to
microscopic analysis. For example, molecular approaches
are unable to identify different life stages of prey, as the
DNA of e.g. a moth will be the same no matter if the moth
is a larva or an adult. Also, identification of the noctuid
parasite, the tachinid fly (Ramonda spathula) (Table 3) in
11.3% of analysed pellets shows that second generation
sequencing can even detect internal prey parasites. For
both parasites and secondary predation, molecular (and to
a lesser extent morphological) analyses of diet can
make it difficult to discern between prey, which were
eaten directly and prey that were consumed because
they were in turn eaten by prey [51] or because they
parasitised the prey.
Skews in amplification of multi-template extracts

can arise due to PCR stochasticity and primer prefer-
ence [50,53]. In this study, generic arthropod primers
(ZBJ-ArtF1c and ZBJ-ArtR2c) amplifying a 157 bp
mini-barcode fragment were used [34]. When designed
and tested, feeding trials and comparisons between
molecular and morphological analyses suggested that the
primers did not suffer from significant amplification biases
and showed that they are able to co-amplify insect DNA
in mixed templates [34]. Subsequently, the primers have
been used in molecular bat diet studies where they have
amplified insect DNA across orders e.g. [34,36,37,54,55].
In the current study, each extract was amplified twice with
a unique barcode combination and during subsequent
analyses only sequences appearing in both PCRs were
computationally retained. As PCR and sequencing errors
arise independently, this approach was chosen in order to
minimise the occurrence of artefacts in the final results.
This conservative approach has the drawback that
sequences originating from rare templates which might
not be amplified in both PCRs due to PCR stochasticity
[53,55] or templates which the primers are less likely to
amplify due to primer preferences, might be discarded
alongside sequences with PCR and/or sequencing errors.
Therefore, many metabarcoding studies take the opposite
approach when dealing with mixed templates. That is,
after amplifying each extract a given number of times,
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Figure 1 Percent frequency of lepidopteran adults and larvae in the diet of M. nattereri during three winter periods using data from
2009–10 and 2010–11 combined. a) Results from molecular analysis, whereby adults or larvae are determined by the proportion of OTUs
allotted to either adult or larval stages according to the known phenology of species encountered. b) Results from morphological analysis where
adult or larvae are determined from lepidopteran body fragments recovered from faecal pellets.
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all sequences originating from these amplifications are
retained e.g. [56,57]. Future metabarcoding bat diet
studies might benefit from a combination of these
two approaches, i.e. by performing a study-dependent
number (>2) of PCR replicates per extract, based on the
number of replicates in which a sequence should appear, in
order to be retained can be determined. This might help
balance the trade-offs between detecting true biological se-
quences from low-templates and eliminating PCR artefacts.
Amplified Cyt b sequences were successfully obtained

from 81% of extracted faecal samples. This is lower than
that reported by Boston et al. [58] who successfully
amplified a larger fragment size (ca. 1200) with a
greater degree of success 89%. Our lower amplification
success of a shorter fragment may be due to differences in
extraction protocol or higher DNA degradation due to
non-optimal storage conditions.
Although a correlation was apparent between the

percentage frequency of prey orders in molecular and
morphological analyses, some major differences in the
representation of prey as revealed by these methods
occurred (Table 1). For example, Isopoda were more highly
represented in the molecular analysis, and arachnids and
lepidopterans were relatively more represented in the mor-
phological analysis. Both molecular and morphological
methods for dietary analysis have biases [32]. Controlled
feeding experiments in which bats are fed measured
amounts of known prey types and their faecal droppings
are analysed with both methods would be informative for
better understanding these biases.
We found 99 OTUs in the bat faecal pellets of which we

assigned 72 to an insect species (Table 2). Since the micro-
scopic analysis was not able to go beyond family level, we
cannot compare the molecular and morphological results
at either genus or species level and without having
performed controlled feeding experiments, we can
only assume that the obtained number of OTUs gives an
accurate representation of the insect species present in
the analysed faecal pellets.

Previous studies on the diet of M .nattereri
Previous dietary studies (See [59] for a review of studies
prior to 1995; [18,60,61]) revealed that M. nattereri has
a wide dietary niche breadth, taking prey from a diverse
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Figure 2 The proportion of Lepidoptera (%F) by species in the winter diet of M. nattereri from DNA analysis of faecal pellets collected
from within Greywell Tunnel in December-March 2009–10 and 2010–11 combined. Open bars indicate species predicted to overwinter as
larvae and black bars indicate those species that overwinter as adults [44,45].
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range of arthropod orders [59]. M. nattereri eats pre-
dominantly diurnal dipteran species [59,62], which
presumably are gleaned from their nightly resting
places [59,62]. However, these studies were based on
examination of faecal pellets usually gathered from
below nursery colonies between May and September
[60,61,63], and none assessed the diet of M. nattereri
during winter.
Due to the seasonal and geographic variation in the

abundance of prey [60] and changes in bats’ seasonal
requirements, considerable differences in diet have been
observed both among study sites and at different times
of the year in rhinolophid (horseshoe) bats [64,65]. In a
Figure 3 Comparison between percentage frequency (%F) of
prey orders in faecal pellets found by using morphological and
molecular analyses (OTUs identified to species using BOLD
then assigned to individual pellets). Labels identify the taxonomic
orders as follows, a) Hymenoptera, b) Coleoptera, c) Diptera, d) Araneae,
e) Isopoda and f) Lepidoptera.
study of the winter diet of the greater horseshoe bat
(Rhinolophus ferrumequinum), Ransome [21] found that
insects in the winter diet were broadly similar in type
(but not importance) to those found in their summer
diet. As during summer, there was variation in prey
species taken between study sites [64]. However, prey
species taken at sites (but not proportions) remained
consistent across years.

Predation of Lepidoptera
The tympanic organs of many moths appear to have
evolved mainly to detect echolocating bats [66]. In free
flight, M. nattereri emits broadband calls that pass
through the frequency range where moth hearing is at
its most sensitive [67]. These factors probably render
M. nattereri poorly equipped for capturing adult tympanate
moths. This is largely supported by dietary studies of
M. nattereri during the summer where Lepidoptera
make up a relatively small component (5.4% [63] and
1.2% [60]) of the diet. However, in contrast with previous
studies, our findings showed that at least at this particular
study site, adult Lepidoptera make a relatively high
proportion (>16%) of the diet of M. nattereri during
winter. The temperature threshold for flight in many
moth species is 6-10°C [15] (though the threshold may be
lower in species that fly during winter). During our study
periods, ambient temperatures ranged from −13.0–18.3°C.
The ability of an insect to fly occurs abruptly at a critical
temperature [3]. Therefore, moths grounded by a drop in
temperature to below their flight threshold may become
vulnerable to gleaning bats. Furthermore, many moth
species flutter their wings when warming up, and the



Table 3 Phenology of lepidopteran prey species found in the winter diet of M. nattereri

Family Species Flight season Life cycle

Geometridae Agriopis marginaria February- April Larva April- June

Alcis resplandata June- August Overwinters as larva

Operophtera brumata October- January Larva April- June

Noctuidae Anaplectoides prasina June- July Overwinters as larva

Apamea epomidion June- July Overwinters as larva

Apamea crenata/epomidion June- July Overwinters as larva

Conistra vaccinii/ligula September- May Larva April- June

Diarsia rubi May- June, August- September Overwinters as larva

Noctua pronuba/janthe June- November Overwinters as larva

Omphaloscelis lunosa August- October Overwinters as larva

Orthosia incerta March- May Larva April- June

Phlogophora meticulosa May- October Overwinters as larva,

Xestia c-nigrum May- June, August- October Overwinters as larva

Xestia sextrigata July- August Overwinters as larva

Xestia triangulum June- August Overwinters as larva

Xestia xanthographa June- October Overwinters as larva

Torticidae Tortricodes alternella January- April Larva, May

Ypsolophidae Ypsolopha ustella Throughout year Larva April- June

Phenology of lepidopteran prey species found in the winter diet of M. nattereri, the information on phenology was obtained from Waring & Townsend [44],
Sterling & Parsons [45] and a local moth recording website [52].
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sound of wing-fluttering is exploited by gleaning bats
[68]. Together, these features may explain our finding
that adult Lepidoptera make up a larger part of the
diet of M. nattereri during winter.
Adult lepidopteran prey remains were often encountered

during the morphological analysis and the molecular
study identified six lepidopteran species that would
have been adult when eaten during winter (Table 3).
These comprised two noctuid, two geometrid, one
tortricid and one ypsolophid species (Table 2; 3). Both
noctuid and geometrid moths are known to possess
tympanic organs [42], and the geometrid winter moth
Operophtera brumata initiates evasive flight in response
to ultrasound, indicating bat avoidance behaviour [69].
However, tympanic organs have not been found in the
Tortricidae [70] and there is no published work on the
presence of tympanic organs in the Ypsolophidae.
Unexpectedly, we detected large quantities of Lepidop-

teran larvae in the winter diet of M. nattereri. Lepidop-
teran larvae have previously been recorded within the
diets of bats [71-73] including M. nattereri [59,74]. The
proportion of lepidopteran larvae recorded in the
morphological analysis should be considered a conservative
estimate due to a reduced likelihood of identifiable
body parts of soft-bodied prey surviving passage through
the bats’ digestive systems [75,76]. Many Lepidoptera
overwinter in their larval stages and are active on
mild winter nights [44,77], and some species are able to
withstand temperatures below freezing [78-80]. Once
located, caterpillars should be easily captured by a glean-
ing bat and provide considerable nutrition [81]. Gleaning
bats may eat larvae hanging from silk threads [73] when
they would be an obvious target readily detectable by
echolocation [73]. It seems unlikely, though, that larvae
would be hanging from threads during winter nights. We
have not identified where the M. nattereri in our study
caught the larvae identified in the diet nor the foraging
strategy used to gather them. However, the larvae we
encountered in the diet of M. nattereri do feed on mild
winter nights, and they are most commonly encountered
in open grassy lowland habitats [44].
Globally, bats are known to provide a range of valuable

ecosystem services [82], including reducing the numbers of
insect pests [83,84]. We found that Noctuidae was the most
frequently encountered lepidopteran family represented
mainly by the square spot rustic, X. xanthographa, which
were identified in 80.6% of the pellets in the molecular
analysis, and the large yellow underwing, Noctua pronuba,
which were found in 63% of the pellets in the molecular
analysis. N. pronuba larvae are often referred to as
‘cutworms’ and are considered serious agricultural and
horticultural pests in Europe [85] and North America [86].
Although the total abundance of UK moths decreased
by 28% between 1968 and 2007, the UK population of
N. pronuba increased by 186% over the same period [87].
Further studies are needed to determine whether M.
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nattereri provides valuable ecosystem services by consum-
ing N. pronuba and related agricultural pest species.

The consumption of other prey species
Some arachnid species are active during winter [88,89]
even at very low temperatures [90,91]. We identified 14
arachnid species in the diet of M. nattereri. Of these,
approximately half are web-building while the others are
non-web-building or hunting spiders. The species identified
are found on the leaves of herbs, shrubs and trees both
within the canopy and close to the ground (M. Nyffeler,
personal communication). The lycosid species (Pardosa sp)
can usually be found on the ground or on low herbs in
woodlands, grassland and agricultural fields (M. Nyffeler,
personal communication). Arachnids have been recorded
frequently in the diet of M. nattereri during summer
[60-62,76]. They are presumably gleaned from the ground
or other surfaces, or taken directly from webs [92] where
they may be obvious targets for echolocating bats.
Linyphiid spiders have also been observed ‘ballooning’
in favourable weather conditions during winter [93]
so the capture of some species by aerial hawking cannot
be ruled out. The possibility of some arachnid species
appearing in the diet as a result of secondary predation
must be considered [50]. However, analysis of the contents
from individual faecal samples shows that although some
arachnids were found within the same sample, many were
not; also morphological results confirm prey remains from
different arachnid families. If secondary predation was
involved, it might be expected that the prey were digested
completely by the predatory spider and therefore not
visible under the microscope.
Isopod fragments were recorded in both the morpho-

logical and molecular analysis. Molecular analysis identified
fragments as belonging to the common striped woodlouse
(Philoscia muscorum). Woodlouse body fragments are not
commonly encountered within bat faecal remains, leading
some to conclude that bats do not eat woodlice [94].
Woodlouse body parts have, however, been recorded previ-
ously in the diets of long-eared bats (Plecotus auritus and
Plecotus austriacus) [37,95], M. nattereri [95] and the lesser
horseshoe bat (Rhinolophus hipposideros) [22]. Woodlice
are known to be active at night and remain active
throughout winter [96], and they were commonly observed
to be active on winter nights within our study area
(P. Hope, unpublished observations).
Woodlice appeared in a higher proportion in the DNA

results than in morphological findings, which may be
caused by a number of factors. It is possible that faecal
pellets may have been contaminated with woodlice DNA
prior to collection. However, the fact that woodlouse
body parts were identified in faecal pellets during the
microscopic analysis, verifies that they are consumed
during winter. The lower proportion of woodlouse remains
identified in the microscopic analysis may be because
certain body parts are discarded (e.g. the pereon) by bats
due to difficulty in digestion or have low nutritional value
or energy content. This is supported by the fact that we
only found woodlouse leg parts, antennae and mouthparts
during the microscopic analysis of the faecal pellets.
In previous studies, Diptera was the most frequently

recorded order in the diet of M. nattereri. We identified
eight species from six families and over the whole winter
period, Diptera made up 11.5% (morphological) and 16.4%
(molecular) of the bats’ diet. There was a tenfold decrease
in Diptera between December and January-February
(2%) in the morphological findings, with a less pronounced
decrease in the molecular findings (18% and 13%
respectively). In the particularly mild maritime climate of
Cornwall, UK, Williams et al. [22] recorded Diptera as the
most commonly encountered prey item over winter in
the diet of the lesser horseshoe bat (R. hipposideros),
as is the case during summer [97]. Diptera were either less
abundant during winter in our study area or M. nattereri
may have selected alternative prey items that may
be easier to capture or have greater nutritional value
(e.g. Lepidoptera adults and larvae).
The majority of dipteran species identified within our

study are known to be active during winter. Dung flies
(Scathophaga stercoraria) were recorded as a dominant
prey species in the winter diet of greater horseshoe bat
(R. ferrumequinum) [21] and cluster flies (Pollenia rudis
and Pollenia pediculate), which overwinter as adults,
become active during spells of mild weather and are
commonly found in bat roosts in the UK [98]. Also,
dipteran species from the family Muscidae (of which
three species were identified in our study) are active as
adults during winter [99].
We identified the tachinid fly (Ramonda spathulata)

among the prey. It is a known parasite of noctuid moth
caterpillars [100]. Ramonda spathulata was identified
molecularly in seven of the bat faecal samples and was
always found in conjunction with noctuid larvae or an
unidentified lepidopteran species, which suggests that it
was consumed indirectly.

Sensory ecology and its influence on foraging
The ability to detect stationary or slow moving prey on or
close to surfaces using echolocation would be highly
advantageous for foraging in winter when low temperatures
reduce insect activity. Our finding that M. nattereri eats a
high proportion of non-volant prey concurs with studies
conducted between the months of May and September.
Shiel et al. [63] concluded that 68% of the prey items eaten
by M. nattereri were non-volant. Differences in sensory
ecology among gleaning bat species contributes to niche
differentiation [18]. Some gleaning bat species listen for
prey-generated sound cues to detect and locate prey
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[101,102]. Mouse-eared bats (Myotis myotis) and (Myotis
blythii) enter a ‘whispering mode’ of echolocation during
the final stages of prey approach [103], while the brown
long-eared bat (Plecotus auritus) ceases to use echolocation
when attempting to capture prey in cluttered environments
[61]. M. nattereri in contrast emits a feeding buzz
[61] and uses very broadband echolocation pulses to locate
immobile prey close to vegetation [104].
Some gleaning bat species appear unable to detect

non-moving prey that remain on the surface of vegetation
[105] while others can [106]. The detection of stationary
prey amongst dense vegetation (e.g. leaf litter), however,
would be more difficult due to the effects of increased
acoustic clutter [107]. Some bats may be able to discern
texture when using echolocation because spectral interfer-
ence of echoes reflected from surfaces allows discrimination
of targets [108]. It would be interesting to establish whether
M. nattereri is able to detect sufficient textural detail with
its echolocation calls to distinguish slow moving or station-
ary prey from background clutter. M. nattereri may use
hairs fringing the outer margin of the uropatagium to
detect prey at very close range [109], and bats of this
species have been observed trawling through vegetation
using their tail membrane to gather prey [61]. Myotis
nattereri has also been recorded using quadrupedal
movement on the ground to chase and capture prey
[61,74]. This behaviour may also be used to locate and
capture non-volant or immobile prey during winter.

Conclusions
Until now, the winter diet of vespertilionid bats in locations
with mild temperate climate has been largely overlooked.
This study indicates that, at least in a location with a mild
winter climate, M. nattereri forages throughout winter.
Morphological data show that a high proportion of non-
volant arthropods are taken as prey throughout the winter,
while the molecular data provide a very detailed picture of
the winter diet of M. nattereri, identifying 43 prey species
from six taxonomic orders. Previous studies on the diet of
M. nattereri in summer revealed high incidence of Diptera
in the diet, and studies in a flight tent revealed that the
species catches prey close to surfaces by using broadband
echolocation calls. Unexpectedly, we detected large quan-
tities of lepidopteran larvae, which must have been
captured by gleaning. The high occurrence of other non-
volant prey also suggests that a gleaning foraging strategy is
employed during winter, which may be effective at low
ambient temperatures when the abundance of flying insects
may be reduced substantially.

Materials and methods
Study site
Our study site was in Greywell Tunnel, which is a
1,125 m-long canal tunnel on the Basingstoke Canal,
Hampshire, Southern England, United Kingdom (UK)
(51.266380, −0.988030 (WGS1984)). Greywell Tunnel
has not been used for navigation since the 1930s when a
roof fall blocked a central section [110]. Both east and
west portals of the tunnel have been grilled to prevent
unauthorised human access, though grilles are designed
to allow bats to freely use the site. The tunnel was desig-
nated a Site of Special Scientific Interest (SSSI) in 1985 in
recognition of its importance as a bat hibernation site [111].
Average, minimum and maximum daily temperature

readings from December 1 to March 31 2009–10 and
2010–11 were measured at a weather station at a Royal
Air Force (RAF) base (RAF Odiham) 2 km from Greywell
Tunnel. Mean daily temperatures (with SD and range in
parentheses) between December 1 and March 31 were: in
2009–10, 3.4 ±3.6°C (−8.6–16.0°C) and in 2010–11, 4.3
±4.1°C (−13.0–18.3°C).

Sample collection and preparation
Bat faecal samples were collected from within the western
end of Greywell Tunnel during the winters of 2009–10
and 2010–11. Over the collection period, the number of
visible M. nattereri ranged from ten (February 2011) to 63
(January 2011). A radio telemetry study conducted during
2008–09 and 2009–10 [13] showed that there were changes
in the hibernating population with new individuals coming
to and leaving the site over the winter. Bats are also known
to roost in cavities behind the tunnel’s brick lining [25], so
counts of visual bats may underestimate the total number
of bats present.
Heavy-gauge white polythene sheeting (3.9 m × 4.9 m)

was laid down on a clay surface close to the roof fall at
approximately 130 m from the western portal. Faecal
samples were collected between December-March, to
minimise disturbance to hibernating bats samples were
collected at the end of each month. During collection,
each faecal sample was placed in a sterile 1.5 ml tube.
After sample collection, the sheeting was cleared of bat
faeces to avoid any mixing of faecal material between
survey months. Fewer samples were collected during
January and February of both study years so the samples
from these months were pooled to produce a mid-winter
sample size sufficiently large for comparison with
December and March samples. Samples were stored
at room temperature.

DNA extraction
Fifteen droppings were selected randomly from each of
the three survey periods for both study years (n = 90).
DNA was extracted from each faecal pellet using QIAamp
DNA Stool Mini Kits (Qiagen Ltd., Crawley, West Sussex,
UK) following the methodology as set out by Zeale et al.
[34], all extractions were conducted during a single, two
week period. After DNA extraction, faecal pellet remains
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were placed in 2 ml tubes and frozen for later morpho-
logical analysis.

Assigning pellets to bat species
To identify bat species to pellets, faecal extracts were
amplified using forward (R3.1-F 5′- TGA AAA ACC
ATC GTT GTA TTT CAA CTA CAA-3′ [112]) and
reverse (MVZ04 5′-GCA GCC CCT CAG AAT GAT
ATT TGT CCT C -3′ [113]) primers amplifying a
405 bp fragment of the mitochondrial DNA (mtDNA)
cytochrome b gene. A HotStar Taq Plus Master Mix Kit
(Qiagen Ltd., Crawley, West Sussex, UK) was used. PCR
mix for each sample (20 μl) was as follows: 1 μl of
extracted faecal DNA, 1 μl each of forward and reverse
primers (final concentration in reaction 0.1 μM), 2 μl of
loading buffer (CoraLoad), 10 μl HotStarTaq Master
Mix (HotStar Taq plus DNA polymerase, PCR buffer
(with 1.5 mM MgCl2) and 200 μM each dNTP) and
5 μl H2O. PCRs were carried out on a PTC-200
Thermo Cycler (MJ Research, Reno, Nevada) with the
following conditions: 95°C for 5 minutes followed by
34 cycles of 94°C for 30 seconds, 50°C for 30 seconds,
72°C for 1 minute, followed by a final extension at
72°C for 10 minutes. Six blank negative controls were
included in the PCR. PCR products were visualised on a
1.5% agarose gel stained with Web Green DNA stain
(Web Scientific). Sanger sequencing of PCR products
was performed in one direction (using the primer
MVZ04) and carried out by a commercial laboratory
(LGC Genomics, Germany).
Sequences were compared with reference sequences

deposited in GenBank using the Basic Local Alignment
Tool (BLAST) to obtain ‘closest match’ identifications.
Matches were classed as positively identified to bat
species if maximum identity was at ≥98% and query
coverage ≥70%.

Morphological analysis
Morphological analysis of faecal material was conducted
using traditional microscopic methods [32,63,76]. Faecal
material was re-suspended in a 90 mm diameter Petri
dish; a 2x2 mm piece of graph paper was fixed to the
bottom of the dish to aid judgement of fragment
size. One drop of glycerol, then one drop of alcohol
(70%) were added to help spread prey fragments
evenly over the Petri dish. Fragments were examined
using a binocular microscope (MX3, 20x and 40x
magnifications, Brunel, Chippenham, Wiltshire, UK).
All fragments considered suitable for identification
were mounted on a microscope slide in glycerinated
gelatine under an 18x18 mm cover slip.
Arthropod fragments were compared with examples in

published keys or identification guides [76,114] and
attempts were made to identify fragments to insect
order, or where possible family. The relative importance
of different prey orders in the diet was quantified in two
ways. First, we calculated the percentage occurrence (%O)
of prey orders, which is the number of pellets that an
order was found in / total number of pellets in samples x
100 [76]. Second, we calculated the percentage frequency
(%F), which is defined as the number of occurrences of an
order divided by total occurrences of all orders x 100 [76].
Whereas %O produces values that exceed 100% when all
taxa are combined (as pellets can contain more than one
taxon), %F gives a proportional representation of the
relative importance of prey taxa rounded to 100%.

Molecular analysis
In order to identify insect-prey in the bat droppings,
amplifications of ca. 157 bp prey-insect-COI fragments
were performed on the faecal extracts following a modifica-
tion of the methods described in Bohmann et al. [36]. The
assay described here was customised for Illumina MiSeq
sequencing as opposed to GS FLX sequencing used by
Bohmann et al. [36]. Specifically, insect-generic COI mini-
barcode primers (ZBJ-ArtF1c and ZBJ-ArtR2c [34] were 5′
nucleotide barcoded [115], yielding a set of 20 forward and
20 reverse primers, all varying by the 8 bp of the 5′ barcode
(Additional file 1), producing a final amplicon size of
227 bp (157 bp insert, 70 bp primers). Subsequently, all
PCRs performed on the DNA extracts were performed
using different combinations of the 5′ barcoded forward
and reverse primers, ensuring that all resulting positive
amplicons from each PCR reaction were uniquely labelled.
To aid downstream bioinformatics processing of the data,
and in particular to enable discrimination of PCR and/or
sequencing artefacts from true biological sequences, each
extract was subjected to PCR twice, in each case incorpor-
ating a unique barcode combination to each reaction. PCR
reactions were performed in 25 μl reactions using the
Amplitaq Gold enzyme system (Roche, Basel, Switzerland).
For every eight reactions, a PCR blank was included as
negative control. Furthermore, extraction blanks were
amplified. Each 25 ul reaction contained: 1 μl DNA, 1x
PCR Gold buffer, 2.5 mM MgCl2 solution, 0.2 mM dNTPs,
0.2 μl AmpliTaq Gold, and 0.4 μM of each primer. Amplifi-
cations were performed on a 2720 Thermal Cycler (Applied
Biosystems) with the following conditions: 95°C for
5 minutes, then 40 cycles of 95°C for 15 seconds, 52°C for
30 seconds and 72°C for 30 seconds, followed by a final
extension at 72°C for 7 minutes. 5 μl of each of the
PCR products were transferred to a tube under a flow
hood before being visualised with GelRed Nucleic
Acid Stain (Biotium) on 2% agarose gels against a 50 bp
ladder. Negative controls were negative and were not
included in further analyses.
All PCR products were pooled into a single pool

before library building, at approximately equimolar ratios
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(as determined by gel band strength). Specifically, bands
were visually discriminated into three categories: bright,
semi-bright and faint, from which PCR products were
added to the pool with 1 μl, 5 μl and 15 μl, respectively.
The pools of PCR products were purified using the
MinElute PCR Purification Kit (Qiagen) following the
MinElute Handbook 03/2008 MinElute PCR Purification
Kit Protocol (using a microcentrifuge) with the following
modifications: in step 4, the sample was centrifuged at
6000 g. In step 6, 700 μl Buffer PE was added, and
the column was centrifuged at 10,000 g. In step 7, the
empty column was centrifuged at 13,000 g for 2 minutes.
In step 9, after Buffer EB was added to the centre of the
membrane, the column was incubated for 5 minutes
at 37°C. The column was centrifuged for 1 minute at
13,000 g, and the tube was turned and the spin repeated
before DNA was collected.
The purified PCR pool was size-selected (227 bp +/−10%)

on a LabChip XT (Caliper), before being purified
using MinElute columns following the above-mentioned
protocol and eluted in 42.5 μl Qiagen Buffer EB. The
concentration of the purified, size-selected PCR pool was
measured using a Qubit Flourometer (Invitrogen). The
pool was subsequently converted into an Illumina
sequencing library, using the NEBNext DNA Library
Prep Master Mix Set for 454 (#E6070L) although
using blunt end Illumina adapters [116] in place of
Roche/454 FLX adaptors. The NEBNext End Repair
Module Protocol was followed with the following
modifications: end repair was performed in a 50 ul
reaction using 42.5 μl size-selected, purified PCR pool. A
control library blank was constructed in which 42.5 μl
H2O was added in place of DNA. They were incu-
bated in a 2720 Thermal Cycler (Applied Biosystems)
for 20 minutes at 12°C and 15 minutes at 37°C, before
being purified on MinElute columns following the
above-mentioned protocol. In the Quick Ligation
Module procedure, 0.5 μM Illumina sequencing adaptors
[116] were included in the 50 μl reaction, and the mix was
incubated on a 2720 Thermal Cycler (Applied Biosystems)
for 20 minutes at 20°C before being purified on MinElute
column following the above-mentioned protocol and
eluted in 42 μl Buffer EB. In the fill-in reaction procedure,
only step 8 was performed in which 5 μl Adapter Fill-in
Reaction Buffer and 3 μl Bst DNA polymerase was added
to the 42 μl DNA eluted above. This was incubated in a
2720 Thermal Cycler (Applied Biosystems) for 20 minutes
at 65°C, followed by 20 minutes at 80°C to inactivate the
enzyme.
The library was subsequently subjected to index PCR in

50 μl reactions using the Amplitaq Gold enzyme system
(Roche, Basel, Switzerland): the library was amplified in
five separate reactions each containing 5 μl library,
alongside a reaction containing 5 μl of the library blank
and one PCR blank in which 5 μl H2O was added.
Furthermore, each reaction contained 1x PCR Gold
Buffer, 2.5 mM MgCl2 solution, 0.25 mM dNTP’s, 5x
purified BSA (BioLabs), 0.4 μl AmpliTaq Gold, 29.6
H2O, 0.2 μM forward index primer paired end (InPe 1.0)
and 0.2 μM reverse index primer paired end. The five
reactions containing the library were amplified with the
same reverse index, while the library blank and the PCR
blank were amplified with different reverse index
primers. The index PCR was run on a 2720 Thermal
Cycler (Applied Biosystems) at the following conditions:
95°C for 5 minutes, then 15 cycles of 95°C for 30 seconds,
60°C for 30 seconds and 72°C for 30 seconds, followed by
a final extension at 72°C for 7 minutes. The five 50 μl
indexed libraries were combined to a total of 250 μl before
the library, library blank and PCR blank were purified on
Qiagen QIAquick columns following the above-mentioned
MinElute purification protocol and eluted in 30 μl Buffer
EB. The library, the library blank and the PCR blank were
visualised on a 2100 Bioanalyzer (Agilent Technologies).
As no target fragments were detectable in either the library
blank or the index PCR blank, only the library was
sequenced. Sequencing was performed on the Illumina
MiSeq platform where tagged amplicons were sequenced
150 bp paired-end, taking up ca. 15% of a run.
Initial bioinformatics analysis was conducted using the

Quantitative Insights Into Microbial Ecology software
package (QIIME) [117]. First, the quality of the paired-end
reads was assessed with FastQC v 0.10.0 [118] and then
low quality bases were trimmed at the 3′ end (q<20) with
PRINSEQ v0.15 [119]. Although q<30 is commonly used
in studies with modern DNA (good quality material), the
DNA in our study showed more damage so we used q<20
which is normally used for ancient DNA which is
more degraded. Afterwards, using customized Perl
scripts (program available upon request) the corre-
sponding paired reads (363,844) were merged if the
overlap was 100% identical producing 140,009 se-
quences. In order to discriminate PCR and sequen-
cing artefacts from true biological variation, only
sequences present with 100% identity in both PCRs
from the same extract were kept; this step yielded
114,345 sequences.
Also, the sequences were collapsed so that each sequence

was only present once and reads shorter than 157 bp were
filtered out. This gave a final filtered total of 1130 unique
sequences that were used for the rest of the pipeline.
COI barcode sequences from different taxonomic

levels (Arachnida, Chilopoda, Insecta, and Isopoda) were
downloaded from the BOLD v3 [120] Public Data Portal
to create a database and its corresponding taxonomy
map to be used for QIIME v1.6.0 [117].
Species identification was made with QIIME with

the uclust_ref OTU (Operational Taxonomic Unit)
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picking method (uclust v1.2.22q), using 98.5% identity
(two mutations), with max_accepts and max_rejects
set to 0 to force a search of the entire database with
every query, thus guaranteeing that the best hit will
be found if one exists. The biom table obtained from
the OTU picking was summarised through plots with
QIIME. 267 sequences failed to be assigned to a cluster
(11%), and 2162 (89%) were assigned an OTU.
After the sequence data were obtained, we made the

taxonomic assignments. OTUs were matched to most
likely arthropod species using the identification tool
within the BOLD database, using four confidence levels
based on sequence similarity largely following Razgour
et al. [37], whereby confidence level 1 = solid match to
one species or genus (>98.5% sequence similarity); level =
2 match to more than one species (98.5%), only one of
which was a UK species; level 3 = matched to two UK
species of the same family (>98.5%) and level 4 = match
to several species of different genera, or to reference
sequences only identified to family (>98%). See Zeale
et al. [34] for justification of the use of these levels of
sequence similarity to taxonomic levels. As Noctua
pronuba and Noctua janthe only differ by one base
pair yielding a 99.4% similarity, these were clustered
together at level 3. Since Noctua pronuba is of special
interest due to its status as a serious agricultural and
horticultural pest [85,86], these sequences were sepa-
rated at 100% similarity to identify the extent to
which M. nattereri had preyed on Noctua pronuba at
this site.
Field guides [44,45,77] and information from local

records [52] were used to ascertain the phenology and
life cycle stage of lepidopteran species identified genetically
within the diet (Table 3).
Additional file

Additional file 1: Zbjart_short primers. xls. Primers. 20 forward and 20
reverse primers, Illumina sequencing.
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