

University of Birmingham

Transfer Learning in Non-Stationary Environments
Minku, Leandro

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Minku, L 2019, Transfer Learning in Non-Stationary Environments. in M Sayed-Mouchaweh (ed.), Learning from
Data Streams in Evolving Environments. Studies in Big Data, Springer, pp. 13-37.
<https://www.springer.com/us/book/9783319898025>

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a peer-reviewed version of a book chapter published in Learning from Data Streams in Evolving Environments, Sayed-Mouchaweh,
Moamar (Ed.), published by Springer. The version of record can be found at: https://www.springer.com/us/book/9783319898025

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://www.springer.com/us/book/9783319898025
https://birmingham.elsevierpure.com/en/publications/e6c45397-fa95-4a82-8975-c4b201727ff9

Chapter 1

Transfer Learning in Non-Stationary
Environments

Leandro L. Minku

Abstract The fields of transfer learning and learning in non-stationary en-
vironments are closely related. Both look into the problem of training and
test data that come from different probability distributions. However, these
two fields have evolved separately. Transfer learning enables knowledge to be
transferred between different domains or tasks in order to improve predic-
tive performance in a target domain and task. It has no notion of continuing
time. Learning in non-stationary environments concerns with updating learn-
ing models over time in such a way to deal with changes that the underlying
probability distribution of the problem may suffer. It assumes that training
examples arrive in the form of data streams. Very little work has investigated
the connections between these two fields. This chapter provides a discussion
of such connections and explains two existing approaches that perform online
transfer learning in non-stationary environments. A brief summary of the re-
sults achieved by these approaches in the literature is presented, highlighting
the benefits of integrating these two fields. As the first work to provide a
detailed discussion of the relationship between transfer learning and learning
in non-stationary environments, this chapter opens up the path for future
research in the emerging area of transfer learning in non-stationary environ-
ments.

Key words: Transfer learning, data streams, concept drift, learning in non-
stationary environments, online learning

Department of Informatics, University of Leicester, University Road, Leicester LE1 7RH,

UK, e-mail: leandro.minku@leicester.ac.uk

1

2 Leandro L. Minku

1.1 Introduction

Individuals, organisations and systems have been producing large amounts
of data. Such data can be used to gain insights into various areas of interest,
such as businesses and processes. In particular, machine learning can be used
to create models able to give insights in the form of predictions. Examples of
problems involving predictions include spam detection, credit card approval,
network intrusion detection, speech recognition, among many others. This
chapter concentrates on machine learning for building predictive models.

In supervised learning, predictive models are created based on existing
training examples of the format (xi,yi) ∈ X × Y, where xi is example i’s
vector of input attributes, yi is example i’s vector of output attributes, X
represents the input space and Y represents the output space. For exam-
ple, in the problem of predicting the effort required to develop a software
project, each example i could correspond to a software project described by
(xi,yi) ∈ X ×Y, where X is the 4-dimensional space of all possible team ex-
pertises, programming languages, types of development and estimated sizes,
and Y is the 1-dimensional space of all possible software required efforts in
person-hours. In the problem of predicting whether a credit card customer
will default their payments, each example i could correspond to a customer
described by (xi,yi) ∈ X × Y, where X is the 5-dimensional space of all
possible ages, genders, salaries, types of bank accounts and numbers of years
consecutively holding a bank account, and Y is the 1-dimensional space of
payment categories (pay and default).1 When Y is a one-dimensional space,
yi can be written as yi. This work concentrates on one-dimensional output
spaces, but the ideas discussed herein could be extended to multi-dimensional
output spaces.

Most supervised learning algorithms are offline learning algorithms, de-
fined as follows:

Definition 1 (Offline Learning) Consider a fixed training set S = {(xi,
yi)}mi=1 ∼iid p(x, y), where (xi, yi) ∈ X×Y, and p(x, y) is the joint probability
distribution of the problem. Offline learning consists in using the pre-defined
training set S to build a model f : X → Y able to generalise to unseen
examples (xi, yi) ∼ p(x, y), i > m.

Given definition 1 , a model f created based on offline learning is appro-
priate for predicting the output attributes of new instances from the same
joint probability distribution p(x, y) as the one underlying the training set
S. However, many real world applications involve making predictions for a
target task in a given domain based on examples coming from different source
tasks or domains. In such cases, the probability distributions underlying the
target and sources may differ.

1 The software required effort and credit card payment problems will be used as illustrative

examples for the concepts explained in this chapter.

1 Transfer Learning in Non-Stationary Environments 3

The need for using examples from different sources arises from the high cost
or even impossibility of collecting training examples from the target task and
domain. For example, when building a model to predict the effort required
to develop a software project in a given company, it is typically expensive to
collect labelled examples describing projects from within this company [14].
Examples of projects developed by other companies are available in exist-
ing software project repositories [19, 13], but they may come from different
underlying probability distributions.

Machine learning algorithms operating in this type of scenario must be able
to tackle the different source and target probability distributions. Specifically,
they need to transfer knowledge from the source task / domain to the target
task / domain. Algorithms designed to achieve such knowledge transfer are
referred to as Transfer Learning (TL) algorithms.

Many real world applications pose yet another challenge to machine learn-
ing algorithms. Instead of providing a fixed training set, they provide a poten-

tially infinite sequence of training sets S = 〈S1,S2, · · · 〉, where St = {(x(i)
t ,

y
(i)
t)}mt

i=1 ∼iid pt(x, y); t > 0 is a time step, i.e., the sequential identifier of
a time moment when a new training set was received; and mt > 0 is the
size of the training set. Such sequence is referred to as a data stream. Its un-
bounded nature provides a clear notion of continuing time. For example, in
the problem of predicting whether a credit card customer will default their
payments, new examples describing the behaviour of additional customers
may be received over time [24].

Data streams may suffer changes in their underlying probability distribu-
tions over time, i.e., examples drawn at different time steps may belong to
different probability distributions. Such changes are referred to as concept
drifts [10]. They can be seen as the result of (1) actual changes in the un-
derlying data generating process or (2) insufficient, unknown or unobservable
input attributes, which result in the probability distributions underlying ob-
servable attributes to change, despite the true data generating process being
stationary [7]. For example, customers’ defaulting behaviour may be affected
by the beginning of an economic crisis. If there are no input attributes de-
scribing the presence of a crisis, the beginning of the economic crisis would
be perceived as a change in the joint probability distribution underlying the
observable attributes.

Machine learning algorithms for Non-Stationary Environments (NSE)
must be able to adapt predictive models to concept drift. They need to
maintain up-to-date predictive models reflecting the current joint probability
distribution, even considering that part of the past training examples may
belong to a different joint probability distribution.

As we can see from the above, both TL and learning in NSE involve train-
ing and test data that potentially come from different probability distribu-
tions. However, these two fields have evolved separately, and little work has
investigated the connections between them. A discussion of the relationship
between these two fields could greatly benefit future work, as TL approaches

4 Leandro L. Minku

could inspire new approaches to overcome problems in learning algorithms
for NSE, and vice-versa.

This chapter provides a novel discussion of the relationship between the
fields of TL and learning in NSE, and of the potential benefit of using one
field to improve the other. It explains two existing approaches that combine
the strengths of TL and learning in NSE: Diversity for Dealing with Drifts
(DDD) [24] and Dynamic Cross-company Mapped Model Learning (Dycom)
[22]. The results achieved by these two approaches in the literature are briefly
explained, highlighting the benefits of transferring knowledge in NSE.

This chapter is further organised as follows. Sections 1.2 and 1.3 explain
TL and learning in NSE, respectively. They are not intended to provide an
extensive literature review of these two fields, which can be found elsewhere
[29, 7, 17, 11]. Instead, they are intended to provide definitions and exam-
ples of representative algorithms to inform and enable the discussion of the
relationship between these two fields, which is provided in section 1.4. After
discussing this relationship, section 1.5 discusses the potential of combining
these two types of approach to improve their weaknesses. It includes an ex-
planation of the approaches DDD [24] and Dycom [22] for TL in NSE, and of
the results they have achieved in the literature. Finally, section 1.6 concludes
this work.

1.2 Transfer Learning (TL)

TL has been studied by the machine learning and data mining communities
for many years [28]. When defining TL, several authors rely on the distinction
between the terms “domain” and “task” [28]:

Definition 2 (Domain) Domain is a pair 〈X , p(x)〉, where X is the input
space; p(x) is the unconditional probability distribution function (pdf); and
x ∈ X .

Definition 3 (Task) Given a Domain = 〈X , p(x)〉, Task is a pair 〈Y, p(y|x)〉,
where Y is the output space; p(y|x) represents the posterior probabilities of
the output attributes; x ∈ X ; and y ∈ Y.

Given existing TL approaches [29], we can consider existing work to be
adopting the following definition of TL:

Definition 4 (Transfer Learning) Consider N source tasks, Taski = 〈Yi,
pi(y|x)〉, 1 ≤ i ≤ N , and their corresponding source domains, Domaini =
〈Xi, pi(x)〉. Consider also a target task, Task′ = 〈Y ′, p′(y|x)〉, and its cor-
responding target domain, Domain′ = 〈X ′, p′(x)〉, where ∀i, [Domaini 6=
Domain′ or Taski 6= Task′]. The sources are associated to fixed (labelled or
unlabelled) data sets Si. The target is associated to a fixed (labelled or unla-
belled) data set S ′. TL consists in using both the source and target data sets

1 Transfer Learning in Non-Stationary Environments 5

to build a target model f ′ : X ′ → Y ′ able to generalise to unseen examples
of p′(x, y) = p′(y|x)p′(x). Its aim is to improve learning in comparison with
algorithms that use only S′.

The use of the source data sets Si, 1 ≤ i ≤ N , may be direct or indirect. In
the former case, relevant source examples can be selected to train the target
model f ′. In the latter, source data sets can be used to learn parameters of
models or representations, which are in turn used to help building f ′.

TL is typically useful when there is not enough target data to produce a
good target predictive model. The lack of target data may result from the high
cost or even impossibility of collecting target training examples, as explained
in section 1.1. However, it is worth noting that TL can only be beneficial
if the sources and target share some similarities. If they are too dissimilar,
the use of source examples could even be detrimental to the performance of
the target predictive model, depending on the TL algorithm being used [31].
This phenomenon is called negative transfer.

Depending on whether sources and target differ in terms of their domains
or tasks, TL approaches can be categorised into two types – transductive
(section 1.2.1) and inductive (section 1.2.2).

1.2.1 Transductive TL

Given definition 4 (TL), transductive TL can be further defined as follows:

Definition 5 (Transductive Transfer Learning) Transductive transfer
learning consists in transferring knowledge between different domains that
share the same task. More formally, ∀i, [Xi 6= X ′ or pi(x) 6= p′(x)] and
[Yi = Y ′ and pi(y|x) = p′(y|x)].

Transductive TL is typically used when we do not have access to labelled
target examples, but we do have one or more training sets containing labelled
source examples. Let’s take the software required effort problem introduced
in section 1.1 as an example. Consider that three software development com-
panies c1, c2 and c′ can develop software projects whose estimated size varies
from small to large. However, company c1 is more often involved with large
software projects, company c2 is more often involved with medium software
projects, and company c′ is more often involved with small software projects.
So, p1(x) 6= p2(x) 6= p′(x). Consider also that the three companies adopt
largely the same practices. So, it is likely that p1(y|x) = p2(y|x) = p′(y|x).
Companies c1 and c2 have collected several examples of their completed soft-
ware projects, including information on their required efforts. Such data was
donated to the International Software Benchmarking Standards Group [13].
Company c′, on the other hand, collected only the input attributes of its
projects, because required efforts are expensive to collect. Therefore, com-
pany c′ may wish to use transductive TL to benefit from the data collected

6 Leandro L. Minku

by companies c1 and c2 to build a model for predicting software required
effort.

In transductive TL, as the source and target tasks are the same, labelled
source examples can be used to learn the target task. However, as the source
and target domains are different, the sources may not cover the same regions
of the input space as the target, or may not share the same input space as
the target. This needs to be tackled to avoid incorrectly biasing the target
predictive model.

The differences between the source and target domains can be addressed
by filtering or weighting source examples, so that the ones most relevant
to the target domain are emphasised. For example, Turhan et al. [39] filter
source examples based on their distance to the target examples in the input
space. The source examples that are closest to target examples are used to
buid the target predictive model. Huang et al. [12] learn weights for the source
examples so as to minimise the difference between the means of the source
and target examples in a kernel Hilbert space. These weights can then be
used when learning a kernel-based model for the target domain based on the
labelled source examples.

Another way to deal with the differences between source and target do-
mains is to transfer parameters that compose models or feature representa-
tions. For example, Dai et al. [5] proposed a näıve Bayes transfer classifi-
cation algorithm based on Expectation-Maximisation. The parameters of a
näıve Bayes model are first estimated based on a labelled source data set.
Expectation-Maximisation is then used based on an unlabelled target data
set to gradually converge the source parameters to the target probability dis-
tribution. Pan et al. [29] proposed to learn a transformation of the source
and target input attributes into a new space, called the latent space. This
transformation is learned so as to minimise the distance between the trans-
formed source and target domains. This idea shares some similarities with
Huang et al. [12]’s approach. However, Huang et al. [12] learn weights to
be used with the transformed examples, whereas Pan et al. [29] learns the
transformation itself. Once the transformation is learnt, the target model can
be learnt based on the transformed source examples and their corresponding
output attributes.

1.2.2 Inductive TL

Given definition 4 (TL), inductive TL can be further defined as follows:

Definition 6 (Inductive Transfer Learning) Inductive transfer learning
consists in transferring knowledge between different tasks. The domains may
or may not be different. More formally, ∀i, [Yi 6= Y ′ or pi(y|x) 6= p′(y|x)].

1 Transfer Learning in Non-Stationary Environments 7

As the output space or the posterior probabilities of the output attributes
are different, the source examples provide no information about the possible
outputs or the relationship between inputs and outputs of the target task.
Therefore, a few labelled target examples are necessary to learn such infor-
mation. TL approaches operating in this scenario are thus useful when the
cost of acquiring labelled target examples is high, but there are some labelled
target examples available. The source examples may or may not need to be
labelled, depending on the learning algorithm.

Let’s take again the problem of software required effort introduced in sec-
tion 1.1 as an example. Consider that a given software development company
c1 donated a data set containing several examples of completed software
projects and their required efforts to the International Software Benchmark-
ing Standards Group [13]. Company c′, on the other hand, has collected only
a few examples of completed software projects with their required efforts, due
to the high cost of collecting required efforts. Companies c1 and c′ typically
conduct the same type of software projects (i.e., p1(x) = p′(x)). However, the
underlying function mapping X to Y may differ between these two compa-
nies (i.e., p1(y|x) = p′(y|x)) because they adopt different practices and such
practices have not been collected as input attributes. In this case, company c′

may wish to perform inductive TL based on c1’s projects in order to improve
its software required effort predictions.

As with transductive TL, one way to perform inductive TL is to filter or
weigh source examples based on how well they are believed to match the
target probability distributions. Such examples can then be used to help
training the target predictive model. A very popular approach in this cat-
egory is TrAdaBoost [6]. This approach extends the well known AdaBoost
[33] ensemble learning algorithm to perform inductive TL in scenarios where
both domains and tasks may differ between sources and target. Base models
of the ensemble are trained sequentially, as in the original Adaboost. La-
belled target examples are weighted based on AdaBoost’s original weighting
rule, i.e., target training examples have their weights increased / decreased
if they are incorrectly / correctly classified by former base models. In this
way, misclassified target examples are emphasised, encouraging the ensemble
to learn how to classify them correctly. For source training examples, which
are also required to be labelled examples, this strategy is inverted. Source
training examples correctly classified / misclassified by former base models
have their weights increased / decreased, because they may match the target
probability distributions better / worse.

Other inductive TL approaches transfer parameters that compose models
or feature representations, which can then be used with the target model.
For example, at the same time as training source and target predictive mod-
els, Argyriou et al. [1] learn a feature representation that is common to the
source and target domains. Learning consists in concurrently determining (1)
target predictive model parameters, (2) source predictive model parameters
and (3) a transformation of the input space, so that the regularised error of

8 Leandro L. Minku

the source and target predictive models is minimised. The error of the source
/ target predictive models is calculated based on the source / target training
examples. For that, both source and target training examples need to be la-
belled. This approach works in scenarios where both tasks and domains may
differ between sources and target, but a common feature space exists among
them. Different from Argyriou et al. [1], Raina et al. [30] learns the feature
representation and target model separately, so that unlabelled source exam-
ples can be used. Oquab et al. [26] use the internal layers of a convolutional
neural network as a generic extractor of higher level features from the source
domain. For that, it requires labelled source examples. The neural network
parameters representing such higher level features are then reused by the tar-
get predictive model. Their corresponding internal layers are followed by an
adaptation layer, which enables the target task to be learnt. This approach
considers that both tasks and domains may differ between sources and target,
but relies on domain-specific pre-processing of the source input attributes to
produce a domain more similar to the target one.

Some inductive TL approaches also exist to transfer knowledge between
relational domains, where data can be represented by multiple relationships,
such as social networks [28]. Relational domains are out of the scope of this
chapter.

1.3 Learning in Non-Stationary Environments (NSE)

NSE are environments where training examples arrive in the form of data
streams which may suffer concept drift. Concept drift can be defined as follows
[17]:

Definition 7 (Concept Drift) Let pt(x, y) = pt(y|x)pt(x) be the joint
probability distribution (concept) underlying a machine learning problem at
time step t. Concept drift occurs when the joint probability distribution
changes over time. More formally, if, for any time steps t and t + ∆,
pt(x, y) 6= pt+∆(x, y), then concept drift has occurred.

Concept drifts can be either the result of changes in the actual data gener-
ating process, or simply perceived, rather than actual changes. As explained
by Ditzer et al. [7], the latter case can be “caused by insufficient, unknown,
or unobservable attributes, a phenomenon known as ‘hidden context’ [42]”.
In this case, there is a stationary data generating process, but it is hidden
from the machine learning algorithm, which will perceive it as non-stationary.
Therefore, this work will refer to learning in both cases as learning in NSE.

From definition 7, we can see that concept drift may involve changes in
p(y|x), p(x) or both. This leads to the following widely used additional defi-
nitions:

1 Transfer Learning in Non-Stationary Environments 9

Definition 8 (Real Concept Drift) A concept drift is referred to as a real
concept drift if it involves changes in p(y|x). More formally, if, for any time
steps t and t+∆, pt(y|x) 6= pt+∆(y|x), then a real concept drift has occurred.

For example, in the credit card payment problem introduced in section
1.1, an economic crisis may cause customers that used to pay their bills in
the past to start defaulting their payments, representing a change in p(y|x).

Definition 9 (Virtual Concept Drift) A concept drift is referred to as
a virtual concept drift if it only involves changes in p(x). More formally,
let t and t + ∆ be two time steps where pt(x) 6= pt+∆(x). If pt(y|x) =
pt+∆(y|x), then the differences in the probability distributions between t and
t+∆ represent a virtual concept drift.

For example, in the credit card payment problem introduced in section
1.1, a given credit card company may start receiving and accepting more
credit card applications from younger customers, leading to a change in the
problem’s p(x).

Concept drifts are also frequently categorised with respect to their speed
(number of time steps taken for a change to complete), severity (how large
the changes in the probability distributions are), recurrence (whether the
concept drift takes us to a previously seen concept) and periodicity (whether
concept drifts occur periodically) [38, 23, 7, 17].

In particular, it is worth noting that p(x, y) may suffer several small
changes between a number of consecutive time steps before becoming sta-
ble. Some authors refer to that as a single gradual concept drift [38], whereas
others refer to that as a sequence of concept drifts of low severity [23]. This
is distinguished from an abrupt or sudden concept drift, which is an isolated
concept drift that takes a single time step to complete. The term “gradual
concept drift” can also be used to describe a single concept drift that takes
several time steps to complete because the old and new joint probability dis-
tributions are active concurrently for a given period of time [23, 2]. In this
scenario, the chances of an example being drawn from the old / new joint
probability distribution gradually reduce / increase, until the new joint prob-
ability distribution completely replaces the old one. Certain data streams may
also continuously suffer concept drifts, i.e., they may not have any significant
period of complete stability.

Based on existing work on learning in NSE [7, 17, 11], we can consider ex-
isting approaches for learning in NSE to be adopting the following definition:

Definition 10 (Learning Algorithms for Non-Stationary Environ-
ments) Consider a process generating a data stream S = 〈S1,S2, · · · 〉, where

St = {(x(i)
t , y

(i)
t)}mt

i=1 ∼iid pt(x, y); mt > 0 is the size of the training set re-

ceived at time step t; (x
(i)
t , y

(i)
t) ∈ X ×Y; and pt(x, y) is the joint probability

distribution of the problem at time step t. Consider that at a current time
step t, we are given access to a model ft−1 : X → Y created based on past ex-
amples from S, a new training set St ∈ S and possibly a set Spast containing

10 Leandro L. Minku

a limited number of past examples from S. Learning in non-stationary envi-
ronments aims at creating an updated model ft : X → Y able to generalise to
unseen examples of pt(x, y), based on the given information.

The following observations must be made when using definition 10:

• The explicit index t in the probability distributions distinguishes these
algorithms from algorithms for stationary environments [7], as it takes the
possibility of concept drift into account.

• A model ft may be an ensemble model, possibly composed of several pre-
dictive models created with data from previous training sets.

• The size of a training set can be one, i.e., the training set may consist of
a single example.

• Many algorithms discard past training sets once they are processed. How-
ever, some approaches make use of a limited number of examples from past
training sets, as will be explained in sections 1.3.1 and 1.3.2. When used,
the number of past examples must be limited, given that data streams have
potentially infinite size. The unbounded nature of data streams means that
it is infeasible to always store all past examples for future access.

Learning algorithms for NSE may process data streams chunk-by-chunk
(section 1.3.1) or example-by-example (section 1.3.2). Most of these algo-
rithms are prepared to deal with changes that affect the suitability of the
learnt decision boundaries. Different from real concept drifts, virtual concept
drifts do not affect the true decision boundary of the problem. However, they
may still affect the suitability of the learnt decision boundary [41]. Therefore,
most existing algorithms are applicable to data streams with both types of
concept drifts, despite having different strengths and weaknesses depending
on the context.

It is also worth noting that, even though in theory each training example
from a given data stream could potentially come from a completely different
probability distribution, it would be impossible for learning algorithms to
build well-performing predictive models in such scenario. In practice, it would
be rather unlikely that a given learning problem continuously suffers very
large changes. For instance, in the problem of predicting whether credit card
customers will default their payments, it would be rather unlikely that the
defaulting behaviour of customers erratically changes all the time. Therefore,
most learning algorithms for NSE implicitly assume that there will be some
periods of relative stability, or that there are very frequent / continuous
changes, but such changes are frequently small.

1.3.1 Chunk-by-Chunk Approaches

Given definition 10, chunk-based learning algorithms for NSE can be defined
as follows:

1 Transfer Learning in Non-Stationary Environments 11

Definition 11 (Chunk-Based Learning for Non-Stationary Environ-
ments) Chunk-based learning algorithms for non-stationary environments
are algorithms that perform learning in non-stationary environments by pro-
cessing the data stream chunk-by-chunk, where the chunk size is larger than
1. These algorithms need to wait for a whole chunk of examples to become
available before learning it.

Intuitively, a chunk would be equivalent to a training set St provided by the
data stream. However, it is also possible to set the chunk size in such a way
that they are not equivalent. For instance, a chunk may contain more than
one training set within it, or a given training set may be broken down into
different chunks. Even though the size of each chunk could potentially be
very small, it is typically implicitly assumed that the size is set to be large
enough for a predictive model trained only on it to be better than random
guess.

Most chunk-based learning algorithms for NSE are ensemble learning algo-
rithms whose predictions are the weighted average or weighted majority vote
among the predictions of their base models. The weights enable the ensemble
to emphasise the base models most appropriate to the current concept. These
ensembles typically perform learning as follows [17, 40, 35, 9]:

1. Train an initial base model using the first chunk of training examples.
2. For each new chunk, do:

a. use this chunk to evaluate each predictive model that composes the
ensemble, based on a given performance measure;

b. assign a weight to each predictive model based on its performance cal-
culated above;

c. create a new predictive model using this chunk;
d. add the new predictive model to the ensemble if the maximum ensem-

ble size has not been reached; otherwise, replace an existing predictive
model by the new one;

e. discard the current chunk.

One of the problems of such approaches is that they are sensitive to the
chunk size. A too small chunk size means that there are not enough examples
to learn a good predictive model. A too large chunk means that a single chunk
may contain examples from different joint probability distributions, resulting
in the inability to deal with concept drifts adequately.

Some chunk-based approaches try to reduce sensitivity to the chunk size.
For example, Scholz and Klinkenberg [34] allow a new chunk to be used to
update an existing predictive model, rather than always creating a new model
for each new chunk. This enables chunk sizes to be small enough without
necessarily hurting predictive performance. Some chunk-based approaches
also enable a limited number of examples from past chunks to be reprocessed.
For example, Chen and He [4] preserves certain minority class examples seen
in past chunks in order to deal with class imbalanced problems.

12 Leandro L. Minku

1.3.2 Example-by-Example Approaches

Given definition 10, example-by-example learning algorithms for NSE can be
defined as follows:

Definition 12 (Example-by-Example Learning for Non-Stationary
Environments) Example-by-example learning algorithms for non-stationary
environments are algorithms that perform learning in non-stationary environ-
ments by processing the data stream example-by-example. These algorithms
can update the predictive model whenever a new training example is received.

The simplest type of example-by-example algorithms are algorithms that
maintain a sliding window over the data stream [18]. They build a new clas-
sifier to replace the old one whenever the window slides, by making use of the
examples within the window. Similar to most chunk-based algorithms, sliding
window algorithms are also sensitive to the window size. They assume that
the size must be large enough to produce a well-performing predictive model,
but small enough not to delay adaptation to concept drifts due to examples
belonging to past concepts being within the window.

Another type of example-by-example algorithms are online learning al-
gorithms, which process each training example separately upon arrival and
then immediately discard it. The fact that each training example is immedi-
ately discarded leads to significant differences between the mechanisms that
typically underlie these algorithms and other example-by-example or chunk-
by-chunk algorithms. Chunk-based or sliding window algorithms typically use
offline learning algorithms to learn each new chunk or window of examples.
In many cases, this involves training a new model using solely the examples
within the new chunk or window [17]. This would lead to poor predictive
performance if each chunk or window contained a single training example.
Moreover, offline learning algorithms often requite iterating through training
examples several times. Therefore, there is frequently an implicit assumption
that training examples from a chunk or window can be re-processed several
times before the chunk or window is discarded. Online learning algorithms
are much stricter – each training example must be discarded before a new
training example is used for training. They are therefore more suitable for
applications with very tight time and/or memory constraints, such as appli-
cations where the rate of incoming data is very large or certain embedded
systems.

Many of the online learning algorithms for NSE use concept drift detection
methods to actively detect concept drift. This is typically done by monitoring
an online learning model for stationary environments, e.g., naive Bayes [3] or
Hoeffding tree [8]. An example of well-known concept drift detection method
is Gama et al. [10]’s. This method tracks the error of an online learning
model over time. If this error significantly increases, a concept drift detection
is triggered. Other authors proposed different concept drift detection meth-
ods by monitoring different quantities. For instance, Baena-Garcia et al. [2]

1 Transfer Learning in Non-Stationary Environments 13

monitor the distance between misclassifications over time, whereas Ross et
al. [32] monitor the exponentially weighted average of the errors. A typical
way to deal with concept drifts once they are detected is to reset the online
learning model, so that it can start learning the new concept from scratch
[10, 2, 32]. However, this strategy is sensitive to false positive drift detections
(a.k.a., false alarms). Strategies such as creating a new online learning model
upon concept drift detection, but maintaining old online learning models in
case they turn out to be still useful, can help to improve robustness to false
positive drift detections [24, 25].

Some online learning algorithms deal with concept drift passively, i.e., they
do not use any concept drift detection method. A well known example is the
Dynamic Weighted Majority (DWM) algorithm [16]. This algorithm main-
tains an ensemble of online learning models, each associated to a weight. For
classification problems, the prediction given by the ensemble is the weighted
majority vote among the predictions given by the base learners. When a new
training example becomes available, each online learning model is asked to
predict the output attribute of the example before learning it. If a given on-
line learning model misclassifies the training example, its weight is reduced.
In this way, the ensemble can automatically emphasise the online learning
models most suitable to the current concept. Online learning models whose
weight is below a certain threshold are deemed outdated and are thus elim-
inated. New online learning models can also be created when the ensemble
as a whole misclassifies a training example. In this way, new models can be
created to learn new concepts from scratch.

1.4 The Relationship Between TL and Learning in NSE

This section discusses the similarities (section 1.4.1) and differences (section
1.4.2) between TL and learning in NSE.

1.4.1 Similarities

As we can see from definitions 4 and 10, TL and learning in NSE both
involve training and test data that potentially come from different probability
distributions. In TL, training examples coming from different sources may
have different domains and tasks than the target test data. In learning in
NSE, past training examples may come from a different joint probability
distribution from that underlying the current test data.

In particular, transductive TL is concerned with sources and targets that
share the same task, but have different domains. This means that sources
and target differ in terms of their unconditional pdf p(x). This is similar to

14 Leandro L. Minku

learning under virtual concept drifts, which also represent changes in p(x).
In inductive TL, sources and targets have different tasks, i.e., they differ in
terms of the posterior probabilities of the classes p(y|x). This is similar to
learning under real concept drifts, which also represent changes in p(y|x).
Moreover, sources and targets may or may not differ in terms of p(x) in
inductive TL. This is similar to real concept drifts, which may or may not
involve changes in p(x).

The similarities above translate into similarities in the approaches pro-
posed to perform TL and learning in NSE. As explained in sections 1.3.1
and 1.3.2, many approaches for learning in NSE are ensemble approaches
that maintain weighted predictive models trained on data from different pe-
riods of time. So, each predictive model could potentially represent a different
joint probability distribution. In TL terms, they could be seen as represent-
ing different sources. These approaches could arguably be seen as a form of
inductive TL. They allow knowledge from different (source) joint probability
distributions to possibly help making predictions for a given (target) con-
cept. Moreover, the fact that predictive models are weighted based on how
well they match the current concept has strong resemblance to approaches
such as TrAdaBoost [6], which weigh examples from different sources based
on how well they match the target joint probability distribution.

TL approaches could also potentially be seen as transferring knowledge
from the past to the present. This is because different periods of time of a
given data stream could be seen as different sources, which may have different
domains and/or tasks from the present (target) data. Therefore, both TL and
learning in NSE could be seen as trying to create good predictive models to
a given present time.

Table 1.1 summarises the similarities between TL and learning in NSE.

Table 1.1 Similarities Between TL and Learning in NSE

TL Learning in NSE

Test data come from a different joint prob-

ability distribution from that underlying
(part of) the training data

Test data may come from a different joint

probability distribution from that underly-
ing (part of) the past training data

Transductive TL deals with changes in p(x) Virtual concept drifts consist in changes in

p(x)

Inductive TL deals with changes in p(y|x) Real concept drifts consist in changes in

p(y|x)

Inductive TL may deal with changes in p(x) Real concept drifts may involve changes in
p(x)

TL tries to use data from different sources

to build a target model

NSE approaches that use past predictive

models could be seen as using knowledge

from different sources to build a target
model

TL could be used to transfer knowledge from

the past in order to perform well in the
present

Learning in NSE consists in creating up-to-

date predictive models that perform well in
the present

1 Transfer Learning in Non-Stationary Environments 15

1.4.2 Differences

Despite the strong similarities between TL and learning in NSE presented
in section 1.4.1, there are also significant differences. The main difference is
that TL has no notion of continuing time, as explained by Ditzler et al. [7]
and elucidated by definition 4 (TL). In particular, TL approaches currently
assume that there are pre-existing source and target data sets coming from
fixed joint probability distributions. Even if the sources are used to represent
data from different past periods of time and the target is used to represent a
given present period of time, this would still capture only a fixed snapshot of
the environment. The continuing nature of time captured by data streams,
which is a fundamental aspect of learning in NSE (definition 10), is not
considered.

The consequence of that is that TL approaches are not designed to pro-
cess additional data over time. Therefore, they cannot automatically cope
with concept drifts that may affect the present and cause the current target
model to become obsolete. In order to transfer knowledge across time, these
approaches require us to know beforehand which past and present periods of
time represent a given source / target. Therefore, concept drifts resulting in
a change in target (with the previous target becoming a source) would need
to be manually identified and the whole TL approach re-run from scratch.

TL approaches also do not make provision for processing data with grad-
ual concept drifts, where probability distributions slowly change until they
become stable, or where there are two different probability distributions con-
currently active before the concept drift completes. As each source and target
should come from a fixed joint probability distribution in TL, it is unclear
what to do with transitional periods when trying to transfer knowledge from
the past to the present. Examples produced during such periods may need
to be manually discarded. This issue becomes even more significant for real
world data streams presenting continuous changes, i.e., whose underlying
joint probability distribution is always changing from one time step to an-
other. TL approaches are not prepared to deal with this type of problem.

Moreover, TL typically requires past sources to be re-processed several
times. For example, TrAdaBoost [6] creates predictive models for its ensem-
ble sequentially, and requires iterating over all source and target examples
again for each new predictive model being created. The process is similar to
AdaBoost [33], which is an offline ensemble learning algorithm. Argyriou et
al. [1]’s feature learning requires iterating over all sources and target several
times until a convergence criterion is reached. Given the unbounded nature
of data streams (they are potentially infinite), this is infeasible for learning
in NSE.

It is also worth mentioning that the time order between sources repre-
senting different past periods of time would not be taken into account by
TL approaches, even if they were trying to transfer knowledge across time.
This is because they do not distinguish between the moment in time where

16 Leandro L. Minku

different past sources have been produced. However, this is a less significant
issue in the context of NSE than the absent notion of continuing time itself.
Even though some NSE approaches take the age of past predictive models
into account (e.g., by eliminating older models), this is not necessarily a good
strategy to learn in NSE [15].

Another difference between TL and learning in NSE is that TL is explicitly
concerned with using different sources to create a better target model than
one produced using only the target data. Even though the sources come from
different probability distributions from that of the target, they are expected
to be useful and are exploited. For example, many TL approaches try to
transform the input space of the source and target into a feature space where
they become more similar [1, 30, 29], as discussed in section 1.2. Others try to
find out which source examples match the target probability distribution well,
even though the source as a whole is known to follow a different probability
distribution from that of the target [6].

Learning in NSE, on the other hand, is concerned with creating an ap-
propriate predictive model for the current concept. Even though models rep-
resenting the past can be used for that, attempting to use past knowledge
to help learning a new concept is not a requirement. For example, many
NSE approaches delete old predictive models once a concept drift is detected
[10, 2, 32], without even trying to check whether such past models could
be somehow helpful for building a new model. Even when models repre-
senting different periods of time are used by ensemble approaches for NSE
[17, 40, 35, 9, 34], the ultimate goal of these approaches is to identify when the
past models represent concepts that match the current concept well, so that
they can be used in the present. Although past models representing some-
what different concepts may end up being used and result in possible benefits,
this is different from deliberately trying to make use of source models / data
when we know that they do come from different probability distributions, as
done by TL approaches.

In addition, the sources used by TL do not necessarily need to come from
the same data generating process. For instance, in the problem of software
effort estimation, training examples may be acquired from different companies
than the target one. Learning in NSE assumes that all training examples come
from the same data generating process, even though there may be concept
drift. Therefore, learning in NSE approaches are not prepared to benefit from
different data generating process. In particular, they can process a single data
stream over time.

Yet another difference is that TL explicitly considers different input and
output spaces, as illustrated by definition 4. Learning in NSE could poten-
tially involve changes in the input and output spaces, as they are intrinsi-
cally related to changes in p(x) and p(y), which compose the joint probability
distribution of a problem. For instance, Sun et al. [36] proposed a NSE ap-
proach that explicitly takes class evolution (appearance, disappearance and

1 Transfer Learning in Non-Stationary Environments 17

re-occurrence of classes) into account. However, most existing NSE work does
not explicitly tackle changes in the input and output space.

Table 1.2 summarises the differences between TL and learning in NSE.

Table 1.2 Differences Between TL and Learning in NSE

TL Learning in NSE

No notion of continuing time Continuing time is a fundamental aspect

Not designed to automatically process in-
coming data over time

Designed to automatically process incoming
data over time

Unable to automatically cope with changes

in the present

Designed to automatically cope with

changes in the present

No provision for processing examples from
transitional periods between different joint

probability distributions

Can process examples from transitional pe-
riods between different joint probability dis-

tributions

Typically has to re-process examples several
times, being unsuitable for potentially infi-

nite data streams

Only requires repeated access to a limited
number of past examples, being feasible for

potentially infinite data streams

Unable to distinguish between the time or-
der of different past sources

Can potentially take the age of different past
models into account

Aims to use sources with different probabil-

ity distributions to improve target model

Aims to create an up-to-date predictive

model, without necessarily using past data
or models to help learning a new concept

Sources may come from different data gen-

erating processes

All training examples come from the same

data generating process

Explicitly considers sources and targets with
different input and output spaces

Changes in the input and output spaces are
usually not explicitly considered

1.5 The Potential of Transfer Learning in NSE

Sections 1.4.1 and 1.4.2 show that, even though there are strong similarities
between current work on TL and learning in NSE, there are also signifi-
cant differences. These differences lead to limitations that prevent these ap-
proaches to effectively deal with certain types of problem, or that cause these
approaches to potentially miss useful knowledge that could lead to better
predictive performance.

In particular, TL is not designed to automatically process incoming data
over time and is typically unable to deal with potentially infinite data streams.
It cannot automatically cope with changes to the present and has no provision
to process examples from transitional periods between concepts. However,
several real world problems that could potentially benefit from TL provide
data streams rather than fixed training sets. Let’s take the example of the
software required effort problem mentioned in section 1.1. Software develop-
ment companies develop additional software projects over time, which could
be provided as training examples in the form of a data streams. Such data

18 Leandro L. Minku

streams are likely to present concept drift, given that, e.g., the practices
adopted by a software company and the type of projects that it develops
may change over time. So, a TL approach able to deal with data streams
would be desirable.

Meanwhile, NSE approaches are potentially wasting useful knowledge from
past concepts that could be used to help learning a new concept. As concept
drifts could lead to new concepts that share some similarities with respect to
old concepts, it would be desirable to have NSE approaches able to transfer
knowledge from old concepts to better learn new concepts. Moreover, NSE
approaches cannot benefit from examples coming from different data generat-
ing processes. However, several learning problems that operate in NSE could
benefit from data coming from different data generating processes. In par-
ticular, as explained in the previous paragraph, the software required effort
problem introduced in section 1.1 is actually a problem that both operates
in NSEs and could benefit from data coming from different data generating
processes (i.e., different companies).

By combining TL and learning for NSE, the individual limitations of these
approaches could be overcome. For instance, two approaches called Dynamic
Cross-company Learning (DCL) [21] and Dynamic Cross-company Mapped
Model Learning (Dycom) [22] make use of data from different source data
generating processes in order to improve predictive performance in a target
non-stationary data stream. The former can still only benefit from knowledge
from a different data generating process when it matches the current target
concept well. However, the latter can transform knowledge from sources with
different tasks and domains into useful knowledge to learn a new concept in
NSE. This approach enables TL to process data streams in NSE. It can be
seen as using ideas from learning in NSE to make TL aware of continuing
time.

Another online learning approach called Diversity for Dealing with Drifts
(DDD) [24] attempts to use knowledge acquired from a past concept’s p(x)
and p(y|x) to aid the learning of a new concept. This helps it to improve pre-
dictive performance in the presence of gradual or not severe concept drifts.
A recent chunk-based approach [37] called Diversity and Transfer based En-
semble Learning (DTEL) uses knowledge acquired from past concepts’ p(x)
to aid the learning of a new concept. These approaches can be seen as getting
inspiration from TL to improve learning in NSE.

The combination of TL and learning for NSE environments could lead to
a whole new range of machine learning approaches, forming a new combined
area of TL in NSE that overcomes the limitations of these areas in isolation.
Sections 1.5.1 and 1.5.2 explain Dycom [22] and DDD [24], as well as the
results achieved by these approaches in the literature [22, 24], highlighting
the potential benefit of TL in NSE.

1 Transfer Learning in Non-Stationary Environments 19

1.5.1 Dynamic Cross-company Mapped Model
Learning (Dycom)

Dycom [22] is a regression approach for online inductive transfer learning
in NSE where both tasks and domains may differ between the sources and
target. It assumes that a good number of labelled source training examples
are available from different data generating processes, but that the specific
source generating a given example is unknown. It considers that collecting
labelled training examples from the target data generating process is expen-
sive, and that only very few of such examples can be acquired over time.
Therefore, transferring knowledge from different sources may help to learn
a better target predictive model. Such TL should be able to tackle concept
drift, given that the target is non-stationary.

The approach is illustrated in figure 1.1. It separates the set of source
training examples into M partitions according to their similarities. This could
be done based on a clustering approach [20] or on prior knowledge [22]. Each
of the M partitions is used to create a source predictive model (source models
1 to M in figure 1.1). In this version of Dycom, the source models are trained
based on offline learning. However, this approach could be extended to use
source data streams.

Fig. 1.1 Dycom approach for TL in NSE. Arrows represent flow of information.

A target data stream is used to train a target predictive model (target
model 0 in figure 1.1) based on an online supervised learning algorithm. This
predictive model is expected to be weak and perform poorly, due to the small
number of labelled target training examples. However, depending on how long
the periods of stability are, it may happen that, over time, it will be trained
with enough examples to perform well. Therefore, it is worth building and
maintaining this model.

20 Leandro L. Minku

The target data stream is also used to learn M functions g
(i)
t : Y → Y

able to map the predictions made by each of the M source models i into
the target concept at time t. These functions thus compose M target models
(target models 1 to M in figure 1.1). Dycom assumes that, as the source
training examples have been separated into similar partitions, there exists
a reasonably linear relationship between each of the source models and the
target concept, which can be learnt based on a few labelled target training
examples. This relationship is described as follows:

g
(i)
t (f (i)(x)) = f (i)(x) · b(i)t ,

where g
(i)
t is the function to map source model f (i)’s predictions to the target

concept, b
(i)
t is a learnt parameter, and x ∈ X are the input attributes of the

target example being predicted.

Parameter b
(i)
t is learnt in an online manner based on the following equa-

tion:

b
(i)
t =

1,
if no target training example
has been received yet;

yt
f (i)(xt)

,
if (xt, yt) is the first
target training example;

lr · yt
f (i)(xt)

+ (1− lr) · b(i)t−1, otherwise,

(1.1)

where (xt, yt) is the current target training example, and lr ∈ (0, 1) is a
pre-defined smoothing factor.

As explained in [22], the mapping function performs a direct mapping

b
(i)
t = 1 if no target training example has been received yet. When the first

target training example is received, b
(i)
t is set to the value yt/f

(i)(xt). This
gives a perfect mapping of f (i)(xt) to the target concept for the example

being learnt, as f (i)(xt) · b(i)t = f (i)(xt) · yt/f (i)(xt) = yt. For all other tar-
get training examples received, exponentially decayed weighted average with

smoothing factor lr is used to set b
(i)
t . Higher lr will cause more empha-

sis on the most recent target training examples and higher adaptability to
changing environments, whereas lower lr will lead to a more stable mapping
function. So, the weighted average allows learning mapping functions that
provide good mappings based on previous target training examples, while
allowing adaptability to changes that may affect the target.

Dycom’s predictions for new target examples are based on the weighted
average of all target models. The weights are initialised to 1 and are updated
whenever a new target training example becomes available as follows. The
winner model is set to be the target model whose prediction for the current
target training example is the most accurate. All other models are the looser

1 Transfer Learning in Non-Stationary Environments 21

models, and have their weights multiplied by a pre-defined factor β ∈ (0, 1].
All weights are then normalised so that they sum up to 1. The weights of
the target models thus allow more emphasis to be placed on the models
that are currently more accurate. In particular, if the target model that does
not use source knowledge (target model 0) is inaccurate, its corresponding
weight will be low, so that its predictions will not hinder Dycom’s predictive
performance.

This approach has been evaluated in the context of software effort esti-
mation, where we are interested in predicting the effort for projects from a
given target company. In this problem, we have access to training examples
from other source companies, despite the fact that acquiring labelled train-
ing examples from within the target company is expensive. The problem of
software effort estimation gave the name Dynamic Cross-company Mapped
Model Learning to this approach, but Dycom is also applicable to other prob-
lems, as we can see from its description above.

Experiments on five databases containing software development projects
[22] using regression trees as the base learner show that Dycom achieved
similar or better predictive performance while requiring 10 times less target
training examples than a target model created using only target (no source)
training examples. This highlights the benefits of using TL in NSE when
the cost of acquiring labelled target training examples is high. Moreover,
the experiments showed that Dycom’s mapping functions can be visualised
so that project managers can see how the relationship between the efforts
required by their company and other companies changes over time. This
could be potentially used to aid the development of strategies to improve a
company’s productivity. Therefore, the insights provided by TL in NSE could
go beyond mere predictions.

1.5.2 Diversity for Dealing with Drifts (DDD)

DDD is a classification ensemble approach for online learning in NSE. It
was not originally described as an approach for TL in NSE. However, this is
essentially what it does. This approach is based on two key findings [24]:

• Knowledge from a past concept can be useful when learning in the presence
of concept drifts that occur gradually or are not severe. When a gradual
concept drift occurs, knowledge from the past concept remains useful for a
certain period of time, until the drift completes. And, more importantly, if
there is a non-severe concept drift (i.e., if the old and new concepts share
some similarities), knowledge from the old concept could be useful to help
learning the new concept. This is in line with the fact that TL approaches
can be beneficial if the source and target share some similarities, as ex-
plained in section 1.2. On the other hand, if the concept drift occurs very
fast and is very severe, the old and new concepts will not share enough

22 Leandro L. Minku

similarities for knowledge from the old concept to help learning the new
concept.

• Learning a given concept using very highly diverse ensembles will cause
them to perform poorly on this concept. However, such weak learning
enables these ensembles to quickly adapt to a new concept, if this new
concept shares similarities with the given concept. In essence, this enables
knowledge of a given concept to be transferred to a new concept in order
to improve predictive performance in NSE.

Therefore, DDD maintains online learning ensembles with different diver-
sity levels in order to achieve robustness to different data stream conditions
(i.e., to different types of concept drift or periods of stability). Figure 1.2
illustrates its behaviour. Before a concept drift is detected, a low diversity
ensemble is used both for learning incoming training examples and for mak-
ing predictions. A very highly diverse ensemble is used for learning, but not
for predictions. This is because this ensemble is expected to be weak and
perform poorly in the current concept, but may become helpful if there are
gradual or not severe concept drifts, based on the findings above.

Fig. 1.2 DDD approach for TL in NSE. Arrows represent flow of information.

The low diversity ensemble is monitored by a drift detection method. If a
drift is detected, DDD switches to the mode “after concept drift detection”.
In this mode, the previous low and high diversity ensembles are kept as old
ensembles, and both are activated for learning and predictions. Low diversity
is enforced into the learning procedure of the old high diversity ensemble, so
that it can strongly learn the new concept while transferring knowledge from
the old concept. These ensembles may be beneficial if the concept drift is
gradual or not severe. They may also be beneficial in case the drift detection
was a false positive drift detection (false alarm), in which case the concept
did not change and the old ensembles remain representative of the current
concept. A new low diversity ensemble is created to start learning the new

1 Transfer Learning in Non-Stationary Environments 23

concept from scratch. It may be useful if the concept drift is very fast and
severe. This ensemble is therefore activated for predictions. It is also moni-
tored by the drift detection method to detect new concept drifts. A new high
diversity ensemble is created to weakly learn the new concept, and is not
active for predictions. It may become useful if there is a new gradual or not
severe concept drift.

The prediction given by the system in the mode “after concept drift detec-
tion” is the weighted majority vote of the predictions given by the ensembles
that are active for predictions. The weight is the normalised accuracy of the
corresponding ensemble since the last concept drift detection, and is calcu-
lated in an online way [24] based on incoming training examples. It allows the
right ensembles to be emphasised for the given concept drift (or false alarm).

The approach switches back to the mode “before concept drift detection”
once the accuracy of the new low diversity ensemble becomes higher than
that of the old ensembles, or the accuracy of the old high diversity ensemble
becomes higher than that of the low diversity ensembles, with a certain mar-
gin. The ensemble which became more accurate than the others and the new
high diversity ensemble become the low and high diversity ensembles in the
mode “before concept drift detection”.

Any online ensemble learning algorithm and method to encourage high
or low diversity could potentially be used. Online bagging ensembles [27]
were used in the paper that proposed DDD [24], and different levels of diver-
sity were achieved by using different sampling rates based on the parameter
lambda of the Poisson distribution used by online bagging. In particular,
the lambda value was kept with the original value of one used by the online
bagging algorithm in order to create low diversity ensembles. Lower lambda
values (less than one) lead to higher diversity, and were used to produce the
high diversity ensembles.

Experiments were performed to evaluate DDD based on several synthetic
data streams containing different types of concept drift and on real world
data streams from the areas of credit card approval, electricity price predic-
tion and network intrusion detection [24]. The results show that DDD was
usually able to maintain or improve predictive performance in comparison
with other approaches for learning in NSE (DWM [16] and Baena-Garcia et
al. [2]’s approach) and online bagging without mechanisms to deal with con-
cept drifts. Predictive performance was improved specially for gradual and
non-severe drifts, which are exactly the cases for which TL via the the old
ensembles had been found to be helpful (see first bullet point in the beginning
of this subsection).

Overall, DDD and its achieved results further illustrate the benefits of
combining TL and learning in NSE. In particular, they show that knowledge
from old concepts can be used to help learning the new concept, improv-
ing learning in NSE especially when the old and new concepts share some
similarities.

24 Leandro L. Minku

1.6 Conclusions

This chapter provided background in the fields of TL and learning in NSE to
enable understanding the relationship between these two fields. It gave defini-
tions that existing work in these fields can be considered to be adopting, and
examples of several representative approaches. Based on that, a discussion of
the similarities and differences between these two fields was provided. This
discussion reveals that approaches in these fields have limitations that could
be overcome through a better integration between them. For instance, NSE
approaches are potentially wasting useful knowledge from past concepts that
could be helpful for learning a new concept. Moreover, they cannot benefit
from examples coming from different data generating processes. TL, on the
other hand, has no notion of continuing time. It is not designed to automat-
ically process incoming data over time and is typically unable to deal with
potentially infinite data streams. It cannot automatically cope with concept
drifts affecting the present and has no provision to process examples from
transitional periods between concepts.

Therefore, this chapter discussed the potential benefits of better integrat-
ing the fields of TL and learning in NSE. In particular, two existing ap-
proaches for TL in NSE called Dycom and DDD were explained. The positive
results obtained by these approaches in the literature highlight the benefit
of TL in NSE. Dycom shows how ideas from learning in NSE can be used to
make TL aware of continuing time, enabling it to deal with data streams and
automatically cope with concept drift. Conversely, DDD shows how ideas
from TL can be used to inspire better algorithms for learning in NSE, by
enabling knowledge from past concepts to aid the learning of new concepts.

As the first work to provide a detailed discussion of the relationship be-
tween TL and NSE, this chapter opens up the path for future research in
the emerging area of TL in NSE. It encourages the research communities in
these fields to work together, so that improved algorithms can be proposed
to tackle challenging real world problems.

Acknowledgement

This work was partially funded by EPSRC Grant No. EP/R006660/1.

References

1. A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Proceedings of
the 19th Annual Conference on Neural Information Processing Systems, pages 41–48,
2007.

1 Transfer Learning in Non-Stationary Environments 25

2. M. Baena-Garćıa, J. Del Campo-Ávila, R. Fidalgo, and A. Bifet. Early drift detection

method. In Proceedings of the 4th International Workshop on Knowledge Discovery
from DataStreams, pages 77–86, Berlin, Germany, 2006.

3. C. Bishop. Pattern Recognition and Machine Learning. Springer, Singapore, 2006.

4. S. Chen and H. He. SERA: Selectively recursive approach towards nonstationary imbal-
anced stream data mining. In Proceedings of the 2009 International Joint Conference

on Neural Networks (IJCNN), pages 522–529, 2009.

5. W. Dai, G. X. andQ. Yang, and Y. Yu. Transferring naive bayes classifiers for text clas-
sification. In Proceedings of the 22nd National Conference on Artificial Intelligence,

2007.
6. W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for transfer learning. In Proceedings

of the 24th International Conference on Machine Learning, pages 193–200, 2007.

7. G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary environ-
ments: A survey. IEEE Computational Intelligence Magazine, 10(4):12–25, 2015.

8. P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the

6th ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), pages 71–80, 2000.

9. R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary envi-

ronments. IEEE Transactions on Neural Networks and Learning Systems (TNNLS),
22(10):1517–1531, 2011.

10. J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection. In

Proceedings of the 7th Brazilian Symposium on Artificial Intelligence (SBIA) - Lecture
Notes in Computer Science, volume 3171, pages 286–295, São Luiz do Maranhão,

Brazil, 2004. Springer.
11. J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on

concept drift adaptation. ACM Computing Surveys, 46(4):44:1–44:44, 2015.

12. J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Scholkopf. Correcting sample
selection bias by unlabeled data. In Proceedings of the 19th Annual Conference on

Neural Information Processing Systems, 2007.

13. ISBSG. The International Software Benchmarking Standards Group. http://www.

isbsg.org, 2011.

14. B. Kitchenham, E. Mendes, and G. Travassos. Cross versus within-company cost

estimation studies: A systematic review. IEEE Transactions on Software Engineering
(TSE), 33(5):316–329, 2007.

15. J. Z. Kolter and M. A. Maloof. Using additive expert ensembles to cope with con-

cept drift. In Proceedings of the 22nd International Conference on Machine Learning
(ICML), pages 449–456, Bonn, Germany, 2005.

16. J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An ensemble method for
drifting concepts. Journal of Machine Learning Research (JMLR), 8:2755–2790, 2007.

17. B. Krawczyk, L. Minku, J. Gama, J. Stefanowski, and M. Wozniak. Ensemble learning

for data stream analysis: a survey. Information Fusion, 37:132–156, 2017.
18. L. Kuncheva and I. Zliobaite. On the window size for classification in changing envi-

ronments. Intelligent Data Analysis (IDA), 13(6):861–872, 2009.

19. T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhan. The promise repository of empirical software engineering data.

http://promisedata.googlecode.com, 2012.
20. L. Minku and S. Hou. Clustering dycom: An online cross-company software effort

estimation study. In Proceedings of the 13th International Conference on Predictive

Models and Data Analytics for Software Engineering (PROMISE), page 10p., 2017

(accepted).
21. L. Minku and X. Yao. Can cross-company data improve performance in software effort

estimation? In Proceedings of the 8th International Conference on Predictive Models
in Software Engineering (PROMISE), pages 69–78, Lund, Sweden, 2012.

26 Leandro L. Minku

22. L. Minku and X. Yao. How to make best use of cross-company data in software

effort estimation? In Proceedings of the 36th International Conference on Software
Engineering (ICSE), pages 446–456, 2014.

23. L. L. Minku, A. White, and X. Yao. The impact of diversity on on-line ensemble

learning in the presence of concept drift. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(5):730–742, 2010.

24. L. L. Minku and X. Yao. DDD: A new ensemble approach for dealing with concept

drift. IEEE Transactions on Knowledge and Data Engineering (TKDE), 24(4):619–

633, 2012.
25. K. Nishida. Learning and Detecting Concept Drift. PhD thesis, Hokkaido University,

Japan, 2008.
26. M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level

image representations using convolutional neural networks. In Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1717–

1724, 2014.
27. N. C. Oza and S. Russell. Online bagging and boosting. In Proceedings of the 2005

IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages
2340– 2345, New Jersey, 2005. Institute for Electrical and Electronics Engineers.

28. S. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 22(10):1345–1359, 2010.
29. S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer

component analysis. IEEE Transactions on Neural Networks (TNN), 22(2):199–210,

2011.
30. R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning: Transfer

learning from unlabeled data. In Proceedings of the 24th International Conference on

Machine Learning (ICML), pages 759–766, 2007.
31. M. Rosenstein, Z. Marx, and L. Kaelbling. To transfer or not to transfer. In Proceed-

ings of the Conference on Neural Information Processing Systems (NIPS) Workshop
Inductive Transfer: 10 Years Later, 2005.

32. G. Ross, N. Adams, D. Tasoulis, and D. Hand. Exponentially weighted moving average

charts for detecting concept drift. Pattern Recognition Letters, 33:191–198, 2012.
33. R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated

predictions. Machine Learning, 37(3):297–336, 1999.
34. M. Scholz and R. Klinkenberg. Boosting classi

fiers for drifting concepts. Intelligent Data Analysis (IDA), 11(1):3–28, 2007.
35. W. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale classifi

cation. In Proceedings of the 7th ACM SIGKDD international conference on Knowl-

edge discovery and data mining (KDD), pages 377–382, 2001.
36. Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao. Online ensemble learning of data

streams with gradually evolved classes. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 28(6):1532–1545, 2016.
37. Y. Sun, K. Tang, Z. Zhu, and X. Yao. Concept drift adaptation by exploiting historical

knowledge. ArXiv https: // arxiv. org/ abs/ 1702. 03500 , 2017.
38. A. Tsymbal. The problem of concept drift: Definitions and related work. Technical

Report 106, Computer Science Department, Trinity College, Dublin, Ireland, 2004.
39. B. Turhan, T. Menzies, A. Bener, and J. Di Stefano. On the relative value of cross-

company and within-company data for defect prediction. Empirical Software Engi-

neering, 14(5):540–578, 2009.
40. H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using

ensemble classifiers. In Proceedings of the 9th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD), pages 26–235, 2003.

41. S. Wang, L. Minku, and X. Yao. A systematic study of online class imbalance learn-

ing with concept drift. ArXiv https: // arxiv. org/ abs/ 1703. 06683 , 2017 (under
review).

42. G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden

contexts. Machine Learning, 23(1):69–101, 1996.

