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Summary 

Improving traits in wheat has historically been challenging due to its large and polyploid 

genome, limited genetic diversity, and in-field phenotyping constraints. However, within 

recent years many of these barriers have been lowered. The availability of a chromosome-

level assembly of the wheat genome now facilitates a step-change in wheat genetics and 

provides a common platform for resources including variation data, gene expression data, 

and genetic markers. The development of sequenced mutant populations and gene-editing 

techniques now enable the rapid assessment of gene function in wheat directly. The ability 

to alter gene function in a targeted manner will unmask the effects of homoeolog 

redundancy and allow the hidden potential of this polyploid genome to be discovered. New 

techniques to identify and exploit the genetic diversity within wheat wild relatives now 

enable wheat breeders to take advantage of these additional sources of variation to address 

challenges facing food production. Finally, advances in phenomics have unlocked rapid 

screening of populations for many traits of interest both in greenhouses and in the field. 

Looking forwards, integrating diverse data types, including genomic, epigenetic and 

phenomics data will take advantage of big data approaches including machine learning to 

understand trait biology in wheat in unprecedented detail.  

 

Introduction 

Crop production must increase to meet the food, feed, and fuel demands of a global 

population estimated to exceed nine billion by 2050 (UN, 2015). Currently, one in nine 

people live under food insecurity (FAO, 2015). With limited opportunity to expand 

agriculture on existing land, increasing yields could significantly reduce the number of 

people at risk of hunger (Rosegrant et al., 2013). Despite the need for a 50% increase in crop 

production by 2050 (Tilman et al., 2011), our current rates of yield increase are insufficient 

to reach this goal (Ray et al., 2013). It is therefore critical and urgent that we identify 

approaches to increase crop productivity, for example through genetically improving 

cultivars (see Box 1 for glossary of terminology) and improving agronomic practises 

(Hawkesford et al., 2013, Spiertz, 2012).  
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Here we focus on polyploid wheat, which accounts for more than 20% of the protein and 

caloric intake of humans. Compared to other major (diploid) cereals, e.g. rice and maize, 

wheat has lagged in the development of genomic resources and the genetic understanding 

for many major productivity traits (e.g. yield, abiotic stress tolerance). This lag was 

principally due to its polyploid genome which makes genetic analyses in wheat more 

cumbersome than in diploids (Bevan et al., 2017) and is often a barrier for researchers to 

understand the biology directly underlying traits in wheat (Box 1). The fact that many 

productivity traits are inherited in a quantitative manner and require field-based 

phenotyping also compounds the issues. However, over the past few years, many of the 

entry barriers to wheat research have been dramatically lowered thanks to multiple 

genomics developments and the availability of open access resources (Uauy, 2017). For 

many purposes, wheat can now be treated (almost) like a model crop species for trait 

discovery.  

The objective of this review is to discuss how these latest developments can be applied to 

understand the biology of agronomic traits in polyploid wheat.  We describe the new 

resources and technological developments in the field and discuss how they can be 

integrated to improve gene discovery and validation in wheat. We argue that an improved 

mechanistic understanding of agronomically relevant traits is required for the most efficient 

deployment of induced and natural variation into the field. This is especially relevant in the 

polyploid context, where genetic redundancy acts to conceal phenotypic variation. We hope 

that this review will encourage a wide range of scientists to undertake research for trait 

discovery in wheat and to further understand biological mechanisms in this fascinating 

polyploid species. This is an urgent task for achieving global food and nutritional security 

given the importance of wheat in human diets. 

 

Loss of diversity during domestication and breeding 

On average, each person consumes over 40 wheat plants each day (Supporting Data S1). 

The majority of this consumption (95%) is in the form of bread wheat (Triticum aestivum; 

AABBDD genomes) which is a hexaploid species and most commonly used for bread-making 

and biscuit flours. A smaller proportion (5%) is accounted for by durum wheat (T. durum; 
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AABB genomes) which is a tetraploid species consumed as bulgur and also used to make 

pasta and couscous. Although distinct species, both share wild tetraploid emmer wheat (T. 

dicoccoides, AABB genome) as their common ancestor (Figure 1). While bread wheat arose 

by the hybridization of domesticated emmer wheat with diploid goat grass (Ae. tauschii, DD 

genome), pasta wheat arose directly from emmer wheat following two domestication 

events (Dubcovsky and Dvorak, 2007).  

This evolutionary history, in a polyploid context, has multiple consequences which are 

important to understand trait biology in wheat (Figure 1). Both modern-day pasta and bread 

wheat have reduced genetic variation (less than 30%) compared to their wild relatives. This 

is to an extent due to the domestication bottleneck and selection pressure during breeding 

(Gaut et al., 2018). Even so, this genetic diversity is lower than that found in equivalent 

diploid cereals, such as maize and millet, which retain over 60% of the genetic diversity from 

wild relatives (Wright et al., 2005). The loss of diversity in wheat is mostly due to the 

reproductive isolation between closely related species of different ploidy levels, although 

this loss is not equivalent for all genomes. For instance, the A and B genomes of modern 

bread wheat retain roughly 30% of the genetic diversity present in the wild emmer 

progenitor (Haudry et al., 2007), whereas the D genome captures less than 10% of the 

genetic diversity found in goat grass (Halloran et al., 2008). This is because inter-breeding 

can occur between wild tetraploid emmer (AABB) and hexaploid wheat, whereas diploid 

goat grass (DD) and species of higher ploidy levels (such as tetraploid and hexaploid wheat) 

are reproductively isolated (Dvorak et al., 2006, Sutherland and Galloway, 2016)(Figure1). 

This reduced diversity in modern wheat argues strongly for the use of induced and natural 

variation  to provide novel genetic variation which has been hitherto unexplored in modern 

breeding programmes (Winfield et al., 2017).   

 

Homeologs and buffering 

The A, B, and D genomes have a set of complementary genes (referred to as homoeologs, 

Box 1) which share between 95-98% sequence identity across coding regions (IWGSC et al., 

2018). As a result, many wheat genes are present as two or three functional homoeologous 

copies (Borrill et al., 2015). This affects the phenotypic consequences of variation at a single 
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locus, since this can be masked by redundant copies on the other homoeologous genomes. 

This is especially relevant for quantitative traits where the genetic complexity of the 

phenotype is affected not only by the multiple genes that control the trait, but also by the 

multiple homoeologs of each of those genes. This two-fold complexity makes the study of 

quantitative traits particularly challenging in polyploid species. The main effects of 

polyploidy on phenotypes are described below and represented in Figure 2:  

a) Dominance: Mutations in a single homoeolog lead to a gain-of-function allele which 

effectively dominates over the other homoeologous copies. Examples include genes with 

natural variation in non-coding regions such as vernalisation (VRN1, Yan et al. (2003)) and 

photoperiod response (PPD, Wilhelm et al. (2009)). 

 

b) Dosage effect: Changes in one homoeolog lead to subtle phenotypic effects, which are 

amplified by combining variation in additional gene copies. This dosage effect can be (i) 

additive where mutations in increasing numbers of copies lead to proportionally more 

extreme phenotypes or (ii) non-additive whereby single or double mutants have subtle 

phenotypes which become more extreme when combined as triple mutants. Additive 

examples include genes controlling grain protein content (GPC, Avni et al. (2014)), grain size 

(GW2, Wang et al. (2018b)) and red pericarp colour (R, Himi et al. (2011)), whereas non-

additive genes include Waxy controlling amylopectin content (Kim et al. (2003)). 

 

c) Functional redundancy: Mutations in one or two homoeologs of the gene lead to 

phenotypes which are indistinguishable from wild type plants with three functional versions. 

Only when all three copies are manipulated simultaneously is there a significant difference 

in phenotype. Examples include genes controlling important quality traits such as amylose 

content (SBE-II, Slade et al. (2012)), and recessive disease resistance (MLO, Acevedo-Garcia 

et al. (2016)).  

 

During domestication and breeding, humans have selected most frequently for dominant 

gain-of-function mutations given their strong, easily identifiable phenotypic effects. These 

include genes with major effects on phenology and adaptation traits as described above, as 

well as most disease resistance genes (Uauy et al., 2017). In contrast, the effect of recessive 
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loss-of-function mutations in a single homoeolog are frequently masked by functional 

redundancy and dosage effects (Figure 2). Hence, phenotypic variation conferred by loss-of-

function mutations in a single homoeolog are almost indistinguishable from wild type 

plants. This makes their identification difficult and consequently these loci are seldomly 

detected. In some cases, the variation caused by the loss of a single homoeolog is sufficient 

to allow their detection as quantitative trait loci (QTL), although the molecular cloning of 

genes underlying this subtle variation in polyploid wheat has been extremely difficult to 

date (e.g. GPC). This also explains why many of the examples outlined above (SBE-II, MLO, 

Waxy, GW2, etc) were not identified in wheat through phenotypic variation, but rather 

were characterised in wheat as candidate genes based on knowledge from diploid model 

species. This leads us to conclude that the wheat genome holds a huge potential of 

functional variation that has remained hidden and under-exploited to date. We argue that 

gene discovery in wheat is especially relevant to fully exploit this hidden variation as it 

enables the combination of allelic variation across homoeologs which in many cases is 

required to expand the phenotypic spectrum. Identification of causal loci also allows a 

deeper understanding of allelic variation enabling its fine-tuning to modulate the plant’s 

phenotype in different environments (reviewed in Borrill et al. (2015)). 

 

Laying the foundations for understanding genetic diversity 

Genome Assemblies 

Attempts to sequence the wheat genome have been hindered by its large size (16 Gb), 

polyploid nature, and large proportion of repetitive sequences (>85%). Despite this, since 

2014 several genome assemblies have been produced for the reference landrace Chinese 

Spring including the International Wheat Genome Sequencing Consortium (IWGSC) Chinese 

Spring Survey Sequence (IWGSC, 2014) and the TGACv1 assembly (Clavijo et al., 2017). 

These two assemblies had good coverage of genic regions but suffered from fragmentation 

principally in repetitive regions. More recently, the use of long read technology enabled the 

production of a more contiguous sequence, the Triticum 3.0 reference (Zimin et al., 2017) 

which assembled in total 15.3 Gb. However, this genome was not annotated with gene 

models which restricts its use for gene function studies. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Recently, the IWGSC RefSeqv1.0 genome was released (IWGSC et al., 2018), providing an 

annotated chromosome-level assembly for hexaploid wheat. RefSeqv1.0 has a super-

scaffold N50 of 22.8 Mb and a total assembly size of 14.5 Gb, representing 94 % of the 

whole genome. In total 107,891 high-confidence gene models were annotated using 

Illumina and PacBio reads, providing a stable nomenclature from which to build upon. The 

availability of these gene annotations and the high sequence contiguity have encouraged 

the uptake of the RefSeq1.0 genome as a community standard, now available through 

EnsemblPlants (Bolser et al., 2017). Multiple datasets have now been incorporated into this 

common reference such as the physical position of over 4.7 M genetic markers, over 10 M 

chemical induced TILLING mutants (Krasileva et al., 2017), and over 850 RNA-Seq datasets 

(Ramírez-González et al., 2018).  

The availability of chromosome-level assemblies is facilitating a step-change in wheat 

genetics, enabling the rapid correlation of genetic and physical maps. Whereas historically 

gene cloning in wheat has relied almost entirely upon genetic mapping of traits, these new 

alignments will now accelerate trait discovery by placing genetic markers in a physical 

context and allowing rapid identification of candidate genes within mapped regions. A 

limitation, however, is that in some cases the population used for genetic mapping may 

have a different gene content than the reference sequence cultivar, which could lead to 

candidate genes being missed. This drawback is being addressed through pangenome 

efforts.  

Pangenomes 

With the completion of a high-quality reference sequence for the wheat landrace Chinese 

Spring, projects are now focusing on sequencing different wheat cultivars. This is not only 

important to understand variation within breeding pools and diversity collections, but also 

to identify sequences and gene content which may be different between the single 

reference accession and  other cultivars used in mapping populations. 

Initial efforts focused on the diploid and tetraploid progenitors of wheat: high-quality 

assemblies for the known A and D genome diploid progenitor species, T. urartu and Ae. 

tauschii, respectively, alongside the AABB tetraploid progenitor T. dicoccoides, were 

released in the past 24 months (Ling et al., 2018, Zhao et al., 2017, Avni et al., 2017). A high-
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quality reference genome for tetraploid durum wheat, based on the cultivar Svevo is also 

available (https://www.interomics.eu/durum-wheat-genome). Concurrently, the 10+ Wheat 

Genomes project was launched with the aim to provide high quality assemblies for cultivars 

valuable for both research and breeding (www.10wheatgenomes.com). The project aims to 

sequence 18 different bread wheat cultivars from around the world, some of which are 

already accessible via online BLAST servers (https://wheatis.tgac.ac.uk/grassroots-

portal/blast and http://webblast.ipk-gatersleben.de/wheat_ten_genomes/). The availability 

of highly contiguous reference genomes for multiple cultivars of relevance in elite wheat 

breeding programmes will be particularly important to identify structural variants and copy 

number variation. This type of variation is known to affect traits of agronomic relevance 

(Gaut et al., 2018), yet is difficult to detect with traditional genotyping platforms.  

 

Genotyping 

Alongside the advances in genomic resources, there is a need to rapidly and accurately 

assess the variation in specific germplasm. The use of “SNP-CHIPs”, arrays of thousands of 

cultivar SNPs (single nucleotide polymorphisms), has rapidly increased the amount and 

accessibility of genotype data for specific cultivars of interest (reviewed in (Uauy, 2017)). As 

sequencing methods and imputation methods improve (Wang et al., 2018a), low coverage 

(skim) sequencing will soon be a viable option in polyploid wheat (Golicz et al., 2015). 

Alongside the large-scale SNP datasets available at CerealsDB (Wilkinson et al., 2016) and 

EnsemblPlants (Bolser et al., 2017), advances in PCR genotyping markers have facilitated 

moves into marker-assisted selection in breeding programs. In particular, the use of the 

KASP (Kompetitive allele specific PCR) technology has provided a sensitive method for 

bespoke markers within a polyploid context (Ramirez-Gonzalez et al., 2015). Pre-designed 

KASP markers are available from CerealsDB and MASWheat for agronomically-relevant SNPs 

such as GW2, a grain size gene which is being used in breeding programs (Simmonds et al., 

2016). These genotyping methods have demonstrated that the polyploid nature of wheat 

need not be a barrier to obtaining high-quality, high-throughput genetic variation 

information.  
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Use of natural variation for trait discovery  

The evolutionary history of polyploid wheat offers several potential sources of genetic 

variation which can be accessed with different degrees of ease. As discussed above, modern 

polyploid wheat cultivars have lower genetic variation incorporated from their wild relatives 

than other major cereal crops such as maize and millet. This lack of diversity is exacerbated 

for the D genome of bread wheat as only a few Ae. tauschii accessions (D-genome 

progenitor) are thought to have been introduced into hexaploid wheat during the natural 

hybridization process. Thus, efforts have focused on reintroducing variation from Ae. 

tauschii through the re-synthesis of bread wheat. This is achieved by crossing a tetraploid 

wheat with a diploid Ae. tauschii accession, giving rise to a synthetic hexaploid wheat 

(SHW)(Dreisigacker et al., 2008). These SHW have been shown to be valuable sources of 

resistance to abiotic and biotic stress (e.g. Cossani and Reynolds (2015)). Importantly the 

introduced D-genome from the SHW can freely recombine with modern hexaploid wheat 

and thus traits can be easily transferred into modern cultivars.  

Similar efforts have been made to introduce variation from both evolutionarily near and 

distant wild wheat relatives (King et al., 2016), although these strategies require specialised 

genetic stocks to allow the transfer of wild wheat chromosome segments. These segments 

do not freely recombine, therefore, in addition to the beneficial gene, large DNA fragments 

from the wild relative are introduced often with negative consequences (linkage drag). The 

use of ZIP4 mutants can be used to circumvent some of these limitations (Rey et al., 2017). 

In an era of gene-editing and in which most wild wheat relatives are sequenced (Ling et al., 

2018, Zhao et al., 2017, Avni et al., 2017), it may be more efficient to identify genetic 

variation of interest for a given trait through studies directly in the wild relatives (Golan et 

al., 2015). This genetic variation can then be reproduced or inserted into polyploid wheat via 

gene-editing, circumventing the technically difficult introgression process and potential 

linkage drag. Initial efforts in this direction are already proving useful. Arora and colleagues 

phenotyped 174 Ae. tauschii accessions with several isolates of the stem rust pathogen and 

sequenced the disease resistance genes from these accessions (Arora et al., 2018). 

Performing a k-mer based association approach called AgRenSeq, they cloned four 

dominant stem rust resistance genes within months. This knowledge can now be used to 
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introduce the beneficial alleles via transformation, mine for these alleles within modern 

hexaploid cultivars, or to modify modern sequences via gene-editing.   

An additional important source of accessible genetic variation is found in landraces, locally-

adapted wheat lines which were grown as farmer-saved seed and that have not been 

modified through modern breeding techniques. These landraces constitute reservoirs of 

genetic diversity that can be directly cross-bred into modern cultivars. There are thousands 

of these landrace accessions available, however many of them are heterogeneous, often 

duplicated seed stocks (Singh et al., 2018), which remain confined to germplasm 

repositories. Of special note is the Watkins landrace collection (Wingen et al., 2014) 

encompassing over 1,000 landraces collected in the 1920’s and 1930’s from a wide 

geographic distribution. This collection has been purified by single-seed descent from which 

many genomic and genetic resources have been developed. Genotyping of this collection 

revealed extensive novel genetic (Winfield et al., 2017) and epigenetic (Gardiner et al., 

2018b) diversity which was absent from modern cultivars. A core set of 107 accessions were 

used to generate nested association mapping populations (Wingen et al., 2017), all of which 

were genotyped, have genetic maps available, and are free to access 

(http://wisplandracepillar.jic.ac.uk/).  

Modern cultivars also provide useful genetic variation for trait discovery despite this 

variation being overall reduced with respect to landraces and wild relatives (Figure 1). Much 

of this variation is studied through genetic populations composed of cultivars which differ 

for the trait(s) of interest. These includes bi-parental populations between two cultivars (e. 

g. Saintenac et al. (2018)), multi-parent advanced generation inter-cross (MAGIC) 

populations composed of between 4 to 16 cultivars (Huang et al., 2012, Mackay et al., 2014, 

Dixon et al., 2018, Milner et al., 2015), nested association mapping panels of multiple 

cultivars to a common parent (Jordan et al., 2018), and association panels of 100 or more 

cultivars (Liu et al., 2017, Sukumaran et al., 2015). All of these types of populations are 

available in wheat and their relative merits are discussed elsewhere (Huang and Han, 2014). 

Importantly, the coupling of these populations to the new genomic and validations tools 

(discussed below) have provided an integrated workflow for gene discovery in wheat, 

exemplified by the Triticeae Toolbox from the TCAP project (Blake et al., 2016).  
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The availability of phenotypic data for these vast collections of genotyped landraces, 

cultivars and wild relatives opens the possibility to assign a breeding value to each 

polymorphism. This approach enables the implementation of statistical models to define the 

best combinations of SNPs to maximise the breeding value of progeny from a genetic cross. 

This genomic selection approach, first implemented in cattle, is used in many crops 

including wheat (Bassi et al., 2016). This approach, however, does not aim to perform trait 

discovery as it is agnostic of the functional effect of the polymorphism being selected. While 

effective for highly heritable traits and major effect loci, many of which are already known, 

this approach is best suited for standing variation within modern cultivars and makes it 

difficult to incorporate diversity from non-adapted cultivars or accessions.  

 

Moving from SNPs to haplotypes in breeding 

Breeders are constantly shuffling SNPs by making specific crosses and exploiting the 

subsequent recombination that occurs during meiosis. These SNPs, however, are not 

inherited independently, but rather as haplotypes; blocks of polymorphisms with a defined 

order and which in many cases extend across several genes. As genome assemblies have 

improved in wheat, we are now able to anchor the millions of SNPs previously identified 

onto the full reference sequence. With this data, it becomes clear that, in the absence of the 

causal polymorphism per se, it is important to recognise the haplotype as the unit of genetic 

information that underlies traits, rather than a closely associated bi-allelic SNP. The case 

study of the wheat pre-harvest sprouting resistance gene TaMKK3 provides a telling 

example to this effect (Barrero et al., 2015, Torada et al., 2016, Shorinola et al., 2017). Thus, 

when making crosses, breeders are shuffling haplotypes to generate new combinations of 

these blocks of DNA.  

The identification of haplotypes allows us to investigate and improve traits both through a 

retrospective and a prospective approach (Bevan et al., 2017). The retrospective approach 

takes advantage of the rich history of wheat breeding which has very well-defined pedigrees 

for most cultivars, many of which can be traced back to landraces. Given that recombination 

is not evenly distributed across the length of the chromosomes (Akhunov et al., 2003), many 

haplotypes in elite cultivars today will have remained intact as a unit during this breeding 
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process (albeit shuffled and assembled in different combinations with other haplotypes). 

This allows us to retrospectively evaluate which haplotypes have been selected and 

enriched for in certain environments and which haplotypes have been lost, potentially due 

to deleterious effects. Thus, we can benefit from years of available phenotypic data and 

selection to assess haplotype x environment interactions. This retrospective approach has 

highlighted, for example, how strong selection for flowering time has eliminated haplotypes 

for increased root biomass, a desirable trait (Voss-Fels et al., 2016). We can now use this 

knowledge to break these negative correlations by purposely generating haplotypes that 

combine both beneficial traits. This will be facilitated by ongoing studies into the genetic 

basis of recombination in wheat which could provide the knowledge to manipulate 

recombination rate distribution across chromosomes (Jordan et al., 2018). With clearly 

defined haplotypes, we can also leverage the multiple layers of genomic information (e.g. 

networks, RNA-Seq; Figure 3) to help identify the causal variant underlying the trait of 

interest.   

By understanding the haplotypes available within elite cultivars, we can also use a 

prospective approach to mine landrace and wild relative collections for novel haplotypes. 

This approach could entail mining for haplotypes which break negative correlations across 

specific low-recombinogenic regions (Winfield et al., 2015), or alternatively mining for novel 

haplotypes across QTL loci associated with a known agronomic trait (Muterko et al., 2015). 

This will become more commonplace as large diversity collections are genotyped at high-

density and haplotype imputation becomes more robust (Jordan et al., 2015). In this 

manner, rather than phenotyping a large diversity collection for many traits, the phenotypic 

value of different haplotype blocks across a specific interval could be examined in further 

detail. The Watkins nested association mapping populations offer a valuable resource to this 

effect as the landrace haplotypes can be directly evaluated within available mapping 

populations (Wingen et al., 2017). As breeding programs increasingly look to combine 

genotypic and phenotypic data, the availability of haplotype data for wild relatives, landrace 

collections, and elite wheat cultivars with their associated phenotypic value, has the 

potential to shape the way in which breeding programs are structured. 
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New strategies accelerate gene discovery in wheat 

With the genomic resources developed recently for wheat, many new techniques for gene 

discovery have been developed. One area has focused on rapid cloning of disease resistance 

(R-) genes by using targeted genome sequencing approaches (Keller et al., 2016, Periyannan, 

2017). MutRenSeq takes advantage of significantly improved R-gene annotations to use an 

R-gene enriched capture method to sequence the majority of R-genes in a given plant (Jupe 

et al., 2013, Steuernagel et al., 2016)(Figure 3). Combining R-gene enrichment sequencing 

with screening of mutagenized populations for dominant disease resistance phenotypes has 

allowed easier and more rapid cloning of R-genes than previously possible via traditional 

genetic mapping (Marchal et al., 2018). As described above, a variation on the technique, 

AgRenSeq, uses the enrichment strategy to identify variation in the R-genes of wild relatives 

(Arora et al., 2018).  

While the whole genome sequence is now available, it remains cost and time-prohibitive in 

most cases to fully re-sequence lines for gene discovery. Instead, integrating known genetic 

mapping with new genomic approaches can accelerate trait discovery. Exome-capture 

sequencing has been used to identify variation in the coding region of the wheat genome 

(Saintenac et al., 2011) and can be used to identify candidate genes, often in combination 

with bulk-segregant analysis (Gardiner et al., 2016, Mo et al., 2018). SNPs identified from 

the exome capture can be used to both develop new markers for genetic mapping and to 

identify mutations in putative candidate genes. However, this technique is limited by the 

quality of the capture probes used. Many current capture arrays were designed based on 

the gene models from the 2014 genome, and as such are missing or mis-representing 

various genes (i.e. Brinton et al. (2018)). Efforts are underway to develop new capture 

arrays based on the improved annotations (Gardiner et al., 2018a).  

Alternative techniques aim to reduce the size of the genome by flow-sorting and sequencing 

single chromosomes (Giorgi et al., 2013). One approach, MutChromSeq (Sánchez-Martín et 

al., 2016), requires a mutation-induced phenotype which can be readily-screened and has 

been mapped to a specific chromosome. The target chromosomes of independent mutants 

are then flow-sorted and sequenced before being compared to identify candidate genes. A 

second approach, TACCA (Thind et al., 2017), relies on knowledge of a specific target 
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interval (based on flanking markers) identified by traditional genetic mapping, and as such is 

amenable to both qualitative and quantitative traits (Box 1). The aim of this method is to 

build, in one step, long range contiguous assemblies that completely span the target 

interval, thereby eliminating the need for BAC clones. Flow-sorted chromosomes from the 

cultivar of interest are sequenced and assembled using the Chicago method. If the resulting 

long-range assemblies are contiguous enough to contain the flanking genetic markers, then 

identification of the causal variation can be rapid. These approaches allow for the un-biased 

discovery of variation beyond the genic variation identified with exome capture and also 

aids the identification of causal variants in cultivars that differ from the established 

reference cultivars. Looking forward, CRISPR-Cas9 may be used to cut at flanking marker 

sites to generate a relatively short piece of genomic DNA which can be separated from other 

genomic DNA by size selection before sequencing. This approach which has been carried out 

using human DNA (Nachmanson et al., 2018), albeit with relatively closely spaced cut sites, 

would avoid the requirement for chromosome flow-sorting which is technically challenging 

and is only routinely carried out in a few laboratories worldwide.  

 

Hypothesis generation in wheat 

Orthology 

One of the more tangible results of the improved genome assemblies and gene annotations 

is the increased ease with which knowledge from other species can be transferred into 

wheat (Adamski et al., 2018). High quality gene annotations based on the new assemblies 

are now included in platforms such as EnsemblPlants which identify putative orthologous 

genes in other species. This knowledge base facilitates the application of reverse genetic 

approaches to wheat using orthologs of genes identified in other species. Once identified, 

these genes can be tested for function in wheat using sequenced mutant populations 

(Krasileva et al., 2017), as will be discussed in more detail below. An important caveat to any 

reverse genetics approach is that known function cannot be presumed to be conserved 

between species, particularly when moving from a dicot species such as Arabidopsis into 

wheat. Comparative studies on the flowering time pathways between Arabidopsis and 

cereals show that while some core pathways have been conserved across species, there is 
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lineage-specific divergence (Higgins et al., 2010). However, the candidate gene strategy has 

been successful in identifying putative genes in wheat, particularly from rice orthologs, 

which have gone on to be characterised and confirmed, such as GW2 (Simmonds et al., 

2016, Zhang et al., 2018, Wang et al., 2018b) and other regulators of grain size (Li and Yang, 

2017).  

Developments of resources in other Triticeae species, especially barley, may also enable the 

rapid transfer of knowledge amongst this phylogenetic clade. This approach has been 

successful for genes relating to e.g. flowering time (Beales et al., 2007, Turner et al., 2005), 

cuticular wax biosynthesis (Hen-Avivi et al., 2016, Schneider et al., 2016) and pre-harvest 

sprouting (Nakamura et al., 2016, Torada et al., 2016). Likewise, genes identified in 

tetraploid wheat can be rapidly evaluated in hexaploid wheat as most genes identified in 

emmer and durum wheat perform equivalent roles in hexaploid wheat (Uauy et al., 2005, 

Uauy et al., 2006).  

Expression 

The decreasing cost of RNA-Seq and improved wheat genome sequences has enabled a 

rapid increase in large-scale gene expression analyses in wheat (Figure 3). Software, such as 

the pseudoaligner kallisto (Bray et al., 2016) can readily distinguish between sequences 

from highly similar homoeologs (Borrill et al., 2016), allowing homoeolog-specific gene 

expression analyses. These analyses have been used to understand the pathways regulating 

varied developmental and stress-related traits (Kugler et al., 2013, Brinton et al., 2018), to 

understand the roles of individual genes (Pearce et al., 2014, Pearce et al., 2016), and to 

compare response between stress treatments (Zhang et al., 2014, Liu et al., 2015). These 

examples highlight the many ways in which RNA-Seq datasets can be used to shed light on 

the regulatory pathways involved in different traits of interest and to identify candidate 

genes for hypothesis generation. 

To maximise the utility of this data many of these studies have been incorporated into gene 

expression atlases. The expVIP gene expression atlas contains over 900 RNA-Seq samples 

from a range of diverse tissues, developmental stages, stresses (abiotic and disease), and 

cultivars (Borrill et al., 2016, Ramírez-González et al., 2018). Metadata categorising the 

samples allows for comparisons between different studies and enables sorting and filtering 
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of relevant samples on the web interface (www.wheat-expression.com). A highly detailed 

developmental timecourse of the spring wheat cultivar Azhurnaya (Ramírez-González et al., 

2018) is available both through expVIP and a dedicated eFP browser 

(http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi)(Winter et al., 2007). This 

pictographic display facilitates rapid assessment of the expression pattern of a gene across 

70 different tissues and developmental stages.  

This readily accessible gene expression data enables hypothesis generation based on 

expression patterns (Figure 4). Comparisons of expression data between orthologous genes 

can provide insight into shared or divergent functions between species. Expression data can 

also be a useful source of supporting information to narrow down candidate genes 

identified through conventional QTL mapping or functional genomic approaches using 

natural and induced variation.   

Networks 

Although knowledge about individual gene’s expression patterns is very useful, it is also 

important to consider how genes act together in networks to regulate phenotypes. In model 

species such as Arabidopsis, network approaches have been successful in identifying 

candidate genes regulating specific processes (Bassel et al., 2012) and recent comparative 

work has uncovered conserved gene networks in root tips across monocots and dicots 

(Maher et al., 2018). Network-enabled approaches are likely to find broad applications in 

wheat research, now that the necessary genomic resources are available (Figure 3).  

Early work by WheatNet (https://www.inetbio.org/wheatnet) generated a wheat network 

using 20 genomics datasets, although only one of these was derived from wheat specific 

data (Lee et al., 2017). Knetminer (http://knetminer.rothamsted.ac.uk) also presents a 

wheat network, which until recently was based mainly on information derived from 

orthology (Hassani-Pak et al., 2016). The use of co-expression studies has been relatively 

limited, although genes and pathways associated with fusarium head blight resistance 

(Kugler et al., 2013) and spike architecture (Wang et al., 2017) have been uncovered. 

Recently, a set of co-expression networks were developed using publicly available and newly 

generated RNA-Seq samples for specific tissue types (leaf, root, grain and spike) and abiotic 

or disease stress conditions (Ramírez-González et al., 2018). The development of an 
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integrated network for all 850 RNA-Seq samples provides an entry point into understanding 

the general co-expression patterns of genes across a wide range of tissues (IWGSC et al., 

2018) and has been incorporated into Knetminer. Expression data has also been leveraged 

to generate a network which predicts downstream targets of transcription factors (Ramírez-

González et al., 2018), also available in Knetminer. A powerful approach in the future will be 

to layer wheat-specific information on top of information from model species to identify 

candidate genes and groups of genes regulating specific traits of interest.  

An important question to consider when working with a polyploid species is whether the 

homoeologous copies of genes are functionally redundant. These co-expression networks 

have started to address this question and show that whilst many homoeologs have the 

same or similar expression patterns, approximately 30 % of homoeologs have divergent 

expression patterns from each other (Ramírez-González et al., 2018). This implies that a 

significant proportion of wheat genes may already be undergoing the first steps towards 

sub/neo-functionalisation through changes in their patterns of expression. This information 

can be used to inform strategies to alter gene function for example altering a gene whose 

homoeolog has a very divergent expression pattern is more likely to cause a phenotypic 

effect than if the homoeologs had highly similar expression patterns. 

 

Gene validation in polyploid wheat 

As the new genome assemblies increase the potential for gene discovery, the focus now 

turns to ways in which gene function can be characterised (Figure 4). Exome-capture 

followed by next-generation sequencing has been applied to tetraploid and hexaploid 

TILLING populations to identify and make available induced variation in gene coding regions 

(Krasileva et al., 2017). This database allows for “in silico TILLING” whereby mutations in any 

gene of interest can quickly and easily be identified. Importantly, while the SNPs were 

originally called against the 2014 IWGSC reference genome (available at www.wheat-

tilling.com and https://dubcovskylab.ucdavis.edu/wheat-tilling), they have recently been 

remapped to the RefSeqv1.0 gene models and are available on EnsemblPlants. The 

mutagenized populations are particularly useful due to their ease of access, with 

researchers being able to identify mutations in their gene of interest within minutes. 
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However, since the sequenced mutations will lead to a truncation (premature termination 

codon or splice junction variant) in only 60% of genes, the use of missense mutations will 

also be required at times. As a result, screening more than one mutation per gene might be 

necessary as predicting the functional effects of missense mutations is not always easy a 

priori. Similarly, use of the TILLING lines typically requires multiple iterations of crossing, 

first to combine mutations across homoeologs of the gene of interest and secondly to 

reduce background mutations (Krasileva et al., 2017, Uauy et al., 2017). Typically, for 

quantitative traits, phenotypes are clearer with successive backcross generations 

(Simmonds et al., 2016). However, some qualitative traits can be studied directly in the 

initial mutant population (Mo et al., 2018, Shorinola et al., 2018). A caveat for the use of 

these populations is that not all genes will be present in the in silico database. This is either 

a result of the genes not being present in the exome-capture array, or because these genes 

are not present in the cultivars used to create the populations. In these cases, identifying 

mutations in the gene(s) of interest would require the screening of the population using 

conventional TILLING approaches or the development of a new bespoke mutant population 

using the cultivar with the gene(s) of interest. 

Alternative methods for gene functional characterisation focus on transgenic techniques. 

These can be either transient or stable transformation methods and are able to influence 

gene expression levels beyond what is possible via mutagenesis. Transient methods benefit 

from the relative ease and speed of transformation compared to stable integration, with 

several transient gene expression and silencing systems now available in wheat. The use of 

virus-induced gene silencing (VIGS) in wheat and other cereals has been highly successful in 

characterising the impact of various genes involved in abiotic and biotic stress response 

(Cakir et al., 2010, Ramegowda et al., 2014, Lee et al., 2015). These VIGS systems are now 

well established for use in wheat, and more recently advances in virus-mediated 

overexpression (VOX) have demonstrated the feasibility of their use in wheat for both small 

and large proteins (Cheuk and Houde, 2018, Bouton et al., 2018). Beyond viral expression 

systems, other possibilities for transient expression in wheat exist. Nanomaterials have 

recently shown potential for the transient delivery of foreign DNA into wheat leaves and 

protoplasts (Demirer et al., 2018).  
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Despite their increased cost and lengthier transformation process with respect to transient 

systems, traditional stable transgenics continue to be used in many contexts to validate and 

explore the function of genes in wheat (reviewed in Borrill et al. (2015)). A major bottleneck 

of current wheat transformation systems is that only very few, typically non-elite and non-

adapted wheat cultivars (such as Fielder or Bobwhite) are transformable at reasonable 

frequencies (Harwood, 2012), although this is changing (Richardson et al., 2014, Ishida et al., 

2015, Wang et al., 2016). Studies in maize have demonstrated that the concurrent 

expression of transcription factors Baby boom and Wuschel2 increase both transformation 

efficiency and the range of cultivars which are transformable (Lowe et al., 2016). Integration 

of this system into wheat transformation platforms could allow genotype-independent 

transformation which would accelerate the timeline for integration of transgenic traits into 

wheat breeding pipelines, while also making it easier to evaluate the effects of the 

transgene or modification in a locally relevant cultivar. 

Genotype-independent transformation is of particular interest when considering 

applications for gene editing, which are not regulated as genetically modified organisms in 

North America, Japan and elsewhere, though they are in Europe. Gene editing systems such 

as TALENs and CRISPR-Cas9 have now been demonstrated to function in wheat including the 

production of transgene-free edited lines (Wang et al., 2014, Zhang et al., 2016, Rey et al., 

2018). Beyond the most common use of CRISPR-Cas9, to induce small deletions that lead to 

frame-shifts and knock-outs, this may involve more complex editing such as targeted gene 

insertion or specific base editing (reviewed in Adli (2018)). In theory, the use of guide-

mediated gene editing could produce triple homoeolog knock-outs in a single transgenic 

event, although efficiencies remain low (Zhang et al., 2016). As the use of this system 

becomes more commonplace in wheat, we anticipate that advances in transformation and 

editing efficiency will follow, increasing the impact of the system. Crucially, the ability to 

transform elite wheat cultivars would significantly accelerate the rate at which edited alleles 

could be deployed in farmers’ fields. 
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Developments in phenotyping 

Historically, wheat phenotyping for major agronomic and quality traits (e.g. yield, protein 

content) has required field trials which are labour intensive and can only be carried out once 

per year in many parts of the world. To overcome this bottleneck (Furbank and Tester, 

2011) one area of recent growth has been the use of high-throughput phenotyping systems. 

Protocols have been developed for controlled environments and field conditions, enabling a 

wide range of traits to be studied. Large collections of germplasm in wheat have been 

amassed (see above) but as yet relatively few collections have been screened using high 

throughput phenomics, presenting an opportunity for future research.   

Many traits, including growth rates, biomass, and abiotic stress responses, have been 

studied in high throughput phenotyping platforms in glasshouse conditions, particularly in 

specifically constructed facilities with conveyor belts for frequent imaging of plants. 

Different cameras are required for imaging specific traits: growth rate and biomass can be 

calculated from standard RGB images (Parent et al., 2015) whereas infra-red imaging has 

been used to study osmotic stress (Sirault et al., 2009). One area of research which has 

particularly benefited from glasshouse based phenomics is the understanding of root 

architecture. Roots are a particularly difficult tissue to study because access in the field 

requires excavation and cleaning of the soil through methods such as “shovelomics” which 

has been applied in maize (Trachsel et al., 2011) and recently wheat (York et al., 2018). 

Recently developed higher-throughput technologies have enabled the phenotyping of root 

architecture in wheat seedlings using transparent pots (Richard et al., 2015) or through 

paper-based screening (Atkinson et al., 2015). These technologies have now been applied to 

screen sequenced mutation populations to identify mutants with altered root architecture 

(Shorinola et al., 2018). Adult plant roots pose a greater challenge due to their larger size, 

but developments in root tracking approaches (Mairhofer et al., 2015, Pfeifer et al., 2015) 

are increasing the rate at which high resolution root systems can be imaged through 

magnetic resonance imaging and X-ray microcomputer tomography.  

Controlled environment conditions enable the rapid screening of seedling stage plants, 

however the strength of the correlation between seedling physiological traits and those of 

plants growing in the field may be poor for some traits. For example, a meta-analysis for 
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specific leaf area, leaf nitrogen concentration, and yield across a range of crop species only 

showed a median correlation of 0.26 between the lab and the field (Poorter et al., 2016). 

However, steps can be taken to narrow this gap, for example by applying abiotic conditions 

more similar to those found in the field to controlled environment experiments, growing 

plants in controlled environments in more natural soils, or by planting at densities more 

comparable to the field (Poorter et al., 2016).  

Therefore, in parallel with pot-based approaches in glasshouses, in-field technologies have 

been developed. These are usually either a fixed platform with a camera which images a 

small area of selected plots in the field or based on mobile imaging systems such as 

manually operated platforms or unmanned aerial vehicles. The specifics of these platforms 

have been reviewed recently (Araus et al. (2018) and references therein) and each offers a 

unique set of advantages and disadvantages. These platforms all rely on imaging 

technologies such as RGB and infra-red, mentioned previously, as well as hyperspectral 

imaging which is particularly popular for in-field imaging. Hyperspectral imaging uses 

wavelengths across the electromagnetic spectrum to generate indices such as normalized 

difference vegetative index (NDVI) to measure canopy coverage (Christopher et al., 2016), 

as well as to calculate models for specific biochemical and physiological traits (Silva-Perez et 

al., 2018). Hyperspectral imaging can also be used to detect and classify disease and stress 

symptoms, however collecting appropriate data and developing analysis pipeline can be a 

challenge within commercial breeding programmes (Lowe et al., 2017). At CIMMYT large 

scale phenotyping for physiological traits has been incorporated into breeding programmes 

using both high throughput imaging and conventional phenotyping methods (Reynolds and 

Langridge, 2016). The phenotypes obtained through these methods have been used to 

inform physiological breeding, in which lines with complementary physiological phenotypes 

are crossed. This approach has successfully bred lines with improved phenotypes for a range 

of traits including yield potential, drought, and heat stress (Reynolds and Langridge, 2016). 

Subsequent genetic dissection of the physiological traits in the improved lines can reveal the 

loci underpinning these phenotypes which can then be used in marker assisted selection 

across the breeding programme. Combining phenomics with genotypic information is also 

proving useful, for example to improve genomic selection for quantitative traits such as 

yield (Crain et al., 2018).  
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Both in-field and glasshouse based phenomics platforms generate huge quantities of image 

data which requires processing to extract the relevant information. However, in comparison 

to genomics analyses, pipelines for image processing are far less standardised and represent 

a major informatics challenge. As these phenomics approaches have become more widely 

adopted, a number of tools for image processing from small scale glasshouse experiments 

to large hyperspectral field experiments have been developed (Perez-Sanz et al., 2017). 

Machine learning are a promising approach to accelerate data processing and improve trait 

analysis (Singh et al., 2016), although obtaining high quality annotated images will also be 

essential (Tsaftaris et al., 2016). In the future it is likely that standard procedures for analysis 

will be developed, analogous to standard genomic pipelines such as GATK for variant calling 

(McKenna et al., 2010).  

 

Looking forward 

Connecting genes to phenotypes in wheat is challenging, but combining the two is urgent 

and necessary to accelerate breeding efforts to produce enough food for the world’s 

population. Efforts to develop new, adapted wheat cultivars will require improved 

understanding of the interactions between genotypes, environment, and management 

practices, in the context of climate change (Challinor et al., 2014). Despite these challenges, 

there are great opportunities to understand wheat biology in the coming years.  

One area of wheat biology which is as yet underexploited is the modulation of individual 

homoeologs to influence traits. As we increase our understanding of the extent to which 

homoeologs are functionally redundant, new approaches such as epigenetic modification, 

altering promoter sequences, or introducing dominant alleles could be exploited to produce 

a wider range of phenotypes using the genes which wheat already contains. Many of these 

alterations could build upon novel gene-editing technologies. For example, genome-editing 

within promoter regions in tomato has expanded the range of fruit sizes, inflorescence 

branching, and plant architecture (Rodríguez-Leal et al., 2017). Use of this technology in 

wheat could expand the phenotypic diversity available for key genes. Targeted engineering 

of individual homoeologs might unlock previously hidden phenotypes, while the ability to 
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carry out allele replacement will allow the rapid transfer of desirable alleles into elite 

breeding material.  

The impact of chromatin conformation on phenotypic variation is perhaps even less 

investigated, yet has the potential to provide substantial insights into the connection 

between genotype and phenotype. In animals and plants, accessible (open) chromatin has 

been associated with functional non-coding sequences. In maize, for example, <1% of the 

genome was defined as open chromatin, yet variation within these regions explained 40% of 

phenotypic variation for many quantitative traits (Rodgers-Melnick et al., 2016), consistent 

with studies in humans and Arabidopsis (Maurano et al., 2012, Sullivan et al., 2014). 

Techniques such as Hi-C (Belton et al., 2012) and ATAC-seq (Buenrostro et al., 2015) can be 

applied to the wheat genome to characterise chromatin structure and identify putative 

regulatory motifs (Figure 3A). As 99% of the wheat genome is non-protein coding, variation 

in these regions is likely to account for a significant proportion of phenotypic variation. DNA 

methylation and histone mark variation both within and across cultivars is only beginning to 

be studied in wheat (Gardiner et al., 2018b, Ramírez-González et al., 2018) and is likely to 

provide a wealth of information on gene regulation for traits of agronomic importance. 

Natural epigenetic variation is known to impact on agronomically relevant traits such as fruit 

ripening and plant height, and was found to underpin artificially selected variation for 

increased energy use efficiency in canola (reviewed in Gallusci et al., 2017, Springer, 2013). 

As wheat genetics moves further towards understanding hidden variation derived from 

polyploidy, it is now also becoming possible to consider untapped variation in the context of 

chromatin structure and epigenetic modifications. 

Advances in phenomics have enabled us to generate large phenotypic datasets, and now 

opportunities will arise to understand the links between genotype, environment, agronomy, 

and phenotype at a systematic scale. Machine learning is showing promise in predicting 

phenotypes in wheat based on genomic data (Grinberg et al., 2018), performing better than 

classical statistical genetics methods. Likewise crop simulation models based on physiology 

and phenology of wheat have improved in recent years, yet they currently only incorporate 

genetic effects relating to relatively basic phenotypic traits (e.g flowering)(Chenu et al., 

2017).  
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The addition of novel data types such as epigenetics and chromatin conformation may 

contribute to improved wheat phenotypic prediction. Initial studies reveal epigenetic 

differences amongst landraces (Gardiner et al., 2018b) which are likely to also be observed 

in elite material. Incorporating diverse data types (genomics, epigenomics, and 

environmental data) may enable more accurate predictions of phenotypes. The use of 

computation models will also be useful for the development of networks predicting the 

phenotypic values of haplotype combinations, epi-alleles, and the outcomes of crosses 

between cultivars. Current genomic and epigenomic approaches rely on whole tissue 

samples; moving forward, single-cell approaches (e.g Cao et al. (2017)) will increase 

resolution in studies of cell-specific process. However, we must be cautious that the ability 

to simultaneously measure many thousands of genes, or thousands of phenotypes using 

new technologies may not necessarily improve our ability to understand the underlying 

biology. Therefore, we believe that combining these new techniques with targeted studies 

of specific genes and traits promises to provide insights into the core biological processes 

regulating agronomically relevant traits in wheat.  

In summary, the last decade has brought about a revolution in the resources and 

approaches used for wheat research and breeding. We now have a wide range of resources 

which provide opportunities to improve our understanding of wheat gene functions, many 

of which are easily accessible for researchers moving into wheat from other species 

(Adamski et al., 2018). One of the key challenges moving forwards will be predicting which 

genes will be most valuable within breeding programmes in diverse and changing 

environmental conditions.  
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Box 1: Glossary of terminology 

Term Definition 

Breeding programme The development of novel plant cultivars by the deliberate crossing of 
plants, followed by the selection of the best resulting progeny over 
several generations. 

 
Cultivar A homozygous wheat line which has been selectively bred and is 

cultivated.  

 
Genetic mapping A method to delimit the position of a trait or gene within the genome. 

This is generally achieved using genetic or phenotypic markers in 
conjunction with mapping populations segregating for the trait or gene 
of interest. 

 
Haplotype A co-inherited block of DNA containing sequence polymorphisms which 

in wheat often span several genes. 

 
Homoeolog The chromosomes in polyploid species which are derived from 

different ancestral species (see Figure 1) and cannot pair and 
recombine during meiosis. The genes within these non-recombining 
chromosomes are referred to as homoeologs: in wheat there are three 
homoeologs (A, B, and D) for most genes.   

 
Landrace A domesticated and locally-adapted wheat line which is typically grown 

from farmer-saved seed and has not been modified through a breeding 
programme. 

 
Ortholog Genes in different species which evolved from a common ancestral 

gene. 

 
Pangenome The entire spectrum of genetic variation within a species, including 

genes and other variation found only in a subset of cultivars. 

 
Phenomics The high-throughput study of phenotypes. 

 
Phenotype The physical characteristics of an organism. 

 
Polyploid An organism with more than two sets of homologous (pairing) 

chromosomes. 
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Qualitative trait A categorical characteristic, such as the number of lateral roots, 
frequently determined by a single genetic locus. 

 
Quantitative trait A continuous characteristic, such as yield or grain size, frequently 

determined by multiple small-effect genetic loci. 

 
SNP A single nucleotide polymorphism (SNP) is a variant in a single 

nucleotide base of DNA, such as a guanine to adenosine (G to A) 
change. 

 
Wild relative Plant species which are closely related to a crop species, but are not 

themselves domesticated nor cultivated. 
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Figure legends 

 

Figure 1: Polyploid wheat genetic diversity. Genetic diversity in wild relatives was lost 

through the initial domestication of the tetraploid wild emmer and the subsequent natural 

hybridization which gave rise to the first hexaploid wheat (~10,000 years ago). Inter-

breeding of hexaploid and emmer wheat reintroduced genetic diversity to the A and B 

genomes of hexaploid wheat (shown by shaded bars) which is present in landraces, whereas 

the wild progenitor of the D genome (goat grass) was reproductively isolated due to the 

difference in ploidy levels. Modern day cultivars have further reduced genetic diversity due 

to the bottlenecks imposed by artificial selection (breeding). Circles represent genetic 

diversity from the A (green), B (purple), and D (orange) genomes. Shaded bars show flow of 

genetic diversity. Time advances from top to bottom.  

 

Figure 2: Effects of polyploidy on phenotypic variation. Mutations in a single homoeolog 

can lead to gain-of-function alleles which dominate over the other gene copies (dominance). 

This variation has been strongly selected upon and includes quantitative trait loci (QTL). Loci 

displaying dosage effects and functional redundancy are more difficult to select given that 

changes in one homoeolog lead to subtle or no phenotypic effects. However, combining 

mutations in multiple homoeologs can uncover an expanded phenotypic spectrum. This 

constitutes hidden variation of agronomic significance.  

 

Figure 3: The future of wheat genomics. (A) A new frontier for wheat genomics research 

will focus on the effects of chromatin structural variation on gene expression regulation. 

Techniques such as Hi-C can be used to identify topologically-associating domains (TADs), 

chromatin regions which preferentially interact with each other. Such TADs can affect gene 

regulation by, for example, bringing distal regulatory elements such as enhancers into 

proximity with the regulated promoter. Regions of open chromatin can be identified by 

techniques such as ATAC-seq, the data from which can then be parsed to identify putative 

binding sites for regulatory proteins such as transcription factors (TF). Alongside 

investigation of chromatin conformation, studies into histone modifications are also 

necessary to further investigate the impact of epigenetic control on trait variation. (B) The 

new reference sequence has facilitated the development of many resources and techniques 

for studying gene function and regulation. Induced variation has been coupled with exome 

capture and targeted gene-family enrichment sequencing to study gene function. The in 

silico TILLING database identifies mutations in genes of interest, while techniques like 

MutRenSeq leverage targeted sequencing to rapidly clone R-genes. New advances in gene-

editing technologies facilitate specific genetic changes, ranging from small indels and 

specific base-pair changes through to complete gene insertions. Expression data in wheat is 
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now easily accessible through sites such as www.wheat-expression.com and the eFP 

browser. Gene networks based on RNA-Seq data will facilitate our understanding of gene 

regulatory pathways in wheat. The improved genome sequence will also aid the study of 

epigenetic variation in wheat, particularly DNA methylation in coding and non-coding 

regions. (C) The sequencing of the wheat genome has started to provide insights into 

genetic variation between cultivars. Haplotype variation within genes is already available 

and will become increasingly informative as haplotypes extend across larger intervals and 

recombination blocks are defined. Gene annotations across wheat cultivars and wild 

relatives will provide insight into allelic variation across the wheat pangenome. Comparisons 

of transposon diversity, structural, and copy number variation between cultivars will also 

become increasingly possible with improved genome assemblies. These multiple layers of 

variation data will facilitate hypothesis generation and gene discovery in wheat. See text for 

references. 

 

Figure 4: Integrated workflow for gene discovery in wheat. The development of genetic 

and genomic resources has accelerated candidate gene discovery in wheat. For example, 

multi-parent advanced generation inter-cross (MAGIC) populations were used to identify 

the wheat Teosinte Branched 1 (TB1) homolog as a major regulator of inflorescence 

architecture and development (Dixon et al., 2018); the use of mapping populations and full 

genome sequence of the landrace reference and cultivars facilitated the identification of a 

candidate for the Zymoseptoria tritici resistance gene STB6 (Saintenac et al., 2018); 

homology with rice enabled identification of Grain Width 2 (GW2) (Wang et al., 2018b). 

Starting from a defined candidate gene (purple gene model in centre), there are multiple 

strategies for gene validation available in wheat. These include expression datasets, natural 

variation in cultivars and landraces, in silico EMS-mutants, multiple transgenic validations 

including gene editing, and transient transformation systems such as virus-induced gene 

silencing (VIGS). Studies have combined these approaches to confirm the gene underlying 

the trait of agronomic interest. Arrows denote the paths used to identify and validate TB1 

(purple), STB6 (blue), and GW2 (green).  
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