
 
 

University of Birmingham

Singular knot bundle in light
Sugic, Danica; Dennis, Mark

DOI:
10.1364/JOSAA.35.001987

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Sugic, D & Dennis, M 2018, 'Singular knot bundle in light', Optical Society of America. Journal A: Optics, Image
Science, and Vision, vol. 35, no. 12, pp. 1987-1999. https://doi.org/10.1364/JOSAA.35.001987

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 19/12/2018

© 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and
distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are
prohibited.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

https://doi.org/10.1364/JOSAA.35.001987
https://doi.org/10.1364/JOSAA.35.001987
https://birmingham.elsevierpure.com/en/publications/9bd49a56-b9ff-46e8-8d77-26eaa1f03647


Singular knot bundle in light
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Abstract: As the size of an optical vortex knot, imprinted in a coherent light beam, is decreased,
nonparaxial effects alter the structure of the knotted optical singularity. For knot structures
approaching the scale of wavelength, longitudinal polarization effects become non-negligible
and the electric and magnetic fields differ, leading to intertwined knotted nodal structures in the
transverse and longitudinal polarization components which we call a knot bundle of polarization
singularities. We analyze their structure using polynomial beam approximations, and numerical
diffraction theory. The analysis reveals features of spin-orbit effects and polarization topology in
tightly-focused geometry, and we propose an experiment to measure this phenomenon.

1. Introduction

Creating knotted structures [1] in the complex amplitude patterns of structured light is a
challenge for holographic beam shaping. Experiments and theory of optical knots were described
in [2, 3], following earlier theory [4, 5]. These schemes involved superpositions of laser modes—
implemented holographically—containing optical vortices in configurations of various knots and
links, within the focal volume of a paraxially propagating laser beam. Knotted lines of circular
transverse polarization of paraxial beams were built in [6] where the surfaces corresponding to
contours of constant polarization azimuth were resolved experimentally. The study of optical knots
in monochromatic fields complements the study of knotted structures realized in various other
physical systems, including knotted electromagnetic fields [7, 8], fluid vortex lines in water [9],
knotted small molecules [10] and bio-molecules such as DNA [11], defects around colloidal
structures in liquid crystals [12, 13], and knot-like structures in Bose-Einstein Condensates
(BECs) [14].

In most of these other systems, energetic considerations affect the knots’ stability, and exciting
knotted structures in the physical medium is the main challenge. Knotted vortices in light, on the
other hand, have no energy associated with them; the primary technical challenge in realizing them
experimentally consists in controlling the delicate parameter ranges where topological structures
occur, for instance by minimizing perturbations (such as aberrations) [15]. An application of such
spatial configuration of vortex knots is to template knotted structures in photosensitive materials,
extending previous, simpler experiments, with imprinting structured optical amplitudes into
BECs [16], liquid crystals [17] and other materials [18, 19].
The theory of knotted optical singularities in light beams developed in [2–5] was primarily

in the paraxial regime; the superpositions of knots in Gaussian beams were of the order of the
waist width w transversally (of the order 103-104λ), but of the Rayleigh distance longitudinally
(πw2λ−1 ≈ 106-108λ). Such an extreme aspect ratio is impractical to imprint into material
systems, so it is natural to adapt this approach to create smaller knotted structures in optical
fields, of a scale closer to the wavelength, whose physical aspect ratio is closer to unity.
We approach this problem by exploring, analytically and numerically, the effect of reducing

the transverse size of the fields constructed in [3]. A paraxial field is one which approximately
resembles a plane wave of wavelength λ propagating in z. In the paraxial regime, the electric
and magnetic part of the light field can be represented by the same complex scalar amplitude



function multiplying a constant, transverse polarization vector; the magnitude of the longitudinal
components is negligible. Mathematically we show that there is, in fact, also a knotted vortex in
these nearly zero components. A small vortex knot, approaching the scale of the wavelength, is
outside the paraxial regime. The field around such a structure has a non-negligible longitudinal
component and the electric and magnetic fields no longer agree with each other.
We will describe a regime of transverse knot size (of the order of several λ) where the focal

energy is approximately evenly distributed between transverse and longitudinal components, and
between electric and magnetic field components. In this regime, the paraxial field structures
are perturbed by nonparaxial effects, enough to deform the knots in each component, but not
so strong as to destroy the nodal knot topologies. The resulting electromagnetic field therefore
displays a bundle of intertwined, knotted polarization singularities (corresponding to the nodes
in the various components) which we will describe in detail. We also propose an experiment in
which such a knotted object might be measured. Only in the nonparaxial regime the singular
bundle can be observed because, although it is already present in the paraxial regime, the electric
and magnetic knots cannot be distinguished, and the longitudinal components are negligible. The
size of this nonparaxial knot bundle can range from several wavelengths—both in the transverse
and longitudinal directions—to subwavelengths, which makes it ideal for light-matter imprinting.
We focus our investigation on the behavior of the simplest knotted light field, namely that

around a trefoil knot with 3-fold symmetry. As described in [3], this knot evolves paraxially
forwards and backwards from an initial condition in the focal plane z = 0, found using a
topological algorithm (a slice of a Milnor polynomial [3, 20]), multiplying a Gaussian of fixed
width w,

ψ2D(r, φ) = e−r
2/(2w2)(1 − r2 − r4 + r6 − 8r3e3iφ). (1)

Fields with this transverse profile are an interesting class of structured beams for considering
spin-orbit effects, as they are the superposition of two eigenfunctions of optical orbital angular
momentum (OAM): a factor proportional to einφ with azimuthal index n, superposed with
an axisymmetric factor [21]. Assuming the polarization in the initial, focal plane is purely
helical, with right or left handed circular polarization ê± = (x̂ ± îy)/

√
2, the different OAM

states propagate differently from each other, and according to the handedness of the transverse
polarization. The resulting polarization structure of small knots therefore depends on the interplay
of spin and orbital optical angular momentum [22,23]. In particular, we will see that the choice of
helicity opposite the sense of phase increase in (1) is important to the structure of the polarization
bundle, and assume that the transverse amplitude (1) in the focal plane multiplies left-handed
circularly polarized light ê− = (x̂ − îy)/

√
2.

The trefoil function (1) is just one of many knot functions known to give vortices in the
configurations of different kinds of knots and links on propagation [3, 20, 24]; the behavior of
other propagating knot functions is broadly similar and we briefly consider some others here.
A convenient (but not unique) way of generating the (m, n)-torus knot/link [1] (including the
trefoil knot) is to take, as the initial condition, the numerator of the fraction um − vn, where
u = (r2 − 1)/(r2 + 1), v = 2reiφ/(r2 + 1) times the Gaussian factor [3,20,24] which are therefore
superpositions of two fields with OAM indices 0 and n. The trefoil profile (1) has (m, n) = (2, 3),
and (3, 2) gives a trefoil with a different spatial conformation. Other simple torus knots and
links include the unknot, the Hopf link (2, 2), the double link (2, 4) or (4, 2), the cinquefoil knot
(2, 5) or (5, 2) (the Milnor polynomial of the latter requires multiplication by an extra factor
(1 + r2) [20, 24]).
The beams we investigate are monochromatic fields, where the singular configurations are

static. When the electric field has the form E(r, φ, z)ei(kz−ωt) in cylindrical coordinates r, φ, z,
the vector E = E(r, φ, z) satisfies the reduced Helmholtz equation

∇2
⊥E + ∂

2
z E + 2ik∂zE = 0, (2)



where ∇2
⊥ ≡ ∂2

r + r−1∂r + r−2∂2
φ is the transverse Laplacian. In particular, in the paraxial regime,

k is large as an inverse wavelength and |∂2
z E | becomes much smaller than the other terms in

(2), so E may be approximated by one satisfying the paraxial equation ∇2
⊥E + 2ik∂zE = 0.

Since ∇ · (Eeikz) = 0, the divergence of the transverse components of E is approximately −ikEz ,
and since k is large, the longitudinal component Ez is negligible compared to the transverse
components. Furthermore, the magnetic field is also polarized with the same amplitude function,
and the loci of the vortex lines in the E and B coincide.

Outside the paraxial approximation the longitudinal component can become comparable to the
transverse components. In this regime, different components of E have optical vortices (nodal
lines) in slightly different positions, whose singular structure is naturally described in terms of
polarization singularities: lines in 3D space with the same polarization state [25]. The splitting
of scalar vortices of transversely polarized paraxial beams into polarization singularities has
been studied in some detail [26]. The polarization singularities of the transverse component of
the field—whose description does not include the longitudinal component—are C lines when
the polarization is circular, and L surfaces when the polarization is linear [25]. In the case of
the full 3D-vector field, the polarization singularities are the true points of circular and linear
polarization, thus they are denoted, respectively, CT lines and LT lines [27].
The design of holograms for nonparaxial fields is very challenging, therefore it is extremely

hard to structure arbitrary polarization singularity patterns. The problem has been mainly
addressed with numerical optimization techniques [28] and semi-analytical approaches [29, 30],
but they can be hard to implement. In our analytical treatment, we consider the nonparaxial
behavior of fields structured on the scale of wavelength, but where the Gaussian envelope width
w is fixed, using polynomial beam functions [31] (extending the scalar approach of [3] to the
nonparaxial vector regime), including longitudinal polarization. For the regime in which the
Gaussian envelope is made small together with the knot, the beam is propagated numerically by
evaluating the Richards-Wolf vector diffraction integral [32, 33].

The structure of this article is as follows. In the next section, we present a physical treatment of
all the electromagnetic field components of the paraxial beam and the presence of knots in all the
components. In section 3 we present a theoretical analysis of the polarization knots that constitute
the singular bundle, of the order of the wavelength, embedded in a beam with wide Gaussian
envelope. In section 4 we optimize the bundle regime both theoretically and numerically, leading
to an experiment design where the Gaussian envelope and the transverse size of the knot are of
the same order and all the components of the beam have comparable amplitudes. We discuss and
extend our results in section 5.

2. Paraxial polarization knots

In this section we describe paraxial beams by polynomial functions and we determine the
longitudinal size of optical vortex knots with respect to their transverse length; we then include
polarization features to the electric field and we track the nodal lines of each of its components in
the circular basis to reveal the polarization knots.
When studying the fine structure of light, we only need to describe features of the amplitude

in the region of interest. So-called polynomial beams [31] provide an approach to such a local
study of optical amplitude structures. These are the formal, propagating solutions of the paraxial
equation or reduced Helmholtz equation (2), which in the focal plane z = 0 take the form
r |` |+2pei`φ in cylindrical coordinates (with integer ` and p > 0). Although polynomial solutions
are not satisfactory global representations of a beam—not being normalized—they arise naturally
from a Taylor expansion of any beam about the origin (focal point). Paraxial polynomial beams
are analogous to the heat polynomials which solve the heat equation. Polynomial light beams
were originally introduced to study the behaviour of optical vortices by Berry [34] and Nye [35],
and have subsequently been studied by several groups [5,31,36,37]. They can be understood as a
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Fig. 1. Paraxial optical vortex trefoil knots. (a) Phase distribution on the plane z = 0
of the field (1) which was imprinted on a hologram plate in [3] to create an optical vortex
knot. (b) 3D view of the trefoil vortex knot (red) in the transverse component from (3). The
cylinder of diameter d and height h encloses the knot structure. (c) 3D view of trefoil knot
and axial vortex in the longitudinal component (blue) from (4). The same cylinder from (b)
is given for reference. Physically, the knots’ length along the propagation direction scales
quadratically with respect to their transverse size.

basis for the description of superoscillatory behavior of structured low-amplitude interference
embedded in a bright beam [38]; the mathematical details of the bright sidebands are lost in the
asymptotic polynomial growth.
In [3], the paraxial polynomial beam containing the trefoil knot was derived as the leading

term in the expansion of a superposition of Laguerre-Gaussian beams with 1/w as the small
parameter; in fact [31], the same polynomial beam structure can be embedded in an envelope
with any profile, provided the width of the envelope is large compared to the knot structure (such
as a Bessel beam with small kr ). We will take this approach for the rest of this section, and only
consider the polynomial part of (1), ignoring the Gaussian factor.
The form for the polynomial in (1) does not agree dimensionally if r has the dimensions of

length; this case requires a different formulation of the scaling arguments in [3]. We will now
make this explicit, which is the basis of all the scaling arguments in this paper. Occurrences of r
in (1) should be replaced by the dimensionless R ≡ krs−1, where we introduce the dimensionless
scale parameter s, which determines the size of the knot. This is depicted in Figure 1 (a), in
which the six zeros of (1) are plotted as singularities of the phase, which occur at r = 0.46s/k
and 2.19s/k (at φ = 2π j/3, j = 0, 1, 2).
Paraxial beams satisfy a particular scaling relation: after replacing r with R = krs−1 and z



with Z ≡ kzs−2, there should be no other occurrences of s and k in any expression for a paraxial
beam or its solutions. In the paraxial regime, s � 1, for which knots are large and elongated due
to the quadratic dependence of s in Z . We can therefore write the paraxial polynomial knot beam
as

Epar
− =

(
1 − R2 − R4 + R6 − 8e3iφR3

)
− 2iZ − 8iR2Z

+ 18iR4Z + 8Z2 − 72R2Z2 − 48iZ3,
(3)

where (•) denotes the part independent of Z , corresponding to (1). It is not difficult to track the
vortex lines as the complex zeros of the polynomial (3) using numerical root finder in a symbolic
algebra package, or more complicated vortex tracking routines [39]. The identification of the
knot/link type for the simple vortex configurations we describe can be done by visual inspection,
but, alternatively, one could implement more sophisticated algorithms [1, 40]. The 3D-vortex
configuration of (3) is shown in Figure 1 (b) in red: a trefoil knot is enclosed in the cylinder
with diameter d = 0.700sλ and height h = 0.116s2λ; from the paraxial scaling, its transverse
size is proportional to s, and longitudinal size to s2. Therefore our paraxial knot is much longer
longitudinally than transversally.
It is very straightforward to perform a similar paraxial analysis for the other (m, n)-torus

knots as described in section 1, but with the trefoil profile (1), rewritten in scaled coordinates
(3), replaced with the appropriate section of a Milnor polynomial. The results of the paraxial
dimensions for several of these knots is given in in Table 1.

Table 1. Paraxial scaling for different knots. Transverse and longitudidinal sizes d and h
for optical vortex (m, n)-torus knots and links in paraxial beams, generated as discussed in
the Introduction. The main example in the paper is (2,3).

Knot type (2,2) (2,3) (2,4) (2,5) (3,2) (4,2) (5,2)

d(10−3sλ) 768 700 655 625 852 920 979

h(10−3s2λ) 205 116 79.0 58.7 173 152 113

Although the longitudinal component is negligible in the paraxial regime, it is not zero. To
leading order in k−1, Ez = ik−1∇ · (E+ ê+ + E− ê−); with the transverse polarization fixed as ê−,
this gives the longitudinal polarization as

Epar
z = −

√
2is−1Re−iφ

[
1 + 2R2 − 3R4 + 24Re3iφ

+4iZ
(
2 − 9R2

)
+ 72Z2

]
+O(s−2).

(4)

The field Epar
z satisfies the paraxial wave equation; ignoring the prefactor and terms in s−1 and

higher, it is given purely in terms of R and Z and hence has the same paraxial scaling as the
transverse knot. Owing to spin-orbit conversion [23], it has a negative vortex on the beam axis;
otherwise the quartic polynomial in R has a knotted nodal structure (shown in Figure 1 (b)),
however with inner vortex at R = 0.042, almost at the origin. Such a knot cannot practically be
measured; in the next section, we will consider the exact fields outside the paraxial approximation,
where the vortices are separated by distances of order s−1 (and when in fact Ez is no longer
negligible).
If, on the other hand, the initial transverse polarization was chosen to be ê+, the resulting



longitudinal field is

E+,par
z = −

√
2is−1Reiφ

[
1 + 2R2 − 3R4

+4iZ
(
2 − 9R2

)
+ 72Z2

]
+O(s−2).

(5)

Unlike Epar
z , the longitudinal component here is an eigenfunction of OAMwith azimuthal quantum

number unity; therefore there can be no other vortex structure in the longitudinal component.
When the OAM of the amplitude structure has the same sign as the polarization helicity, there is
no extra knot-like interference structures in the longitudinal component. This justifies our main
investigation in the topologically more interesting case of imprinting the knot with positive OAM
in a field of left-handed polarization. Apart from missing the extra azimuthal term to OAM, the
radial dependence of E+,par

z is the same as Epar
z . More details are given in the Appendix.

Assuming the monochromatic magnetic field has an analogous form Bei(kz−ωt), Maxwell’s
equations can easily be solved to show, within the paraxial approximation (ignoring corrections of
order s−1 and higher), that B ≈ ic−1E, so, paraxially, the nodal knots in the magnetic components
exactly agree with their counterparts in the electric field, as expected [26].

We have therefore shown that in paraxial fields, the aspect ratio of a vortex knot in a transverse
component scales with its transverse size, and that there is a knotted vortex structure in the
negligible longitudinal component too. From the scaling laws in Table 1, getting a unit aspect
ratio trefoil knot suggests bringing s down to about s1 ≈ 700/116 ≈ 6, which is outside the
paraxial regime. As s approaches unity, we need to include the s−1-dependent terms in the
components of E and B [41], suggesting the vortex lines in each of the components behave
differently. We investigate this further in the next section.

3. Exact analysis of nonparaxial polarization knot bundle

A polynomial solution of the paraxial equation can be made to solve the reduced Helmholtz
equation by replacing monomials in z by reverse Bessel polynomials [31], defined as (we
follow [42] due to a typo in [31]) θ−n (z) = 1 for n = 0 and

θ−n (z) =
n∑

m=1

(2n − m − 1)!
(n − m)!(m − 1)! ·

zm

2n−m
(6)

for n > 0. Doing this to our main electric field component multiplying ê− does not affect the
initial condition in the focal plane z = 0, and gives

Enp
− = Epar

− + s−2
[
8i

(
1 + 18s−2 − 9R2

)
Z + 144Z2

]
, (7)

where, as in the previous section, we use R = krs−1 and Z = kzs−2.
Similarly, using Maxwell’s equations and enforcing the polynomial beam Ansatz, we find the

following full forms for the components of the nonparaxial longitudinal electric field, and the
magnetic field, correctly incorporating corrections in s−1 and higher powers,

Enp
z =Epar

z + 4
√

2iRe−iφs−3 [
2 + 54s−2 − 9R2 − 54iZ

]
, (8)

Bnp
+ = − 4ic−1R2e−2iφs−2 [

1 + 18s−2 − 3R2 − 18iZ + 24R−1e3iφ] , (9)

Bnp
− =ic−1

{
Epar
− + 8s−2

[
−36s−4 − s−2 + 9s−2R2

+ i
(
1 + 36s−2 − 9R2

)
Z + 18Z2

]}
,

(10)

Bnp
z =ic−1

{
Epar
z − 4

√
2iRe−iφs−3 [

2 + 36s−2 − 9R2 − 18iZ
]}
. (11)
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Fig. 2. Singular knot bundle when all components have similar focal energy. (a)
Integrated energy density in the focal disk z = 0, R ≤ 2.19 for each of the components of the
electromagnetic field as color coded. E+ is exactly zero in the polynomial representation of
the field. The dashed lines indicate that for 1.4 ≤ s ≤ 2.4, each of the components (except
E+) has an energy between 10% and 30% of the total in the disk. (b) Singular polarization
bundle. Nodal lines in the components of E−, Ez, B−, Bz are all entwined, each in the form
of a knotted line with a similar size, which is approximately within a cylinder of diameter
2.02λ and total height 0.648λ. The longitudinal components also exhibit an axial vortex.

The extra terms [•] imply the scaling laws derived in the previous section do not hold for small
values of s, for which the beam approaches the nonparaxial regime. Tracking the nodal lines in
each components can again be done easily, and the nodal knots in each component change shape
when s . 10.

The exact forms (7)–(11) show how the exact optical energy is distributed around the focal
volume in each component. As s � 1, the transverse knot structure becomes subwavelength,
which may be considered extremely nonparaxial, within the focal volume. In this extreme
nonparaxial regime, around the knot structure, Enp

− ∝∼ s−4 whilst Enp
z
∝∼ s−5. Analogously,

Bnp
+
∝∼ s−4, Bnp

− ∝∼ s−6, Bnp
z
∝∼ s−5. As we will see in our more detailed analysis, the knots in

each component dissolve away by reconnection when s is close to unity and the field in the
longitudinal components becomes large. This phenomenon was already observed for optical
vortex knots in [5, 25].

As discussed in the Introduction, there is a range of s where the energy in the neighborhood
of the focal point is similar in the longitudinal and transverse components. We determine the
optimal range of s for this crossover by calculating the total energy in each component in the
focal plane z = 0, in the disk of radius R = 2.19 (the majority of energy, of course, being outside
this). We plot the energy in this disk in each component as a function of s in Figure 2 (a). For
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Fig. 3. Nonparaxial vortex knots in different components of E and B fields. (a) The
trefoil knot in Enp

− (a) has unit aspect ratio when s1 = 5.75; the vortex lines in the other
components also display a trefoil knot: (b) Enp

z ; (c) Bnp
− (which resembles (a)); (d) Bnp

z (which
resembles (b)). The cylinder d1 = h1 = 4.01λ is shown around each vortex configuration
for comparison. (e)–(h) The corresponding vortex configurations when s = 1.00, drawn in a
cube λ3. (a) The knot in Enp

− corresponds to a value of s just above the value where its lines
reconnect, which are bounded by a cylinder of subwavelength volume Vc ≈ 0.15λ3; (f) the
vortex lines in Enp

z have already reconnected to form two approximately coaxial rings, and
an axial vortex; (g) vortex lines Bnp

− have reconnected to give three approximately coaxial
rings; (h) vortex lines in Bnp

z is still a trefoil knot, threaded by a vortex line.

1.4 . s . 2.4 the focal energy in all four components E−, B−, Ez, Bz is of similar order (10–30%
each). This range of s gives a crossover regime in which all the different vortex knots identified
in the paraxial regime exist and occupy a similar volume, but are sufficiently nonparaxial for the
spatial conformations of the knots to be different. The resulting system of overlapping vortex
knots in the different components of the electromagnetic fields forms a singular knot bundle.
Figure 2 (b) shows such remarkably complicated vectorial electromagnetic field distribution for
the optimal value s = 2.05, where the knotted nodal lines in each of the electromagnetic field
components are entwined without coinciding. Identifying and understanding this structure is the
main result of this work.
The singular knot bundle of Figure 2 (b) has an aspect ratio of 0.32, smaller than unity. By

numerically tracking the vortices for the nonparaxial field (7) for s close to 6 the paraxially-
estimated value for the unit aspect ratio, we find a knot of aspect ratio unity when s = s1 ≡ 5.75,
for which d = h = 4.01λ, shown in Figure 3 (a). Thus, the previously published knotting
scheme [3], appropriately rescaled, does give a knot of unit aspect ratio but only when scaled
to a few optical wavelengths across. The vortices in Enp

z , Bnp
− and Bnp

z are shown in Figure 3 (b,
c, d); as with the knot in Enp

− , these all closely resemble their paraxial counterparts (e.g. the
transverse components, and longitudinal components, have zeros very close, with an axial
longitudinal vortex). In particular, the small s corrections to the longitudinal components are
sufficient to ensure the distances between the inner vortices of the longitudinal trefoil knots
become comparable with their transverse size (with the vortex up the axis), but not large enough
to split the conformations of the knots in the electric and magnetic fields, which are effectively
coincident.

Throughout this section, we have been considering as a thought experiment the propagation of
the electromagnetic field in the neighborhood of the focal point, given that the E− component is



given by (3) and E+ ≡ 0. If s is made so small that the transverse knot structure is subwavelength,
we would not be surprised if nonparaxial effects are sufficiently large to disrupt the knot topology,
causing reconnections that dissolve the knot in both this and the other components [43]. The
case of s = 1.00 is shown in Figure 3 (e)-(h); the knot exists in the Enp

− and Bnp
z components, but

have already reconnected away in the Bnp
− and Enp

z components. The transverse vortex knot in Enp
−

(Figure 3 (e)) here is so small it fits within a cubic wavelength, proving that subwavelength nodal
knots are supported by Maxwell’s equations. The reason for the radially symmetric behavior in
both Ez and B− can be extrapolated by Maxwell’s equations. The details of the proof are in the
Appendix.

The details of how the knot in Enp
− dissolves away by reconnections when s < 1 is illustrated in

Figure 4. As the parameter s reduces below unity, the vortex lines in the principal Enp
− component

(Figure 4 (a)) approach each other at six points on the knot, and reconnect at the critical value
sc = 0.965. After the topology has changed, the vortex configuration consists of five loops, one
above and one below the focal plane, and three symmetrically arranged within the focal plane
(Figure 4 (c)). The volume of a bounding cylinder around the knot at sc , immediately prior to its
destruction, is Vc = 0.15λ3. The sequence of events dissolving the topology of the knots in the
other components is reported in the Appendix, showing similar behaviours to E−.

The topological events described in this section are not unique to the trefoil knot. The values
of s, d, h for unit aspect ratio and reconnection events are reported in Table 2 for several different
torus knots and links. This characterizes general optical vortex knots in the nonparaxial regime.
We tracked the vortex lines of Ez for other knots and we reported their knot type in Table 2.
In the Appendix, we present similar but more general argument than in the previous sections
anticipating the relationship between the knots in the various components of the polynomial
beam electromagnetic field for initial conditions analogous to (1) for different knots.

Table 2. Nonparaxial torus knot bundles. Values s1 for which the aspect ratio of the knot
in E− is 1 and the correspondent dimensions d1 = h1. Limiting values sc for which each
knot and link dissolves and correspondent volume Vc of the cylinder that encloses the nodal
lines. Knot type in Ez . The case study here is (2,3).

E− knot type (2,2) (2,3) (2,4) (2,5) (3,2) (4,2) (5,2)

s1 3.59 5.75 7.90 10.2 4.85 5.80 8.40

d1(λ) 2.76 4.01 5.18 6.40 3.98 5.35 8.22

sc 0.36 0.97 3.10 4.50 0.71 0.88 3.10

Vc(λ3) 0.013 0.151 3.37 9.62 0.080 0.338 11.1

Ez knot type unknot (2,3) (2,4) (2,5) (2,2) (3,2) (4,2)

The beams described in this section could be implemented in the laboratory by tightly focusing
a paraxial beam or by constructing nanoscale resolved holograms (both equivalent to a small
value of s which brings the paraxial optical beam of [3] to the nonparaxial regime). However,
the physical challenge of polynomial beams relies in the fact that the bulk of the energy in these
beams is concentrated away from the knotted structure, and the detection of nodal knots in
subwavelength volumes of extremely low intensity is a considerable challenge for experiment.
Hence, a less complicated, realistic experimental design is required to potentially measure a
polarization knot bundle. In the next section, we propose an experimental design by which the
singular knot bundle presented here could be observed in a physical system.



cba

Fig. 4. Reconnection events destroying vortex knot in E− component. The parameter s
is decreased from (a) s = 1.000, where there is a knotted vortex line, through the critical
value of sc = 0.965 where the vortices touch at six points. At lower values of s, such as (c)
s = 0.950, the vortex configuration is five unlinked rings. In each frame, there is an axial
view, a side view and an inset showing the vortex geometry.

4. Experiment design to measure the bundle in tightly focused beams

Here we propose an experimental scheme that gives a singular knot bundle within the focal
volume of a microscope objective of high numerical aperture. The general topological properties
of the knotted fields described in the previous section are not unique to polynomial beams,
and here we demonstrate the existence of the polarization knot bundle numerically in tightly
focused beams, an approach that relies on slightly different assumptions than the exact polynomial
beam-based analysis of the previous section. The analytical treatment from the previous section
backs up the simulations, even though the shape of the knots in the bundle are slightly different,
indicating that the phenomenon we describe is general to nonparaxial beams of diverse nature.
We predict that the structure we present here could be measured with the polarimetry techniques
reported in [44, 45] if they were optimized for the detection of low-amplitude optical fields.

Nonparaxiality is achieved in this proposed experiment by including a high numerical aperture
microscope objective in the setup from [2, 3, 15], giving raise to tightly focused beams. The
experimental configuration is shown in Figure 5. For practical purposes, the hologram plate is
specified in Fourier space; the resulting structured beam has to be circularly polarized (along
ê−) before being sent to the back focal plane of the microscope objective (the polarization setup
is not included in the scheme for simplicity). When such beams with a well-defined transverse
polarization state are tightly focused, spin-orbit effects result in a nonzero field in the orthogonal
transverse polarization component ê+ [46, 47], as well as the principal components E−, the
longitudinal field Ez and their magnetic counterparts. This redistribution of the energy between
the different components is due to the aperture-lens system and is more significant for larger tight
focusing.
We found that it should by possible to create a singular knot bundle in the focal volume of a

microscope objective of high numerical aperture (γ ≥ 0.9, assuming index of refraction 1) and
radius of the back focal plane a = 7000λ. Our approach to design the hologram function consists
in calculating the Fourier transform of (1) and discarding the terms that are not necessary for the
knot bundle to appear under tight focusing. The numerically optimized Fourier hologram takes
the form (in cylindrical coordinates ρ and ϕ, in units of aperture a and illuminating Gaussian of
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Fig. 5. Scheme of proposed experiment. Experimental setup adapted from [2, 3, 15]
of a tightly focused beam for the creation of the bundle of polarization singularities. The
numerical aperture of the microscope objective is γ ≥ 0.90, the radius of the back focal
plane is a = 7000λ. In practical experiments a uniformly circularly polarized beam acquires
a weak transverse component of opposite handedness and a longitudinal component. When
the hologram (12) is generated in the spatial light modulator (SLM), the beam in the focal
volume has knotted nodal lines in each component of the electric and magnetic fields .

waist width w0)

E−(ρ, ϕ;w0) = e−ρ
2/(2w2

0 )
(
2 + 3 i ρ3S−3e3 iϕ + 3ρ4S−4

)
. (12)

We propagated the function in (12) in the focal volume by means of vector diffraction
theory [32, 33]. Both the paraxial and the extreme nonparaxial regimes do not give the knot
bundle (as in the previous section); an appropriate balance between them is required in order to
create the bundle regime. Such an overcrossing regime can be found by the careful manipulation
of the focusing parameters γ, w0 and S. In analogy to [3, 48], the tightly focused experimental
scheme depends strongly on the waist of the illuminating Gaussian envelope w0 incident on the
backfocal plane of the microscope objective, which plays an important role in determining the
topology of the beam. In fact, small w0 implies that the real space beam is enveloped in a wide
Gaussian; this regime clearly resembles the polynomial beam propagation that we already stated
is not practical. On the other hand, large w0 overfills the aperture, creating additional diffractive
rings in the focal plane, around a focal volume that is too small to contain the knotted structure
(we saw in the previous section that the knot bundle cannot be made much smaller than λ3), and
tight wavefront curvature from small 1/w0 might further affect the knot topology, as found in the
paraxial regime [3, 48]. The transverse size of the knot is controlled by the parameter S, which
scales the input beam in Fourier space by analogy with the polynomial beams (a direct scaling of
the focal field in real space would require more advanced methods to structure vector fields).
By the analysis of the vortex lines of each component of the beam we found that the correct

balance of the parameters is given by not overfilling waist of the Gaussian w0, which gives an
effectively smaller numerical aperture with respect to that of the microscope objective, but, more
importantly, a larger focal volume in which to embed the knot bundle. The holograms given by
(12) for different sets of parameters are plotted in Figure 6 (a)–(c). Such functions do not contain
any phase singularities and, as mentioned, their paraxially propagating beams do not embed



knotted vortex lines. This is because our optimized hologram (12) uses the lens-aperture system
to shape the beam’s interference pattern containing knotted structures.
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Fig. 6. Numerical simulations of knot bundle. The numerical propagation of the
hologram plate (12) by Richards-Wolf vector diffraction theory gives the singular knot
bundle, with focusing parameters γ = 0.9, S = 0.27, w0 = 0.62S (a, d, g); γ = 0.95,
S = 0.75, w0 = 0.65S (b, e, h); γ = 0.95, S = 0.90, w0 = 0.90S (c, f, i). The beam’s nodal
lines in E and B are coincident, as well as their energy density distribution. (d) The focal
volume has a trefoil knot in each component of the electric and magnetic fields: E−, B−
(red); E+, B+ (green) and Ez , Bz (blue). (e) The trefoil knots are deformed and smaller for
more tightly focused beams. (f) Each of the knots in E+ and Ez have dissolved into two
separate loops because the beam is too nonparaxial, E− is still trefoil knotted. (g–i) The
energy transferred from E− to E+ and Ez is larger for increasing tight focusing (equivalent
distributions are found for the magnetic components).

When γ = 0.90, S = 0.27 and w0 = 0.62S the singular knot bundle of Figure 6 (d) appears
in the focal volume. The numerically propagated beam contains a trefoil knot in E− (red) and
Ez (blue). From the spin-to-orbit effects of the input beam in the lens system, the nodal lines
of the extra component E+ are also trefoil knotted, threaded by an axial vortex (shown in the
figure in green). Three trefoil knots appear in all the components of the magnetic field at the
same position, due to the dual properties of tightly focused circularly polarized beams. The knot
in E+ and the mutual linear dependence of the E and B fields are the major differences from the
polynomial beams predictions. The differences from the polynomial beams arise physically from
the fact that the lens and the aperture system inevitably affect the input beam, and the Gaussian
envelope in the focal volume is too small to behave as a polynomial beam. By evaluating the
electromagnetic energy density in a disk of radius R = 3.80λ (see previous section) we found that
the energy transferred to the other components is very low, reported in Figure 6 (g). Specifically,
only 0.01% goes to E+ and 0.89% to Ez (equivalently in B).

In order to generate an energy distribution that could potentially be measured in an experiment,
we tightly focus the beam more in order to create the bundle regime and without destroying



the topology of the knotted lines. We do so by increasing the focusing parameters γ = 0.95,
S = 0.75 and w0 = 0.65S. As a result, the knot bundle of Figure 6 (e) and the energy distribution
(h) appear. This knot bundle shows three deformed trefoil knots of smaller size compared to
the previous case, which are a manifestation of the nonparaxial effects. On the other hand, the
energy is larger in E+ and Ez which are 0.48% and 6.03% in a radius R = 1.26λ.
A further optimization of the energy cannot be achieved because the knot bundle starts to

dissolve in E+ and Ez when the beam is too tightly focused (γ = 0.95, S = 0.90, w0 = 0.90S),
whilst the trefoil knot is still present in E−, as shown in Figure 6 (f). This choice of parameters
has 0.65% of energy in E+ and 7.38% in Ez in the disk R = 1.20λ (Figure (i)). This shows that,
consistently with the theoretical results of the previous section, the knot bundle does not appear
in an extreme nonparaxial regime, for which its volume is smaller than λ3. However, the way the
trefoil knots dissolve is different from the previous section: both the knots in E+ and Ez split only
into two loops here. This is the third major difference from the knots embedded in polynomial
beams.
The numerical experiment we designed can be easily extended to other knots and links.

The topological behavior of the nodal lines of the different components can be predicted with
polynomial beams, and the bundle regime can be approached in a high numerical aperture system
by choosing the focusing parameters appropriately. As already stated in the previous section, a
good balance between all the components of the field seems to be a requirement for the successful
creation of knotted nodal lines in each component of the electromagnetic field. Our numerical
results show that the singular knot bundle seems to be a general phenomenon of nonparaxial
knotted beams in which spin to orbit effects are dominant.

5. Discussion

We have shown how nonparaxiality and tight focusing affects the optical vortex torus knots of [3].
At small sizes, polarization effects become important, revealing a new sort of knotted optical
field enclosing a complicated structure we call a singular knot bundle. In order to establish the
generality of the knot bundle, we investigated two different kinds of nonparaxial electromagnetic
fields. Polynomial beams [31] give an analytic expression in the neighborhood of the knot,
thereby revealing general behavior of the optical vortex topology, whereas numerically propagated
tightly focused Laguerre-Gaussian beams [32,33] describe a more physically accessible situation
realizable in experiments. Although we mainly focused on the specific example of the trefoil knot,
in the Appendix we outline a general argument establishing bundles of torus knotted polarization
singularities as general in appropriate superpositions of nonparaxial, circular polarized beams.
The bundle is a topological object, where the nodal lines in each component of the electric and
magnetic fields are simultaneously knotted in a similar volume (the knots are not necessarily
of the same type). Its presence is hidden in the paraxial regime in which electric and magnetic
vortex knots collapse and some components are negligible, so the knot bundle effectively behaves
like one single vortex line. We identified a particular regime—the bundle regime—in which
all the different knots become entities in their own right because the electromagnetic energy is
distributed equivalently in all the components. We expect this phenomenon to extend to other,
more complicated knots (including non-torus knots such as the figure-eight knot), suggesting
this nonparaxial polarization structure adds to the menagerie of knotted electromagnetic fields.
In particular, other knotted physical quantities related to knotted light are the time dependent
electromagnetic field lines and their related null lines [49,50] and the static optical vortex lines of
complex scalar fields [2–5] (the latter construction was extended to the longitudinal component
of nonparaxial beams in [51]).

Instead of tracking the nodal lines of each component of the electric and magnetic field in the
canonical helical basis, our topological tools could be used to account for singularities that are
independent of the choice of basis, such as CT lines and LT lines [27]. It is known that in the



perfect paraxial regime C and CT lines sit together and as they move to the nonparaxial regime
they form clusters of polarization singularities [26]. In the polynomial beams, we assumed E+
to be exactly zero everywhere and the longitudinal component to be non-negligible; with these
assumptions the nodal lines of E− are LT lines (the electric field is only longitudinal along those
lines) and the nodal lines of Ez are CT lines (the electric field is purely left-handed circular along
those lines). On the other hand, the magnetic field has also a right-handed component; hence, its
polarization singularities are not true with respect to the 3D vector and the nodal lines of B+ and
B− are C lines (only the transverse vector is circularly polarized) and the nodal lines of Bz are
points along which the field is purely transverse (mixture of right and left handed polarization
states). The polarization on the optical axis is purely left-handed circular for both E and B
since all the other components are null (it truly behaves like an optical vortex line). However, in
tightly focused beams the topology of CT and LT lines is not this obvious. A preliminary analysis
of the CT lines of our numerically propagated fields do not show knots, but other interesting
conformations such as loops and lines intertwining the optical axis. On the other hand, the LT

lines do not present any topology of interest, mainly because the knotted condition is extremely
hard to achieve for these type of singularities. Overall our results indicate that the topology of
tightly focused beams is very rich and much more could be revealed by the topological analysis
of the singularities of other physical quantities. Beam parameters could potentially be optimized
to structure these various kinds of polarization singularities, such as the time averaged and
instantaneous Poynting vector, optical field lines and the Riemann-Silberstein vector.
Our theoretical analysis revealed the presence of a bundle regime, for which the energy is

approximately equally distributed between all the components of the beam; this range seems to
be ideal not only from the point of view of topology but also that of experiments. We proposed
an experimental scheme to generate the bundle regime and we highlighted the difficulties
to create the right balance between the experimental parameters for the generation of the
singular knot bundle. Our experimental setup was adapted from that of previous paraxial
optical vortex knot experiments [3], with the difference that the beam is tightly focused by a
microscope objective and its initial polarization state is circular. As with all experiments shaping
superoscillatory phenomena [38], the beam should be accurately structured at subwavelength
scale and imperfections such as aberrations should be reduced to a minimum, and the low
amplitude around the nodal structures needs to be resolved and distinguished from the CCD
camera noise. Measuring the 3D structure of the 3D polarization field in the focal volume
also presents an experimental challenge; this might be approached via 3D nano-tomography
similar to [52]. Our experimental design aims to be as close as possible to the experimental
routines currently used in structured light where Laguerre-Gaussian modes seem to be the basis
of preference. Nevertheless, polynomial beams could effectively represent superoscillatory
interference structures close to the axis within a beam with a wide envelope, not only a Gaussian,
but also, for instance Bessel beams [53, 54], and alternative envelopes could be designed to fit a
specific experimental setup; for example, by exploring Richards-Wolf propagation theory further,
the inverse problem could be solved in a more sophisticated way to generate new holograms for
knotted beams. An alternative way to generate and detect these optical knotted fields could be
via single photon measurements; the experimental methods of [21, 55] could be adapted to the
nonparaxial regime.
The knotted structures we describe, for the (m, n)-torus knots, occur in superpositions of two

OAM eigenstates ` = 0 and ` = n, and knots in similar fields, at the single photon level, were
previously used as a basis for spatial measures of quantum entanglement [21]. In nonparaxial
propagation, azimuth-dependent effects (‘orbital’) becomes strongly coupled with polarization
(‘spin’) [23]. The singular knot bundle may therefore be considered as a particular macroscopic
3D manifestation of optical spin-orbit interaction, when the OAM has an opposite sign from the
spin. This kind of structured, tightly focused light might be used to induce circular dichroism



into chiral and nonchiral structures in order to provide morphological information of certain
nanoscale structures, such as proteins [56] , metamaterials [57] and plasmonic systems [58, 59].

Our investigation of small optical vortex knots, originally motivated by imprinting optical knots
into matter, has led to the discovery of the polarization bundle as a quite general phenomenon
in knotted light fields where the aspect ratio of the knot is approximately unity. The singular
knot bundle’s stability in various nonparaxial beams demonstrates its robustness to perturbations
of diverse origins and is worth investigating further. It would be interesting to investigate how
such 3D spatially varying polarization fields affect materials that reorient with respect to the
polarization direction, such as azobenzene polymers [60–62]. Embedding the singular knot
bundle into soft-materials or quantum physical systems might reveal new features of light-matter
interaction and could be used to store topological states [63].

Appendix: Generalization to other knot types

In this section we show that the symmetries required by the knot bundle can be extrapolated
directly from Maxwell’s equations. In particular, we consider the relationships between the
different components of the electromagnetic field, assuming that one of the transverse circular
components of the electric field is a Milnor-like function as discussed in the Introduction; this is
straightforward for the torus knots.

We will follow the logic of sections 2 and 3, but with more general choices for the electromag-
netic fields. We assume the electric field has the form

E = ei(kz−ωt)(ψ ê∓ + ϕêz), (A1)

where the knot-carrying initial condition is in the transverse component ψ when z = 0, which is
either left-handed (−) or right-handed (+) circularly polarized. The corresponding magnetic field
(times a factor of c to ensure our scalar fields have the same physical dimension), is

cB = ei(kz−ωt)(ψ ê∓ + ϑ ê± + ϕêz), (A2)

which, unlike the electric field, has in general nonzero components in both right-handed and
left-handed transverse components.
In keeping with section 3, we work in units of inverse optical wavenumber k−1,

X = s−1k x, Y = s−1ky, Z = s−2kz,

where s is a dimensionless scaling factor, with the paraxial regime corresponding to s � 1.
As we consider superposition of orbital angular momentum (OAM) eigenstates, it is further
convenient to use complex helical coordinates ζ, ζ∗ in the transverse plane,

ζ = 1√
2
(X + iY ), ζ∗ = 1√

2
(X − iY ) (A3)

X = 1√
2
(ζ + ζ∗), Y = − i√

2
(ζ − ζ∗). (A4)

From these assumptions, we can now find the relationships between the five fields ψ, ψ, ϕ, ϕ, ϑ
through Maxwell’s equations. We assume ψ is given as in section 3, from polynomial propagation
of a polynomial initial condition at Z = 0. We will establish how the knotted field ψ affects the
symmetries of the other components in the extreme regimes of large s (paraxial) and limiting to 0
(highly nonparaxial). The symmetries of the function ψ are transferred to the other components
ψ, ϕ, ϕ, ϑ in an overcrossing regime we call bundle regime and under the right assumptions each
component inherits the knotted topology from ψ. This is demonstrated in the following.

First, from ∇ · E, we have

ϕ = is−1
[{

∂ζ
∂ζ∗

}
ψ + s−1∂Zϕ

]
, (A5)
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Fig. A1. Reconnection events transforming the vortex lines in ϕ, ϑ, ψ, ϕ for the trefoil
knot. The parameter s is decreased and topological reconnection occur at different values
for the different components. (a) The trefoil knot in ϕ at s = 1.200 (b) touches at three points
at s = 1.163 and (c) splits into two circles showed at s = 1.115. The nodal lines of ϑ are
not knotted at any value of s, however (e) topological reconnections occur at s = 0.911; the
dynamic of the events is shown for (d) s = 0.920 and (f) s = 0.900. (g) The trefoil knot in ψ
at s = 2.680, (h) reconnects at the origin for s = 2.647 and (i) transforms into the Borromean
rings, shown at s = 2.620. (j) The trefoil structure in ϕ at s = 0.610, (k) reconnects at
s = 0.556 and (l) splits into another trefoil-like knot and two loops shown at s = 0.535.

where the upper alternative occurs for the E-field being left handed polarized (−), and lower for
right handed polarized (+). Spin-orbit effects of course relate the helical coordinate derivatives
to the helical polarizations. This equation has the solution

ϕ = −se−is2Z

∫ Z

eis2Z′
{
∂ζ
∂ζ∗

}
ψdZ ′

=
i
s

[{
∂ζ
∂ζ∗

}
ψ − e−is2Z

∫ Z

eis2Z′
{
∂ζ
∂ζ∗

}
∂ZψdZ ′

]
(A6)



where the second line follows by integration by parts. This step can be iterated again as needs be,
introducing an extra factor of s−2 each time; such terms are negligible in the paraxial limit, and
dominant for small s, as discussed below.

The longitudinal component (Bz) of Faraday’s law ∇ × E + ∂tB = 0 gives

ϕ = ∓s−1
{
∂ζ
∂ζ∗

}
ψ, (A7)

which gives a direct relation between the longitudinal magnetic field and ψ.
The other two helical components of Faraday’s law, combined with (A7), give expressions for

the remaining two fields

ψ = ±
[
iψ − s−1

{
∂ζ∗
∂ζ

}
ϕ + s−2∂Zψ

]
, (A8)

ϑ = ±s−1
{
∂ζ
∂ζ∗

}
ϕ. (A9)

The other Maxwell equations give no extra information. Further manipulation can be used to
show all of the fields satisfy the reduced Helmholtz equation

0 = (∂ζ∂ζ∗ + i∂Z + 1
2 s−2∂2

Z )
{
ψ, ϕ, ψ, ϑ, ϕ

}
, (A10)

as indeed they must.
We first consider the paraxial regime s � 1. (A10) reduces to the paraxial equation

∂ζ∂ζ∗ • +i∂Z• = 0. Also, (A6) gives that ϕ ≈ is−1∂ζψ or is−1∂ζ∗ψ and ϕ = ±iϕ. The transverse
components of the magnetic field are ψ = ±iψ and ϑ ∼ O(s−2). As expected, in the paraxial
regime the longitudinal components of the beam (z) and the component of opposite handedness
(−) are negligible compared to principal transverse components (+) and the electric and magnetic
fields agree apart from a multiplicative factor that does not affect the vortex lines.

We now demonstrate that the symmetries of the torus knots’ Milnor polynomials are transferred
from ψ to the other components of the beam. The trefoil knot field and most of the torus knot
generalizations we consider have ψ with the following form

ψ = ζn +U(ζ ζ∗, Z), (A11)

where U is some polynomial solution of (A10) depending on Z and ζ ζ∗. ψ satisfies (A10), since
ζn is a solution of the 2D Laplace equation; this part of the beam does not change on propagation.
For the case where ψ multiplies ê+, ϕ and paraxially ϕ are proportional to ∂ζ∗U = ζU ′ (with
prime denoting derivative with respect to ζ ζ∗): an axisymmetric field times an axial vortex of
strength 1. This shows that the sign of OAM in ψ has to be opposite the sign of the transverse
circular polarization for the longitudinal component to have any degree of knot-like complexity
in its amplitude structure.

On the other hand, in the case we mainly consider where ψ multiplies ê−, ϕ and paraxially ϕ
are proportional to nζn−1 + ζ∗U ′ = ζ∗[nζn + (ζ ζ∗)U ′]/(ζ ζ∗), which consists of an axial vortex
of negative strength times a torus knot-like field with the same degree of rotational symmetry as
ψ; this was indeed what was found for the trefoil knot case, and the properties generalize to the
other torus knots quite directly. We have not proved that the field nζn + (ζ ζ∗)U ′ has a knot in its
nodal structure, although it was in our main trefoil knot example, and in the other torus knots
reported in Table 2.

As s varies into the nonparaxial regime, the longitudinal B-field retains the same relationship
to ψ as its derivative by (A7). However, the relationship between the transverse and longitudinal
E-field incurs more terms times s−3, s−5, . . . . In the extreme nonparaxial limit s � 1, from (A6)
the dominant term in ϕ is proportional to ∂ζ∂N

Z ψ (where N is the maximum integer which gives a



nonzero expression): this gives ζ∗ times an axisymmetric function, agreeing with Figure 3 (f) for
the case of the trefoil. An analogous argument can be made for ψ in the extreme nonparaxial limit,
where ψ ≈ −s−1∂ζ∗ + s−2∂Zψ, which for the knot function (A11) is axisymmetric, represented in
Figure 3 (g).
This discussion shows that the features discussed in the previous sections for the specific

example of the trefoil knot are in fact more general, and apply to other torus knots whose ψ
function has the Milnor form (A11), specifically that :

• in the paraxial regime, all nonzero components have a nodal knot that follows the same
curve in space;

• the longitudinal components have a negative strength axial vortex for transverse polarization
ê−, and a positive axial vortex for ê+;

• the longitudinal magnetic component has a closer behaviour to the main transverse electric
component that the longitudinal electric component;

• in the extreme nonparaxial limit, the transverse magnetic field becomes axisymmetric, and
the longitudinal electric field becomes axisymmetric times a negative vortex;

where the last three cases hold for ψ with positive OAM and polarization ê−.
These facts all support the suggestion that in the crossover regime where s ≈ 1, there will

be a nontrivial nodal topology occupying a similar focal volume in all the components. The
knot-like nodal lines in this bundle regime are shown in figure A1 (a) for ϕ, (g) for ψ, and (j) for
ϕ (which are trefoil knots) and ϑ in (d) which, although possessing the right symmetries, is not
knotted. Hence we anticipate a bundle structure for other kinds of torus knot; the knot type in
their correspondent Ez is reported in Table 2. The transition of the lines from the knot bundle
topology to the topology of the extreme nonparaxial regime (s � 1) for ϕ, ϑ ψ, and ϕ is shown
in figure A1. The reconnections happen at different values of s for the different components.
A slightly more general field, including the (3,2), (4,2) and (5,2) examples in Table 2, has

the form ζmV(ζ ζ∗, Z) +U(ζ ζ∗, Z). Fields with a knotted ψ of this form do not quite have all
the properties described above. In particular, the axial component may be complicated and
even knotted for ψ if this form combined with ê+. In the examples in the table, the knot in the
longitudinal component ϕ is of a simpler torus knot type than the transverse field, reflecting the
effects of V(ζ ζ∗, Z) on the field. We will not describe the properties of these fields further here,
but it is straightforward to do so using similar analysis.

Finally, we note that our analysis here may be used to approach the problem described recently
in [51], which may be paraphrased in the present terminology as “how can we determine ψ such
that ϕ is a desired knotted field?” Taking the desired ϕ to be (A11), we can see immediately
from (A5) that, for ê− polarization,

ψ = −
∫ ζ

(isϕ + s−1∂Zϕ)dζ ′, (A12)

which can be calculated directly from our polynomial ϕ. A cursory numerical investigation of
this ψ has an axial vortex and a nodal knot (as it must) for large s, but the knot structure breaks
down for s ≈ 1, leading to a system of concentric rings around the axial vortex. We note that
the approach in [51] assumed the transverse polarization was linear, hence the analysis there is
somewhat more complicated, and the present approach based on helical states can readily be
adapted to the linear transverse polarization case.
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