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Acute Lymphoblastic Leukemia (ALL) remains the most frequent cause of

cancer-related mortality in children and novel therapies are needed for the treatment

of relapsed/refractory childhood ALL. One approach is the targeting of ALL blasts

with the Pseudomonas immunotoxin CAT-8015. Although CAT-8015 has potent

anti-leukemia activity, with a 32% objective response rate in a phase 1 study of

childhood ALL, haemolytic-uremic syndrome (HUS) and vascular leak syndrome (VLS),

major dose-limiting toxicities, have limited the use of this therapeutic approach in

children. Investigations into the pathogenesis of CAT-8015-induced HUS/VLS are

hindered by the lack of an adequate model system that replicates clinical manifestations,

but damage to vascular endothelial cells (ECs) and blood cells are believed to be major

initiating factors in both syndromes. Since there is little evidence that murine models

replicate human HUS/VLS, and CAT-8015-induced HUS/VLS predominantly affects

children, we developed human models and used novel methodologies to investigate

CAT-8015 interactions with red blood cells (RBCs) from pediatric ALL patients and ECs

of excised human mesenteric arteries. We provide evidence that CAT-8015 directly

interacts with RBCs, mediated by Pseudomonas toxin. We also show correlation

between the electrical properties of the RBC membrane and RBC susceptibility

to CAT-8015-induced lysis, which may have clinical implication. Finally, we provide

evidence that CAT-8015 is directly cytototoxic to ECs of excised human mesenteric

arteries. In conclusion, the human models we developed constitutes the first, and very

important, step in understanding the origins of HUS/VLS in immunotoxin therapy and

will allow further investigations of HUS/VLS pathogenesis.

Keywords: immunotoxin, cancer treatment, pediatric acute lymphoblastic leukemia, CAT-8015, Moxetumomab
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KEY POINTS

• Development of human models to investigate HUS/VLS
pathogenesis.

• Pseudomonas immunotoxins directly interact with red blood
cells, mediated by the toxin component PE38, a novel
mechanism for atypical HUS

• New biophysical tools are provided to study atypical HUS
caused by other toxins and immunotoxins.

INTRODUCTION

Acute Lymphoblastic Leukemia (ALL) is the most common
malignancy of childhood (1) and it remains the most frequent
cause of cancer-related mortality in children (2). The survival
benefit of conventional chemotherapy in the treatment of
multiply relapsed and chemotherapy-refractory pediatric ALL
has plateaued and novel approaches have recently undergone
early phase clinical trials to overcome these limitations (3). One
approach is the targeting of ALL blasts with CAT-8015 (HA22,
Moxetumomab pasudotox), a second-generation, high affinity
recombinant immunotoxin (IT) composed of a 38 kDa fragment
of Pseudomonas exotoxin A (PE38) fused to the disulphide-
linked variable fragment of the murine anti-CD22 monoclonal
antibody RFB4, which replaces the toxin’s native cell binding
domain I to specifically target CD22 antigen on the surface
of ALL lymphoblasts (4–7). On antigen binding, CAT-8015 is
rapidly internalized (8), traffics through the cell and undergoes
several processing steps before the toxin enters into the cytosol,
where it inhibits protein synthesis, leading to apoptotic death of
the cancer cells (9).

CAT-8015 has potent anti-leukemia activity, with an
objective response rate of 32% in a phase 1 clinical trial of
relapsed/refractory pediatric ALL (3). However, haemolytic-
uremic syndrome (HUS) and vascular leak syndrome (VLS),
toxic and dose-limiting side effects, have limited the use of this
therapeutic approach in children [HUS and VLS occurring in
13 and 7% of patients, respectively (3)], despite its recent FDA
approval for the treatment of relapsed/refractory adult hairy
cell leukemia, with an objective response rate of 75% (HUS
and VLS occurring in 5 and 2.5% of patients, respectively)
(10). These side effects do not affect all patients [10–15% are
affected (3)] and there is evidence that interpatient variability
is physiological rather than genetic in origin (11). Due to its
persistent toxicity profile, prophylactic treatment with the
corticosteroid dexamethasone was required in subsequent Phase
2 studies of childhood ALL.

HUS, characterized by intravascular haemolysis,
thrombocytopenia, microvascular thrombosis and acute kidney
failure (11, 12), is grouped into three forms: (1) typical HUS, the
most frequent form of HUS caused by Shiga toxin-producing
Escherichia coli infection, (2) atypical HUS, largely associated
with an overactive complement system, and (3) secondary
HUS, associated with a coexisting disease or trigger, such as
pediatric ALL (13) or CAT-8015 cancer therapy (11, 14). VLS is
characterized by increased vascular permeability, accompanied
by extravasation of fluids and proteins, leading to interstitial

oedema, and in severe cases, pulmonary and cardiovascular
failure (15).

The mechanisms responsible for CAT-8015-induced
HUS/VLS are poorly understood but nonspecific damage
to vascular endothelial cells (ECs) (15, 16) and blood cells (3, 11)
are believed to be major initiating factors in both syndromes,
with no evidence for the involvement of the complement system.
The clinically significant effects of the interactions of CAT-8015
with blood cells are likely to be through red blood cell (RBC)
haemolysis, as evidenced by decreased hemoglobin being one of
the most common treatment-emergent adverse events in a phase
1 study of childhood ALL (3).

Investigations into the pathogenesis of HUS/VLS are
complicated by the lack of an adequate model system that
closely corresponds to clinical manifestations. Our current
understanding of the pathogenesis of HUS/VLS is largely
based on the use of cultured ECs (17, 18) or animal models
(19). However, cultured ECs are unphysiological, and studies
of vascular permeability to water and solutes, changes in
which are likely to be key with ITs, are unrepresentative
of those in intact vessels (20, 21). Animal models may
not be relevant to HUS/VLS in humans either, because
of differences between animal and human vasculature
(15, 19). With the exception of a rat model (19), animal
models for Pseudomonas IT-induced HUS/VLS are also
lacking, since studies of non-human primate (22, 23) and
murine (24) models have failed to provide new insights into
human VLS/HUS. Since there is little evidence that murine
models replicate human HUS/VLS, and CAT-8015-induced
HUS/VLS is predominantly seen in children, we developed
human models and used novel methodologies to investigate
CAT-8015 interactions with red blood cells (RBCs) from
pediatric ALL patients and ECs of excised human mesenteric
arteries.

The physical properties of the plasma membrane, such as
its electrostatic status, are indicators of lipid composition and
dynamics, changes in which reveals interaction of molecules with
the membrane (25, 26). We previously reported that the physical
properties of the plasma membrane can also influence cell
susceptibility to protein toxins (27). Therefore, we investigated
the interactions of CAT-8015 and its components with RBCs
using a number of sensitive biophysical measurements, such as
membrane dipole potential (MDP) measurements, which detect
subtle changes in the electrical properties of the membrane, and
analysis of the absorption of 415 nm light by hemoglobin, which
detects subtle changes in cell morphology. All measurements
were made at single cell level with the ultimate aim to
understand interpatient variability in response to CAT-8015
treatment.

We provide evidence that CAT-8015 directly interacts with
RBCs, mediated by its toxin component PE38. We also
show correlation between the electrical properties of the RBC
membrane and the susceptibility of RBCs to CAT-8015-induced
haemolysis, which could identify ALL patients who will most
benefit from CAT-8015 immunotoxin therapy. Finally, we
provide evidence that CAT-8015 is directly cytototoxic to ECs of
excised human mesenteric arteries.
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MATERIALS AND METHODS

Materials
Chemicals were purchased from Sigma, UK, unless otherwise
stated. CAT-8015 was provided by MedImmune (Gaithersburg,
MD,USA) (28). The concentration of CAT-8015 used throughout
this study (500 ng/ml) corresponds to the plasma level achieved
in pediatric patients with ALL treated at the upper dose levels
in Phase I trials of CAT-8015 (range 311-586 ng/ml) (3). RFB4
mouse monoclonal antibody (full anti-CD22 antibody) and
SS1P [a Pseudomonas IT targeting mesothelin-expressing solid
tumours (29)] were provided by Ira Pastan.

Ethics Statement
This study was carried out in accordance with the
recommendations of the South Central-Hampshire Regional
Ethics Committee and complies fully with the Standard
Operating Procedures for Research Ethics Committees in the
UK. The protocol was approved by the South Central-Hampshire
Regional Ethics Committee (Ref: 10/H0501/39) and NRES
Committee South West–Central Bristol (Ref: 16/SW/0056). All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Patient Samples
Fresh whole blood from paediatric ALL patients and age-
matched healthy individuals were collected by venipuncture
at Birmingham Children’s Hospital into heparin coated tubes.
ALL patient samples were consented for immune markers by
ethics, Ref: 10/H0501/39, by a UK Regional Ethics Committee.
Mesentery tissues were obtained from patients undergoing
routine colorectal surgery. Recruitment and sample collection
was facilitated via the ethically approved Royal Devon and Exeter
Tissue Bank (RDETB, REC no: 16/SW/0056) and the National
Institute for Health Research Exeter Clinical Research Facility.
Application to collect and process anonymized mesentery
samples was approved by the RDETB Steering committee.
Following surgical resection, the samples were immediately
transferred to the Royal Devon & Exeter Histopathology
Department for removal of a sample of mesentery tissue furthest
from any tumor. The sample was then transported on ice in DPBS
(Dulbecco’s Phosphate Buffered Saline) buffer without calcium
and magnesium, pH 7.0–7.2, supplemented with 1 mg/ml bovine
serum albumin (BSA; DPBS/BSA) in a sealed polystyrene box for
immediate processing and analysis.

Preparation of Red Blood Cells
Fresh whole blood in heparin coated tubes was centrifuged at
1,000 × g for 10min at room temperature to separate red
blood cells (RBCs) from plasma. After careful removal of plasma,
packed RBCs (100 µl) were resuspended in 1ml DPBS without
calcium and magnesium, pH 7.0–7.2 (Invitrogen) supplemented
with 1 mg/ml bovine serum albumin (BSA; DPBS/BSA) and
washed three times with 1ml DPBS/BSA. Each washing step with
10-fold volume of DPBS/BSA is expected to achieve >10-fold
dilution of plasma proteins in already plasma separated RBCs
to remove complement. Finally, 1.5 µl of extensively washed
RBCs was resuspended in 1ml DPBS/BSA for incubations

with immunotoxin. Removal of complement was confirmed
by the immunoturbidimetric assays for C4 and C3c on Roche
cobas R©8000 system. Any residual complement that may remain
cannot be activated due to the lack of divalent ions in the
resuspension buffer.

Measurement of the MDP
Measurement of the membrane dipole potential (MDP) was
performed in µ-Slide I0.2 Luer poly-L-lysine imaging chambers
(Ibidi), as described previously (27). In brief, 5 µl of 1 mg/ml Di-
8-ANEPPS (Thermo Fisher) in ethanol was added to 1ml RBC
suspension at a concentration of 3 × 107 cells/ ml in DPBS/BSA,
and c000000000ells were incubated at 37◦C for 1 h. Subsequently,
cells were washed three times in DPBS/BSA to remove excess dye
and resuspended in 1ml DPBS/BSA with or without CAT-8015
(500 ng/ml) for further incubation at 37◦C for 1 h. Ratiometric
fluorescence images were captured by an Olympus IX50 inverted
microscope (Olympus Optical, Hamburg, Germany) equipped
with a Plan-Neofluar 63×/1.25 oil immersion objective, an AVT
Stingray F-145B camera and Live Acquisition 2.2.0.8 software.

Measurement of RBC Morphology
To monitor CAT-8015-induced changes in RBC morphology,
Di-8-ANEPPS-labeled RBCs from ALL patients were imaged
before and after exposure to buffer only (DPBS/BSA) or buffer
containing CAT-8015 (500 ng/ml) for 1 h at room temperature
in a µ-Slide I0.2 Luer poly-L-lysine imaging chamber (Ibidi).
Images were captured by an Olympus IX50 inverted microscope
(Olympus Optical, Hamburg, Germany) equipped with a
415 nm diode light source (ThorLabs), an Olympus UPlanSApo
60×/1.20W objective, an AVT Stingray F-145B camera and Live
Acquisition 2.2.0.8 software.

The radial profile of individual cells was determined by a
custom Python script (30–32). In brief, approximate cell sizes
were detected by the strongest peaks in scale-space (33) and used
as an input to the background subtraction algorithm, which is
a port of ImageJ’s rolling-ball algorithm (34). Cells were then
detected as regions of intensity higher than a certain threshold
value, determined using an Otsu’s method, resulting in a mask
image. A marker-based watershed transform on the distance
transform of the mask image was used to delineate touching cells.
Next, we applied several morphological constraints to the cell
regions, such as size filtering, to remove any that were too small
or too large. The final cell regions were used to generate the radial
intensity profiles by averaging the intensity (minus the cell’s local
background value) at each radial position.

Correlation Between the MDP of RBCs and
Their Susceptibility to CAT-8015-Induced
Lysis
To investigate whether differences in the MDP of individual
cells within a population of RBCs are correlated with their
susceptibility to CAT-8015-induced lysis, we performed
ratiometric fluorescence imaging of a number of individual
cells within a population of RBCs from ALL patients
before CAT-8015 treatment, as described in “Measurement
of the MDP.” The buffer (DPBS/BSA) surrounding the
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cells was then exchanged with buffer containing CAT-
8015 (500 ng/ml) and after 1 h incubation at room
temperature RBCs were exposed to 415 nm light to
monitor cell lysis, as described in “Measurement of RBC
morphology.”.

Measurement of Vascular Permeability
To investigate the effect of CAT-8015 on vascular permeability,
excised human mesenteric arteries were cut into 0.5 cm
transverse sections, washed three times with 10ml DPBS
without calcium and magnesium, pH 7.0–7.2 (Invitrogen), and
incubated with buffer only (DPBS) or buffer containing CAT-
8015 (500 ng/ml) in the presence of the vascular permeability
marker BSA labeled with the red fluorophore Alexa FluorTM

594 (Thermo Fisher; Alexa594-BSA). After incubation for
1 h at 37◦C, arteries were washed three times with DPBS,
frozen in OCT embedding medium (Tissue-Tek, Electron
Microscopy Sciences), sectioned as 10µm transverse sections
using a Leica microtome (Leica Microsystems, Milton Keynes,
UK) and imaged using a Leica SPF5 confocal microscope
(Leica, Heidelberg, Germany) equipped with a HCX PL APO
lambda blue 63×/1.4 oil immersion lens, LAS AF Version
1.4.0 Build 613 software and Leica DFC Camera. Excitation
light was provided by the 594 nm line of a helium neon
laser.

To quantify the effect of CAT-8015 on vascular permeability,
images were manually segmented using ImageJ software (34)
to label the lumen and intima regions. These labeled masks
and corresponding original Alexa594 fluorescence data were
then processed by a Python script (30–32), which loaded
the images and performed a distance transform on the
labeled region to determine the distance of each pixel in
the intima from the lumen. The mean fluorescence value
at each distance (i.e., the mean intensity profile) was then
calculated by using these distances and the loaded fluorescence
values.

Transmission Electron Microscopy
For transmission electron microscopy (TEM) studies, excised
human mesenteric arteries were cut into 0.5 cm transverse
sections, washed three times with 10ml DPBS without calcium
and magnesium, pH 7.0–7.2 (Invitrogen), and incubated with
buffer only (DPBS) or buffer containing CAT-8015 (500 ng/ml).
After incubation for 1 h at 37◦C, tissues were fixed in 2%
glutaraldehyde and 2% paraformaldehyde in 0.1M PIPES (1,4-
Piperazinediethanesulfonic acid) buffer (pH 7.2). After removal
of excess fat tissue the artery sections were sliced into 1mm
pieces, washed with buffer three times and post-fixed for
1 h in 1% osmium tetroxide (reduced with 1.5 % wt/vol
potassium ferrocyanide) in 0.1M sodium cacodylate buffer
(pH 7.2). The samples were then washed in deionized water
three times and incubated with 1% aqueous uranyl acetate
for 30min (en-bloc staining). After washes in deionized water
three times the samples were dehydrated through a graded
ethanol series and subsequently embedded in Spurr resin
(TAAB Laboratories, Aldermaston, UK). 70 nmultrathin sections
were produced using a Leica EM UC7 ultramicrotome (Leica
Microsystems, Milton Keynes, UK) and collected on pioloform-
coated copper slot EM grids (Agar Scientific, Stansted, UK).
Some of the grids were contrasted with lead citrate before
imaging. The sections were analyzed using a JEOL JEM 1,400
transmission electron microscope operated at 120 kV and
images taken with a digital camera (ES 100W CCD, Gatan,
Abingdon, UK).

Histological Tissue Preparation
Excised human mesenteric arteries were cut into 0.5 cm
transverse sections, washed three times with 10ml DPBS
without calcium and magnesium, pH 7.0–7.2 (Invitrogen), and
incubated with buffer only (DPBS) or buffer containing CAT-
8015 (500 ng/ml). After incubation for 1 h at 37◦C, tissues were
fixed in 10% buffered paraffin and processed to paraffin blocks
using standard laboratory methods. Tissues were sectioned

FIGURE 1 | CAT-8015-induced changes in the MDP of RBCs. (A) Effect of CAT-8015 on the MDP of RBCs from healthy individuals (n = 7). (B) Effect of CAT-8015 on

the MDP of RBCs from ALL patients (n = 9). Control (◦); CAT-8015 (H). Significant differences are indicated (**P < 0.01, ***P < 0.001, ****P < 0.0001). Statistical

significance was determined using Holm-Sidak method, with alpha = 0.05, multiple t-tests, one unpaired t-test per row. At least 50 cells per treatment were analyzed.
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as 6µm transverse sections using a Leica microtome (Leica
Microsystems, Milton Keynes, UK) and routine hematoxylin-
and-eosin (H&E) stains were applied as per standard laboratory
protocols. Ets-Related-Gene (ERG) immunohistochemistry as
an endothelial marker was performed on paraffin sections as
per standard laboratory protocols. Histological sections were
imaged using an Olympus BX53 microscope (Olympus Optical,
Hamburg, Germany) equipped with a UPlanFL N 40×/0.75
objective and OLYMPUS cellSens Entry 1.16 software.

Statistics
Data were analyzed using Prism v7 software (GraphPad Software,
Inc., La Jolla, CA, USA). A P-value < 0.05 was considered
significant. Data are expressed as the mean value± SEM.

RESULTS

CAT-8015-Induced Changes in the MDP of
the RBC Plasma Membrane
The MDP arises from the orientation and distribution of the
dipolar residues of the lipid head groups and the water molecules
around them near the surface of the membrane (35), changes
in which reveals interaction of molecules with the membrane.
To probe CAT-8015 interaction with RBCs, we measured CAT-
8015-induced changes in theMDP of the RBC plasmamembrane
from healthy individuals (n = 7) and ALL patients (n = 9).
The results are shown in Figure 1, where 3 out of 7 healthy
individuals (Figure 1A) and 2 out of 9 ALL patients (Figure 1B)
showed significant reduction in the MDP of the RBC plasma
membrane after CAT-8015 treatment, providing evidence that

FIGURE 2 | CAT-8015-induced changes in RBC morphology. (A) Representative image of RBCs from a pediatric ALL patient exposed to 415 nm light at room

temperature in DPBS/BSA buffer. The light regions indicate low absorption of light, while the dark regions indicate high absorption of light. Bar represents 10µm.

(B) Representative radial profile of a RBC with a discoid shape. To mimic the shape of RBCs, we plotted the radial absorbance profile of individual cells within each

population and mirrored this dataset on the y axis. (C) Average radial profiles of RBCs from pediatric ALL patients (n = 5) before (in black) and after (in gray) treatment

with buffer only (top row), or before (in black) and after (in gray) treatment with buffer containing CAT-8015 (bottom row). (D) Average radial profiles of RBCs from

healthy donors (n = 4) before (in black) and after (in gray) treatment with buffer containing CAT-8015. Statistical significance was determined using multiple t tests.

Significant (***P < 0.0001) morphological changes in the center of the cell (radius (pixels)−5-5) were evident in ALL patients 1–4 after treatment with CAT-8015. At

least 10 cells per treatment were analyzed.
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FIGURE 3 | CAT-8015-induced lysis of RBCs from ALL patients. (A) A typical 415 nm light image of Di-8-ANEPPS-labeled RBCs from ALL patients after incubation

with CAT-8015 for 1 h at room temperature. Lysed cells appear with faint outlines of their membranes, while live cells appear with a halo around their edge. Bar

represents 10µm. (B) Haemolysis profiles of Di-8-ANEPPS-labeled RBCs from ALL patients (n = 5) and healthy donors (n = 4) after incubation for 1 h at room

temperature with buffer only (control) or buffer containing CAT-8015. The % lysed cells after each treatment was determined by counting individual RBCs within each

population before and after incubation with buffer only (control) or buffer containing CAT-8015. At least 30 cells per treatment were analyzed.

CAT-8015 disturbs the phospholipid organization of the RBC
plasma membrane in susceptible individuals.

CAT-8015-Induced Changes in RBC
Morphology
In separate experiments, and RBCs from different donors, we
monitored CAT-8015-induced changes in RBC morphology,
determined by measuring the absorption of 415 nm light
transmitted through the RBC by hemoglobin. Hemoglobin is
uniformly distributed through the cytoplasm of RBCs. Therefore,
absorption of 415 nm light by hemoglobin is proportional to the
thickness of hemoglobin present in the beam path. In a RBC with
a discoid shape absorption of the 415 nm light is lowest in the
center and outer edges of the cell, where the cell is thinnest, and
highest in the thickest part of the cell. Thus, RBCs with a discoid
shape appear as a dark ring with a brighter center and outer edge
when exposed to violet light (Figure 2A). The discoid shape of a
RBC is reflected in its radial profile, as illustrated in Figure 2B.
Figure 2C shows the average radial profiles of individual RBCs
from pediatric ALL patients (n = 5) before and after exposure
to buffer only (top) or buffer containing CAT-8015 (bottom) for
1 h at room temperature. RBCs showed significantly increased
absorption of 415 nm light in the center of the cell in 4 out of
5 patients after incubation with CAT-8015, while control cells
showed no change in their morphology. We did not observe
RBC morphology change in healthy donor samples (n = 4) after
treatment with buffer containing CAT-8015 (Figure 2D). These
data provide evidence that the response to CAT-8015 is ALL
specific.

CAT-8015-Induced RBC Lysis
Measuring the absorption of 415 nm light through RBCs also
allowed us to monitor CAT-8015-induced lysis of RBCs from the
same set of pediatric ALL patients (n = 5) and healthy donors
(n = 4) that were analyzed for changes in RBC morphology.
When exposed to violet light, lysed RBCs appear with faint

outlines of their membranes, while live RBCs have a distinctive
halo around their edges (Figure 3A). To quantify CAT-8015-
induced haemolysis, we counted individual RBCs within each
population before and after incubation with buffer only or buffer
containing CAT-8015 and calculated the % lysed cells after each
treatment. The haemolysis data of RBCs from ALL patients is
summarized in Figure 3B. ALL patient samples varied in their
sensitivity to CAT-8015, ranging from 3 to 94% cell lysis (mean
43% ± 17 SEM). We also observed RBC lysis in ALL patient
samples even after treatment with buffer only, although to a lesser
extent compared to after treatment with buffer containing CAT-
8015, ranging from 2 to 34% cell lysis (mean 16% ± 7 SEM). We
observed no RBC lysis in healthy donor samples after treatment
with buffer only or buffer containing CAT-8015 (Figure 3B).

Correlation Between the MDP of RBCs and
Their Susceptibility to CAT-8015-Induced
Lysis
We have previously reported that the physical properties of the
plasma membrane can influence the susceptibility of RBCs to
toxin-induced haemolysis (27), which motivated us to investigate
whether differences in the MDP of individual cells within a
population of RBCs are correlated with their susceptibility to
CAT-8015-induced lysis. This involved measuring the MDP for
a number of individual cells within a population of RBCs before
CAT-8015 treatment in the same set of pediatric ALL patients (n
= 5) as shown in Figures 2, 3. RBCs were then exposed to 415 nm
light after 1 h treatment with CAT-8015 at room temperature to
monitor haemolysis. Figure 4 shows that in all patients tested
RBCs with prolonged resistance to CAT-8015 treatment (intact
cells) have lower pre-treatment MDP values relative to cells with
increased sensitivity to CAT-8015 treatment (lysed cells), with
significant differences in 2 patients, indicating that higher MDP
values are correlated with increased sensitivity to CAT-8015-
induced lysis.
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Interaction of CAT-8015 With RBCs Is via
Its Toxin Component, PE38
To investigate which component of CAT-8015 is responsible
for interaction with RBCs, we incubated Di-8-ANEPPS-labeled
RBCs from healthy individuals (n = 3) previously shown to
be susceptible to CAT-8015 treatment (Figure 1A) with buffer
only or buffer containing CAT-8015, RFB4 (an anti-CD22
monoclonal antibody to mimic the antibody component of CAT-
8015) or SS1P (an anti-mesothelin Pseudomonas immunotoxin
to mimic the toxin component of CAT-8015). Figure 5 shows a
representative dot plot of a population of RBCs after the above
treatments. RBCs treated with SS1P showed significant reduction
in their MDP values relative to control cells, similar to RBCs
treated with CAT-8015, while RBCs treated with RFB4 showed
MDP values similar to control cells, indicating that CAT-8015
interacts with RBCs via its toxin component. RBCs treated with
SS1P showed MDP values similar to cells treated with CAT-8015.

Human Mesentery Tissue, an ex vivo EC
Model to Investigate Interaction of
CAT-8015 With Vascular ECs
To investigate interaction of CAT-8015 with vascular ECs, we
established an ex vivo ECmodel using excised human mesenteric
arteries. To investigate the effect of CAT-8015 on vascular
permeability, we incubated arteries (n = 3) with buffer only
or buffer containing CAT-8015 in the presence of the vascular
permeability marker albumin labeled with the red fluorescent

dye Alexa Fluor
TM

594 for 1 hour at 37◦C, and cryosections of
arteries were imaged by confocal microscopy (Figure 6A). To
quantify the effect of CAT-8015 on vascular permeability, images
were converted to mask images (Figure 6A, bottom) and the
mean intensity of red fluorescence across the intima (in gray),
the innermost layer of the artery wall that contains a monolayer
of ECs, was plotted against the distance from the luminal surface.
As illustrated in Figure 6B, there is significantly increased red
fluorescence below the endothelial surface of vessels treated with
CAT-8015 compared to control vessels, indicating that CAT-8015
increased vascular permeability to protein.

Ultrastructural and Histological Evaluation
of the Effect of CAT-8015 on Vascular ECs
To further evaluate the effect of CAT-8015 on vascular ECs, we
incubated excised human mesenteric arteries with buffer only
or buffer containing CAT-8015, and after incubation for 1 h at
37◦C tissues were processed for ultrastructural and histological
evaluation. Figure 6C shows representative TEM images of artery
cross-sections from two experiments. We observed differences
between untreated vessels and vessels treated with CAT-8015,
which included CAT-8015-induced detachment of ECs from
the basement membrane (Figure 6C, bottom), consistent with
damage to the vasculature that could allow for protein and fluid
leak. Control vessels showed normal cell morphology (Figure 6C,
top). Light microscopy of H&E-and ERG-stained histological
sections of human mesenteric arteries also revealed detachment
of ECs from the basement membrane after CAT-8015 treatment
(Figure 6D, bottom), with endothelial discontinuities frequently

FIGURE 4 | Differences in the MDP of individual cells within a population of

RBCs are correlated with their susceptibility to CAT-8015-induced haemolysis.

Average (± SEM) MDP values of a population of RBCs from pediatric ALL

patients (n = 5) before CAT-8015 treatment. Intact cells refer to RBCs that

were resistant to CAT-8015-induced lysis while lysed cells refer to RBCs that

were sensitive to CAT-8015-induced lysis. Significant differences are indicated.

Statistical significance was determined using Holm-Sidak method, with alpha

= 0.05, multiple t-tests, one unpaired t-test per row. At least 20 cells per

treatment were analyzed.

seen. In contrast,ECs lining vessel lumens were continuous and
without gaps in untreated vessels (Figure 6D, top).

DISCUSSION

The pathogenesis of CAT-8015-induced HUS/VLS is not well
understood due to the lack of an adequate animal model system
that closely corresponds to clinical manifestations. Therefore,
the present study developed human models and used novel
methodologies to investigate interactions of CAT-8015 with red
blood cells (RBCs) from pediatric ALL patients and ECs of
excised human mesenteric arteries. In all our experiments we
used RBCs and tissues after plasma had been removed and the
cells and tissues were washed extensively to remove complement.

Our study, for the first time, provides evidence that CAT-8015
directly interacts with RBCs, mediated by its toxin component
PE38, a novel mechanism for the pathogenesis of atypical HUS.
Interaction of CAT-8015 with RBCs was also independent of
platelet-induced haemolysis or RBC fragmentation, the latter
thought to be the consequence of high levels of shear stress
in obstructed vessels due to thrombosis (11–13). Although the
focus of our study was a Pseudomonas IT, our study has wider
applicability to other toxins and ITs that cause atypical HUS,
such as Shiga toxin (11), Combotox R©, a ricin-based IT targeting
CD19 and CD22 (36), and DAB486IL-2, a diphtheria toxin-based
IT targeting interleukin-2 (37, 38).

Measurements of the MDP and RBC morphology
revealed interpatient variability in response to CAT-8015
treatment. Considerable interpatient variability in CAT-
8015-induced cytotoxicity was also observed in a study of
35 primary ALL patient samples (39, 40). Measurements of
the absorption of 415 nm light by hemoglobin also revealed

Frontiers in Oncology | www.frontiersin.org 7 November 2018 | Volume 8 | Article 553

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bokori-Brown et al. Pseudomonas Immunotoxin-Plasma Membrane Interactions

FIGURE 5 | Interaction of CAT-8015 with RBCs is via its toxin component,

PE38. Representative dot plot of changes in the MDP of

Di-8-ANEPPS-labelled RBCs from healthy individuals (n = 3) after treatment

with buffer only (control) or buffer containing CAT-8015, RFB4 (an anti-CD22

monoclonal antibody to mimic the antibody component of CAT-8015) or SS1P

(an anti-mesothelin Pseudomonas exotoxin A-based immunotoxin to mimic

the toxin component of CAT-8015). Each dot represents an individual cell

within a population of RBCs. At least 100 cells per treatment were analysed.

Statistical significance was determined using Ordinary One-Way ANOVA,

Dunnett multiple comparison test. Significant differences are indicated

(**p = 0.0021, ****p < 0.0001), ns, not significant. One representative

experiment out of three is shown.

that in ALL patients RBCs lyse even after treatment with
buffer only. This observation is in line with a small number
of case reports in which diagnoses of ALL and HUS were
made prior to initiation of any anti-leukemic treatment,
suggesting that in ALL the disease itself may trigger RBC
lysis (13).

We have previously reported that the physical properties
of the plasma membrane can influence cell susceptibility
to protein toxins, where higher MDP values correlated
with reduced time to toxin-induced lysis (27). In the
present study we found a similar correlation between
the electrical properties of the RBC membrane and RBC
susceptibility to CAT-8015-induced lysis, where RBCs with
higher MDP values showed increased sensitivity to CAT-
8015-induced lysis. This may have implications in clinical
medicine. Measurements of the physical properties of the
RBC membrane are straightforward and could identify
patients who will most benefit from CAT-8015 immunotoxin
therapy.

Measurements of the MDP indicate that interaction of
CAT-8015 with RBCs is via its toxin component, PE38. It
is possible that CAT-8015 contains a site which could be
recognized with low affinity by RBCs, thus accounting for
haemolysis. Weldon et al. (41). reported on a variant of CAT-
8015 (HA22-LR) that has a deletion of a large portion of the

membrane translocation domain II of Pseudomonas exotoxin
A that is fully cytotoxic, with greatly diminished non-specific
toxicities in mice while preserving on-target cytotoxicity, which
may be due to loss of residues that interact with RBCs
and cause membrane damage, and possibly HUS in patients.
Our preliminary studies also indicate that HA22-LR is less
toxic to RBCs compared to CAT-8015 (data not shown).
Further studies will be required to determine the minimal
sequence responsible for PE-induced RBC lysis that may lead to
HUS.

While the interaction of CAT-8015 with the RBC membrane
might be relatively weak, it has a number of important practical
implications: (1) CAT-8015 will come into contact with a
very large number of RBCs so even weak binding could
influence its kinetics and availability in the circulation; (2) in an
individual, all plasma membranes have similar lipid composition
so these interactions may well be involved in the vascular
responses; (3) our previous work on other toxins indicates that
such interactions are influenced by factors, such as oxidative
stress (27), which may be involved in interpatient variability
in response to CAT-8015 treatment. Interpatient variability
in response to CAT-8015 treatment may also be linked to
additional factors, such as treatment timing, initial burden,
immune response, variation in the kinetics of internalization and
turnover between patient samples, and efficiency of intracellular
processing (42, 43). The weak and transient interaction between
CAT-8015 and the RBC membrane may trigger changes in RBC
morphology and induce haemolysis, which may account for
HUS in patients. However, the role of CAT-8015 interaction
with RBCs in HUS pathogenesis remains to be more rigorously
explored. Future studies could include classic receptor-ligand
binding analyses to measure binding affinities and on/off
rates.

Our study is also the first to report that CAT-8015 is
directly cytototoxic to ECs of excised human mesenteric arteries,
evidenced by increased vascular permeability and detachment
of ECs from the basement membrane, which may account for
VLS in patients. Although PE in its native form also causes
EC damage (44), CAT-8015 is not expected to show cytotoxic
activity toward ECs but only to cells expressing the CD22 antigen.
It is possible that PE contains, in addition to the specific cell-
binding domain I which is removed in CAT-8015, an additional
site which could be recognized with low affinity by ECs, thus
accounting for VLS in patients. Several studies suggest that
induction of VLS requires an enzymatically active toxin molecule
(45, 46). One study suggests that toxins that contain a three-
amino acid consensus motif in their enzymatically active domain
may be responsible for binding to ECs and initiating VLS in
humans (47). Subsequent studies showed that modification or
deletion of this motif reduced toxin-induced VLS (48, 49).
Further studies will be required to determine the minimal
sequence responsible for PE-induced EC damage that may lead
to VLS.

CAT-8015 may directly contribute to HUS/VLS by inhibiting
protein synthesis in vascular ECs, similar to Shiga toxin
mediated VLS/HUS (50). Additional studies could explore
the use of isolated glomerular tufts to investigate the role
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FIGURE 6 | The effect of CAT-8015 on ECs of excised human mesenteric arteries. (A) Representative confocal microscope images of transverse cryosections (10µm)

of excised human mesenteric arteries (n = 3) incubated with buffer only (top) or buffer containing CAT-8015 (bottom) for 1 hour at 37◦C in the presence of the vascular

permeability marker Alexa594-BSA. Bars represent 40,µm. To quantify the effect of CAT-8015 on vascular permeability, Alexa594 images (left) were converted to

mask images (right) and the mean intensity of red fluorescence across the intima (in grey) was plotted against the distance from the luminal surface (expressed in

pixels, 1 pixel = 0.5µm). (B) Average (± SEM) profiles of red fluorescence from excised human mesentery arteries (n = 3) treated with buffer only (in black) or buffer

containing CAT-8015 (in gray). Image analysis was performed for 10–15 different images per sample. Statistical significance was determined using unpaired,

two-tailed t-test with Welch’s correction. (C) Representative transmission electron microscopy images of cross-sections of excised human mesenteric arteries (n = 2)

incubated for 1 h at 37◦C with buffer only (control) or buffer containing CAT-8015. Arrows indicate detachment of ECs (e) from the basal membrane. Bars represent

1µm (left), and 2µm (right). (D) Representative ERG immunohistochemistry images of cross-sections of excised human mesenteric arteries (n = 3) incubated for 1 h

at 37◦C with buffer only (control) or buffer containing CAT-8015. Black arrows indicate detached ECs from the basal membrane while blue arrows indicate

discontinuous EC surfaces in CAT-8015-treated vessels. The ECs lining vessel lumens in control vessels were continuous. Bars represent 20µm.

of CAT-8015-mediated damage of glomerular ECs in the
development of HUS/VLS, such as by exploring the relationship
between protein synthesis inhibition and EC cytotoxicity using
enzymatically inactive PE-antibody constructs. Induction of
VLS also requires the membrane translocation domain II of
PE, since the protease-resistant variant of CAT-8015 (HA22-
LR) with a large deletion in domain II of PE can diminish
non-specific toxicity in mice, which may be due to loss of
residues that interact with ECs and cause liver damage in
mice, and possibly VLS in patients (4, 41). Alternatively, CAT-
8015 may indirectly contribute to VLS/HUS by inducing release
of cytokines from damaged vascular endothelium (16). It is

possible that nonspecific binding of CAT-8015 fragments to ECs
and/or blood cells cause VLS/HUS upon release from the target
cells.

In conclusion, the human models we developed in this study
constitutes the first, and very important, step in understanding
the origins of HUS/VLS in immunotherapy and will allow further
investigations of HUS/VLS pathogenesis. The present study also
provides new biophysical tools: (1) to evaluate specific drugs
for their ability to limit the side effects of Pseudomonas IT
therapy in pediatric ALL patients; (2) to develop novel drugs
that avoid HUS/VLS; and (3) to study complement-independent
HUS caused by other toxins and ITs. The ex vivo human
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mesentery model we developed in this study could also be
exploited in future studies to correlate the observed changes
in RBC association and vascular leak to the development of
HUS/VLS.
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