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ABSTRACT:  

In this paper, an extension of a second-order Godunov-type wave propagation algorithm is presented for 

modelling two-dimensional morphodynamic problems using a coupled approach. In this solution, the two-

dimensional shallow water equations (SWEs) and bedload sediment mass balance laws are expressed in a 

coupled form. The proposed numerical solver treats the source term including the bedload variations as well 

as the friction terms within the flux-differencing of the finite-volume neighbouring cells. In order to solve the 

morphodynamic system in two-dimensions, the dimensional-splitting method is utilised. To consider the 

bedload sediment discharge within the Exner equation, the Smart and Meyer-Peter & Müller formulae are 

adopted. To verify the capability of the extended wave propagation solver in dealing with different flow 

regimes several numerical test cases are investigated. The numerical results show that for all examined cases, 

excellent agreement is achieved between the numerical results and the exact solutions and experimental data, 

confirming the effectiveness of the method."  

Keywords: Two-dimensional morphodynamic system, Bedload sediment transport, Coupled solution, Wave 
propagation algorithm, Flux-wave approach. 

 

1. Introduction 
 

Accurate modelling of free-surface flows, sediment bed profiles and their interactions is essential for 

morphodynamic studies such as evaluating river bed variation, beach profile predictions and river restoration 

planning and design. Numerical models used for such purposes should be capable of accurately estimating 

bed bathymetry variations as well as fluid depth changes. To accomplish these attributes, morphodynamic 

models used for modelling bedload sediment are generally composed of a hydrodynamic component that 

encompasses the two-dimensional (2D) shallow water equations (SWEs), and a bedload transport model for 
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approximating sediment propagation. These set of equations form a nonlinear hyperbolic system which can 

be solved by two different approaches. The first method is the uncoupled solution, in which, the 

hydrodynamic and the bedload sediment transport equations are solved separately (Cordier, Le, & Morales 

de Luna, 2011; Wu, 2007). However, one major drawback of this scheme is that it only applicable in the 

cases of weak or mild sediment transport and surface wave interactions, which is mainly due to the 

assumption of a constant total depth(Canestrelli, Dumbser, Siviglia, & Toro, 2010; Hudson & Sweby, 2005). 

Commercial packages such as MIKE 21 (Danish Hydraulic Institute, 2017)  Delf3D (Deltares, 2017), 

TELEMAC-MASCARET (TELEMAC, 2017) and SRH-2D (USBR, 2017) generally link the 2D shallow 

water solver to a bedload sediment model described by an advection-diffusion sediment model or the Exner 

equation using the uncoupled strategy. In SRH-2D the Exner equation is first solved and the resulting bed 

profile update is used as a source term for the 2D shallow water equations. In Delf3D-FLOW the 2D shallow 

water equations are utilised for the hydrodynamic part and a 2D advection-diffusion equation which mainly 

uses Van-Rijn’s sediment formulation (Rijn, 1993) is used to calculate the bed profile update. TELEMAC-

MASCARET employs the SISYPHE package to evaluate the morphological process, and the calculated 

results are then used into the depth-averaged shallow water component of TELEMAC-2D.  

The second and alternative method is the coupled solution which solves the entire governing equations in a 

coupled form at each time step, and hence, is generally more stable (Cordier, Le, & Morales de Luna, 2011; 

Holly & Rahuel, 1990; Lyn & Altinakar, 2002; Saiedi, 1997). In order to solve the morphodynamic system, 

several numerical methods have been developed over the years which are mostly developed based on 

Godunov-type finite volume method (see reviews by LeVeque (2002) and Toro (1997)).  

Godunov-type methods have recently been applied for the calculation of 2D morphodynamic systems based 

on upwind methods. For instance, Delis & Papoglou (2008) applied an upwind relaxation scheme for the 

solution of bedload sediment transport using the coupled solution. To achieve high-order accuracy, the 

MUSCL-TVD scheme was employed in their work. Serrano-Pacheco, Murillo,&Garcia-Navarro (2012) 

modelled 2D shallow water flow with a mobile bed using a partially coupled first-order Godunov-type finite 

volume method using the HLLC approximate Riemann solver (Toro, 2001). Soares-Frazão & Zech (2011) 

used a coupled system based on the HLLC scheme and chose a different pair of eigenvectors for 

approximating the flux. In another work, Rosatti & Fraccarollo (2006) employed a well-balanced method 

with a new strategy for the treatment of non-conservative fluxes. This work was later modified by Murillo & 

García-Navarro (2010) who defined a novel approximate coupled Jacobian matrix (CJM) method using a 

triangular mesh.  

The main purpose of this paper is to extend a second-order Godunov-type wave propagation algorithm for 

solving 2D morphodynamic systems. To the best of the authors’ knowledge, the wave propagation algorithm 

has yet to be extended for modelling bedload sediment transport dynamics. The proposed solver generalizes 

the 2D flux-wave formula introduced by Mahdizadeh, Stansby & Rogers (2011, 2012) for the solution of 

morphodynamic problems. To solve the problem in the 2D a dimensional-splitting method which solves each 

Riemann problem in one-dimension is used. In comparison to other accurate and novel coupled 
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morphodynamic solver such as CJM, the proposed the method provides identical results although use more 

straightforward and simpler formulations. The rest of this paper is structured as follows: In the next section, 

the 2D hydrodynamic system coupled to a bedload sediment equation is presented. Next the 2D 

morphodynamic system is defined and the associated eigenstructure calculations are explained in detail. 

Then, the 2D wave propagation algorithm and the flux-wave approach are introduced for 2D bedload 

sediment transport modelling. Finally, the performance of the proposed numerical solver is investigated over 

several 1D and 2D problems by comparing its results with exact solutions and/or experimental data.  

 

2. Governing equations 

The 2D hydrodynamic system coupled to the bedload sediment transport equation may be written as: 

 

( ) ( ) 0,x y

h
q q

t x y

  
  

  
  (1a)  
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  (1d) 

where h is the water depth and bz  shows the bedload sediment thickness as shown in Fig. 1, g is acceleration 

due to gravity, t is time, xq hu
 
and yq hv

 
are discharges per unit width, u and v are depth-average 

velocities in the x- and y directions, bxq and byq are the bedload sediment discharges per unit width in the x- 

and y- directions respectively, 1(1- )p  where p is the porosity of the sediment layer, and finally fxτ  and 

fyτ are bed shear stresses in the orthogonal and horizontal directions respectively which can be obtained as 

follows: 

2 2 2 21 1

2 2
and ,fx f fy fC Cτ ρu u v τ ρv u v     (2) 

where  denotes the water density and fC is the bed friction coefficient which can be expressed based on 

Manning’s coefficient as 2 1/32 /fC gn h  where n is Manning’s roughness coefficient. The sediment 

discharge can be calculated by (Grass, 1981): 

2 2 2 2( ), ( ),bx g by gq A u u v q A v u v      (3) 
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where bxq  and byq  are sediment discharges in the x- and y-directions respectively, gA  is the interaction 

parameter which mainly depends on the sediment properties and is obtained through experimental data and 

can be expressed as .gA K χ  where is described based on two different sediment transport formulae as 

summarized in Table (1) and :  

1/2 3

1/2
,

( 1)s

g n
K

G h



  (4) 

where /s sG    is the relative density and s  is the sediment density. In Table (1), c  is the critical 

Shields parameter and   denotes the dimensionless bed shear stress defined as:  

2
2 2

1/3
( ),

( 1)s m

n
u v

G d h
  


  (7) 

where md is the average diameter of bed materials.  

In Smart’s formula (Smart, 1984), described in Eq. (6), 30d  and 90d  correspond to diameters where 30% and 

90% of the bed material sample is finer by weight. 0S  is the bed slope obtained as 0 /x bS z x  and 

0 /y bS z y    in x- and y-directions, respectively and finally, s  is Smart’s critical Shield parameter 

(Juez, Murillo, & García-Navarro, 2013) which can be obtained from: 

tan
cos 1 ,

tans c

 
  

 

  


  (8) 

where  is the angle of repose for saturated bed materials, and   is the angle of the bed slope.  

It should be noted that for the Smart and Meyer-Peter & Müller sediment bedload formulations presented 
above, the effect of flow resistance which may slightly affect the sediment movement for uniform bedload 
profiles, has considered negligible. For more details see (Recking, Frey, Paquier, Belleudy, & Champagne, 
2008). 

3. The 2D coupled form of the morphodynamic system 

The 2D coupled form of the morphodynamic system presented in Eq. (1) can be re-written in the following 

form:  

( ) ( ) ( ),t x y x  U F U G S UU ,   (9) 

where 

2
2

2
2

0

1/ 2
, ( ) , ( ) , .

1/ 2

0

yx

fxx y bx

x

y x y y fyb

b

bx by

qq
τh q q zq ghgh

q x ρhh
q q q q τz

gh gh
z h h y ρ

q qη η

   
                                          

       

U F U G U S= =  (10)  
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If a sediment discharge formula in the form of Eq. (3) is used, the associated Jacobian matrices for the above 

system become: 

2

2

0 0 1 00 1 0 0

02 0 0
( ) , ( ) ,

0 2 00

00 y y yx x x

uv v ugh u u

gh v vuv v u

    

  
        
   
  
    

F U G U   (11) 

where the values of x , x  and x  for the case of a constant interaction parameter, gA , are computed as:  

 2 2 233 2
, , .

gg g
x x x

A u vA u V A uv

h h h

 
  


     (12) 

where 2 2V u v   and consequently y  and y  and y  for the Jacobian matrix in the y-direction become: 

 2 2 233 2
, , .

gg g
y y y

A v uA v V A uv

h h h

 
  


     (13) 

As it can be observed, the obtained Jacobian matrices are singular, and so, cannot be used for eigenvector 

calculations. The following product rule can be implemented to revise the matrix singularity:  

( ) ( )
, .b b

b b

z h z hz h z h
h z h z

x x x y y y
       

     
  (14) 

This implantation results in fluxes and source terms in the forms of: 

2
2

2
2

0

1/ 2
( ) , ( ) , .

1/ 2

0

yx

fxx yx
x bb

x y y fy
b y b

bx by

qq
τq qq gh zgh ghz
ρhh

q q q τ
gh ghz gh z

h h ρ
q qη η

   
   
         

     
         
   

       

F U G U S =  (15) 

and now the related Jacobian matrices become: 

 
2

2

0 0 1 00 1 0 0

0( ) 2 0
( ) , ( ) .

( ) 0 20

00

b

b

y y yx x x

uv v ug h z u u gh

g h z v v ghuv v u
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  
         
    
  
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F U G U   (16) 

The first three associated eigenvalues for Jacobian matrices ( )F U  and ( )G U  are obtained by solving the 

following polynomial equation:  

3 2
1 2 3( ) .P λ λ a λ a λ a      (17) 
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where vector  1 2 3, ,
T

a a a  can be computed by the following equations in the x and y directions: 

1 1
2 2

2 2

3 3

2 2

( ) , ( ) .

( ) ( )
b x b y

x x y y

a u a v

a u g h z h a v g h z h

a gh v a gh u

 
   

       
                   
                

F G

   (18) 

Therefore, the roots of the corresponding polynomials are:  

1 1

2 1

3 1

1 1
2 cos( ) ,

3 3
1 1

2 cos( ( 2 )) ,
3 3
1 1

2 cos( ( 4 )) .
3 3

λ Q μ a

λ Q μ π a

λ Q μ π a

  

   

   

 (19) 

where the values of  Q,   and R can be calculated as: 

      2 3 3
2 1 1 2 3 1

1 1
3 , 9 27 2 , cos / .

9 54
Q a a R a a a a a R Q       (20) 

It can be proved that for the Grass-type equation (Grass, 1981) used in this work, the roots of the 

polynomials are always real (Castro Díaz, Fernández-Nieto, & Ferreiro, 2008; Hudson & Sweby, 2005). The 

fourth eigenvalues are given as:  

4 4,F Gu v     (21) 

hence, the corresponding eigenvectors for the eigenvalues expressed in Eq. (16) can be found as:  

 1,2,3 1,2,3

2 2

1 1

, .

( ) ( 2 ) ( ) ( 2 )

F
k

G
kk k

b k k b k k

u

v

u g h z u v g h z v

gh gh




   
 

   
   
   
    
   

          
      

r rF G   (22) 

and the eigenvectors related to the fourth eigenvalues where 0x   and 0y 
 
is obtained as: 

4 4

11

, .

1 1( ) ( )

y y

yx x
k k

x

b b

vu

u

v

h z h z
h h

 
 

 

  
      
      
  
  
     

   

r rF G   (23) 

and in the case of 0  , the corresponding fourth eigenvector becomes:  
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 4 4

0 0

0 1
, .

1 0

0 0

k k 

   
   
    
   
   
   

r rF G (24) 

In order to accurately consider the effect of a non-constant interaction parameter, gA , which is variable in 

time and space, into the eigenvector computations, the derivatives of the bedload sediment formula 

containing gA should be also considered within the Jacobian matrix in both x- and y- directions. Table (2) 

shows the values of   , ,
T

x x x    and  , ,
T

y y y   for the Smart and Meyer-Peter & Müller bedload sediment 

discharges where the value of   used in the Meyer-Peter & Müller bedload sediment formulation is given 

by:  

 
  1/3

22

1
1 .m s cd G h

n V





    (25) 

As can be observed in Table (2), theses derivatives contain rather complex, but necessary mathematical 

expressions for avoiding the miscalculation of the eigenvalues and eigenvectors of the Jacobian matrix, 

eventually leading to the accurate estimation of the bedload sediment movement. This is further discussed in 

the numerical results section. 

4. The 2D wave propagation algorithm 
  

To solve the 2D morphodynamic system described above, the Godunov-type wave propagation algorithm 

firstly introduced by LeVeque (1998, 2002) is used, which can be defined as:  

   
   

1
1/2, 1/2, , 1/2 , 1/2

1/2, 1/2, , 1/2 , 1/2

Δ Δ
Δ Δ Δ Δ

Δ Δ

Δ Δ
,

Δ Δ

n n
ij ij i j i j i j i j

i j i j i j i j

t t

x y

t t

x y

    
   

   

    

   

U U U U U U

F F G G  

AA B B
  (26)  

where n
ijU  is the vector of unknowns at time Δt n t  for cell  ij i -1 / 2 i +1 / 2 j -1 / 2 j +1 / 2C x , x × y , y     in the 

finite volume method, and n+1
ijU  is the updated version of the vector of unknowns at the next time step. 

1/2,Δ i j


UA  and , 1/2Δ i j


UB  are called the left- and right-going fluctuations for the x- and y-directions and 

can be obtained by solution of the Riemann problem at cell interfaces i 1/ 2x   or i 1/ 2y  , respectively. The terms 

1/2,i jF  and , 1/2i j G are flux correction terms utilised to obtain second-order accuracies with different choice 

of total variation diminishing (TVD) limiters (LeVeque, 1998, 2002). If 0F G = , then the first-order 

Godunov-type method is obtained. The right and left-going fluctuations, 1/2,Δ i j


UA  and , 1/2Δ i j


UB  at 

each cell-interface for the morphodynamic system can be calculated based on the flux-wave approach. 
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However, Eq. (26) is not fully second-order accurate as the cross-derivative terms xyU  are not considered 

into the calculations which will be addressed in the next section.  

5. Flux-wave method for 2D morphodynamic systems 

The Flux-wave formula was originally introduced by Bale, Leveque, Mitran,&Rossmanith (2002), and later 

developed by Mahdizadeh, Stansby & Rogers (2011,2012) for 1D and 2D propagation over dry-state. For 

solving morphodynamic problems, compared to 2D SWEs, another wave with respect to the sediment bed is 

added to the computations. The wave propagation algorithm for a 2D problem is generally obtained by the 

dimensional splitting scheme which solves the 1D problem, in each direction. For instance for the 2D 

morphodynamic system, 1( )t x U F SU  is solved using the flux-wave approach to compute
  1/2,Δ i j


UA

(LeVeque, 2002). The flux-wave approach for a 1D problem can be expressed as: 

1 1 , 1/2
1

( ) ( ) Δ ,
wM

i i k i
k

x 


  F U F U S ξ  (27) 

where , 1/2k iξ  is called the flux-wave, which is obtained by multiplying the constant coefficient , 1/2k iβ   by the 

eigenvector in the form of (23) or (24), say, , 1/2 1/2 , 1/2
F

k i i k iβ  ξ r  and wM  denotes the number of waves and k 

implies the wave number, which for the current morphodynamic system  (Eq. 1) is equal to four. The fluxes 

and the source term in the x-direction become: 

2
2

1( ) 1 / 2 , 0 0 0 .
T

x yx fx
x b bx x b

q qq τ
q gh ghz ηq gh z

h h ρ

   
       

  
F U S  (28) 

To express the flux-wave formula, first, the differences between neighbouring fluxes for the cells and the 

source term, i.e. left-hand side of Eq. (27), are presented as a vectorΔF : 

 1

( ) ( 1)

2 2
( ) ( 1) ( )2 2 11

1 1 1

2

3 ( ) ( ) ( 1) ( 1)

4 1

( ) ( 1

Δ
1/ 2 1 / 2

2 2Δ
Δ

Δ

Δ

i i

x i x i

x i x i fx i fxb i b i
i b i i b i i i

i

x i y i x i y i

i i

bx i bx i

q q

q q τ τz zF
gh gh z gh gh z h h

h h ρF

F q q q q
F h h

q qη η





 
  

 







                               
 
  
 



F

)












 

(29) 

where i and i-1 are the left and right states of the cell interface i-1/2. The vector of ΔFis then equated to the 

summation of flux-waves, , 1/2
1

wM

k i
k



 ξ , which leads to the following system of equations if 0x  :  

1 1

1 2 3 2 2

3 3

1 2 3 4 4

1 1 1 1 Δ

Δ
,

Δ

Δ

β F

λ λ λ u β F

v v v κ β F

s s s ε β F

     
     
     
     
     

    

 (30) 
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and in the case 0x  , the above system becomes: 

1 1

1 2 3 2 2

3 3

1 2 3 4 4

1 1 1 0 Δ

0 Δ
,

1 Δ

0 Δ

β F

λ λ λ β F

v v v β F

s s s β F

     
     
     
     
     

    

 (31) 

where ks  , μ and σ  can be calculated through the following equations: 

2 ( ) ( 2 )b k k
k

u g h z λ u λ
s

gh

   
 . (32) 

1
, ( ).x

b
x

u
h z

h

 
 




      (33) 

The average velocities, u  and v , are then computed using a Roe speed (Roe, 1981) : 

1 1

1

i i i i

i i

h u h u
u

h h
 







 and  1 1

1

i i i i

i i

h v h v
v

h h
 







 (34) 

where h  is the average fluid depth, evaluated as 1( ) / 2i ih h h  . By solving the system of equations given 

in (30) and (31), the obtained kβ  coefficients can be used to calculate the left and right-going fluctuations 

1/2,Δ i j


UA based on the following equations (Bale, Leveque, Mitran, & Rossmanith, 2002; Mahdizadeh, 

Stansby, & Rogers, 2012): 

1/2, , 1/2 , 1/2: 0 , 1/2

1/2, , 1/2 , 1/2: 0 , 1/2

Δ ,

Δ .

k

k

F
i j k i k ik λ k i

F
i j k i k ik λ k i

β

β


   


   

 

 





U ξ r

U ξ r

A

A
 (35) 

Equation systems (30) and (31) can be solved using any direct solver, in this work the LU decomposition 

with partial pivoting (Press, Teukolsky, Vetterling, & Flannery, 1992) is utilised.  Similarly, the left and 

right-going fluctuations in the y-direction can be evaluated by solving 2( )t y U G U S  where the flux and 

source terms are defined as:  

2
2

2( ) 1 / 2 , 0 0 0 .

T

x y y fy
y b by y b

q q q τ
q gh ghz ηq gh z

h h ρ

   
           

G U S  (36) 

 

To consider the effect of a non-constant sediment discharge coefficient, gA , into the flux calculations for the 

defined modified flux wave approach, it is only required that each left and right states of the sediment 

discharges are given based on left and right states of the fluid depth:  
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   
   

2 2
( )

2 2
( 1) 1 1 1 1 1

( ),

( ).

bx i i i i i i

bx i i i i i i

q χ h K h u u v

q χ h K h u u v     

 

 
 (37) 

Eq. (37) is an important condition for the sediment discharge formulation developed upon a non-constant 

value of gA  as it provides the accurate estimation for the bedload materials.  If the above condition is not 

satisfied, then, an inaccurate prediction of the sediment bed is obtained, which leads to excessive numerical 

diffusion. This will be later addressed in the numerical results section.  

As mentioned earlier, the wave propagation algorithm defined in Eq. (26) is not fully second-order accurate 

as the cross-derivative terms are not added into the second-order correction flux terms 1/2,i j
F  and , 1/2i j

G . To 

account for these terms, in this work, another Riemann problem in the orthogonal direction is also solved at 

each time step. The calculation of cross-derivative terms for the wave-propagation algorithm has been fully 

described in (LeVeque, 2002; Mahdizadeh, 2010). The numerical scheme explained in this paper employs a 

modified version of the flux-wave formula for 2D morphodynamic systems. Additionally, the method takes 

advantage of a non-constant gA  for the eigenvector calculations.  

5.1. Stability Condition  

The stability condition for the introduced coupled flux wave solver developed based on the flux-wave 

approach can be determined by the Courant-Friedrichs-Lewy condition (CFL) (Courant, Friedrichs, & 

H.Lewy, 1967) for time step Δt . For the dimensional-splitting approach used here, it is necessary to apply 

this condition for each 1D morphodynamic system in each direction:  

Δ min(Δ ,Δ ),x yt t t   where, 
1 2 3 4

Δ ,
max( , , , )x F F F F

t
λ λ λ λ


CFL

  

1 2 3 4

Δ ,
max( , , , )y G G G G

t
λ λ λ λ


CFL

 

(38) 

where CFL number takes the values between zero and one.  

6. Numerical results 

This section discusses several test cases that were adopted from the literature, and used to examine the 

validity of the proposed coupled flux wave solver (CFW). First, a radial dam-break test over a fixed bed was 

examined. Second, the ability of CFW solver in simulating a test case containing shocks and rarefaction 

wave scenarios over a mobile bed was investigated. This was followed by studying dam break waves over a 

step type sediment hump. Then, a dam-failure by overtopping was simulated. Next, the 2D propagation of a 

sediment layer was modelled. Finally, the evolution of a canonical sediment dune was investigated. For all 

simulations demonstrated in this paper, a second-order high-resolution term with the choice of a Montonised-

Centre (MC) limiter (LeVeque, 2002) was employed. Additionally, the numerical computations were 

performed using an in-house FORTRAN code on an Intel Core (i7-4790) 3.6 GHz processor with 16GB of 
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RAM. The Courant number and number of finite volume cells are reported separately for each individual test 

case. 

6.1. Radial dam-break test case  

The first considered test case, was the instantaneous failure of a radially symmetric dam break consisting of a 

circular water column 20m in diameter, initially filled with 2m of water. The water waves created by the dam 

failure propagated over a wet state outside the column with an initial depth of 0.5m. This test case is 

important as it examines the capability of the defined solver in preserving radial symmetry for 2D problems.  

Figure (2) demonstrates the numerical results obtained by the proposed second-order CFW solver over a 

rectangular computational domain containing 256 256  computational cells with a CFL number equal to 0.9. 

After the dam's failure, the shock waves move radially outward whilst the rarefaction waves travel inside 

toward the centre of computational domain. Figures (2a & 2b) show the 3D water surface plots at times t=1s 

and 2.5s, where at the later time, the inward rarefaction wave and outward shock are reasonably 

recognizable. In Figures (2c & 2d) the corresponding contour plots are also illustrated. The corresponding 

numerical results show that the CFW approach can preserve the cylindrical symmetry containing radial 

shocks and rarefaction waves.  

6.2. Shock and rarefaction waves 

In this test case, three Riemann problem tests for moveable bed equations, originally proposed in (Murillo & 

García-Navarro, 2010), were adopted with the aim of validating the numerical suitability of the CFW method 

against the exact solution. In all of these test cases, the relevant friction terms were removed from the 

momentum equations. Three tests labelled A, B and C with different initial conditions containing left and 

right states of the Riemann problem for the fluid depth ( andL Rh h ), velocity in both directions 

and ( , , )L R L Ru u v v  and bedload ( andbL bRz z ) were considered (Table 3). These initial conditions cause 

different flow regimes and discontinuities involving shocks and rarefaction waves above a sediment type 

step. The exact solution was obtained by linking several waves from a left state until reaching the right state 

(Murillo & García-Navarro, 2010; USBR, 2017). The porosity of bed materials for this particular test was set 

to 0.4p   and a frictionless condition was assumed. In order to better compare the accuracy of the proposed 

method, the result of all simulations were also compared with the results of the coupled Jacobian matrix 

(CJM) approach introduced in (Murillo & García-Navarro, 2010). For test cases A and B, a constant sediment 

discharge coefficient equal to 0.01gA   was considered, and in the final test, C, a non-constant sediment 

discharge parameter 0.01/gA h  was chosen where h denotes the fluid depth. In this test case, the non-

constant sediment discharge formula only affects parameters  x  and y , and their new values become 

2 20.04 /x u V h    and 2 20.04 /y v V h   , respectively. All simulations were performed using CFL=1 

and cell distance 0.1 mx  . Figure (3) displays numerical results for test A calculated at time t=2s. As it 

can be seen, the CFW solver with the second-accurate terms can accurately capture the left and right-going 

rarefaction waves as well as the central shock that appears at the location of the step, which confirms that 
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any strong shock and rarefaction waves with the existence of the step can be readily modelled with the CFW 

approach with the defined wave speed. Additionally, for both free-surface and sediment bed results, it gives a 

very good agreement with the exact solution and the CJM solver.  

Figure (4) depicts the numerical solution for test B calculated at time t=2s. In this test case, two-rarefaction 

waves, a contact wave and a shock appear within the solution. As it is observed, the CFW method provides 

approximately the same results equal to the CJM approach in capturing the rarefaction waves and also the 

contact wave for all simulated variables (i.e. h+zb, zb, qx and qy). The only discrepancy appears at the left-

going rarefaction wave in particular for the free-surface and sediment bed propagation where CFW produces 

smoother results. Additionally, the shock wave is precisely modelled by the CFW without any oscillation. 

Figure (5) shows the numerical results for test C, calculated using a non-constant sediment discharge 

parameter, gA . The findings confirm that the CFW and the exact solution clearly give similar results for all 

conserved variables even with a variable interaction parameter. If sediment discharge wave decomposition is 

not considered based on left and right sediment discharge states, as illustrated in Figure (6), the numerical 

solver converges to a non-physical solution. In order to investigate the accuracy of the defined CFW 

approach in comparison with the CJM method the relevant Euclidian error norm computed between these 

two approaches and exact solution have been demonstrated in Table 4. As indicated in this table for test 

cases A and the CFW method relatively provides smaller error in particular for the test cases bedload height 

and free-surface elevations. For the test case C the differences between the CFW and CJM method is quite 

small, however, the CFW approach still gives smaller error. The CPU time for the CFW approach for this 

test was 0.0624s.  

6.3. Dam break test case 

Using this test case, the effectiveness of the proposed numerical scheme was examined for modelling dam-

break waves over a step by comparing the numerical results with experimental data obtained at the Civil 

Engineering laboratory of the Université catholique de Louvain (UCL) (Spinewine & Zech, 2007). The 

experiments were performed in a 6m long and 25cm wide channel with a central gate simulating a dam. The 

initial water depth at the left side and downstream of the gate was set at 25cm and 10cm, respectively. 

Additionally, the left side of the gate was filled with a sediment layer 10cm high, making a downward bed 

step, and no bedload sediment was considered for the right side. The channel bed profile was covered with 

uniform sand of 50 1.82mmd  , density -32683kg ms  , porosity 0.47p  , and a friction angle of 30  , 

and a Manning’s coefficient of 0.0165mn   was considered. In order to examine the accuracy of the 

sediment discharge formulae defined in Table (1), the Smart and Meyer-Peter & Müller sediment 

formulations were utilised within the CFW approach. 

Figure (7) shows a comparison between experimental data and the CFW simulation results, computed using 

a uniform cell distance 0.01mx   and CFL=1, together with CJM results obtained using the Smart bedload 

discharge. As it can be observed, the agreement of the numerical results with the experimental data is 
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remarkable, particularly in modelling the front shock and also left-going rarefaction waves using both 

sediment discharge models. This verifies that the effect of a variable interaction parameter for the Smart and 

Meyer-Peter & Müller has been accurately counted within the Jacobian matrix. The only exception is the 

hydraulic jump formed at the gate location where the Smart formula shows better agreement with 

experimental data. One reason behind this might be the Smart sediment discharge formula incorporates the 

bed slope variation into the sediment discharge calculation. Very similar results are also obtained with the 

CJM approach and the choice of Smart formula which verifies that the solver which seems unexpected for 

modelling bedload sediment transport due to its simplicity can produce very accurate results in particular at 

the place of shocks.  

Figure (8) displays the obtained numerical simulations of the sediment profile against experimental data and 

CJM solutions. As shown, the CFW method with the Smart model, again, exhibits much better agreement 

with the experimental data and provides identical results to the CJM method for all of the computed times. 

The CFW method takes approximately 0.0621s to reach time t=1.5s.  

6.4. Dam failure caused by overtopping 

This problem was first introduced by Tingsanchali & Chinnarasri (2001) and was adopted here to evaluate 

the wet/dry front modelling capability of the defined CFW solver for situations where morphological 

variations occur over a dry state. The performance of the approach in modelling erosion processes due to 

overtopping over an initial irregular bed was examined by performing simulations of a channel 35m long, 1m 

deep and 1m wide, and a dam with a height of 0.8m and crest width of 0.3m. The downstream slope of the 

dam was set at 1V:3H  whilst the downstream slope was varied but initially fixed at 1V:2.5H . The 

downstream face of the dam was also covered with a material called Sand I with the Manning coefficient 

equal to 0.018mn  ,  30 0.52 mmd   and mean grain size of 1.13 mmmd   and 90 3.8 mmd   

corresponding to the test conditions of test C-2 in the original paper (Tingsanchali & Chinnarasri, 2001). As 

a boundary condition, an inflow discharge equal to 1.23 l / s  was imposed onto the left boundary and an 

extrapolation boundary condition was utilised for the left boundary. The CFW results were calculated with a 

cell length of 0.02m and CFL=0.5.  

Figure (8) displays the numerical results for the bed profiled obtained with the CFW approach with both 

choices of Meyer –Peter & Müller and Smart formula at time t=30 and 60s. As can be observed, the CFW 

approach with the Smart sediment discharge formula can accurately follow the experimental data in 

particular at time t=60s, and rather identical results were obtained. This indicates that the defined CFW 

approach can precisely model a rapid varying flow over a dry and erodible bed. For the Meyer-Peter & 

Müller bedload discharge, some discrepancy is still seen, in particular at the dam crest where the overtopping 

was initiated. This again, may be due to fact that in the Meyer-Peter & Müller formula the bed slope is not 

incorporated into sediment discharge computations. In terms of CPU time, the CFW approach takes 0.39s to 

reach time t=60s. 
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6.5. Two-dimensional propagation of the parabolic bedload transport 

A fifth test case was considered to examine the behaviour of the numerical scheme for 2D propagation of 

free-surface flow over a parabolic sediment layer based on Grass equation with 0.01gA   and porosity 

0 4p . . The computational domain was set to    0,1000 0,1000m m and the initial water depth and 

sediment layer topography were defined by the following equations:  

 2

( , ,0) 10 ( , , ),

300
sin If 300 500,

( , ,0) 200

0 Otherwise.

b

b

h x y z x y b

x
x

z x y



 

  
      




 (39) 

As for the boundary conditions, a sediment discharge equal to 2( , ,0) 10 m / sbxq x y   was imposed at the left 

boundary, and the extrapolation boundary condition was set for the downstream. It should be stressed that for 

this particular test case, the flow only propagates in one direction and the performance of the 2D numerical 

scheme was assessed to ensure it is not affected by the mesh topology. The 2D numerical results at time 

t=50,000s obtained by the CFW approach is shown in Figure (9). As it is observed, no transverse waves are 

created in the y-direction. Figure (10) demonstrates comparisons between the mid-section vertical plane 

bedload transportation results calculated based on 1st and second-order CFW approach at 500y m  with the 

1D analytical solution provided in (Castro Díaz, Fernández-Nieto, & Ferreiro, 2008; Hudson & Sweby, 

2005). As shown, the second-order CFW approach with the dimensional-splitting method and the analytical 

solution give similar results, and even the top of the sediment layer shock is accurately captured by the 

proposed numerical model. However, the 1st order CFW provides rather diffusive results as expected for the 

first-order accurate schemes. For the CFW calculations 256 256  numerical cells with CFL=0.6 were used. 

In terms of CPU setup time the 2D CFW takes 372.85s to reach time t=50,000s.  

6.6. Evolution of a canonical dune 

The final test case was adopted from the work of Hudson and Sweby (Hudson & Sweby, 2005) with the aim 

of investigating the capability of the flux-wave solver in modelling a 2D canonical sediment dune under a 

subcritical regime. This test case is important as it contains the evolution of a canonical sediment layer in 

both x- and y-directions ultimately leading to a star-shaped pattern. The computational domain for this 

problem was chosen equal to    0,1000 0,1000m m   and the initial hydrodynamic conditions were defined by 

the following equations: 

   2 2

( , ,0) 10 ( , , ),

300 400
sin sin If 300 500, 400 600

( , ,0) 200 200

0 Otherwise

b

b

h x y z x y b

x y
x y

z x y

 

 

     
            




 (40) 

To obtain the real initial condition for this particular test case, a discharge of 2( , ,0) 10 m / sbxq x y   was 

imposed at the left boundary and the problem was run similar to the 2D SWEs over the undeformable bed 
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until it reached a stationary state. In order to obtain the steady-state condition the following global relative 

error can be used (Mahdizadeh, 2010): 

 
1

, ,

,

,
n n
i j i j

G n
i j

h h
R

h

 
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 
   (41) 

The regime is considered to be steady-state where the value of GR  reaches approximately zero. Figure (11) 

illustrates the steady-state initial condition for the canonical sediment dune problem. The obtained results are 

in close agreement with the results presented in (Canestrelli, Dumbser, Siviglia, & Toro, 2010; Hudson & 

Sweby, 2005) which verifies that the proposed solver can accurately balance the effect of source term with 

the flux-differencing of the neighbouring cells (well-balanced scheme). Once the steady state is achieved, the 

CFW method with moveable bed is implemented using Grass  formula (Grass, 1981) with 0.001gA  . This 

value of gA produces a rather weak interaction between the sediment bed and free-surface waves. For this 

problem, de Vriend (1987) derived an approximate solution for the angle of spread under the weak 

interaction when the value of 210gA   (Hudson & Sweby, 2005): 

 

 
3 3( 1)

tan
9 1

g

g

m

m






 (42) 

where for the defined Grass formula, the value of gm  is chosen equal to 3, and therefore,   becomes 

21.7867  for the analytical solution. Figure (12) displays the numerical results obtained after t=100h which 

confirms that the CFW approach with second-order accurate terms produces very smooth results with no 

spurious oscillations, in particular at the sediment bump boundaries. The star-shaped pattern calculated at 

three different times together with the computed angle of spread line which is obtained equal to 23.0225 

for the CFW method is shown in Figure (14). As shown, a good agreement between the numerical solver and 

the approximate solution is achieved. These results are also in qualitative agreement with the second-order 

accurate results provided in (Siviglia et al., 2013). For the CFW computations, the computational cells and 

the CFL number were chosen as 256 256 and 0.6, respectively. The total computation time for this test case 

to reach t=100h including steady-state initial condition calculations, was 6009s. 

7. Conclusions 

In this paper a generalization of the flux-wave formula was presented for the solution of coupled 2D 

morphodynamic systems. The numerical technique proposed here is well-balanced and incorporates the 

effect of flux differencing of finite volume neighbouring cells into the flux-waves propagating from each 

Riemann interface leading the proposed numerical scheme to be used in a less sophisticate way compared to 

other novel coupled morphodynamic solver whilst preserving its accuracy. To solve a 2D morphodynamic 

system, a dimensional splitting method is utilised which solves each Riemann problem in each direction. To 



16 

   

obtain real second-order accurate results the cross-derivative terms are added into the solution by solving 

another Riemann problem in the orthogonal direction. A number of test cases were used to validate the 

proposed method. First, different shock waves and rarefaction wave propagations were modelled by the 

proposed sediment transport model and a good agreement was obtained with the experimental data. For dam-

break propagation over a sediment step, the results from the CFW approach with Smart’s formula matched 

closely with the experimental data. The solver was then used to model free-surface propagation over 

parabolic bedload sediment and the mid-section vertical plane results were compared with analytical 

solutions, and comparable results were obtained. The evolution of a conical sand dune was then 

demonstrated and a very close agreement with other qualitative sediment models was achieved.  

Notation 

1 2 3, ,a a a   coefficients for third degree polynomial in Eq. (17) (-)  

gA = interaction parameter ( 2 1s m )  

1/2,Δ i j


UA = left- and right-going fluctuations in x-direction 

, 1/2Δ i j


UB = left- and right-going fluctuations in x-direction 

fC   friction coefficient(-) 

CFL= Courant–Friedrichs–Lewy number (‐) 

30d   30% of bed material (mm) 

90d  90% of bed material (mm) 

md   50% of bed material (mm) 

F = flux term vector in the x-direction (-) 

F =Jacobian matrix in the x-direction (-) 

F = correction flux terms for the wave propagation algorithm in the x-direction (-) 

g = acceleration due to gravity ( 2ms ) 

G = flux term vector in the y-direction (-) 

G =  Jacobian matrix in the y-direction (-) 

G =  correction flux terms for the wave propagation algorithm in the y-direction (-) 

sG =relative density (-) 

h = fluid depth (m) 

Lh   left-state Riemann initial fluid depth for the test case 6.2 ( m ) 

Rh  right-state Riemann initial fluid depth for the test case 6.2 ( m ) 



17 

   

h   average fluid depth (m) 

k = flux wave number (‐) 

K = coefficient used for  gA  calculation ( 1/2m s ) 

gm   variable used for defining angle of spread Eq. (42) (-) 

wM =number of flux-waves (-) 

n   number of time steps (-) 

mn  = Manning’s coefficient ( 1/3m s  ) 

p  = porosity (-) 

( )P    third degree polynomial used for calculation eigenvalues in Eq.(17) (‐) 

xq  =discharge per unit weight in the x-direction ( 2 1m s  ) 

yq  =discharge per unit weight in the y-direction ( 2 1m s  ) 

bxq  =bedload sediment discharge per unit weight in the x-direction ( 2 1m s  ) 

byq = bedload sediment discharge per unit weight in the y-direction ( 2 1m s  ) 

Q   parameter used for calculation of eigenvalues in Eq. (20) (-) 

rF  =eigenvector in the x-direction (-) 

rG = eigenvector in the y-direction (-) 

R   parameter used for calculation of eigenvalues in Eq. (20) (-) 

RG=global relative error (-) 

s= wave speed ( 1ms ) 

0S   bed slope (-) 

0xS  bed slope in the x-direction (-) 

0 yS   bed slope in the y-direction (-) 

S =source term vector (-) 

1S  source term vector in the x-direction (-) 

2 S  source term vector in the y-direction (-) 

t=time (s) 

u  =velocity in the x-direction ( 1ms ) 

Lu   left state Riemann initial velocity in the x-direction for test case 6.2 ( 1ms ) 

Ru  left state Riemann initial velocity in the x-direction for test case 6.2 ( 1ms ) 

u   Roe speed in the x-direction ( 1ms )  
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U  =vector of unknowns (-) 

v  =velocity in the y-direction ( 1ms ) 

Lv  left state Riemann initial velocity in the y-direction for test case 6.2 ( 1ms ) 

Rv   left state Riemann initial velocity in the x-direction for test case 6.2 ( 1ms ) 

v   Roe speed in the y-direction ( 1ms )  

V   velocity ( 1ms ) 

bz =bedload sediment thickness (m)  

bLz  left state Riemann initial bedload height for test case 6.2 (m) 

bRz   right state Riemann initial bedload height for test case 6.2 (m) 

   angle of spread (-) 

  =coefficient required to calculate flux-wave (-)  

F  = difference vector for the neighboring finite volume flux-waves (-)  

t =time step(s) 

xt   time step in the x-direction (-) 

yt  time step in the y-direction (-)  

x =finite volume cell distance (m) 

   coefficient required for calculation of linear system appeared in Eq. (30) (-) 

   coefficient calculated based the porosity (-) 

  = dimensionless bed shear stress (-) 

c  = critical Shields parameter (-) 

s Smart’s critical Shield parameter (-) 

   coefficient required for calculation of linear system appeared in Eq. (30) (-) 

F
k  = kth eigenvalue in the x-direction (-) 

G
k   kth eigenvalue in the y-direction (-) 

   parameter used for calculation of eigenvalues in Eq. (20) (-) 

 = flux-wave vector (-) 

  =water density ( 3kgm ) 

s   sediment density ( 3kgm )  

,fx fy   =bed shear stress in the x and y-directions ( -2Nm )  

   angle of bed slope (-) 
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   coefficient used for  gA  calculation (-) 

   function used for the interaction parameter calculation (-) 

   coefficient required for calculation of the Jacobian matrix for the  variable gA  described in Eq. (25) (-)  

, ,x x x     coefficients required for the Jacobian matrix with variable gA  in the x-direction (-) 

, ,y y y     coefficients required for the Jacobian matrix with variable gA  in the in the y-direction (-) 
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Table 1. Expression of function   based on different sediment transport 
formulations. 

Reference Formula  

Meyer-Peter & Mueller (1984) 3/28(1 / )c    (5) 

(Smart, 1984)  
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Table 2.The derivatives of bedload sediment discharges for the for the Smart and Meyer-Peter & Müller bedload 
sediment formulae for the Jacobian matrix of (17) in the x- and y-directions with respect to the vector of unknowns.  

Meyer-Peter & Müller Smart 

x  

  

23

3/2

28

1s

gn u V

G h

 



 

  
 

0.2
20.6 1/3 290

0
30

4/3

4 3 1 10

3 1

s s

s

d
gS u dm G h n V

d

G h

 
 

   
 


 

x  
    

 

2 4 2 2 4 1/3 2

23/2

8 3 4 1

1

m s c

s

gn n u u v v d G h v

G h V

    


 

    
 

0.2

0.6 2 2 2 1/390
0

30
4/3

4 3 1

1

m s s

s

d
gS n u v d G h

d

G h

 
 

   
 


  

x  
  

 

21/3 2

23/ 2

8 1 2

1

m s c

s

gn uv d G h n V

G h V

   


 

 

0.2

2 0.690
0

30

4/3

8

1s

d
gn S uv

d

G h


 
 
 


  

y
 

 

23

3/2

28

1s

gn v V

G h

 



    

 

0.2
20.6 1/3 290

0
30

4/3

4 3 1 10

3 1

m s s

s

d
gS v d G h n V

d

G h

 
 

   
 


 

y  
  

 

21/3 2

23/ 2

8 1 2

1

m s c

s

gn uv d G h n V

G h V

   


 

 

0.2

2 0.690
0

30

4/3

8

1s

d
gn S uv

d

G h


 
 
 


  

y  
    

 

2 4 2 2 4 1/3 2

23/ 2

8 4 3 1

1

m s c

s

gn n u u v v d G h u

G h V

    


     

 

0.2

0.6 2 2 2 1/390
0

30

4/3

4 3 1

1

m s s

s

d
gS n u v d G h

d

G h

 
 

   
 


  

 

 

 

 

 

 

 

Table 3.  Initial conditions for the tests A, B and C (Murillo & García-Navarro, 2010)  

(m)b Rz  (m )b Lz  1(ms )Rv   1(ms )Lv   1(ms )Ru   1(ms )Lu   (m)Rh  (m)Lh  Test  

2.846848 3.0 0.04 0.05 2.3247449 0.25 2.0 2.0 A 

5.124685 5.0 0.02 0.045 2.4321238 0.20 1.18868612 2.25 B 
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4.631165 3.0 0.04 0.015 15.167196 0.3 5.2 6.0 C 

 

 

 

 

 

 
 

Table 4. Euclidian error norm comparison computed between the CFW and CJM approaches with the 
analytical solution for test cases A, B and C.   

Test 

 CFW    CJM  

bh z  bz  bxq  bh z  bz  bxq  

A 0.02298 0.00786 0.00148 0.06128 0.05619 0.09765 

B 0.01285 0.00412 0.00622 0.04791 0.04733 0.07919 

C 0.02771 0.01085 0.02419 0.02210 0.03817 0.05628 


