
 
 

University of Birmingham

Learning pharmacokinetic models for in vivo
glucocorticoid activation
Bunte, Kerstin; Smith, David; Chappell, Michael J.; Hassan-Smith, Zaki; Tomlinson, Jeremy ;
Arlt, Wiebke; Tino, Peter
DOI:
10.1016/j.jtbi.2018.07.025

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Bunte, K, Smith, D, Chappell, MJ, Hassan-Smith, Z, Tomlinson, J, Arlt, W & Tino, P 2018, 'Learning
pharmacokinetic models for in vivo glucocorticoid activation', Journal of Theoretical Biology, vol. 455, pp. 222-
231. https://doi.org/10.1016/j.jtbi.2018.07.025

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Mar. 2024

https://doi.org/10.1016/j.jtbi.2018.07.025
https://doi.org/10.1016/j.jtbi.2018.07.025
https://birmingham.elsevierpure.com/en/publications/0b5ad0d0-81c9-4e88-a05c-f292c947bc00


Journal of Theoretical Biology 455 (2018) 222–231 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

Learning pharmacokinetic models for in vivo glucocorticoid activation 

Kerstin Bunte 

a , b , ∗, David J. Smith 

c , f , Michael J. Chappell d , Zaki K. Hassan-Smith 

i , e , g , 
Jeremy W. Tomlinson 

h , Wiebke Arlt f , g , Peter Ti ̌no 

a , f 

a School of Computer Science, The University of Birmingham, Birmingham B15 2TT, UK 
b Faculty of Science and Engineering, University of Groningen, P.O. Box 407, Groningen 9700 AK, Netherlands 
c School of Mathematics, The University of Birmingham, Birmingham B15 2TT, UK 
d School of Engineering, University of Warwick, Coventry CV4 7AL, UK 
e Departments of Endocrinology and Acute Internal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK 
f Institute of Metabolism and Systems Research, University of Birmingham, UK 
g Centre of Endocrinology, Diabetes and Metabolism, Queen Elizabeth Hospital Birmingham, Birmingham Health Partners, UK 
h Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK 
i Centre for Applied Biological and Exercise Science, Coventry University, Coventry, UK 

a r t i c l e i n f o 

Article history: 

Received 23 October 2017 

Revised 3 July 2018 

Accepted 21 July 2018 

Available online 23 July 2018 

Keywords: 

Dynamic systems 

Pharmacokinetics 

Identifiability analysis 

Perturbation analysis 

11 β-HSD activity 

In vivo glucocorticoid activation 

Probabilistic models 

Gaussian mixture model 

Expectation maximization 

Clustering 

Partially observed time series analysis 

a b s t r a c t 

To understand trends in individual responses to medication, one can take a purely data-driven machine 

learning approach, or alternatively apply pharmacokinetics combined with mixed-effects statistical mod- 

elling. To take advantage of the predictive power of machine learning and the explanatory power of 

pharmacokinetics, we propose a latent variable mixture model for learning clusters of pharmacokinetic 

models demonstrated on a clinical data set investigating 11 β-hydroxysteroid dehydrogenase enzymes 

(11 β-HSD) activity in healthy adults. The proposed strategy automatically constructs different population 

models that are not based on prior knowledge or experimental design, but result naturally as mixture 

component models of the global latent variable mixture model. We study the parameter of the underly- 

ing multi-compartment ordinary differential equation model via identifiability analysis on the observable 

measurements, which reveals the model is structurally locally identifiable. Further approximation with 

a perturbation technique enables efficient training of the proposed probabilistic latent variable mixture 

clustering technique using Estimation Maximization. The training on the clinical data results in 4 clusters 

reflecting the prednisone conversion rate over a period of 4 h based on venous blood samples taken at 

20-min intervals. The learned clusters differ in prednisone absorption as well as prednisone/prednisolone 

conversion. In the discussion section we include a detailed investigation of the relationship of the phar- 

macokinetic parameters of the trained cluster models for possible or plausible physiological explanation 

and correlations analysis using additional phenotypic participant measurements. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Glucocorticoids are widely used, with prescriptions for up

to 2.5% of the population for immunomodulatory and anti-

inflammatory effects in a number of disease states ( van Staa

et al., 20 0 0 ). Endogenous glucocorticoid hormones (including corti-

sol and cortisone) are a vital part of normal metabolism and phys-

iological function. They are produced by the adrenal cortex under

the regulation of the HPA (hypothalamic-pituitary-adrenal) axis,

in addition to enzymatic action in tissue. Cortisol increases blood
∗ Corresponding author at: Faculty of Science and Engineering, University of 
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ugar, functions as an immune system suppressant, decreases bone

ormation and supports the metabolism of fat, protein and carbo-

ydrates. Unfortunately these hormones are also associated with

dverse features including central obesity, proximal myopathy, os-

eoporosis, hypertension, insulin resistance, psychological effects

nd excessive skin changes, which serve to reflect their action in a

ange of metabolically active tissues. These effects regularly affect

atients receiving exogenous glucocorticoid treatment but are par-

icularly demonstrated in the rare condition of endogenous Cush-

ng’s syndrome which can occur as the result of tumours of the

ituitary or adrenal gland or as a result of ectopic secretion of

CTH ( Newell-Price et al., 2006 ) and these are associated with ex-

ess mortality ( Clayton et al., 2016; Hassan-Smith et al., 2012 ). 
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In recent years initiatives such as Horizon 2020 have been

aunched in order to address the public health challenges of our

geing population. In Europe, those aged > 65 years made up

7 million of the population in 1998, a number projected to rise

o 25 million by 2035 ( Eurostat, 2008; Sakuma and Yamaguchi,

013 ). Healthy life expectancy has not kept up with this increase

n longevity, with a gap between life expectancy and disability

ree life expectancy in the UK of 9 years for women and 7 years

or men at the age of 65 ( Self et al., 2012 ). As a result there has

een much research focus on the role of so-called pre-receptor

etabolism of glucocorticoids via the 11 β-hydroxysteroid dehy-

rogenase enzymes (11 β-HSD), in metabolic conditions (including

besity and diabetes) as well as those associated with adverse

geing (osteoporosis and sarcopenia) which are similar to those

ound in glucocorticoid excess ( Gathercole et al., 2013 ). 

The two isozymes of 11 β-HSD regulate glucocorticoid action

t a tissue level by shuttling them between active and inac-

ive forms. The type 1 enzyme (11 β-HSD1) amplifies local tis-

ue glucocorticoid levels by replacing the C11-keto group with a

11-hydroxyl group, converting endogenous cortisone to cortisol

 Gathercole et al., 2013 ). This activity is also critically important for

xogenously administered synthetic steroids, such as prednisone,

hich is converted by 11 β-HSD1 to its active form (prednisolone).

he type 2 enzyme 11 β-HSD2, on the other hand, catalyzes in vivo

ainly 1 the opposite reaction to 11 β-HSD1, enhancing the inactiva-

ion of cortisol/prednisolone to cortisone/prednisone. The question

s to whether altered metabolism due to more subtle changes re-

ated to ageing or individual genetic differences for example could

esult in changes in glucocorticoid responsive tissues and account

or adverse tissue effects is a compelling one. Assessing the vari-

tion in 11 β-HSD1 activity between individuals, and within indi-

iduals as a result of ageing and lifestyle changes, and the result-

ng morbidity is a significant question in the field of metabolic re-

earch. 11 β-HSD1 is widely expressed in metabolically active tis-

ues including liver, adipose, muscle, bone, skin and the central

ervous system and the enzyme has been implicated in the patho-

enesis of associated diseases ( Cooper et al., 1993; Tiganescu et al.,

013 ). Cell culture and animal models have suggested that 11 β-

SD1 is a major regulator of obesity and of the features of glu-

ocorticoid excess as seen in Cushing’s Syndrome ( Clayton et al.,

016; Markey et al., 2016; Morgan et al., 2016a; 2016b; 2014 ). Phar-

aceutical companies have developed a number of selective in-

ibitors of 11 β-HSD1 and are assessing their therapeutic potential.

There remains a lack of consensus on the most appropriate

iomarker to measure 11 β-HSD1 activity, which include urine

teroid metabolite ratios after 24 h collections, tissue biopsies to

easure activity and gene expression and dynamic tests such as

he prednisolone generation test. There are limited data on the lat-

er test, which involves administration of oral prednisone and se-

ial blood tests for measurement of prednisone and prednisolone

evels, representative of in vivo activation of this synthetic gluco-

orticoid. This information could inform future study protocols. 

Prednisone has an identical affinity for 11 β-HSD1 as cortisone

nd the interconversion of oral prednisone to prednisolone has

een used as a marker of predominantly hepatic 11 β-HSD1 activ-

ty (reflecting first pass metabolism) ( Gathercole et al., 2013 ). To

ate only a few studies have used the prednisone generation test

o gain insight into the potential benefits for well-being, healthy

geing and personalized medicine: Tomlinson et al. (2007) in-

estigated the effects of 11 β-HSD1 inhibition in different com-

artments with regard to adipose/fat tissue based on serum cor-

isol and prednisolone generation in 7 healthy male volunteers;

ooper et al. (2002) looked at in vitro (cell culture) activity (as
1 11 β-HSD2 is also catalyzing 11 β-HSD1 activation, but less efficient. 

e  

p  

s  
pposed to in vivo activity as we investigate in this contribution)

hile Hundertmark et al. (1997) and Chen et al. (1990) looked

t pharmacokinetics in 6 healthy males with IV administration of

rednisolone as opposed to prednisone. 

In vitro biochemical analysis of serum provides a method for as-

essing the activity levels of these enzymes. However it is unclear

ow informative serum activity data are regarding the dynamic

rocesses occurring in vivo . Methods aiming to answer this ques-

ion include in vitro-to-in vivo extrapolation (IVIVE) ( Cho et al.,

014 ) techniques, which have become an important tool for pre-

iction of human effective dosages. However, as pointed out in

ager et al. (2015) , IVIVE in general requires considerably more

xperimental and in silico data than alternative static models. A

ore direct measure of enzymatic activity in vivo is to introduce a

rescribed dose of the pharmacological cortisone analogue, pred-

isone, and to take time series data of the resulting blood concen-

rations, along with the active metabolite prednisolone. This paper

ackles the problem of how to analyse a data set consisting of such

ime series from a group of healthy volunteers. 

A classical pharmacokinetic approach to dealing with such

atasets is to combine multi-compartment ordinary differential

quation model with a mixed effects statistical model of inter-

erson variation ( Beal and Sheiner, 1982; Owen and Fiedler-Kelly,

014 ). The mean (“fixed effect”) and standard deviation (“random

ffect”) associated with the rate constants representing reactions

etween prednisone and prednisolone then provide measures of

entral tendency and variability in 11 β-HSD1/2 activity through

he population under study. For such systems there is often limited

ccess for inputs or perturbations and the mathematical models

hat are generated invariably include state variables with associ-

ted model parameters which are unknown and cannot be directly

easured. These limitations can cause issues when attempting to

nfer or estimate unknown model parameters from sets of obser-

ations and this can severely hinder model validation. It is there-

ore highly desirable to have a formal approach to determine what

dditional inputs and/or measurements are necessary in order to

educe, or remove these limitations and permit the derivation of

odels that can be used for practical purposes with greater con-

dence. Structural identifiability arises in the inverse problem of

nferring from the known, or assumed, properties of a system a

uitable model structure and estimates for the corresponding rate

onstants and other parameters. The analysis considers the unique-

ess (or otherwise) of the unknown model parameters from the

nput-output structure corresponding to proposed experiments to

ollect data for parameter estimation (under an assumption of the

vailability of perfect, noise-free observations). This is an impor-

ant, but often overlooked, theoretical prerequisite to experiment

esign, system identification and parameter estimation, since esti-

ates for unidentifiable parameters are effectively meaningless. If

arameter estimates are to be used to inform about intervention or

nhibition strategies, or other critical decisions, then it is essential

hat the parameters be uniquely identifiable. In this paper a struc-

ural identifiability analysis of a linear compartmental model de-

eloped to characterise prednisone kinetics is performed using the

aplace transform approach. This analysis demonstrates that from

 structural perspective the model is structurally locally identifi-

ble for the given system observations, thus providing more confi-

ence in the results obtained for subsequent numerical parameter

stimation using actual times series data for these observations. 

A “data driven” approach to analysing such a data set would

e to apply unsupervised clustering methods from the field of

achine learning such as k-means ( Bishop, 1995; Lloyd, 1982 ),

elf organizing maps ( Kohonen, 1982 ) and Gaussian mixture mod-

ls ( Feldman and Langberg, 2011 ), in which the data from each

articipant are considered as a vector from a high dimensional

pace. Clustering in the space of observed data either implicitly
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Table 1 

Subject characteristics of the 12 healthy adults recruited from the local population. The last column shows the maximum likelihood cluster membership 

estimate (see Section 3 ). 

ID Age (years) Sex BMI (kg/m 

2 ) Total Fat Mass (kg) Total Lean Mass (kg) Fasting Glucose (mmol/L) Cholesterol (mmol/L) Cls 

1 20 Male 25.0 16.1 59.0 5.1 4.2 C2 

2 69 Male 24.0 15.3 45.5 4.5 5.1 C4 

3 26 Male 25.9 17.5 57.7 5.1 4.3 C2 

4 57 Male 27.5 18.5 61.7 5.1 5.8 C1 

5 25 Male 24.1 20.2 46.1 5.5 3.4 C1 

6 54 Male 25.0 16.5 45.0 4.8 5.1 C2 

7 23 Female 22.2 17.2 40.7 4.3 4.3 C3 

8 64 Female 22.0 18.9 39.8 4.9 4.4 C4 

9 24 Female 21.4 18.2 42.6 4.5 5.1 C4 

10 50 Female 24.7 23.3 35.8 4.1 5.7 C2 

11 20 Female 19.9 10.9 36.3 5.0 3.8 C4 

12 60 Female 29.1 33.0 44.8 4.5 6.5 C2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Three-component model schematic. Fast processes ( P ��� L ) are represented 

with bold arrows. 
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or explicitly assumes a certain metric or structure of the data.

In this contribution we will pursue a hybrid multidisciplinary

approach of model based clustering integrated with structural

identifiability analysis for interpretation of parameter relations and

perturbation theory to reduce the dimensionality of the parame-

ter space. The core of our contribution is based on interpretable

probabilistic inferential models, aiming at grouping individuals in

the space of pharmacokinetic models based on observed data.

Each group/cluster is therefore represented by a prototypical prob-

abilistic model with a specific pharmacokinetic parameterisation.

This way our proposed strategy automatically constructs differ-

ent “population” models, that are therefore not defined based on

prior knowledge or experimental design, but come out naturally

as mixture component models of the global latent variable mix-

ture model. In contrast to data driven clustering techniques, we

can analyse the parameter relationships and investigate possible

or plausible physiological explanation. The investigation of further

phenotypic measurements of individuals more probable to be rep-

resented by the same cluster model might lead to new hypothesis

of interesting biomarkers for future investigation and clinical stud-

ies. This contribution therefore reveals both the capabilities and

limitations of pharmacokinetic modelling combined with param-

eter estimation and machine learning, demonstrated on a clinical

data set for prednisone conversion as an example of its potential

broader application to modelling of in vivo biochemical systems in

heterogeneous populations. 

2. Materials and methods 

2.1. Clinical data 

The investigations were performed in 12 healthy adults (6 men

and 6 women) recruited from the local population at the Queen

Elizabeth Hospital Birmingham with subject characteristics sum-

marized in Table 1 . Inclusion criteria included body mass index

between 20 to 30 kg/m 

2 , females in the follicular phase of their

menstrual cycle, and post-menopausal subjects off estrogen re-

placement therapy. Exclusion criteria included pregnancy, signifi-

cant past medical history (like diabetes mellitus), ischaemic heart

disease, cerebrovascular disease, respiratory disease and epilepsy,

use of drugs including glucocorticoids, beta-blockers, dopamine ag-

onists and anticoagulants. A clinical study in Birmingham was car-

ried out between October 2010 and March 2013. Participants ar-

rived at the NIHR-Wellcome Trust Clinical Research Facility in a

fasted state by 8:30 AM. Baseline blood tests were taken at ap-

proximately 9:00 AM and analysed for urea and electrolytes, lipids,

glucose (Roche Modular System), insulin (colourimatric ELISA from

Mercodia) in addition TSH and free T4 (Advia Centaur; Bayer Di-

agnostics) were sent. 10 mg of prednisone was then adminis-

tered orally with additional venous blood samples taken at 20-
in intervals over a period of 4 h with serum extracted and

nalysed for cortisol and cortisone serum concentrations by liq-

id chromatography-mass spectrometry as previously described

 Hassan-Smith et al., 2015 ). Observations including height, weight

nd blood pressure were recorded and body composition was as-

essed using Dual-energy X-ray absorptiometry (DXA) scannning

Hologic Discovery: version Apex 3.0, Hologic Inc). 

thical Approval. The study was approved by the Coventry and

arwickshire Research Ethics Committee (REC reference no.

7/H1211/68) and the Scientific Committee of the NIHR-Wellcome

rust Clinical Research Facility at the Queen Elizabeth Hospital

irmingham. 

.2. Linear kinetics, three compartment model 

The model ( Fig. 1 ) consists of three compartments, an unob-

erved stomach compartment S in which the prednisone formu-

ation is initially deposited after oral ingestion, a compartment P

epresenting blood concentration (nmol/L) of the inactive metabo-

ite prednisone, and a compartment L representing blood concen-

ration (nmol/L) of the active metabolite prednisolone. Reactions

etween the three compartments are assumed to have linear ki-

etics. This contribution focuses on the in-depth analysis of a lin-

ar kinetic example as a proof of concept, paving the way for anal-

sis with increased complexity, such as non-linear models, in the

uture. Rate constants for the linear kinetics include: k abs for ab-

orption of oral prednisone into the blood, k PL and k LP representing

1 β-HSD1 and 11 β-HSD2 activity converting the inactive metabo-

ite to active form, and vice versa, and excretion constants k Pex and

 Lex quantifying excretion from the blood of prednisone and pred-

isolone respectively. The enzyme activity is assumed to be signif-

cantly faster than either the absorption or excretion respectively,

ustified by the almost immediate presence in the blood of pred-

isolone observed experimentally. 
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With all reactions assumed to have linear kinetics, the mathe-

atical model therefore takes the form: 

dS 

dt 
= −k abs S , 

dP 

dt 
= k abs S − (k Pex + k PL ) P + k LP L , 

dL 

dt 
= k PL P − (k Lex + k LP ) L , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(1) 

ith initial condition [ S, P, L ] � = [ S 0 , 0 , 0] � at time t = 0 with ob-

ervations: 
 

y 1 
y 2 
y 3 

] 

= 

[ 

0 0 0 

0 1 0 

0 0 1 

] [ 

S 
P 
L 

] 

. (2) 

his model has six parameters, S 0 , k abs , k PL , k LP , k Pex and k Lex and

an be written more compactly in the form: 

dμ

dt 
= A μ, μ(0) = [ S 0 , 0 , 0] T , (3) 

y = Cμ (4) 

here μ(t) = [ S(t ) , P (t ) , L (t )] T , y includes the observable dimen-

ions y 2 and y 3 (corresponding to P and L ) as selected by matrix C

s given in Eq. (2) and the matrix A is defined by: 

 = 

[ −k abs 0 0 

k abs −(k Pex + k PL ) k LP 

0 k PL −(k Lex + k LP ) 

] 

. (5) 

he formulation Eqs. (2) –(5) explicitly defines model parameter

nd model output structure, which will be analysed in detail in

he following section. 

.3. Structural identifiability analysis 

In order to estimate the (unknown) model parameters from the

ata available it is necessary to include in the model output struc-

ure, which corresponds to the function of the model variables that

s to be compared with the data. Before actually collecting exper-

mental data it is necessary to test those model variables with re-

pect to this output structure for uniqueness, since estimates for

nidentifiable parameters are meaningless. Such a structural iden-

ifiability analysis ( Bellman and Åström, 1970 ) assesses whether

he observed model output contains enough information to deter-

ine all of the model parameters uniquely ( Jacquez, 1996 ), and

elates only to the structure of the model and output. For linear

ystems there are many well-established techniques for perform-

ng a structural identifiability analysis (for further details, and de-

ails of nonlinear approaches, see the tutorial by Godfrey and DiS-

efano III (1987) and other works in the same volume and the book

y Walter, 1982 ). 

Here the uniqueness, of the unknown parameters in a gen-

ral systems model is considered with respect to the outputs. Let

p ∈ � ⊂ R 

r denote a vector comprising the unknown parameters

n the model, which belongs to an open set of admissible vec-

ors ( Evans et al., 2002 ). To make the parameter dependence of the

odel outputs more explicit it is written y ( t , p ). 

Two parameter vectors p , p ∈ � are indistinguishable , written

p ∼ p , if they give rise to identical outputs: 

 (t, p) = y (t, p ) for all t ≥ 0 . 

or generic p ∈ �, the parameter p i is locally identifiable if there is

 neighbourhood, N , of p such that 

p ∈ N , p ∼ p implies that p i = p i . 

n particular, if N = � in the above definition then p i is globally

dentifiable , otherwise it is non-uniquely (locally) identifiable . Notice
hat, for a given output, a locally identifiable parameter can take

ny of a distinct (countable) set of values. If there does not exist a

uitable neighbourhood N then p i is unidentifiable and, for a given

utput, can take an (uncountably) infinite set of values. 

A system model is structurally globally identifiable (SGI) if all pa-

ameters are globally identifiable; it is structurally locally identifi-

ble (SLI) if all parameters are locally identifiable and at least one

s non-uniquely identifiable; and the model is structurally unidenti-

able (SU) if at least one parameter is unidentifiable. 

An established approach to identifiability analysis of linear sys-

ems is to take the Laplace transform, reducing the initial value

roblem to an algebraic one. Denoting the Laplace transform of μ

s, 

¯ (s ) = 

∫ ∞ 

0 

e −st μ(t ) dt , (6)

he initial value problem (3) is transformed to, 

μ(0) + s ̄μ(s ) = A ̄μ(s ) , (7)

ence, 

¯ (s ) = (sI − A ) −1 μ(0) . (8)

efining the characteristic polynomial, 

(s ) = det (sI − A ) = (s + k abs ) ·
(s 2 + (k Pex + k PL + k Lex + k LP ) s + k Pex k LP + k Lex k LP + k Pex k Lex ) (9) 

he solution in Laplace space for the observable components is, 

ˆ P (s ) 
ˆ L (s ) 

]
= 

[
ˆ μ2 (s ) 
ˆ μ3 (s ) 

]
= 

S 0 k abs 

χ(s ) 

[
k LP + k Lex + s 

k PL 

]
. (10) 

xpressing the solution in the form of rational functions yields: 

ˆ 2 (s ) = 

�1 s + �2 

s 3 + �3 s 2 + �4 s + �5 

(11) 

ˆ 3 (s ) = 

�6 

s 3 + �3 s 2 + �4 s + �5 

, (12) 

here the coefficients of the powers of s in the numerators and

enominators of Eqs. (11) and (12) are termed the “moment in-

ariants” for these input/output expressions and, in terms of the

riginal model parameters, are given by: 

1 = S 0 k abs , (13) 

2 = S 0 k abs (k LP + k Lex ) , (14) 

3 = k abs + k Pex + k PL + k Lex + k LP , (15) 

4 = k abs (k Pex + k PL + k Lex + k LP ) 

+ k Pex k LP + k Lex k LP + k Pex k Lex , (16 ) 

5 = k abs (k Pex k LP + k Lex k LP + k Pex k Lex ) , (17) 

6 = S 0 k abs k PL . (18) 

he moment invariants for the system are assumed to be measur-

ble (known) through the observations, and are considered unique.

he system is termed (globally/locally) identifiable if the mapping 

: [ S 0 , k abs , k PL , k LP , k Pex , k Lex ] 	→ [�1 , �2 , �3 , �4 , �5 , �6 ] (19)

s (globally/locally) invertible. Our system Eq. (1) is locally identifi-

ble with three possible solutions as follows from the six moment

nvariants Eqs. (13) –(18) : Eq. (13) implies that the product 

 0 k abs = �1 (20) 
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is structurally globally identifiable (SGI). With Eq. (20) substituted in

Eq. (14) it follows that �2 = S 0 k abs (k LP + k Lex ) and: 

�2 = �1 (k LP + k Lex ) 

⇒ the sum k LP + k Lex = 

�2 

�1 

(21)

is SGI. This substituted into Eq. (15) 

�3 = k abs + k Pex + k PL + (k LP + k Lex ) 

leads to: 

�3 = k abs + k Pex + k PL + 

�2 

�1 

implying the sum 

k abs + k Pex + k PL = �3 − �2 

�1 

(22)

is SGI. Furthermore, substituting Eq. (20) in Eq. (18) yields: 

�6 = S 0 k abs k PL = �1 k PL 

⇒ k PL = 

�6 

�1 

(23)

is SGI. Note also from Eqs. (23) and (22) that the sum 

k abs + k Pex = �3 − �2 

�1 

− �6 

�1 

(24)

is SGI. Eq. (17) 

�5 

k abs 

= k Pex k LP + k Lex k LP + k Pex k Lex 

substituted into Eq. (16) leads to: 

�4 = k abs (k Pex + k PL + k Lex + k LP ) + 

�5 

k abs 

and substituting Eqs. (21) and (22) results in: 

�4 = k abs 

(
−k abs + �3 − �2 

�1 

+ 

�2 

�1 

)
+ 

�5 

k abs 

, 

which yields a cubic equation in k abs : 

⇒ k 3 abs − �3 k 
2 
abs + �4 k abs − �5 = 0 . (25)

From analysis using Descartes’ rule of signs it can readily be shown

that Eq. (25) has three changes of signs in the coefficients, which

means it has maximal three positive (real) roots. Since the negative

polynomial f (−k abs ) has no change of sign it has no negative roots.

Furthermore, Eq. (17) can be written as 

�5 = k abs (k Pex (k LP + k Lex ) + k Lex k LP ) . (26)

In summary the structural identifiability analysis yields: 

1) k abs is structurally locally identifiable (SLI) with up to 3 possible

solutions. 

2) S 0 is SLI (based on Eq. (20) ). 

3) k Pex is SLI (follows from Eq. (24) ). 

4) k Lex and k LP are SLI (since k Lex + k LP is SLI seen by Eq. (21) and

k Lex k LP is SLI because of (1), (3), Eqs. (21) and (26) ). 

5) k PL is SGI (see Eq. (23) ). 

2.4. Dimensional analysis 

Because the model is linear, the dependent variables may be

scaled arbitrarily; choosing the initial stomach concentration S 0 
as the scaling factor and denoting dimensionless variables with

primes we have, 

S = S 0 S 
′ , P = S 0 P 

′ , L = S 0 L 
′ . (27)
aking as time-scale the inverse of the rate of absorption from the

tomach, i.e. t = k −1 
abs 

t ′ , the problem can be written in terms of di-

ensionless variables as, 

dS ′ 
dt ′ = −S ′ , 

dP ′ 
dt ′ = S ′ −

(
ηP + 

ρ

ε

)
P ′ + 

1 

ε
L ′ , 

dL ′ 
dt ′ = 

ρ

ε
P ′ −

(
ηL + 

1 

ε

)
L ′ , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(2 8)

ith initial condition (S ′ , P ′ , L ′ ) � = (1 , 0 , 0) � at time t ′ = 0 . The

roups ηP = k Pex /k abs and ηL = k Lex /k abs are the dimensionless ex-

retion rates of prednisone and prednisolone respectively, ρ =
 PL /k LP is the ratio between the rates of forward and backward

onversion between the inactive and active metabolites, and ε =
 abs /k LP the ratio between the rate of stomach absorption and rate

f backward conversion from the active to inactive metabolite. The

ssumption that conversion between metabolites occurs on a faster

ime-scale than absorption and excretion implies that ε  1. 

.5. Quasi-steady approximation 

While model (28) is linear and therefore can be readily solved

ia matrix exponentials, it is possible to exploit the small param-

ter ε to yield an even simpler system with two fewer free pa-

ameters. Eq. (28) for S ′ decouples and has the analytic solution

 

′ (t ′ ) = e −t ′ . Substituting for S ′ and adding the remaining equa-

ions yields the following equation for the dynamics of the total

nactive and active metabolites in the blood: 

d(P ′ + L ′ ) 
dt ′ = e −t ′ − ηP P 

′ − ηL ′ L 
′ , (29)

ith initial condition P ′ + L ′ = 0 at t ′ = 0 . 

Eq. (29) is exact. The presence of the small parameter ε moti-

ates seeking an approximate solution with a smaller number of

arameters. Examining Eq. (28) and retaining only terms O (1/ ε)

ields the quasi-steady approximation, 

P ′ ≈ L ′ , (30)

herefore, P ′ + L ′ ≈ (1 + ρ) P ′ ≈ (1 + ρ) ρ−1 L ′ . Intuitively, this rela-

ion can be interpreted as 11 β-HSD1 activity being sufficiently

apid that the ratio between active and inactive metabolites is ap-

roximately constant over the time-scales associated with absorp-

ion and excretion. Substituting into Eq. (29) we then have the ap-

roximate model for total metabolite dynamics, 

d(P ′ + L ′ ) 
dt ′ ≈ e −t ′ −

(
ηP + ρηL 

1 + ρ

)
(P ′ + L ′ ) , (31)

ith initial condition P ′ + L ′ = 0 at t ′ = 0 . The analytic solution is,

(P ′ + L ′ )(t) ≈ 1 + ρ

ηP ′ − 1 + ρ(ηL − 1) 

(
e −t ′ − exp 

(
−ηP + ρηL 

1 + ρ
t 

))
. 

(32)

The dimensionless metabolite concentrations can then be deter-

ined by substituting expression (30) into (32) to give 

 

′ (t ′ ) ≈ 1 

ηP − 1 + ρ(ηL − 1) 

(
e −t ′ − exp 

(
−ηP + ρηL 

1 + ρ
t ′ 
))

, (33)

 

′ (t ′ ) ≈ ρ

ηP − 1 + ρ(ηL − 1) 

(
e −t ′ − exp 

(
−ηP + ρηL 

1 + ρ
t ′ 
))

. (34)

he above can be derived formally as the leading order terms

n a perturbation expansion P ′ (t ′ ) = P ′ 0 (t ′ ) + εP ′ 1 (t ′ ) + . . . , L ′ (t ′ ) =
 

′ (t ′ ) + εL ′ (t ′ ) + . . . 

0 1 
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Fig. 2. Comparison between numerical solution of the full six-parameter model 

(1) and the approximate solution with four parameters given by Eqs. (36) and (37) , 

based on parameter values k abs = 4 , k PL = 90 , k LP = 30 , k Pex = 2 , k Lex = 1 . 6 , S 0 = 10 . 
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Following re-dimensionalisation, the approximate solution of

he system Eq. (1) can be expressed in terms of the original vari-

bles and parameters as, 

(t) ≈ S 0 exp (−k abs t) , (35) 

 (t) ≈ S 0 k abs k LP 

k PL k Lex + k LP k Pex − k abs (k PL + k LP ) 

·
(

exp (−k abs t) − exp 

(
−k LP k Pex + k PL k Lex 

k PL + k LP 

t 

))
, (36) 

 (t) ≈ S 0 k abs k PL 

k PL k Lex + k LP k Pex − k abs (k PL + k LP ) 

·
(

exp (−k abs t) − exp 

(
−k LP k Pex + k PL k Lex 

k PL + k LP 

t 

))
. (37) 

The following four-parameter approximate model μ( t ; w ) can

hen be defined for the observed variables P ≈ μ2 , L ≈ μ3 : 

2 (t; w ) = w 2 ( exp (−w 1 t) − exp ( −w 1 w 3 t ) ) , (38) 

3 (t; w ) = w 2 w 4 ( exp (−w 1 t) − exp ( −w 1 w 3 t ) ) , (39) 

here the parameter vector w = [ w 1 , w 2 , w 3 , w 4 ] 
� is related to the

hysical parameters by, 

 1 = k abs (40) 

 2 = 

S 0 k abs k LP 

k PL k Lex + k LP k Pex − k abs (k PL + k LP ) 
(41) 

 3 = 

k LP k Pex + k PL k Lex 

k abs (k PL + k LP ) 
(42) 

 4 = 

k PL 

k LP 

. (43) 

n Fig. 2 we see excellent agreement between the numerical solu-

ion of the six-parameter model Eq. (1) computed with the Mat-

ab function ode15s and the four parameters approximate solu-

ion given by Eqs. (36) and (37) , with parameter values k abs = 4 ,

 = 90 , k = 30 , k = 2 , k = 1 . 6 , S = 10 yielding ε = 0 . 133 . 
PL LP Pex Lex 0 
.6. Maximum likelihood estimation for clustering of 

harmokokinetic models 

The data for the absorption of prednisone and conversion to

rednisolone (abbreviated by P and L respectively) exhibit large

ariations in healthy individuals. Therefore, the question arises as

o whether there are groups of people with similar trajectories

ver the course of time and if those groups have common phe-

otypical characteristics. 

We assume the generating process for the observed data

an be reasonably well approximated by the simplified model

qs. (38) and (39) parameterised by w . The aim is to find pa-

ameter vectors w k corresponding to different models explaining k

roups of conversion behaviour over the course of time, such that

rednisone ( P ) and prednisolone ( L ) measurements in the serum

f subjects within a cluster are more similar compared to another

luster. We use Maximum Likelihood Estimation of a Gaussian

ixture Model explained in the following. The data set D = { D 

j } N 
j=1 

s composed of N individuals. For each participant j we assume a

ollection D 

j = { y j c (t 
j 
m 

) } o j c 
m =1 

of measurements of P and L at time

oints t 
j 
m 

. Here y 
j 
c with c ∈ {2, 3} corresponds to noisy measure-

ents of P and L , which are modelled by components μc of the dy-

amical system M approximated by Eqs. (38) and (39) . The number

f available observations of substance c and subject j is denoted by

 

j 
c and may vary across subjects. We assume that the observations

rom substances c are normally distributed with mean component

c and substance related variance σ 2 
c . Therefore, the probability of

 measurement y 
j 
c (t 

j 
m 

) being produced by component μc (t 
j 
m 

, w k )

s 

 (y j c (t j m 

) | w k ) = N (y j c (t j m 

) ;μc (t j m 

, w k ) , σ
2 
c ) (44) 

ig. 3 illustrates our machine learning model and assumptions

n the data. The curves denote the cluster model concentra-

ions of prednisone μ2 ( t ; w k ) (red) and prednisolone μ3 ( t ; w k )

blue), whereas differently shaped markers represent individual

easurements from participants for both compounds at differ-

nt time points y 
j 
c (t 

j 
m 

) respectively. The solid black line illus-

rates the normally distributed observations y 
j 
c=3 

(200) centered

t μc=3 (200 , w k ) with variance σ 2 
c=3 

. Since measurements of dif-

erent individuals are considered independent we write the like-

ihood of the data given parameters 
 = {{ w k , P (k ) } K 
k =1 

, { σc }} as

 (D | 
) = 

∏ N 
j=1 

˜ P (D 

j | 
) . We maximize the log likelihood: 

og P (D | 
) = 

N ∑ 

j=1 

log ˜ P (D 

j | 
) (45) 

sing a mixture model 

˜ 
 (D 

j | 
) = 

K ∑ 

k =1 

P k · ˜ P (D 

j | 
k ) (46) 

ith priors P k and 

˜ 
 (D 

j | 
k ) = 

3 ∏ 

c=2 

( 

o j c ∏ 

m =1 

P (y j c (t j m 

) | w k ) 

) 1 /o j c 

. (47) 

e weight each observation to account for the potentially varying

umber of successful measurements o 
j 
c per participant. 

For the EM algorithm we assume that the latent Bernoulli ran-

om indicator variable Z 
j 

k 
is 1 if the data collection D 

j was gen-

rated from the model parameterised by w k and 0 otherwise. The

omplete log-likelihood is given by 

 ({ Z j 
k 
} , D ) = 

N ∑ 

j=1 

K ∑ 

k =1 

Z j 
k 

log ( ̃  P (D 

j | 
k ) P k ) . (48)
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Fig. 3. Illustration of the data, variables and assumptions to train our cluster algorithm. P and L represent the compartments for blood concentration of prednisone and 

prednisolone respectively. The markers show example data from subjects with ID 1, 3 and 10 (see Table 1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Median log-likelihood and 50% IQR boxplot versus the number of clusters 

used for the “elbow” method to determine the number of clusters to model the 

data. 

Fig. 5. Complete linkage clustering based on pairwise probabilities P ij of partici- 

pant ID i and ID j appearing together in the same cluster throughout the experiment 

assuming 4 models. 
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The maximum likelihood estimate (MLE) is determined by

marginalizing the likelihood of the observed data by iterating over

2 steps: 

E: Since the complete likelihood is not known we calculate the

expected value of the log likelihood function with respect to

the conditional distribution of Z given D given the current

estimate of the parameters 
( t ) : 

Q(
| 
(t) ) = 

N ∑ 

j=1 

K ∑ 

k =1 

E[ Z j 
k 
] · log ( ̃  P (D 

j | 
k ) P k ) 

Q(
| 
(t) ) = 

N ∑ 

j=1 

K ∑ 

k =1 

γ (t) 
jk 

· log ( ̃  P (D 

j | 
k ) P k ) with (49)

γ (t) 
jk 

= 

˜ P (D 

j | 
(t) 
k 

) P (t) 
k ∑ 

l 
˜ P (D 

j | 
(t) 
l 

) P (t) 
l 

. (50)

M: Find the parameters maximizing the following quantity: 


(t+1) = arg max 



Q(
| 
(t) ) (51)

3. Results 

We performed experiments varying the number of clusters

from 2 to 6 possible models to represent the time course of pred-

nisone and prednisolone for the respective number of groups of

subjects. For each number of clusters we use leave-one-out cross

validation of the 12 people with 5 independent repetitions result-

ing in 60 clusterings for each experiment. The algorithm is always

initialized with individual fits of randomly chosen training subjects

corresponding to the number of clusters assumed. The resulting

median log-likelihood Eq. (48) and 50% IQR versus the number of

clusters is shown in the boxplot in Fig. 4 . Incrementing the number

of clusters up to 4 increases the performance considerably, after

that adding another cluster does not improve the clustering signif-

icantly. Based on this “elbow criterion” ( Ketchen and Shook, 1996 )

we further analyze 4 class clustering results in detail. 

For the investigation of the models and parameters we first

compute the probabilities P ij by counting how often two subjects i

and j appeared together in the same cluster throughout the 60 in-

dependent runs, assuming 4 clusters. We define 1 − P i j as the pair-

wise distance and perform complete linkage clustering as shown

in the dendrogram Fig. 5 . The cut-off value of 4 clusters is used as

cluster assignment Z 
j 

k 
to initialize our EM procedure once more to

find the final model parameters for detailed investigation. In this

last experiment we initialize by a least squares individual group
t based on 5 repetitions of random parameters and the resulting

nal models are shown in Fig. 6 . 

. Discussion 

The final trained cluster models are very robust with respect to

he random initialization in the training based on the given initial

 cluster assignment of participants extracted from the dendro-

ram Fig. 5 . Therefore, only the average parameters cluster mod-

ls are shown in Fig. 6 . Cluster 1 resembles the slowest absorption

f prednisone and also the least growing concentration of pred-

isolone in the blood. The second slowest absorption rate is cap-

ured by cluster 2. People assigned to that cluster reach higher lev-

ls of prednisolone. People in the fourth cluster reach higher con-

entrations of prednisolone 20 min after administration of pred-

isone and after 100 min it starts to decrease. The third cluster

ontaining only subject ID7 resembles an outlier from the data set.
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Table 2 

Relationship of the original parameters for the 4 cluster models shown in Fig. 6 . We show means and 

standard deviations based on 5 random initializations. 

k Lex = a · k Pex + b

C S 0 · k abs = k PL = a b 

1 3.74362 (0.00976) 5.02783 (0.00614) · k LP −0 . 19889 (0.0 0 024) 0.00480 (0.0 0 0 05) 

2 5.47217 (0.00744) 6.00644 (0.00293) · k LP −0 . 16649 (0.0 0 0 08) 0.00391 (0.0 0 0 05) 

4 21.34430 (0.01347) 7.40155 (0.00212) · k LP −0 . 13511 (0.0 0 0 04) 0.01675 (0.00999) 

3 34.35457 (0.02879) 12.56240 (0.00352) · k LP −0 . 07960 (0.0 0 0 02) 0.01116 (0.0 0 021) 

Fig. 6. Four learned models of prednisone (P; dashed lines) and prednisolone (L; solid lines) blood concentrations and the actual measurements of the 12 subjects ( Table 1 ). 
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Fig. 7. Linear relationship of k Pex and k Lex for clusters C1 − C4 from Fig. 6 . The cir- 

cle mark the point were k Pex = k Lex . 
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he conversion pattern of this subject is very different compared

o all other individuals in this data set. 

With the knowledge about the functional relationships of the

arameters from the identifiability analysis we can investigate the

rained parameters and investigate possible explanations for the

ehaviour. In order to view the relationship for the original param-

ters ( Fig. 1 ) we solve the linear equation system Eqs. (40) –(43) for

ach of the cluster models. The mean and standard deviation of

hose relationships for each cluster based on the 5 random initial-

zations is shown in Table 2 . Very small standard variations quan-

ify the above statement that the final cluster models are very ro-

ust with respect to random initialization. The excretions of pred-

isolone k Lex and prednisone k Pex exhibit a linear antiproportional

elationship: the more prednisone is excreted the lower the rate

or prednisolone. Only a small interval of k Pex values is possibly

ependent on the value of b where k Lex is larger (see Fig. 7 ). The

lusters C 1, C 2, C 4 to C 3 exhibit increasing absorption rate S 0 · k abs 

f prednisone into the blood as can be seen from Table 2 . Pred-

isone is converted to prednisolone by a factor of 5 times faster

han that for cluster 1. For the other clusters this factor is increas-

ng. 

After estimating the final cluster assignment we got back to our

edical expert asking for additional information about the par-

icipants to investigate characteristics within the same cluster. Of

ourse, due to the small sample size the following analysis is only

xploratory and we cannot make strong claims, but the investiga-

ion might lead to new hypothesis and provide some evidence for

nteresting measurements for future clinical studies. Therefore, we

ompute the Area Under the Curve (AUC) of prednisolone conver-
ion of each cluster model k : 

UC = 

∫ t=240 

t=0 

μ3 (t; w k ) (52) 

nd weight it with the trained mixture component γ jk for each

articipant j resulting in an individual AUC value dependent on

he membership in each cluster. We test the association between

hese AUC values and measurement of the additional clinical satel-

ite data for each individual. First we observe that there are no

trong correlations between the age or BMI in general, with a p -

alue of .45 and .128 respectively. Cortisol on the other hand is

orrelated to the AUC and exhibits a p -value of .006, which is not

ery suprising since prednisolone is a synthetic derivative of cor-

isol processed by the same enzymes as modeled here. Since the
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hormonal activity of female and male population is different we

furthermore investigate the correlation dividing the groups by gen-

der. There is some indication that specific measurements could be

interesting as subject for further investigation, for example we ob-

serve a p -value of .029 for the BMI within men, while it is .47 for

the female participants. The investigation of the phenotypic mea-

surements of individuals that are more probable to be represented

by the same cluster model might therefore lead to new hypothesis

of potentially interesting biomarkers for future investigation and

clinical studies. 

5. Conclusions and future work 

The core of our contribution is based on interpretable prob-

abilistic inferential models aiming at clustering pharmacokinetic

models for the absorption of prednisone in the blood. The collec-

tion of all individual blood measurements is modelled as a proba-

bilistic latent variable model with pharmacokinetic models playing

the role of mixture components. Therefore, each group or cluster

is represented by a prototypical probabilistic model with a specific

pharmacokinetic parameterisation. This way our proposed strat-

egy automatically constructs different “population” models, that

are therefore not defined based on prior knowledge or experimen-

tal design, but come out naturally as mixture component models

of the global latent variable mixture model. In contrast to solely

data-driven clustering techniques, we can analyse the parameter

relationships and investigate possible or plausible physiological ex-

planation. The strategy is suitable for sparse measurements, which

is especially beneficial if these are collected by an invasive proce-

dure. Our approach is designed for time series measurements po-

tentially taken at different time points and is demonstrated on a

clinical data set investigating the in vivo glucocorticoid activation

by 11 β-HSD1/2 activity in healthy adults. 

The model was thoroughly studied by identifiability analysis

and then approximated using the perturbation method. The latent

variable mixture of pharmacokinetic models is trained by an Ex-

pectation Maximization strategy, which is a widely used efficient

natural choice for the estimation of such latent variable models.

We achieved robust results for 4 prototypical cluster models re-

sembling the prednisone/prednisolone concentration in the blood

over the course of 240 min after admission of the drug for the 12

subjects in the data set. We observed a weak correlation of the

AUC of prednisolone concentration in the blood with respect to

the cluster models and the BMI of male suspects, which does not

seem to be immanent for the female participants. The investigation

of further phenotypic measurements of individuals more probable

to be represented by the same cluster model might lead to new

hypothesis of interesting biomarkers for future investigation and

clinical studies. With the availability of more data in the future

the approach can be extended to non-linear pharmacokinetic mod-

els, while this contribution serves as a proof of concept. Our pro-

posal emphasise the potential of exploratory analysis of partially

observed time series data by combining pharmacokinetics, struc-

tural identifiability analysis, dimensional analysis/perturbation the-

ory with machine learning. 
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