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Opening paragraph 45 

The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants 46 

(ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements (MGEs). 47 

Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between 48 

known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, 49 

an accurate census of intestinal ARDs (i.e. the intestinal resistome) has not yet been fully determined. 50 

For this purpose, we developed and validated an annotation method (called pairwise comparative 51 

modelling, PCM) based on 3D structure (homology comparative modelling) leading to the prediction of 52 

6,095 ARDs in a catalogue of 3.9 million proteins from the human intestinal microbiota. We found that 53 

the majority of predicted ARDs (pdARDs) were distantly related to known ARDs (mean amino acid 54 

identity 29.8%) and found evidence supporting their transfer between species. According to the 55 

composition of their resistome, we were able to cluster subjects from the MetaHIT cohort (n=663) into 6 56 

“resistotypes” that were connected to the previously described enterotypes. Finally, we found that the 57 

relative abundance of pdARDs was positively associated with gene richness, but not when subjects 58 

were exposed to antibiotics. Altogether, our results indicate that the majority of intestinal microbiota 59 

ARDs can be considered as intrinsic to the dominant commensal microbiota and that these genes are 60 

rarely shared with bacterial pathogens.  61 

 62 

  63 
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Introduction 64 

Antimicrobial resistance is one of the major threats to health identified by the World Health Organization 65 

for the next decades. The intestinal microbiota plays a pivotal role in this phenomenon as it harbours a 66 

vast diversity of bacterial species, some of them possessing antibiotic resistance determinants (ARDs) 67 

that may enable their survival under antibiotic exposure. Previous studies attempted to identify ARDs in 68 

the intestinal microbiota2–4 but were confounded by the distant homologies between known ARDs 69 

(mostly from culturable bacteria) and ARDs from the intestinal microbiota (which are generally not 70 

cultured)5,6. For these reasons, bioinformatic tools based on sequence comparison (ARG-ANNOT7, 71 

CARD – RGI8, Resfinder9, DeepARG10) or motif detection (Resfams11) are often unsuccessful in 72 

characterising the diversity of ARDs from metagenomic datasets. Indeed, there is no consensus on an 73 

optimal approach to detect ARDs in metagenomic datasets. Consequently, an accurate census of 74 

intestinal ARDs (i.e. the intestinal resistome) has not yet been fully determined.  75 

While many bacteria have intrinsic, chromosomally-encoded ARDs and the capability of increasing 76 

resistance through mutation, they can also enrich their resistance capabilities through the acquisition of 77 

exogenous ARDs located on mobile genetic elements (MGEs) such as plasmids, transposons or 78 

phages. The intestinal microbiota harbours thousands of bacterial species including well-known 79 

pathogens (e.g. Enterobacteriaceae and Enterococcus spp.). This unique environment is assumed to 80 

be a reservoir of ARDs that can potentially be transferred to bacterial pathogens13. Nonetheless despite 81 

the high selective pressure exerted on the intestinal microbiota by over seven decades of intensive 82 

antibiotic usage, a very low number of transfer events from an intestinal commensal to a bacterial 83 

pathogen have been observed14,15. This challenges the hypothesis of a mobile resistome and the 84 

assumption that the intestinal microbiota serves as a reservoir of ARDs to which pathogenic bacteria 85 

have easy access16. In this study, our objective was to perform an extensive characterization of the 86 

human gut resistome (including the capacity of ARDs to transfer between species) and to assess its 87 

dynamics under various antibiotic exposures.  88 

 89 

Prediction of ARDs in the intestinal microbiota 90 

To predict ARDs in the intestinal microbiota, we developed a method based on protein homology 91 

modelling (see methods) that we termed PCM (for “pairwise comparative modelling”). PCM is a generic 92 

method using homology modelling to increase the specificity of functional prediction of proteins, 93 



   
 

 5 

especially when they are distantly related to potential homologs. PCM uses a list of reference proteins 94 

sequences from a given family, the ARD structures of this family (used as structural templates in protein 95 

data bank [PDB] format) and a series of negative references (Figure 1A, Supplementary Figure 1, 2 and 96 

3). Structural models are built using both the ARD reference and negative reference templates. Scores 97 

generated from both positive and negative references are used to determine which model performed 98 

the best. This is done using a machine-learning algorithm trained on 662 ARD and 522 negative 99 

references. The PCM score equals the number of times the query was classified as an ARD for the 100 

bootstraps performed, expressed as a percentage. Candidates with a PCM score ≥50% and an 101 

alignment score with the reference template (TM score given by TM-align) ≥0.517 were predicted as 102 

ARDs.  103 

The performance of PCM to predict ARDs was assessed using in vitro and in silico methods. We 104 

synthesized 71 candidate ARDs from 12 families (Table 1), and expressed them in Escherichia coli (see 105 

methods). All 12 pdARDs sharing an amino acid identity >95% with a known ARDs had a detectable 106 

resistance activity against antibiotics (Figure 1B). Resistance activity was also detected in 35/41 (85.3%) 107 

of the predictions made with a good level of confidence (PCM score >99%, Tm score TmAlign>0.9) and 108 

in 8/18 (44.4%) of the predictions with a lower level of confidence (PCM score <80%, Tm score 109 

TmAlign<0.8). The mean amino acid identity of the functional pdARDs (good and fair predictions, n=43) 110 

with known ARDs was 28.6% (range 19.4%-82.6%, Supplementary Table 1). We then tested PCM 111 

against an experimentally-validated functional metagenomics dataset from soils18. In this case, PCM 112 

was able to accurately identify 1,374 ARDs out of 1,423 hits (sensitivity 96.6%) (see methods). Finally, 113 

we assessed the performances of PCM with incomplete proteins as inputs, and showed that PCM could 114 

correctly predict ARDs when the available amino acid sequence was at least 40% complete 115 

(Supplementary Figure 4). After the in vitro and in silico validation of the method, we used PCM to search 116 

for ARDs in the in a catalogue made of 3,871,657 proteins which was built from the sequencing of faecal 117 

samples of 396 human individuals (177 Danes and 219 Spanish) recruited in the MetaHIT project19. In 118 

total, we predicted 6,095 ARDs (0.2% of the catalogue) from 20 ARD classes conferring resistance to 119 

nine major antibiotic families20: beta-lactams (class A, B1-B2, B3, C and D beta-lactamases), 120 

aminoglycosides (AAC(2’), AAC(3)-I, AAC(3)-II, AAC(6'), ANT, APH, RNA methylases), tetracyclines 121 

(Tet(M), Tet(X)), quinolones (Qnr), sulphonamides (Sul), trimethoprim (DfrA), fosfomycin (Fos) and 122 

glycopeptides (Van ligases) (Table 1 and Supplementary Table 1). With the same, extensively curated 123 
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reference ARDs census as input, only 67 ARDs would have been predicted according to conventional 124 

BLASTP21 search with a specific identity threshold (80% over 80% of the reference sequence)3,4. ARG-125 

ANNOT7, Resfinder9 and DeepARG10 were able to predict 54, 50 and 2,139 ARDs, respectively, while 126 

Resfams11 predicted a very high number of ARDs (44,105). The HMM-based search for class B1 beta-127 

lactamases published by Berglund et al.22 also yielded a high number of hits (n=3,490) in the 3.9 million 128 

protein catalogue (Figure 1C, Supplementary Figure 5). Further analysis on a catalogue of dummy, 129 

synthetic 3.9 million proteins indeed showed that Resfams, DeepARG and the Berglund et al. HMM-130 

based search lacked specificity (see Supplementary Information). The mean identity shared between 131 

predicted (n=6,095) and reference ARDs was 29.8%; it was significantly higher than candidates not 132 

predicted as ARDs (mean 23.0%, Wilcoxon unpaired test p=2e-16, Figure 1D). Indeed, most of the 133 

pdARDs were distantly related to reference ARDs (Supplementary Figure 6 and 7). Besides, PCM failed 134 

to predict 16 ARDs which shared at least 40% identity with a reference ARD (Supplementary Table 2). 135 

The 6,095 pdARDs and their structures are available at http://mgps.eu/Mustard.  136 

 137 

Taxonomic distribution of ARDs 138 

A host bacterial phylum could be assigned to 72.3% (4405/6095) pdARDs. The majority was identified 139 

as from the dominant human intestinal phyla Firmicutes (2962/4405, 72.3%) and Bacteroidetes 140 

(858/4405, 19.5%) (Supplementary Figure 8) with only 5.8% (225/4405) of pdARDs coming from 141 

Proteobacteria. An additional seven pdARDs were predicted to be harboured by Archaea 142 

(Methanobrevibacter and Methanoculleus genera), putatively conferring resistance to macrolides, 143 

tetracyclines, aminoglycosides, sulphonamides and glycopeptides (Supplementary Table 1). We also 144 

predicted ARDs in genera of medical interest where no ARDs had been identified such as Akkermansia23 145 

(10 pdARDs) and Faecalibacterium24 (44 pdARDs). Only 23 out of 6,095 (0.4%) had been previously 146 

identified in families and genera that include human pathogens (Enterobacteriaceae, Campylobacter, 147 

Enterococcus, Streptococcus and Acinetobacter). The distribution of the families of pdARDs differed 148 

according to the phyla (Supplementary Figure 9): Firmicutes and Proteobacteria were enriched with 149 

aminoglycosides-modifying enzymes (AMEs, spanning APH, ANT, and AACs) whereas Bacteroidetes 150 

were enriched in Sul and class A beta-lactamases. Interestingly, the tigecycline-degrading 151 

monooxygenase Tet(X) was frequently found in Bacteroidetes and Proteobacteria, the two phyla 152 

between which transfer of the tet(X) gene has been reported14,25. In order to support these assignments, 153 

http://mgps.eu/Mustard
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we sequenced the metagenome of four human faecal samples before and after an overnight culturing 154 

using conditions that favoured the growth of oxygen-tolerant bacteria such as Enterobacteriaceae and 155 

enterococci (see methods). The results showed an enrichment of Proteobacteria (over Firmicutes and 156 

Bacteroidetes), and a commensurate increase of class C beta-lactamases, Fos and Tet(X), along with 157 

Van ligases (Supplementary Figure 10).  158 

 159 

Location of the pdARDs and association with mobile genetic elements 160 

We investigated the potential for mobility of the pdARDs at different levels. First, we took advantage of 161 

the identification of gene clusters based on co-abundance and co-occurrences of genes among the 396 162 

faecal metagenomes used to build the 3.9 million MetaHIT gene catalogue19. A total of 7,381 gene 163 

clusters referred to as metagenomic units (MGUs) were identified. Among MGUs, metagenomic species 164 

(MGS) are defined as MGUs with ≥700 genes, which are considered to be representative of partial or 165 

complete bacterial genomes19. MGUs of <700 genes include MGEs such as plasmids, phages, 166 

transposable elements, and incomplete chromosomal sequences. The 7,381 MGUs from the 3.9 million 167 

gene catalogue of intestinal microbiota gene were queried with the pdARDs. A total of 3,651 (59.9%) 168 

pdARDs could be mapped onto an MGU. The distribution of pdARDs as a function of MGU size is shown 169 

in Figure 2A. Most (95.6%, 3,489/3,651) pdARDs mapped onto MGS and the relative abundance of 170 

pdARDs correlated strongly with the abundance of their respective MGS (Supplementary Information), 171 

supporting their location on the same bacterial host across the 396 individuals. We also searched for 172 

pdARDs in metagenomic species pan-genomes (MSPs)26 obtained from the 9.9 million intestinal gene 173 

catalogue27. Similar to MGS, MSPs are clusters of genes that are co-abundant in a set of sample. In 174 

MSPs, genes that are constantly found are referred as “core” while inconsistently found genes are 175 

referred to as “accessory”. Besides, “shared core” genes are assumed to be conserved genes shared 176 

between phylogroups26. We found 4,912 pdARDs located on MSPs, with the majority being assigned to 177 

the core pangenome (4,099/4,912, 83.4%) or shared between core-pangenomes (389/4,912, 7.9%). 178 

This was different with MGE-associated genes27 with most being not found in MSPs (Figure 2B).  179 

Then, we investigated whether genes associated with gene mobility (transposases, conjugative 180 

elements and integrons) were present on the same contig than the pdARDs. We found that 7.9% 181 

(484/6,095) of pdARDs were co-located with homologs of MGE-associated genes. For pdARDs not 182 
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found in MGS or in MSPs (n=974), 876 (89.9%) had no detectable MGE-associated genes in their 183 

vicinity.  184 

Finally, we searched for pdARDs homologs (BLASTN >97% identity over >90% of the query length) in 185 

the Genbank database (2018 July 11). Only 538 pdARDs homologs were identified, with 49 being 186 

located on a plasmid and/or a phage (Supplementary Table 3). Among the 489 remaining pdARDs, 82 187 

(16.8%) were found in multiple species, mainly (60/82, 73.2%) from the same genus (Supplementary 188 

Table 4).  189 

The phyla Bacteroidetes, Firmicutes and Tenericutes had the higher proportions of ARDs co-locating 190 

with MGEs (Figure 2C). No ARD family was found to be enriched in MGE, with the exception of the 191 

Tet(X) family in which 3 out of 9 (33.3%) predictions (2 from Bacteroides fragilis and 1 from E. coli) were 192 

associated with transposases (Figure 2D).  193 

 194 

Distribution of pdARDs in human hosts’ microbiota 195 

In the MetaHIT cohort (663 subjects), we found that subjects carried pdARDs with a median relative 196 

abundance of 0.22% (range 0.14%-0.38%), with pdARDs from the Tet(M) family being the most 197 

abundant (0.07%) and those from class B3 beta-lactamases the least (median: 0.004%). The average 198 

number of unique pdARDs genes detected per metagenome was 1,377 (range 258-2,367). Most 199 

pdARDs were shared across multiple subjects, 987/6,095 (16.2%) were found in at least 50% of 200 

individuals, and only 106/6,095 (1.7%) occurred uniquely in a single individual. All ARD families, with 201 

the exception of RNA methylases and AAC(2') families, were found in more than 80% of individuals.  202 

Then, we assessed whether subjects with no recent exposure to antibiotics could cluster according to 203 

their intestinal resistome. Based on the pdARDs family patterns, six clusters (that we named 204 

“resistotypes” by analogy with the enterotypes28) were detected using Dirichlet multinomial mixture 205 

models (Supplementary Figure 11). The four most frequent resistotypes each represented around 20% 206 

of the cohort (the fifth and the sixth representing 8.7% and 7.5%, respectively). The three first 207 

resistotypes were characterized by a high abundance of Van ligases (Supplementary Figure 12). 208 

Resistotype 1 was enriched in ANT, while resistotype 3 was driven by Tet(M) and class C beta-209 

lactamases. Resistotype 4 was enriched with Tet(X) and class A beta-lactamases and resistotype 6 in 210 

class B1 beta-lactamases and Sul. We observed that resistotypes, as determined by PCM, were highly 211 

connected to the composition of the microbiota, and that this effect was more pronounced than 212 
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resistotypes determined from the results of BLASTP and Resfams (Figure 3A). The resistotypes of the 213 

MetaHIT cohort were found to be associated with enterotypes (chi square test, p=5e-4), Figure 3B-D, 214 

Supplementary Figure 13). Resistotypes 1 and 3 had higher gene richness and were associated with 215 

the Clostridiales–driven enterotype. Resistotype 4 was more prevalent in enterotypes driven by 216 

Bacteroides (known to harbour Tet(X) and class A beta-lactamases) while resistotype 6 was very 217 

specific to the Prevotella enterotype (Figure 3C-D). The relative abundance of pdARDs was observed 218 

to be positively correlated to the gene richness (Figure 4A, Spearman’s rank correlation test Rho=0.31, 219 

p=5e-16). Conversely, we did not find any link between resistotypes and body mass index, age or 220 

gender.  221 

  222 

Dynamics of the pdARDs under various exposures to antibiotics 223 

We investigated the abundances of pdARDs in subjects under various exposures to antibiotics and 224 

healthcare environments. Three types of exposure were considered (see methods for details): 225 

hospitalization in a French hospital without receiving antibiotics, n=15, chronic exposure (Spanish cystic 226 

fibrosis patients frequently exposed to antibiotics, n=30) and short high-dose exposure through selective 227 

digestive decontamination [SDD; oral colistin, tobramycin, antifungal amphotericin and parenteral 228 

cefotaxime29] at admission in intensive care units in Netherlands, n=10). We again confirmed a positive 229 

correlation between relative abundance of pdARDs and gene richness among patients unexposed to 230 

antibiotics (Figure 4B, Spearman’s rank correlation test Rho=0.37, p=0.01, see methods). However, 231 

when all the samples were considered, including those with antibiotic exposure, this relationship was no 232 

longer present (Figure 4C). Instead, the relative abundance of pdARDs was found to be higher in 233 

subjects with a chronic exposure than in subjects with no recent exposure (Figure 4D, Wilcoxon unpaired 234 

test, p=1e-10), and gene richness was lower (Figure 4E, Wilcoxon unpaired test, p=0.006) In particular, 235 

subjects with chronic exposure carried more class B1-B2 beta-lactamases, AAC(6'), ANT, APH, Erm, 236 

and DfrA with lower abundance of Sul (Supplementary Figure 14). At the phylum level, we observed a 237 

decrease of Bacteroidetes and Verrucomicrobia and an increase of Firmicutes and Actinobacteria in 238 

patients chronically exposed to antibiotics (Supplementary Figure 15). A total of 74 MGS were found to 239 

be differentially abundant among subjects with or without chronic exposure to antibiotics (Supplementary 240 

Table 5).  241 
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This was different with subjects before and after SDD. A drastic loss of gene richness was measured 242 

for this group (Figure 4E): from a mean of 295,919 genes to 95,286 (67.8 % reduction, Wilcoxon paired 243 

test, p=0.006). Meanwhile, the relative abundance of pdARDs did not change significantly (Figure 4D, 244 

p=0.4). At the ARD family level, we observed that some families decreased significantly: class C beta-245 

lactamases (commonly found in Enterobacteriaceae and Pseudomonadaceae which are specifically 246 

targeted by SDD), Fos, Tet(X), APH and ANT (Supplementary Figure 16). We then analysed the MGS 247 

at the phylum level and found that Proteobacteria, Actinobacteria, Firmicutes and Fusobacteria 248 

decreased significantly after SDD (Supplementary Figure 17). A total of 358 MGS were found in this 249 

cohort and, despite the small number of subjects (n=10), we found 133 MGS for which a significant 250 

variation was observed (Supplementary Table 6). We tested whether a high abundance of pdARDs 251 

could be protective against the antibiotics used in SDD, but found no association: the relative abundance 252 

of pdARDs before SDD was not linked to the gene richness after SDD. Hospitalization without antibiotic 253 

therapy, that is, potential exposure to antibiotic-resistant nosocomial pathogens without selective 254 

pressure, did not affect the gene richness nor the relative abundance of pdARDs (Figure 4D and 4E).  255 

 256 

Discussion 257 

The results of this study support the concept that the majority of ARDs from the intestinal microbiota are 258 

hosted by commensal bacteria, and that their transfer between species (including to opportunistic 259 

pathogen) is rare30. We provide several findings to support this assumption: 1) we used a 3D structure-260 

based method to assess the diversity of ARDs in the intestinal microbiota and confirmed that ARDs 261 

predicted by PCM in the intestinal microbiota were distantly related to known ARDs, 2) the sensitivity 262 

and the specificity of the method was validated by gene synthesis of a subset of predictions and by 263 

benchmarking against various datasets (functional metagenomic of the soil microbiota, genomes and 264 

random protein catalogues), 3) the majority of pdARDs could be found in clusters of co-abundant genes 265 

(MGS and MSPs) in large cohorts of samples, while only a minority was found on plasmids, phages or 266 

in the vicinity of MGE-associated genes, 4) we could stratify subjects into 'resistotypes' that were 267 

connected to enterotypes, and 5) gene richness, otherwise associated with a healthy status31, was 268 

positively correlated to the abundance of ARDs in subjects not exposed to antibiotics. 269 

Our results challenge the paradigm that ARDs of the intestinal microbiota are a threat to public health. 270 

As was previously demonstrated for environmental samples18,32, ARDs tend to cluster according to the 271 
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underlying microbial ecology of the ecosystem, suggesting that the vast majority of ARDs are fixed in 272 

their microbial hosts and are not, or very rarely, transferred. Our results show that the dominant intestinal 273 

microbiota are not a major conduit through which opportunistic pathogens can acquire ARDs. 274 

Nevertheless, we acknowledge that such transfer events have been reported14,15 and that 275 

consequences for public health can be important, as in the case of the vanB vancomycin resistance 276 

operon that is shared by Clostridium spp. and enterococci15. Understanding the mechanisms that can 277 

lead to the mobilisation of ARDs in the intestinal microbiota, as well as a broader census of 278 

environmental reservoirs of ARDs (e.g. sewage, livestock, the subdominant human intestinal 279 

microbiota) will continue to be an important area for future research.  280 

We found that subjects cluster according to the composition of their resistome into six groups that we 281 

named “resistotypes” (as a reference to the previously described enterotypes28). These resistotypes 282 

were indeed connected to the enterotypes. Description of this underlying structure is interesting as one 283 

might hypothesize that a particular resistotype, or microbiota enriched with ARDs, might be affected to 284 

different degrees by antibiotic therapy. This has previously been observed for beta-lactamase-producing 285 

Bacteroides which can protect the microbiome against exposure to β-lactams33. In patients undergoing 286 

faecal microbiota transplantation, follow-up antibiotic therapy may be adjusted to favour engraftment of 287 

the donor microbiota34. Identifying donors with a resilient microbiota, due to a protective resistotype, 288 

could open perspectives for the optimisation of the clinical implementation of faecal microbiota 289 

transplants.  290 

Contrary to initial expectations, some pdARD families decreased in their abundance under antibiotic 291 

exposure, especially when patients were exposed to a combination of antibiotics (such as SDD). In order 292 

to resist to a combination of antibiotics, bacteria would need to be intrinsically resistant or to acquire an 293 

adequate combination of ARDs. The dynamics of ARDs under antibiotic exposure depend on various 294 

parameters: spectrum of the ARD (the level of resistance towards the antibiotic provided by the ARD), 295 

the expression level of the ARD, and the presence of other resistance mechanisms (intrinsic or 296 

acquired). The large number of possible combinations of these factors can explain that in some 297 

situations, a bacterium can be inhibited by antibiotics despite the presence of a putatively compatible 298 

ARD. Alternatively, we cannot exclude that changes in pdARDs families could also be explained by 299 

simple taxonomic shifts that are not connected to the antibiotics studied.  300 
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The limitations of current techniques and of this study leave a number of important questions unresolved. 301 

As mentioned earlier, metagenomic sequencing provides information for the dominant fraction of 302 

intestinal bacteria, and so ARDs present in subdominant bacteria remain unobserved. Indeed, several 303 

ARDs found in opportunistic pathogens among the Enterobacteriaceae (e.g. Escherichia 304 

coli and Klebsiella pneumoniae) originate from other species in the same Proteobacteria phylum35. A 305 

recent study indeed cultured many Proteobacteria species that were not detected in metagenomic 306 

sequencing36. We cannot rule out that the subdominant bacteria, which were not probed by 307 

metagenomic sequencing, could be an additional reservoir of ARDs. In terms of the clinical samples 308 

analysed, we cannot exclude that the differences between patients and controls may be resulting from 309 

confounding factors other than the antibiotic exposure. 310 

 The method we used to identify distantly related proteins is based on homology modelling and takes 311 

advantage of the observation that proteins sharing the same function have more similar structures than 312 

amino acid sequences37. Indeed, PCM could identify functional ARDs with amino acid identity below 313 

20% to known ARDs. Notably, PCM can only be used to predict the function of genes that are 314 

homologous to known ARDs, and therefore the identification of different classes of ARDs with no 315 

homology to known ARDs will still require functional screening. Besides, while PCM was validated in 316 

this study, it remains a prediction tool. While similar structures are usually indicative of similar function, 317 

this is not always the case and PCM can yield false positives results (as observed in the functional 318 

validation of synthesized pdARDs). Due to the scope of our study, gene synthesis validation was not 319 

performed for all ARD families, leaving open the possibility that  not all pdARDs identified here truly have 320 

a role in antibiotic resistance.  321 

In summary, we developed a method, PCM, which could unveil the diversity of ARDs in the intestinal 322 

microbiota. Employing this tool, we gathered evidence that the vast majority of the ARDs we predicted 323 

showed no sign of mobility and that their abundance was correlated to gene richness. Together with the 324 

protective trait of some intestinal bacteria against antibiotics33, our results suggest that the ARDs from 325 

the intestinal microbiota might be considered as our “resilience allies”38 assuring the preservation of the 326 

healthy commensal microbiota under antibiotic exposure. 327 

 328 
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Methods 361 

Constitution of the databases of antibiotic resistance determinants 362 

We define as an ARD as in Martinez et al39: a protein encoded by a gene that confers resistance to 363 

antibiotics when it is present or increases susceptibility to antibiotics when it is absent. This definition 364 

excluded housekeeping genes in which mutations can confer resistance to some antibiotics (such as 365 

topoisomerases in which mutations can lead to fluoroquinolone resistance) and genes involved in the 366 

regulation of antibiotic resistance genes. Also, we excluded efflux pumps such as TetA or QepA as very 367 

few or no PDB are available, presumably due to the difficulty to crystallize transmembrane proteins. 368 

Amino acid sequences of functionally characterized ARDs from the major antibiotic families used in 369 

human medicine (beta-lactams, aminoglycosides, tetracyclines, trimethoprim, sulfonamides, 370 

macrolides-lincosamides-synergistines, fluoroquinolones, fosfomycin and glycopeptides)20,40 were 371 

obtained from the following antibiotic resistance databases: Resfinder9, ARG-ANNOT7, the Lahey Clinic 372 

(http://www.lahey.org/studies/), RED-DB (http://www.fibim.unisi.it/REDDB/), Marilyn Roberts’s website 373 

for macrolides and tetracycline resistance genes (http://faculty.washington.edu/marilynr/) and from 374 

functional metagenomics studies5,6,41. When ARDs were provided as nucleic acids sequences, they 375 

were translated into proteins with Prodigal42. Non-redundancy of the reference ARDs was assessed with 376 

CD-HIT v4.5.743 (100% identity). The final database was manually curated in order to remove incomplete 377 

sequences and ARDs from families not considered in this work. The cluster of orthologous genes (COG) 378 

of each member of the reference dataset was assigned from the v3 eggNOG database44. In total, we 379 

collected 1,651 non-redundant amino acid sequences spanning 20 ARDs families: Class A beta-380 

lactamases (Blaa), class B1-B2 beta-lactamases (Blab1), class B3 beta-lactamases (Blab3), class C 381 

beta-lactamases (Blac), class D beta-lactamases (Blad), aminoglycoside acetyltransferases (AAC) 382 

AAC(2’), AAC(3)-I, AAC(3)-II, and AAC(6’), aminoglycoside nucleotidyltransferases (ANT), 383 

aminoglycoside phosphotransferases (APH), 16S rRNA methylases, Tet(M), Tet(X), type A 384 

dihydrofolate reductases (DfrA), dihydropteroate synthases (Sul), erythromycin ribosome methylases 385 

(Erm), quinolone resistance proteins (Qnr), fosfomycin resistance proteins (Fos), and D-Ala – D-Lac/Ser 386 

ligases (Van) (Table 1). The recently described plasmid-mediated colistin resistance mcr-1 gene45 could 387 

not be included because of the lack of a reliable PDB template obtained by X-ray diffraction at the time 388 

of the study.  389 

 390 

http://www.lahey.org/studies/
http://www.fibim.unisi.it/REDDB/
http://faculty.washington.edu/marilynr/
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Interrogation of the catalogue for ARDs 391 

We used a 3,871,657 million proteins catalogue previously published19. This catalogue was built from 392 

the metagenomic sequencing of the faeces of 396 subjects from Denmark and Spain. In brief, the 3.9 393 

million gene catalogue results from a non-redundancy filtering at 95% nucleic acid identity and 90% 394 

coverage: predicted genes from all samples (45.4 million in total) were clustered using BLAT by single 395 

linkage. Any two genes with greater than 95% identity and covering more than 90% of the shorter gene 396 

were clustered together. The contigs were originally built using SOAPdenovo (from the MOCAT 397 

pipeline52). We selected this catalogue over the more recent 10 million gene catalogue that was 398 

published during the course of this study27 because metagenomic units (MGUs, including the 399 

metagenomic species [MGS]) had been determined only for the 3.9 million gene catalogue. The genes 400 

of the catalogue were translated into proteins using Prodigal42 using the –p meta option. For each ARD 401 

family, we searched for ARDs using the three following methods: (i) we built a hidden Markov model file 402 

for each ARD family and searched the catalogue with Hmmsearch (v3. 1)46, (ii) we performed a Smith-403 

Waterman alignment with a heuristic seed detection (BLASTP v. 2. 2. 28+)21 and (iii) a rigorous Smith-404 

Waterman search (SSearch v. 36. 3. 6)47 with an E-value threshold of 1E-5. Only the hits with a size 405 

ranging from 75% and 125% of the mean amino acid size of the ARD family were further considered. 406 

All candidates were assigned a COG/NOG from eggNOG v344. When candidates were found in different 407 

ARD families (e.g. a candidate could be a hit in class B1-B2 and class B3 beta-lactamases), the 408 

candidate was assigned to the family for which it had the highest amino acid identity with the reference.  409 

 410 

Negative references 411 

For each ARD family, COGs/NOGs were attributed to reference ARDs. In parallel, the COGs/NOGs 412 

were attributed to the hits obtained during the initial steps of PCM (i.e. the hits obtained by the 413 

BLASTP/SSearch and Hmmer search). In the list of candidates from a given ARD family, the 414 

COGs/NOGs that were not found in the COGs/NOGs attributed to reference ARDs were assumed to be 415 

potential COGs/NOGs from false positives hits (Supplementary Figure 2) as it reproduced the errors of 416 

functional assignment likely to be generated in sequence-only annotations. The amino acid sequences 417 

of the representative proteins from those COGs/NOG groups were obtained from the eggNOG v3 418 

database, and were added to the negative reference dataset. A manual curation step was performed in 419 

order to ensure that no references were included in the negative references.  420 
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 421 

Selection of structural templates 422 

The list of protein structures that could be used as structural templates was downloaded (June 2014, 423 

and November 2014) from the PDB library (Protein DataBank48, http://www.rcsb.org/). Using the 424 

reference dataset and the negative references described above, Hmmer46, BLASTP21 and SSearch47 425 

were performed on the PDB database with default settings and E-values of 1E-5. Results were merged 426 

into a non-redundant PDB list. Both lists (references and negative templates) were manually curated to 427 

ensure that no references were represented in the negative templates dataset, and vice versa. If more 428 

than one PDB shared the same UniProt number (i.e. if the structure of a protein has been determined 429 

on multiple occasions), we filtered the PDB files in order in include a unique structure per UniProt number 430 

using the following positive criteria: absence of ligand, completeness of the protein and high resolution.  431 

 432 

Pairwise comparative modelling 433 

The concept of pairwise comparative modelling (PCM) is shown in Supplementary Figure 1-3 and the 434 

framework is available at https://github.com/aghozlane/pcm. The concept of 435 

leveraging the protein structure in complement to its amino acid sequence was motivated by the fact 436 

that proteins sharing common functions would be more conserved in the active site which cannot be 437 

observed by the analysis of protein sequence alignments 37. Each candidate was subjected to homology 438 

modelling with reference templates and negative templates, generating two 3D structures for each 439 

candidate (Fig 1A). The main idea is that if a sequence is truly functionally related to the reference fold, 440 

its model must be significantly different from the ones obtained with the negative structural template. 441 

Homology modelling was performed by PCM in six main steps (example in Supplementary Figure 3): 442 

1. Three structural templates were identified by BLASTP (among the lists produced as described 443 

above) that shared the highest amino acid identity with the candidate protein.  444 

2. A multiple sequence alignment was performed between the candidate and the three templates 445 

sequences using Clustalo49. 446 

3. A prediction of the secondary structure was performed using psipred (v3.5)50. The residues 447 

predicted to fold in helix or in beta-sheet conformation with a level of confidence higher or equal to 7 448 

were considered to constrain the model. 449 

http://www.rcsb.org/
https://github.com/aghozlane/pcm
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4. A comparative modelling was performed with the MODELLER programming interface51. 450 

MODELLER automatically calculates a model by satisfaction of spatial restraints such as atomic 451 

distance and dihedral angles in the target sequence, extracted from its alignment with the template 452 

structures. Stereo-chemical restraints for residues are obtained from the CHARMM-22 molecular force 453 

field and statistical preferences obtained from a representative set of known protein structures.  454 

5. The best model out of a hundred produced by MODELLER (based on the Dope score) was 455 

considered for structure assessment analysis using ProQ52 and Prosa-web53. The Dope score 456 

(Modeller), z-score (Prosa), MaxSub and LG score (ProQ) are statistical potential variables used to 457 

predict the model quality. Both ProQ and Prosa-web are trained on the PDB to determine real protein 458 

configuration and they estimate the energetic favourability of the conformation of each residue in the 459 

model.  460 

6. The best model was aligned with the reference set of structures using TM-align17 and 461 

MAMMOTH54. The RMSD (TM-align), z-score (MAMMOTH), TM-score (MAMMOTH, TM-align) 462 

estimates the degree of superposition of the residue between two structures.  463 

The differences (delta) between the scores determined from each modelling path (with the reference set 464 

or the negative set) were calculated and used for the PCM machine learning program (see below).  465 

For one given candidate, the PCM whole process took an average of 8 CPU-hours (30 minutes on 16 466 

CPUs). 467 

 468 

Taxonomic assignation 469 

pdARDs were taxonomically assigned by combining the results obtained from BLASTN against the NCBI 470 

Genomes database (minimal 70% identity and 80% coverage), a BLASTN against the IMOMI in-house 471 

database (minimal 85% identity and 90% coverage) and the taxonomy of the metagenomic unit 472 

whenever applicable. The lowest taxonomic rank from the results of the three methods was assigned to 473 

the pdARD. 474 

 475 

Statistical analysis 476 

To discriminate reference proteins from negative references, we used model quality predictors and 477 

alignment scores (inferred from the semi-automatic pipeline described above) and developed a custom 478 

pipeline in R (R Core Team, 2013, http://www.R-project.org) to perform the classification. The LASSO 479 

http://www.r-project.org/
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penalized logistic regression55 implemented in LIBLINEAR56 was used to compute the classifier. Ten-480 

fold stratified cross validation (re-sampled 100 times to obtain more stable accuracy estimates) was 481 

used to partition the data into a training and test sets. The LASSO hyper-parameter was optimized for 482 

each model in a nested 5-fold cross-validation on the training dataset using the area under curve (AUC) 483 

as the model selection criterion. From the 100 times re-sampled ten-fold cross validation, receiver 484 

operating characteristic (ROC) analysis was used to evaluate model performance using the median 485 

AUC. Coefficients extracted for each modelling or alignment score were also evaluated for their stability 486 

throughout the computed models. The PCM score was the ratio (expressed as a percentage) between 487 

the numbers of time a candidate was classified as a reference and the number of bootstraps. Predicted 488 

ARDs were candidates with a PCM score ≥50% and a TM score given by TM-align ≥0.517. To control 489 

how structural modelling brought additional information compared to amino acid sequence alignment 490 

only, we built a logistic regression model based on T-coffee alignment score (R glm, ten-fold 491 

stratification, re-sampled 100 times). We then compared the two classifiers models used for PCM and 492 

for T-coffee alignment based on the reference set (see Supplementary Information). 493 

 494 

Validation of the method with a functional metagenomic dataset 495 

The performance of PCM was assessed by analysing the data in Forsberg et al., where the ARD content 496 

of different North American soils was analysed using functional metagenomics18. The screening of the 497 

clones was performed on aztreonam, chloramphenicol, ciprofloxacin, colistin, cefepime, cefotaxime, 498 

cefoxitin, D-cycloserine, ceftazidime, gentamicin, meropenem, penicillin, piperacillin, piperacillin-499 

tazobactam, tetracycline, tigecycline, trimethoprim and trimethoprim-sulfamethoxazole (cotrimoxazole). 500 

Here, we collected the nucleotide sequences of the inserts deposited on Genbank (KJ691878–501 

KJ696532). The sequence translation of the open reading frames was performed by Prodigal (using 502 

default parameters)42. A total of 4,654 insert sequences were collected, in which 12,904 amino acid 503 

sequences were predicted. We then searched for ARDs belonging to the relevant ARD families 504 

according to the antibiotics used for the screening of the clones: beta-lactamases (all classes), APH, 505 

ANT, AAC(2’), AAC(3)-I, AAC(3)-II, AAC(6’), RNA methylases, Tet(M), Tet(X), Qnr, Sul and DfrA, using 506 

the Supplementary Table 2 of the Forsberg et al. paper. Inserts with no putative ARDs (according to the 507 

annotation of the gene) were removed (n=269). Inserts selected on cycloserine (n=868) and 508 

chloramphenicol (n=129) were not considered here because they were not included in the 20 ARD 509 
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families in this work. Fourteen inserts which contained more than one putative ARD that could be 510 

identified to confer resistance to the antibiotic used for the screening (e. g.; two beta-lactamases) were 511 

not considered in this analysis. An additional 1,658 inserts containing no putative ARDs or a putative 512 

ARDs that did not confer resistance to the antibiotic used for selection were discarded and so were 294 513 

inserts containing efflux pumps, as these were not considered in this study. The resulting validation set 514 

contained 1,423 inserts (with resistance genes) for a total of 3,778 genes. To compare the outcome of 515 

PCM with other tools, the results for class B1-B2 and B3 beta-lactamases generated by PCM were 516 

merged into one class B beta-lactamases group as other tools do not separately consider the different 517 

class B beta-lactamases. 518 

In total, 1,390 unique hits were found during the initial screen of PCM, of which 1,374 were predicted as 519 

ARDs (Supplementary Table 7). Among the 33 ARDs not included for PCM, 12 were not considered 520 

because they were undersized and 10 because they were oversized. No hits for AAC(2’), ANT, Qnr or 521 

Sul were found. The mean identity shared with reference ARDs was 37.6% (range 18.8-94.5). Overall, 522 

the sensitivity was 96.6%, with no false negative. In comparison, only 8 ARDs would have been identified 523 

by a conventional method (combination of Hmmsearch, BLASTP and SSearch with both a minimal 524 

identity with a reference ARD and coverage over or equal to 80%). Conversely, Resfams11 that was 525 

specifically designed to identify ARDs from functional metagenomic datasets showed a similar sensitivity 526 

to PCM with the identification of 1,346 ARDs out of 1,423 (94.6% sensitivity).  527 

 528 

Validation of the method for incomplete genes 529 

The 3.9 million gene catalogue harbours 41.4% of genes that are predicted to be incomplete either on 530 

the 5', the 3' or both extremities19. As the size parameter is crucial for homology modelling, we tested to 531 

what extent the prediction of incomplete ARDs by PCM could remain valid. We selected 12 reference 532 

class A beta-lactamases (BlaZ, CblA-1, CepA-29, CfxA2, CfxA6, CTX-M-8, KPC-10, OXY-1, PER-1, 533 

SHV-100, TEM-101 and VEB-1) and we then iteratively removed 5% of the amino acid sequence at 534 

both edges in order to obtain 16 bi-directionally trimmed candidates (from 100% to 25%) per reference 535 

ARD. Candidate genes were chosen to span the diversity of known beta-lactamases, but the main 536 

representative beta-lactamase of the subfamily (e.g. TEM-1 for TEM beta-lactamase) was not 537 

necessarily chosen. Note that SHV-100 has a slightly longer sequence (13 amino acid duplication) than 538 

other SHV. A total of 192 PCM experiments were performed: we observed that the 12 references were 539 
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correctly predicted as ARDs when at least 40% of the protein remained (i.e. 30% trim from each 540 

extremity, Supplementary Figure 4). Thus, we are confident that with the 75% size threshold used in 541 

this study (a maximum of 25% removed from one edge), no misclassification due to an incomplete gene 542 

would be expected.  543 

 544 

Gene synthesis 545 

We selected 71 pdARDs from 12 ARD families: 14 from class A beta-lactamases, 8 from class B1-B2 546 

beta-lactamases, 7 from class B3 beta-lactamases, 4 from class C beta-lactamases, 2 from class D 547 

beta-lactamases, 2 AAC(3)-I, 5 AAC(3)-II, 8 AAC(6'), 3 ANT, 4 APH, 13 Tet(M) and 1 Tet(X)) for gene 548 

synthesis and sub-cloning into Escherichia coli to test the decrease of susceptibility to antibiotics. For 549 

beta-lactamases, a chromogenic test (nitrocefin) was used to detect function. Minimal inhibitory 550 

concentrations (MIC) were determined by E-Test strips (bioMérieux, Marcy-l’Etoile, France) in duplicate. 551 

A pdARD was considered to have an activity against an antibiotic (tobramycin for AAC(3)-I, AAC(3)-II, 552 

AAC(6’) and ANT; kanamycin for APH and tetracycline for Tet(M)) when the MIC of the clone was above 553 

the MIC of a clone harbouring the plasmid without a synthesized gene or when the colour of the broth 554 

containing nitrocefin turned red, in the case of beta-lactamases. We used the plasmid vector pET-22b+ 555 

(embedding a beta-lactamase – encoding gene) for pdARDs hypothesized to confer resistance to 556 

aminoglycosides and the pET-26b (embedding a gene conferring resistance to kanamycin) for the other 557 

pdARDs. The selection of the pdARDs for synthesis was performed as follows:  558 

- References (n=12): pdARDs which shared a high identity with known ARDs (≥95% amino acid 559 

identity and ≥80% coverage with a reference ARD).  560 

- Good predictions (n=41): pdARDs with the highest degree of confidence for the prediction (PCM 561 

score >99%, Tm score TmAlign>0.9 and <70% amino acid identity with a reference ARD. 562 

- Fair predictions (n=18): pdARDs with the lowest degree of confidence for the prediction (PCM score 563 

<80%, Tm score TmAlign<0.8 and <70% amino acid identity with a reference ARD). 564 

 565 

Signatures of mobile genetic elements nearby the predictions of ARDs 566 

We searched for mobile genetic elements (MGE) - associated proteins encoded by genes located in the 567 

same contigs as pdARDs. The 3.9 million gene catalogue results from a non-redundancy filtering at 95% 568 

for the genes19, but in order to identify the contigs on which pdARDs were identified, we needed to return 569 
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to the redundant catalogue (i.e. the non-dereplicated catalogue of genes) and identified homologs 570 

sharing 95% nucleic acid identity with the pdARDs. By doing so, we could identify contigs (n=16,955) 571 

carrying at least one pdARD. The mean size of the contigs was 19,711 bp (min 500, max 461,981, 572 

median 8,513). In total, the 16,955 contigs contained a total of 908,888 genes after the subtraction of 573 

pdARDs. The 908,888 genes were then translated into proteins with Prodigal42 and queried for IS 574 

elements using BLASTP (query size threshold 150 amino acids, e-value 1E-30, identity threshold 40%) 575 

against the ISfinder database57. Conjugative elements were queried among the same gene set 576 

(n=908,888) with Conjscan58, using the default parameters and the filters recommended by the authors 577 

(best e-value<0.001 and sequence coverage of at least 50%). Most proteins belonging to the type IV 578 

secretion systems (T4SS), which are involved in conjugation, are ubiquitous in that they have numerous 579 

homologs. Hence, when searching for conjugation proteins in a 3.9 million protein catalogue, there 580 

would be a high risk of false positives. Accordingly, the colocation of hits was deemed crucial. A 581 

conjugative T4SS is made from:  582 

• a protease (VirB4)  583 

• a second coupling protein protease (t4cp)  584 

• a relaxase (MOB)  585 

• a proteic complex (MPF) composed of at least 10 proteins 586 

In order to identify a T4SS on a contig, we required presence of at least 1 virB4 hit, a t4cp1 or t4cp2 hit, 587 

a MOB hit and a certain number of MPF hits. All hits must co-localize. A MOB element alone can mobilize 588 

a neighboring gene (such as an ARD-encoding gene) via other T4SSs. However, in our dataset the 589 

short length of contigs led us to adapt those parameters (following the recommendations of the 590 

developers of the Conjscan software). Besides the MOB element, we considered that the presence of 2 591 

hits from the same family (e.g. T_virB6 and T_virB8, or B_traF and B_traH) or virB4+any hit from another 592 

family on the same contig as a pdARD was a strong indication of the presence of mobility associated 593 

elements. Integrons were identified using IntegronFinder66 on the 16,955 contigs using default 594 

parameters.  595 

We also searched for pdARDs in metagenomic species pan-genomes (MSPs)26 obtained from the 9.9 596 

million intestinal gene catalogue27 using BLASTN with a 95% identity threshold over 90% of the query.  597 

We also searched for homologs of pdARDs in Genbank with 97% identity threshold over 90% of the 598 

query. We found 820 out of 6095 pdARDs (13.5%) which aligned against 139,413 Genbank entries. We 599 
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filtered hits corresponding to a virus, a plasmid or a vague taxonomic affiliation by considering the 600 

following terms: “uncultured bacterium”, “artificial”, unidentified”, “uncultured organism”, “environmental 601 

samples” and “metagenome”.  602 

Distribution of the pdARDs in the MetaHIT cohort (n=663 subjects) 603 

pdARDs profiles were obtained from the abundance matrix of the 3.9 million genes as described in 604 

Nielsen et al19. The "reads per kilobase per million mapped reads" (RPKM) method was used to 605 

normalize the mapping counts. After summing the relative abundances of pdARDs genes belonging to 606 

the same family, Dirichlet multinomial mixture models were used to find ARDs clusters (i.e. resistotypes) 607 

using the Dirichlet Multinomial R package. The same method was applied to detect gut microbiota 608 

clusters (i.e. enterotypes)59. The Laplace criterion was used to define optimal number of clusters as 609 

described on oral and faecal microbial dataset60. By analogy with the term enterotype, we chose to name 610 

a cluster of subjects based on their similarity of their faecal relative abundance of pdARDs a 611 

“resistotype”. The Chi-squared test was used to assess the associations between resistotypes and 612 

enterotypes. Rarefaction analysis at one million reads was done to determine the gene richness per 613 

samples. RLQ analysis61 was conducted to assess the associations between the relative abundances 614 

of pdARDs, their characteristics (family, size of the cluster of associated genes [CAG]) and those of 615 

subjects (enterotypes, resistotypes, gender, body mass index [BMI], age). Of note, we excluded the 616 

patients suffering from inflammatory bowel disorders from this analysis. Co-inertia analysis was 617 

conducted to assess the associations between microbiota beta-diversity and pdARDs profiles. 618 

Microbiota composition was assessed using metagenomics species (MGS, see below) relative 619 

abundance and beta-diversity by square root Jensen-Shannon Divergence (JSD). A principal coordinate 620 

analysis was done on JSD distance matrix and a principal component analysis was done on ARDs 621 

profiles. Both analyses were then subjected to co-inertia analysis and Monte-Carlo permutation was 622 

done to asses to robustness of shared inertia.  623 

 624 

Constitution of cohorts of patients with various antibiotic exposures 625 

We included three cohorts of patients with various exposures to antibiotics:  626 

- Hospitalization without antibiotics: a total of 31 patients with no exposure to antibiotics or hospitalisation 627 

during the three preceding months and admitted to the medicine ward of the Beaujon University 628 
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Teaching Hospital (Clichy, France) were included and provided a faecal sample at admission. Among 629 

them, 16 also provided a stool sample at discharge. One patient received antibiotics between admission 630 

and discharge and was not further considered for the analysis. In total, 15 patients could provide a stool 631 

sample soon after admission (T0) and at discharge (T1). The mean time between T0 and T1 samples 632 

was 10.7 days. The mean age of patients was 67.8 years old and the gender ratio (M/F) was 1.3. All 633 

patients gave informed consent. This work was approved by the French National Institutional Review 634 

Board (IRB 00008522) and registered at clinicaltrials.gov (NCT02031588). 635 

- Chronic exposure: 30 cystic fibrosis (CF) patients were enrolled at the Cystic Fibrosis Unit of the 636 

Ramón y Cajal Hospital in Madrid. One faecal sample was collected at the occasion of a consultation. 637 

All subjects for this study were provided a consent form describing the study and providing sufficient 638 

information for subjects to make an informed decision about their participation as faecal donors in this 639 

study. Cystic fibrosis is a genetic disease that leads to an impairment of the lung function through an 640 

uncontrolled production of mucus. The consequence is chronic bacterial colonization, resulting in 641 

deleterious reactive fibrosis of the lung. Bacterial load is controlled by chronic exposure to antibiotics 642 

(home-therapy, mostly oral and inhaled in our cohort), which has resulted in significant life prolongation, 643 

and the near-absence of hospital care. Hence, the CF patients had been exposed to various antibiotics 644 

during the five years before the faecal sample was collected:  645 

 Beta-lactams (ampicilln, amoxycillin, cloxacillin, piperacillin-tazobactam, cefepime, ceftriaxone, 646 

ceftazidime, cefditoren, meropenem): 25/30 647 

 Macrolides (azithromycin, clarithromcyin): 17/30 648 

 Colistin: 21/30 649 

 Fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin): 26/30 650 

 Cotrimoxazole: 14/30 651 

 Glycopeptides (vancomycin): 1/30 652 

 Aminoglycosides (amikacin, tobramycin): 12/30 653 

 Tetracyclines (doxycycline, minocycline): 2/30 654 

 Linezolid: 3/30 655 

 Rifampin: 1/30 656 

 Fosfomycin: 5/30 657 
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On average, CF patients had been exposed to 5.9 different antibiotics and had an average of 12.2 658 

antibiotic courses during the five years before the sample was taken. The mean age was 36.3 years old 659 

and the gender ratio (M/F) was 1.3. This protocol and any amendments were submitted to the Ethics 660 

Committee (EC) in agreement with local legal prescriptions, for formal approval of the study conduct. 661 

The consent form was obtained before that subject provided any faecal sample for the study and was 662 

signed by the subject or legally acceptable surrogate, and the investigator-designated research 663 

professional obtaining the consent. According to the National Spanish laws the study did not require the 664 

approval of the Ethics Committee. Nonetheless, the Ethics Committee of the Hospital Ramón y Cajal 665 

guaranteed that the study was performed done according to the good clinical practices guidelines.     666 

- Short high dose exposure: selective digestive decontamination (SDD) consists in administering a 667 

mixture of topical and parenteral antibiotics and antifungal agents to a patient at admission in order to 668 

eliminate potential bacterial and fungal pathogens. SDD has been showed to significantly reduce 669 

mortality in the intensive care unit (ICU)29 and is now part of standard care for intensive care patients in 670 

the Netherlands. To assess the effect of SDD on the intestinal microbiota, we analysed the faecal 671 

samples from 13 patients admitted to the ICU of the University Medical Centre of Utrecht (UMCU, 672 

Netherlands). The samples were collected at admission (T0, first sample passed after admission) and 673 

after SDD (T1). Among the 13 patients for whom a faecal sample could be obtained at T0, 10 could 674 

provide a faecal sample at T1. The mean age was 59.9 years old and the gender ratio (M/F) was 0.5. 675 

SDD consisted of 4 days of intravenous cefotaxime and topical application of tobramycin, colistin, and 676 

amphotericin B. Additionally, a subset of samples (n=4) from this cohort was cultured in a brain-heart 677 

infusion broth overnight in ambient atmosphere at 37°C. The protocol for the collection of stool samples 678 

was reviewed and approved by the institutional review board of the University Medical Centre of Utrecht 679 

(The Netherlands) under number 10/0225. Informed consent for faecal sampling during hospitalization 680 

was waived. Written consent was obtained for the collection of faecal samples after hospitalization. 681 

 682 

Metagenomic sequencing and mapping.  683 

Total faecal DNA was extracted62,63 and sequenced using SOLiD 5500 wildfire (Life Technologies) 684 

resulting in a mean of 68.5 million sequences of 35-base-long single-end reads. High-quality reads were 685 

generated with quality score cut-off >20. Reads with a positive match with human, plant, cow or SOLiD 686 

adapter sequences were removed.  687 
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Filtered high-quality reads were mapped to the MetaHIT 3.9 million gene catalogue19 using the METEOR 688 

software64. The read alignments were performed in colourspace with Bowtie software (version 1.1.0)65. 689 

Uniquely mapped reads (reads mapping to a single gene from the catalogue) were attributed to the 690 

corresponding genes. Shared reads (mapping different genes of the catalogue) were attributed 691 

according to the ratio of their unique mapping counts, as following: as a read can map on different genes 692 

of the catalogue, the abundance of a gene 𝐺(𝐴𝑔) depends on the abundance of uniquely mapped reads 693 

(𝐴𝑢), i.e. reads that map only to the gene 𝐺, and on the abundance of 𝑁 shared reads (𝐴𝑠) that aligned 694 

with 𝑀 genes in addition to the gene G: 695 

𝐴𝑔 = 𝐴𝑢  +  𝐴𝑠 696 

where 697 

𝐴𝑠 = ∑ 𝐶𝑜𝑖

𝑁

𝑖=1

 698 

 699 

For each shared read, the gain of abundance corresponds to a coefficient 𝐶𝑜 that takes in account the 700 

total number of uniquely mapped reads on the 𝑀 genes: 701 

𝐶𝑜𝑖
=

𝐴𝑢

𝐴𝑢 + ∑ 𝐴uj
𝑀
𝑗=1

 702 

 703 

For instance, if a gene G is mapped by 10 reads that only map to it (unique reads), but also with 1 read 704 

that also align on a gene M that was mapped by 5 unique reads, then: 705 

𝐴𝑔 = 10 + 
10

10 + 5 
≈ 10. 7 706 

  707 

To decrease technical biases due to different sequencing depth, samples with at least 5 million mapped 708 

reads were downsized to 5 million mapped reads (random sampling of 5 million mapped reads without 709 

replacement) using R package momr31. The abundance of each gene in a sample was then normalized 710 

by dividing the number of reads that mapped to the gene (𝐴𝑔) by the gene nucleotide length and by the 711 

total number of reads from the sample. The resulting set of gene abundances, termed a “microbial gene 712 

profile”, was used to estimate the abundance of metagenomic species (MGS)19. 713 

 714 

Gene richness analysis 715 
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Microbial gene richness was calculated by counting the number of genes mapped at least once for a 716 

given sample. Gene richness was calculated using R package momr for samples where 5 million or 717 

more reads had been mapped to the 3.9 million gene catalogue.  718 

 719 

MetaGenomic Species (MGS) 720 

MGS are co-abundance gene groups with more than 700 genes and can be considered as part of 721 

complete bacterial species genomes. 741 MGS were delineated from 396 human gut microbiome 722 

samples19. In this study, the relative abundance of MGS was determined as the median abundance of 723 

90% of the genes composing each cluster, meaning that the 10% genes with the lowest abundance for 724 

each MGS were not considered for the calculation of the abundance of the MGS. Typically, these genes 725 

correspond to genes with 0 count, to accessory genes (hence their detection is not constant) or to genes 726 

that are not detected because of insufficient sequencing depth. The MGS taxonomical annotation was 727 

updated by sequence similarity using NCBI BLASTN, when more than 50% of the genes matched the 728 

same reference of NCBI database (December 2014 version) at a threshold of 95% of identity and 90% 729 

of gene length coverage to get the species annotation19. 730 

 731 

Statistical analysis for the distribution of pdARDs and MGS between groups 732 

Statistical analyses for the differential abundances of pdARDs and MGS were performed using the 733 

application SHAMAN66 (http://shaman.c3bi.pasteur.fr/). Data are available at 734 

(https://github.com/aghozlane/evotar), with the graphical representations using the abundances from 735 

the matrix rarefied at 5M reads. The relationship between richness and the abundance of ARDs was 736 

assessed by Spearman correlation test. The statistical threshold for significance was set at a p-value of 737 

0.05.  738 

 739 

Data availability 740 

The 6,095 pdARDs PDB files, nucleotide and amino acid sequences can be downloaded from 741 

http://mgps.eu/Mustard/. The 3.9 million gene catalogue and the metagenomic species database are 742 

accessible at https://www.cbs.dtu.dk/projects/CAG/. The reads from the clinical samples generated in 743 

this study are available under the accession number PRJEB27799 at the European Nucleotide Archive 744 

(ENA).  745 

http://shaman.c3bi.pasteur.fr/
https://github.com/aghozlane/evotar
http://mgps.eu/Mustard/
https://www.cbs.dtu.dk/projects/CAG/
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 746 

Code availability 747 

The PCM code can be found at https://github.com/aghozlane/pcm. 748 
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Figures 895 

Figure 1: Illustration of the concept of “Pairwise Comparative Modelling” (PCM) with a class A beta-896 

lactamase (panel A). A1: class A beta-lactamase protein structure (4EWF) obtained from the PDB 897 

database. A2: A candidate protein (MC3.MG12.AS1.GP1.C14.G3 from Faecalibacterium prausnitzii) for 898 

class A beta-lactamase modelled with a reference class A beta-lactamase structural template. This 899 

protein had 26.5% amino acid identity with the closest reference class A beta-lactamase. A3: The same 900 

candidate protein (MC3.MG12.AS1.GP1.C14.G3) for class A beta-lactamase this time modelled with a 901 

negative reference template. The candidate MC3.MG12.AS1.GP1.C14.G3 was predicted to be a class 902 

A beta-lactamase with 100% confidence by our model and later found to be functional after gene 903 

synthesis. Panel B: Bar-plot of the activity of the synthesized pdARDs against antibiotics with respect to 904 

the degree of confidence of the prediction (“reference” meaning that the protein shares more ≥95% 905 

amino acid identity with a functionally proven ARD, “good” meaning a PCM score over 99% and a 906 

TmAlign Tm score ≥0.8, “fair” meaning a PCM score between 50% and 80%). Panel C: number of 907 

predictions of antibiotic resistance determinants from a 3.9 million gene catalogue of the intestinal 908 

microbiota19 using PCM,  BLASTP21, ARG-ANNOT7, Resfinder9, DeepARG10, Resfams11 and the HMM-909 

based method published by Berglund et al. for class B1 beta-lactamases22. Panel D: violin plot of the 910 

maximal identity observed with a reference ARD for candidates predicted as ARDs (blue violin, n=6,095) 911 

and those not predicted as ARDs (red violin, n=3,982). The point depicts the median. The width of the 912 

violins depicts the distribution of pdARDs according to their maximal identity with a reference ARD. See 913 

Supplementary Table 2 for details about candidates sharing at least 40% identity with reference ARDs 914 

but which were not predicted as ARDs.  915 
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 916 

Bla: beta-lactamase; AAC: aminoglycoside acetylase; ANT: aminoglycoside nucleotidyl transferase; 917 

APH: aminoglycoside phosphotransferase; DfrA: type A dihydrofolate reductase; Sul: dihydropteroate 918 

synthase; Erm: erythromycin ribosome methylase; Qnr: quinolone resistance; Fos: fosfomycin 919 

resistance (Fos); Van: D-Ala – D-Lac/Ser ligase (vancomycin resistance).  920 

  921 
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Figure 2: Mobile genetic elements (MGE) and predicted antibiotic resistance determinants (pdARDs). 922 

(A) Distribution of the sizes of the metagenomics unit (MGU) where an antibiotic resistance determinant 923 

was predicted with respect to the colocation of MGE-associated genes. The vertical line depicts the 924 

assumed gene size threshold above which MGUs are considered as partial chromosomes referred as 925 

metagenomic species (MGS)19. (B) Bar plot of the categories of metagenomic species pangenomes 926 

(MSPs)26 assigned to MGE – associated genes27 and pdARDs. (C) Proportion of pdARDs co-locating 927 

with MGE-associated genes with respect to their phylum. (D) Proportion of pdARDs co-locating with 928 

MGE-associated genes according to the pdARD family. Of note, the AAC(2’) and 16S RNA methylases 929 

only included 3 and 2 pdARDs, respectively and were accordingly not depicted in this panel.  930 

  931 
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Figure 3: Association between resistotypes, enterotypes, metagenomics species (MGS) and pdARDs 932 

profiles in the 663 individuals from the MetaHIT cohort. A) inertia shared between pdARDs profiles and 933 

microbiota composition as function of bioinformatics methods. We assessed how gut microbiota beta 934 

diversity inertia was connected to the abundance of pdARDs. Co-inertia using RV coefficient was 935 

analysed to detect significant co-structure between datasets67, meaning that different sets of variables 936 

(e.g. microbial genera abundance and ARDs profiles) were not independent and shared a fraction of 937 

inertia. Monte‐ Carlo tests were used to confirm observed relations between different datasets, 938 

assuming a p-value < 0.05. B) Samples proportions for each resistotype depicted as function of 939 

enterotypes using the PCM method. C) and D) Association between pdARDs gene profile and gut 940 

microbiota composition using co-inertia analysis with respect to their enterotypes and pdARDs families 941 

(C), and to their resistotypes and MGS relative abundance (D). A taxonomical correspondence for each 942 

MGS number can be found in the original paper19. Briefly, all MGS were Firmicutes with the exception 943 

of MGS:164 and MGS:445 (both Bacteroidetes).  944 

 945 

        946 

 947 
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Figure 4: (A) Gene richness and relative abundance of predicted antibiotic resistance determinants 948 

(pdARDs) in the MetaHIT cohort (n=663). (B) Gene richness and relative abundance of pdARDs in our 949 

cohort of subjects with no recent antibiotic exposure (n=44). (C) Gene richness and relative abundance 950 

of pdARDs in our cohort of subjects with regards to their antibiotic exposure (n=102 samples). (D) and 951 

(E) Boxplots superimposed by dot plots of the comparisons of the relative abundance of all pdARDs and 952 

gene richness, respectively, between the various groups differing by their exposure to antibiotics. 953 

Hospitalization: n=15, Wilcoxon paired test. Short high dose exposure: n=10, Wilcoxon paired test. 954 

Chronic exposure: n=31 for patients not exposed to antibiotics, n=30 for patients chronically exposed to 955 

antibiotics, Wilcoxon unpaired test.  956 

 957 
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ATB: antibiotics. The shaded grey area depicts the 95% confidence interval around the blue, linear 958 

regression line. For boxplots, the lower, central and upper hinges correspond to the first, second 959 

(median) and third quartiles. The upper and lower whiskers respectively correspond to the higher and 960 

lower values at 1.5*IQR from the hinge (where IQR is the inter-quartile range, or distance between the 961 

first and third quartiles).   962 
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Table 1: Summary of the predictions of antibiotic resistance determinants (ARDs) from a 3.9 million 963 

gene catalogue of the intestinal microbiota19 and of gene synthesis results.  964 

Antibiotic resistance class
Number of 

references

Number of 

candidates

Number of 

predictions

Rate ARD 

predictions/candidates (%)

Tested 

(%)

N functional 

(%)

N not functional 

(%)

16S rRNA methylase 17 4 2 50,0 0 (0%) NA NA

AAC(2') 5 15 3 20,0 0 (0%) NA NA

AAC(3)-I 7 53 15 28,3 2 (13.3%) 2 (100%) 0 (0%)

AAC(3)-II 12 81 81 100 5 (6.2%) 5 (100%) 0 (0%)

AAC(6') 36 1191 312 26,2 8 (2.6%) 6 (75%) 2 (25%)

ANT 29 158 67 42,4 3 (4.5%) 3 (100%) 0 (0%)

APH 30 430 279 64,9 4 (1.4%) 3 (75%) 1 (25%)

Class A beta-lactamase 682 402 267 66,4 14 (5.2%) 9 (64.3%) 5 (35.7%)

Class B1-B2 beta-lactamase 150 554 134 24,2 8 (6.0%) 6 (75%) 2 (25%)

Class B3 beta-lactamase 31 493 221 44,8 7 (3.2%) 5 (71.4%) 2 (28.6%)

Class C beta-lactamase 56 373 76 20,4 4 (5.3%) 4 (100%) 0 (0%)

Class D beta-lactamase 248 76 27 35,5 2 (7.4%) 2 (100%) 0 (0%)

DfrA 35 632 632 100 0 (0%) NA NA

Erm 58 873 781 89,5 0 (0%) NA NA

Fos 34 84 62 73,8 0 (0%) NA NA

Qnr 66 272 219 80,5 0 (0%) NA NA

Sul 33 357 353 98,9 0 (0%) NA NA

Tet(M) 72 2824 1682 59,6 13 (0.8%) 9 (69.2%) 4 (30.8%)

Tet(X) 12 42 9 21,4 1 (11.1%) 1 (100%) 0 (0%)

Van ligase 16 1163 873 75,1 0 (0%) NA NA  965 


