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Abstract 20 

High-sided vehicles are particularly vulnerable to high wind conditions and at 21 

sites that are regarded as vulnerable a range of vehicle restrictions are imposed 22 

in high winds. These may include vehicle speed reductions or complete 23 

restrictions on the movement of different categories of vehicle at different wind 24 

gust speeds.  This paper builds on earlier work that has been carried out, and 25 

seeks to develop a simple but conservative method that can be used to specify 26 

vehicle restriction strategies. This is based on a collation of a wide range of data 27 

for aerodynamic rolling moment coefficients that allows a simple 28 

parameteristaion to be developed. This is then used in an overturning model to 29 

develop a non-dimensional relationship between overturning gust speed and 30 

vehicle speed.  The parameter used in the non-dimensionalisation is a 31 

characteristic wind speed that is a function of vehicle weight and geometry and 32 

effectively specifies the vulnerability of the vehicle to overturning in high winds. 33 

Dimensional relationships between overturning gust velocities and vehicle 34 

velocities can thus be derived for different vehicle types, and used to develop 35 

site-specific vehicle restriction methods.  36 

  37 
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Notation 38 

𝐴𝐴   Reference area (m2) 39 

𝑐𝑐   Characteristic velocity (m/s) – equation 7 40 

𝐶𝐶𝑅𝑅𝑅𝑅(30)  Lee wheel rolling moment coefficient at 𝜓𝜓 = 30 degrees  41 

𝐶𝐶𝑅𝑅𝑅𝑅(𝜓𝜓)  Lee wheel rolling moment coefficient at 𝜓𝜓 degrees 42 

ℎ   Reference height (m) 43 

𝐻𝐻   Vehicle height (m) 44 

𝐿𝐿   Vehicle length (m) 45 

𝑀𝑀   Vehicle mass (kg) 46 

𝑝𝑝   Wheel base semi-width (m) 47 

𝑅𝑅𝐿𝐿   Lee wheel rolling moment (Nm) 48 

𝑢𝑢   Wind gust velocity (m/s) 49 

𝑢𝑢𝑖𝑖   Wind gust velocity at which overturning occurs (m/s) 50 

𝑢𝑢�   𝑢𝑢/𝑐𝑐 51 

𝑢𝑢�𝑖𝑖   𝑢𝑢𝑖𝑖/𝑐𝑐 52 

𝑣𝑣   Vehicle velocity (m/s) 53 

𝑣̅𝑣   𝑣𝑣/𝑐𝑐 54 

𝑉𝑉   Wind velocity relative to vehicle (equation 3) (m/s) 55 

𝑉𝑉�    𝑉𝑉/𝑐𝑐 56 

𝛼𝛼   Proportion of wheel unloading 57 

𝛽𝛽   Wind direction relative to vehicle direction of travel (°) 58 

𝜓𝜓   Yaw angle (equation 4)(°) 59 

𝜌𝜌   Density of air (kg/m3) 60 

Keywords 61 

Bridges, Design methods and aids, Risk and Probability Analysis, Transport 62 

management, Transport planning, Viaducts, Wind loading and aerodynamics  63 
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1. Background 64 

High-sided road vehicles, particularly when unladen, are prone to overturning in high 65 

winds, and there are frequent news reports of such accidents (eg BBC 2015, 2017a, 66 

2017b). Safety considerations thus often make it necessary to place restrictions on the 67 

movement of road traffic during wind storms, at sites such as long span bridges or on 68 

exposed embankment sites. These restrictions can take the form of speed limits for 69 

different types of vehicle, or for the complete closure of the road to vehicles of all types.  70 

For example on the Queensferry Bridge in Scotland (which we will consider further later 71 

in this paper), a blanket speed restriction of 40mph is put into place when the wind 72 

gusts above 50mph (22.4m/s); double deck buses are not allowed to travel over the 73 

bridge for gust speeds higher than 60mph (26.8m/s); high sided vehicles are banned 74 

from crossing when wind gust speeds exceed 70mph (31.3m/s), all traffic except cars 75 

are stopped for gusts above 90mph (40.3m/s) and the bridge is closed when gust speeds 76 

reach 100mph (44.7m/s) (Forth Bridges, 2018). Similarly, restrictions on vehicle 77 

movement can sometimes be required in urban areas, where the ground level wind 78 

speeds around high-rise buildings can be sufficient to cause vehicle overturning 79 

accidents (BBC, 2014).  80 

There have been a number of investigations of the effects of cross winds on road 81 

vehicles in the past.  Clearly the most basic information that is required is a knowledge 82 

of the cross wind forces and moments on vehicles. Wind tunnel measurements of these 83 

forces for a variety of different vehicle types are reported in Baker (1988), Coleman and 84 

Baker (1990), Sterling et al (2010), Cheli et al (2011a,b), Dorigati et al (2012), Han et al 85 

(2014) and Liu et al (2016). Data is given for vehicles on flat ground, bridge, 86 

embankment and viaduct scenarios. In addition Haan et al (2017) report measurements 87 

on vehicle forces in a Tornado Vortex Generator and Xiang et al (2017) describe 88 

measurements made using a moving model facility.  More recently CFD calculations of 89 

cross wind forces have been made  - see Sterling et al (2010) and Stoyanoff et al (2015) 90 
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for example. As is the case in most sectors of wind engineering, full-scale data with 91 

which to compare the wind tunnel and CFD measurements are understandably sparse 92 

and the only investigations of this type known to the author are those of Sterling et al 93 

(2010) for a stationary vehicle.  94 

At this point, it should also be noted that a number of tests have also been carried out to 95 

investigate the transient wind effects on vehicles as they pass bridge pylons – see 96 

Aregntini et al (2011), Rocchi et al (2012) and Wang and Xu (2015). This particular 97 

issue is beyond the scope of the method presented here and will not be addressed  98 

further in what follows. 99 

The crosswind forces having thus been obtained, some method is required to translate 100 

these forces into a wind speed level that will result in an accident. Methods for such a 101 

procedure were first derived by the author in the 1980s using simple static analytical 102 

models of vehicle behaviour, with and without human driving input. (Baker 1986, 1987 103 

and 1991), and gave critical wind conditions for vehicle sideslip and rollover accidents. 104 

Snaebjornsson et al (2007) put the analysis into a probabilistic framework which 105 

enables an accident index to be defined, for certain levels of accident probability.  This 106 

approach has been taken further and refined somewhat by Batista and Perkovic (2014), 107 

and Kim et al (2016) use the latter’s methodology to calculate the risk of a wind induced 108 

accident on a long span bridge. Cheli et al (2006) used a more complex dynamic vehicle 109 

/ driver model of the vehicle and its suspension in simulated fluctuating wind conditions 110 

to evaluate vehicle forces and path. This approach is further developed in the 111 

investigations of Zhou and Chen (2015) and Chen et al (2015) who both describe a 112 

complex calculation linking the fluctuating wind conditions, the dynamic behaviour of 113 

vehicles, and the dynamic behaviour of bridges. Finally mention should be made of the 114 

work of Maruyama and Yamazaki (2006) who use a more complex version of the 115 

original static analysis, and interestingly incorporated human driver behaviour through 116 
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inputting the crosswind model into a driver simulator, thus introducing real human 117 

involvement.  118 

On many long span bridges and other exposed sites, wind barriers of different sorts are 119 

used to protect traffic from high winds and to increase the wind gust speeds when traffic 120 

restrictions are put into place. These barriers are usually designed using wind tunnel 121 

tests and the level of shelter is usually quantified by a reduction in the forces and 122 

moments on the vehicle, for example Chu et al (2013), Dorigati et al (2014), Chen et al 123 

(2015) and Alonso-Estebanez et al (2017).  These force and moment measurements are 124 

not always related to the values of wind speed that may result in accidents and to the 125 

risk of such accidents.  126 

Ultimately the problem that arises when applying the results of the above research is 127 

that the real life situation at any one site is complex, with a wide range of different 128 

vehicle types, sizes, weights and levels of vulnerability, with wind approaching from a 129 

range of directions and many of the methods outlined above (including those of the 130 

author) are practically difficult and time consuming to use. Operationally any traffic 131 

restrictions need to be quite simple and easy to implement, and must be aimed at 132 

protecting the most vulnerable types of traffic at the site. Complex methodologies are 133 

thus not always easy to use in practical situations, although they can be useful in 134 

calibrating simpler methods. In addition it will be seen from what follows that there can 135 

be considerable uncertainty in the aerodynamic forces and moments, with large 136 

differences between the results of nominally similar wind tunnel tests or CFD 137 

calculations.   This paper thus in some ways steps back from recent developments in the 138 

field and sets out a methodology for assessing safe wind speeds for vehicles in high 139 

cross winds that, whilst as rigorous as possible, is deliberately simple and in a form that 140 

can be used easily by bridge operators and transport authorities, both in the planning 141 

and design stage for new infrastructure and operationally when considering whether 142 

restrictions need to be applied.  The methodology is outlined in section 2, and the 143 
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specification of aerodynamic force and moment coefficients considered in section 3. An 144 

analysis that relates these coefficients to accident wind speeds is given in section 4, and 145 

the application of this analysis set out in section 5. Section 6 considers how this 146 

methodology can be used in wider contexts of risk assessment, and some concluding 147 

remarks are made in section 7.  148 
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2. Outline of methodology 149 

The methodology that is adopted is as follows. 150 

• Only the most common and serious type of wind-induced accident is considered 151 

– the rollover of large vans, lorries and other similar vehicles. Such events 152 

dominate the accident statistics – see for example the description of the 1991 153 

Burns Nights storm in the UK (Baker and Reynolds, 1991) where this type of 154 

overturning incident accounts for 47% of all injury accidents. Sideslip accidents, 155 

where vehicles were blow to one side without overturning, only contributed to 156 

around 19% of the total number of accidents. Most of the other accidents 157 

involved vehicles colliding with trees or other debris blown onto the road. Thus 158 

of the accidents directly caused by strong winds, around 70% are of the rollover 159 

type. 160 

• Accidents are assumed to occur when the vertical reaction at the windward 161 

wheels becomes zero, and the vehicle is assumed to overturn as a solid body.  162 

• The wind speeds that result in such accidents are fully specified by a one to 163 

three second gust speed. 164 

• Data for the aerodynamic parameter of relevance to this situation, the rolling 165 

moment about the leeward wheels is collated from a range of investigations, and 166 

a simple parameterisation is suggested that is a reasonable and largely 167 

conservative representation of the experimental results. 168 

• A simple rollover analysis is set out that allows a non-dimensional crosswind 169 

characteristic function to be determined - non-dimensional overturning wind 170 

speed as a function of wind direction and non-dimensional vehicle speed.  171 

• The non-dimensionalisation of velocities is carried out through the use of a 172 

characteristic velocity, which defines the rollover characteristics of the vehicle.  173 
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• Both non-dimensionalised and dimensional curves of accident wind speed 174 

against vehicle velocity can then be determined which can be used to specify 175 

vehicle and wind speed restrictions at specific sites.  176 

 177 

  178 
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3. Overturning moment coefficients 179 

The overturning moment on a vehicle about the leeward wheels, 𝑅𝑅𝐿𝐿, can be specified by 180 

the overturning moment coefficient 𝐶𝐶𝑅𝑅𝑅𝑅 181 

𝐶𝐶𝑅𝑅𝑅𝑅 = 𝑅𝑅𝐿𝐿
0.5𝜌𝜌𝜌𝜌ℎ𝑉𝑉2

           (1) 182 

where A is a reference area and h is a reference height, 𝜌𝜌 is the density of air and V is the 183 

wind velocity relative to the vehicle.  Rolling moment coefficients are usually measured 184 

from static wind tunnel tests, as a function of yaw angle 𝜓𝜓, (the wind angle relative to 185 

the vehicle), although other sorts of physical model test (Tornado Vortex Generators or 186 

Moving Models) have been used, as have CFD calculations and, to a very limited degree, 187 

full scale tests. A collation of data from a range of experiments for flat ground and 188 

unobstructed bridge scenarios is given in figure 1, plotted in the form of 𝐶𝐶𝑅𝑅𝑅𝑅(𝜓𝜓)/𝐶𝐶𝑅𝑅𝑅𝑅(30) 189 

where 𝐶𝐶𝑅𝑅𝑅𝑅(30) is the rolling moment coefficient at a yaw angle of 30 degrees. This curve 190 

includes data from most of the investigations outlined in section 1, although potentially 191 

useful data from the work of Han et al (2014) and Liu et al (2016) could not be used 192 

because not all the relevant dimensions of the vehicles are given. It can be seen that the 193 

data collapses tolerably well when plotted in this way, at least in the lower yaw angle 194 

range, and can be conservatively represented by the simple curve  195 

𝐶𝐶𝑅𝑅𝑅𝑅(𝜓𝜓)
𝐶𝐶𝑅𝑅𝑅𝑅(30) = sin (𝜓𝜓)

sin (30)
          (2) 196 

This is a slight modification of the method used by Baker (2013) for cross wind forces 197 

on trains, where the reference yaw angle was taken as 40 degrees, and a rather more 198 

complex curve fit used. Note that the values for most of the experiments diverge from 199 

the simple curve for yaw angles of greater than 50 degrees, with the main exception 200 

being the results of the full-scale experiments of Sterling et al (2010) – the filled grey 201 

triangles. The author would argue that primacy should be given to such results, which 202 

represent some sort of ground truth, and thus the simple curve of equation 2, which is a 203 

reasonable representation of these results, is appropriate.  Nonetheless this full-scale 204 
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data has much scatter that is not apparent from the results shown, but which again 205 

suggests a simple, conservative approach is appropriate.  206 

 207 

 

Figure 1 Collation of leeward wheel rolling moment characteristic data 

(Articulated Lorry –cab with container or box on trailer; Short Box Lorry – rigid, two or three 

axle; Long Box Lorry – Rigid – four or more axles; Cab / Tanker – cab articulated with tanker 

trailer; Double Deck Bus – High bus with two floors) 
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The values of the rolling moment coefficients at a yaw angle of 30 degrees are given in 208 

table 1. Two values of the coefficient are give, the first based on values of A and h of 209 

10m2 and 3m respectively (which are conventional, nominal values) and the second 210 

based on values of A given by the product of the overall vehicle length L and overall 211 

vehicle height H, and values of h given directly by H. The first values show a steady 212 

increase of the coefficient with the length of the vehicle as would be expected, for all the 213 

sharp edged vehicles, but with the Cab / Tanker value (without sharp edges in the cross 214 

section) having a lower value than would be expected for its length. Again, with 215 

exception of the Cab / Tanker, the second set of values are almost all within the range of 216 

0.3 to 0.5, with the values for the Short Box Lorry being in the range 0.31 to 0.38; for the 217 

Author Vehicle type Simulation L 
(m) 

H (m) CRL(30) 

with 
A=10m2 

and h = 3m 

CRL(30)  

with A=LH 
and h = H 

Baker (1988) Articulated Lorry LT, 1/25th 13.5 3.8 3.39 0.52 
Coleman and 
Baker (1990) 

Articulated Lorry LT, 1/50th 13.5 3.8 2.63 0.41 
HT, 
1/50th 

2.81 0.43 

BL, 1/50th 3.31 0.51 
Sterling et al 
(2010) 

Short Box Lorry BL, FS 6 3.5 0.75 0.31 
BL, 1/10th 0.96 0.39 
BL, CFD 0.94 0.38 

Cheli et al 
(2011a) 

Long Box Lorry LT, 1/10th 7.8 3.5 1.15 0.36 
HT, 
1/10th 

1.21 0.38 

Cheli et al 
(2011b) 

Long Box Lorry 
combination with 
Trailer 

LT, 1/10th 7.8 3.5 1.23 0.39 

Trailer combination 
with Long Box Lorry 

LT, 1/10th 7.6 4 1.38 0.34 

Cab / Tanker  LT, 1/10th 14.0 3.7 1.27 0.20 
Articulated Lorry LT, 1/10th 14.0 3.8 2.16 0.31 

Dorigati et al 
(2014) 

Double Deck Bus BL, 1/40th 10.1 4.4 2.80 0.43 
Articulated Lorry BL, 1/40th 16.6 3.8 3.15 0.48 

 

Table 1 Collation of leeward wheel rolling moment coefficient data 

(LT – turbulence simulation, HT – high turbulence simulation, BL – boundary layer 

simulation) 
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Long Box Lorry in the range 0.36 to 0.39 and for the Articulated Lorry being between 218 

0.41 and 0.52, with the exception of the results of Cheli (2011b) which lie significantly 219 

below this range. These ranges indicate the level of uncertainty that attached to any 220 

estimation of rolling moment coefficients obtained experimentally or computationally. 221 

 222 

  223 



 14 

4.  Accident wind speed calculation 224 

From the velocity vector diagram of figure 2a, it can be seen that If a vehicle is moving at 225 

a velocity v with a crosswind of velocity u at a direction β  to the direction of travel, then 226 

the wind velocity relative to the vehicle V is given by 227 

𝑉𝑉2 = ((𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝛽𝛽) + 𝑣𝑣)2 + (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝛽𝛽))2)        (3) 228 

The wind direction relative to the vehicle, the yaw angle 𝜓𝜓, is given by  229 

tan(𝜓𝜓) = 𝑢𝑢 sin (𝛽𝛽)
𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽)+𝑣𝑣

          (4) 230 

Now if one assumes that the critical condition occurs when the windward wheel 231 

reaction falls to zero, a simple static analysis (figure 2b) gives the expression. 232 

𝐶𝐶𝑅𝑅𝑅𝑅(0.5𝜌𝜌𝜌𝜌ℎ𝑉𝑉2) = 𝑀𝑀𝑀𝑀𝑀𝑀         (5) 233 

where M is the vehicle mass and p is the semi-wheel base.  In practice a certain 234 

proportion α of wheel unloading (say 0.9) is often taken as the critical condition, giving 235 

the modified expression 236 

𝐶𝐶𝑅𝑅𝑅𝑅(0.5𝜌𝜌𝜌𝜌ℎ𝑉𝑉2) = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  237 

α may also be interpreted as a parameter that represents the dynamic effects of vehicle 238 

suspension in the overturning process, or simply as a safety factor. From the above 239 

expressions it is possible to derive the following dimensionless relationship. 240 

�𝑣̅𝑣2 + 𝑢𝑢𝚤𝚤� 2 + 2𝑢𝑢𝚤𝚤� 𝑣̅𝑣𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽)� (𝑢𝑢�𝑖𝑖sin(𝛽𝛽))2 = 1       (6) 241 

where 𝑣̅𝑣 = 𝑣𝑣/𝑐𝑐 and 𝑢𝑢�𝑖𝑖 = 𝑢𝑢𝑖𝑖/𝑐𝑐,   𝑢𝑢𝑖𝑖 is the wind velocity where and overturning incident 242 

will occur and c is the characteristic velocity given by 243 

𝑐𝑐 = � 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 
𝜌𝜌𝐶𝐶𝑅𝑅𝑅𝑅(30)𝐴𝐴ℎ

          (7) 244 

This expression in equation (6) gives the relationship between the dimensionless 245 

crosswind speed for an overturning incident to occur, the wind direction and the 246 

dimensionless vehicle speed, with the vehicle parameters being fully specified by the 247 

characteristic velocity. It is completely general and can be applied to all vehicles and 248 

situations where the assumptions set out in section 2 apply.  It is also very simple in 249 
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form, although can only be solved analytically for very specific cases. This will be seen to 250 

be its major utility. 251 

 

 

(a) Velocity vectors (b) Static model 

Figure 2 Velocities and rolling moments 

 252 

  253 
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5. Application of methodology 254 

Figure 3 shows the variation of the normalised overturning wind speed 𝑢𝑢𝚤𝚤�  with wind 255 

direction β for a variety of normalised vehicle speeds 𝑣̅𝑣. It can be seen that the curves 256 

show a minimum value for values of 𝑢𝑢𝚤𝚤�  between 70 and 90 degrees.  Note that the curve 257 

for zero velocity has a minimum value of 1.0 at β = 90 degrees i.e. a pure cross flow. In 258 

these conditions 𝑢𝑢𝑖𝑖 = 𝑐𝑐, and thus the characteristic velocity can be interpreted as the 259 

accident gust speed for a stationary vehicle normal to the wind direction.   Figure 4 260 

shows the variation of this minimum value with normalised vehicle speed. This gives 261 

normalised accident wind speeds against vehicle speeds, which are appropriate to 262 

situations where the wind direction is very variable or unknown, and thus the minimum 263 

value is the appropriate value to use.  Curves are also given for values of 𝑢𝑢𝚤𝚤�  at wind 264 

directions of 30, 60 and 90 degrees, which may be useful if the wind direction can be 265 

more accurately specified. It can be seen that there is little difference between the curve 266 

for minimum values and those for wind directions of 60 and 90 degrees, although the 30 267 

degree curve is significantly higher, and it will be seen below that, if the wind direction 268 

can be confidently predicted to be along the vehicle direction of travel, wind speed and 269 

vehicle speed restrictions could be relaxed. 270 

The curve for the minimum values in figure 4 can be given to a good approximation by 271 

the very simple expression   272 

𝑢𝑢𝚤𝚤� = 𝑒𝑒−�
𝑣𝑣�
2.4�

1.41

           (8)  273 

and that for the 30 degree wind direction case by the equally simple expression   274 

𝑢𝑢𝚤𝚤� = 1.41𝑒𝑒−�
𝑣𝑣�
3�
1.05

          (9) 275 

These formulae are wholly empirical curve fits and have no physical meaning, but their 276 

Weibull-like forms are somewhat satisfying for wind engineering practitioners.   277 

The above analysis has been expressed in dimensionless terms, and as such can give 278 

generalised formulae applicable to a range of situations.  In practical terms however it is 279 
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useful to express the results in dimensional terms. To do this values of the characteristic 280 

velocity c are required. Typical values of this parameter are given in table 2 for a small 281 

number of vehicle categories where aerodynamic information is available. 282 

Representative values of the weights and dimensions are assumed. It can be seen that 283 

for unladen vehicles the values are between 30m/s and 40m/s, with the laden values 284 

being very much higher. Figure 5 thus shows the variation of the minimum value of the 285 

overturning wind speed for all wind directions against vehicle speed for values of c  of 286 

30, 35 and 40m/s.  In both cases the units used for speed are miles per hour, which is of 287 

course scientifically non-standard, but are the units actually used in practice in the UK 288 

and USA. Also shown are the vehicle restriction limits for Queensferry Bridge in 289 

Scotland outlined in section 1, although only those for double deck buses and high-sided 290 

vehicles are relevant to the current methodology (section 1). These limits ensure that 291 

the c = 30m/s line and c = 35m/s lines are not crossed by buses and high sided vehicles 292 

respectively, which seems very sensible in the light of the values of c given in table 2.  293 

The analysis and the operational experience of this particular bridge are thus in 294 

reasonable agreement. 295 

Finally figure 6 shows the wind speeds for vehicle overturning for the minimum values 296 

and the minimum values for wind directions of less than 30 degrees to the vehicle 297 

direction of travel. The latter can be seen to be significantly higher than the former, 298 

showing the potential for relaxing wind and vehicle speed limits if the wind direction is 299 

known to be predominantly along the roadway.  300 

 301 
 302 
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 303 

Figure 3. Non-dimensional accident wind speeds against wind direction for a 304 

range of non-dimensional vehicle velocities  305 

 306 

 307 

Figure 4. Values of non-dimensional accident wind speeds against non-308 

dimensional vehicle velocities for the minimum values and different wind 309 

direction values.  310 

 311 

 312 
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Small Box lorry 7000 16000 8.0 3.5 1.2 0.4 40.2 60.8 
Large Box Lorry 9000 18000 12.0 3.5 1.2 0.4 37.2 52.7 
Articulated lorry 16000 40000 15.0 4.0 1.2 0.5 34.3 54.2 
Double Deck Bus 10000 14000 12.0 4.4 1.2 0.4 29.7 35.2 

 313 

Table 2 Calculation of characteristic velocities 314 

 315 

  316 

Figure 5.  Minimum overturning wind speed for all wind directions against vehicle 317 

speed for values of c of 30, 35 and 40m/s and Queensferry Bridge limits for 318 

different vehicle categories  319 

(vertical lines at 60 and 70mph indicate national speed limits for different vehicle 320 

classes)  321 

 322 
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 323 

  324 

Figure 6.  Overturning wind speeds against vehicle speed for all wind directions 325 

and 30 degree wind direction, for c = 30m/s  326 

 327 

 328 

  329 
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6. Use of the methodology 330 

The above analysis gives a straightforward way of determining appropriate wind gust 331 

speed limits at exposed sites as follows.  332 

• Determine the different vulnerable vehicle types that will use the road at that 333 

point in terms of size and weight, and calculate values of the characteristic 334 

velocity c for each.  335 

• Determine either the lowest value of c for all traffic as the basis of vehicle 336 

restrictions, or divide the vehicles into easily identifiable categories for which it 337 

is practical to apply category specific restriction methods, with a value of c for 338 

each. 339 

• If the directions of strong winds are very variable, then determine the accident 340 

wind speed / vehicle speed characteristic from equation (8) for each vehicle 341 

category. 342 

• If there are identifiable periods when the wind will be predominantly along the 343 

roadway, determine wind speed / vehicle speed characteristic from equation (9) 344 

for each vehicle category for that case. 345 

• Devise suitable, site-specific vehicle restrictions, such as those illustrated in 346 

figure 6 so that the operational conditions lie below the wind speed / vehicle 347 

speed characteristics at all times. 348 

If the site is to be protected with wind fences, then this will result in a lower value of 349 

CRL(30) and thus a higher value of the characteristic velocity c.  Equation (8) can then be 350 

used to determine vehicle restrictions with such protection in place, or alternatively can 351 

be used to give a target value of rolling moment coefficient that the protection should 352 

achieve.  353 

The methodology can also potentially be used by vehicle manufacturers, who could use 354 

calculated values of c to give an indication of the crosswind stability of their vehicle 355 

designs. This could involve “tuning” of the value of the parameter α through 356 
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modification of suspension parameters.  Highway authorities could also easily 357 

incorporate the curves given by equation (8) into a route risk analysis, taking into 358 

account vehicle types and operational patterns and the gust wind speeds at sites along 359 

the route, which could be specified by the Weibull distribution format set out in Baker 360 

(2015).  361 

 362 

 363 

  364 
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7 Concluding remarks 365 

This paper has presented a simple method that can be used in the specification of road 366 

vehicle restrictions at exposed sites during windy periods. It has deliberately taken a 367 

very simple, conservative approach in order to produce a methodology that is very 368 

straightforward to use in practice. The more complex static and dynamic methodologies 369 

developed by the author and by others still have a place however for particularly wind 370 

sensitive sites or for complex geometries – such as calculating vehicle behaviour as they 371 

move in and out of the shelter of bridge pylons.  The following aspects of the simplified 372 

methodology are worthy of mention. 373 

• A generalised formulation of an overturning wind characteristic that is valid for 374 

a wide range of vehicle types.  375 

• The specification of individual vehicle vulnerability through the use of a 376 

characteristic velocity that can easily be calculated from weight and geometric 377 

parameters.  378 

• A very simple formulation that relates dimensionless overturning wind speed to 379 

dimensionless vehicle velocity and can be used to specify vehicle restrictions at 380 

specific sites, or incorporated into route based risk calculations. 381 

To enable the methodology to be used more widely the prime need is for data for the lee 382 

wheel rolling moment coefficient for a range of different vehicle types of relevance to 383 

different countries.  384 

  385 
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