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Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune

diseases. TLS present features of secondary lymphoid organs such as segregated T

and B cell zones, presence of follicular dendritic cell networks, high endothelial venules

and specialized lymphoid fibroblasts and display the mechanisms to support local

adaptive immune responses toward locally displayed antigens. TLS detection in the

tissue is often associated with poor prognosis of disease, auto-antibody production

and malignancy development. This review focuses on the contribution of TLS toward

the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones

and post-translational modifications, responsible for the pathogenicity of locally formed

autoantibodies, during autoimmune disease development.

Keywords: tertiary lymphoid structures (TLS), autoantibodies, germinal center response, glycosylation, B-cells

INTRODUCTION

The polyclonal expansion of autoreactive B cells is a cardinal feature of autoimmune conditions.
Whether directed against a single antigen or playing part in a poly-specific response, autoreactive
B cells support the persistence of the autoimmune process and, in several cases are directly
pathogenic.

The development of an autoreactive B cell repertoire during the natural history of the
autoimmune condition is regulated by the process of affinity maturation against single or multiple
autoantigens that occurs within the inner part of the B cell follicles, classically within secondary
lymphoid organs (SLOs) (1). Formation of B cell follicles and germinal centers (GC) has been
also described in ectopic or tertiary lymphoid structures (TLS) in a process defined “ectopic
lymphoneogenesis.” TLS form at target organs of chronic inflammatory/autoimmune process,
localized infections and in the areas surrounding solid tumors (2–11). The prognostic value of these
structures is debated. TLS formation in target organs autoimmune disease is classically associated
with disease persistence and worst clinical manifestations. In solid tumors TLS have instead been
associated with the generation of an anti-tumor response, however in some cases the ability of
tumor cells to induce T regulatory cells (Treg) and suppress the host immune response has been
described Table 1.

Often indicated as “tertiary lymphoid organs,” TLS fail to adhere to the proper definition of
organs as they lack a stable structural organization, including a capsule, and are better classified
as “tertiary lymphoid structures” or TLS (97). TLS are not present in embryonic life and form in
adult life to support local aggregation of lymphocytes at the target organ of disease. Other terms
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TABLE 1 | TLS in different conditions.

Disease Type Localization Specific antigens
identified?

Role/prognosis Human studies Mouse studies

GPA/WG AID Lungs ANCAs pathogenic (12, 13)

Hashimoto’s Thyroiditis AID Thyroid Thyroglobulin,

Thyroperoxidase

pathogenic (14, 15) (16, 17)

MS AID CNS Myelin (in mice) pathogenic (18–21) (22–28)

Myasthenia gravis AID Thymus Acetylcholine

receptor

pathogenic (29, 30) (31)

Primary biliary cirrhosis, AID Liver No N/A (32)

Rheumatoid Arthritis AID Synovium RF, Citrullinated

proteins

pathogenic (33, 34) (33, 35)

Sjogren’s Syndrome AID Salivary/Lachrymal

glands, Lung

SSA/Ro & SSB/La pathogenic (36–38) (39, 40)

SLE AID Kidneys No pathogenic (41) (42, 43)

Breast cancer Can Breast Tumor associated

antigens

favorable (44–47)

Colorectal cancer Can Colon No favorable (48, 49) (49)

Lung cancer Can Lung No favorable (50, 51)

Ovarian cancer Can Ovarian No favorable (52)

Melanoma Can Skin No favorable (53)

PCD Can Pancreas No favorable (54)

Prostate cancer Can Prostate No favorable (55)

Atherosclerosis CID Arteries No protective (in mice) (56, 57) (58, 59)

COPD CID Lung No pathogenic (in mice) (60–64) (60, 62, 65)

IBD CID Gut No pathogenic (in mice) (66–69) (70–74)

PSC CID Liver No N/A (75)

Lyme disease Inf Joints No direct evidence N/A (76)

HCV Inf Liver No direct evidence N/A (77–80)

Heliobacter pylori Inf Gastric wall No direct evidence Pathogenic (81–83) (84)

Mycobacterium tuberculosis Inf Lungs No direct evidence Protection against pathogen (85–87) (85, 86, 88)

Allograft transplants Tra Heart, lung,

kidney

Allo-antigens Highly controversial (89–94) (95, 96)

GPA/WG, Granulomatosis polyangiitis/Wegener’s granulomatosis; COPD, Chronic Obstructive Pulmonary Disease; IBD, Inflammatory Bowel Disease; PSC, Primary Sclerosing

Cholangitis AID, Autoimmune disease; CID, Chronic inflammatory disease; PDC, Pancreatic duct carcinoma; HCV, Hepatitis C virus; Can, Cancer; Tran, Transplantation; Inf, Infection.

(Note: Studies on mice are presented only if there is evidence from human studies for the presence of TLSs in these different conditions).

including “ectopic lymphoid structures” (ELS) or “ectopic
germinal centers”. The latter, however, should only be used when
GC formation is determined histologically within the ectopic
lymphoid tissue (97–101). The cross-over between TLS and SLO
is the subject of debate and has been reviewed by ourselves and
others in recent publications (9, 98).

The term “tertiary lymphoid” tissue in the literature dates back
to 1992 and was introduced by Louis Picker and Eugene Butcher
(102) to describe the formation of extra-lymphoid sites, where
memory lymphocytes and/or precursors can be re-stimulated by
antigen to induce further clonal expansion or terminal effector
responses. By definition, TLS arise in tissues whosemain function
is other than the generation of immune cells or the initiation of
an adaptive immune response. This excludes the bone marrow
and thymus, (as primary lymphoid organs) and spleen, lymph
nodes and Peyer’s patches (which are defined as SLOs). The
kidneys, heart, pancreas, synovium and salivary glands are not
embryologically predisposed to host the presence of lymphoid

tissue therefore lymphocyte assembly at these sites should be
considered TLS. The liver provides a hematopoietic function
during embryonic development (103) however, this function is
lost postnatally, thus including this organ among those that host
TLS in adult life (97).

TLS form in response to a series of pro-inflammatory
cytokines and TNF receptor family members following the local
cross-talk between inflammatory immune cells and resident
stromal cells. Fibroblasts, perivascular myo-fibroblasts and
resident mesenchymal cells have been differently implicated
in TLS development (39, 75, 104–112). Their role has been
recently reviewed elsewhere (97, 113, 114). Probably evolved
before SLO, TLS might have developed in ectopic tissues to
fulfill the survival need of aggregated leucocytes, prior to
placentation and development of SLOs. As such, the ability
of TLS to be initiated independently from Lymphotoxin
(LT) upon the expression of inflammatory cytokines and
in absence of lymphoid tissue inducer cells (LTi) might
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have remained as heritage of their developmental ancestry
(97).

Physiologically, the generation of a humoral response requires
the physical interaction of naïve B cells with antigen experienced
T cells within the confined space of a microenvironment
rich in survival and chemotactic factors (115). Lymphocytes
are recruited from the bloodstream to the SLO in response
to a chemotactic gradient that regulates cell positioning and
interactions (116, 117). CXCL13 and CCL19/CCL21, ligands
for the chemokine receptors CXCR5 and CCR7, respectively,
regulate the recirculation of naïve B cells between the inner
part of the B cell follicle to the outer area of the T/B cell
boundary (118), thus enabling the contact of B cells with antigen-
experienced, activated T cells (119). Within the follicles, antigen-
experienced B cells migrate toward the dark zone of the GC, a
highly hypoxic CXCL12-rich area. Within this area they become
highly proliferating centroblasts and upregulate the enzyme
activation-induced cytidine deaminase (AID) (120, 121), that
regulates the introduction of single base-pair substitutions of
antibody gene segments in the immunoglobulin (Ig) variable-
region genes, in a process defined as somatic hypermutation
(SHM) (122).

Following SHM, B cells stop proliferating and undergo the
process of affinity maturation (123). Differentiated, non-dividing
B cells (centrocytes) upregulate CXCR5 and migrate along
the CXCL13 gradient toward the GC light zone (120), herby
establishing connections with the network of follicular dendritic
cells (FDC) that provide survival factors (124, 125) and antigen
presentation via the CR2 receptor (125, 126). Within the light
zone, centrocytes also encounter mature T follicular helper
cells (Tfh), known to provide signals for selection and terminal
differentiation into long-lived plasma cells or memory B cells
(127–130). Once exited from the GC, affinity matured B cells
undergo the process of class switch recombination (CSR), that
regulates isotype switching and ultimate effector function of the
immunoglobulins (Igs). This latter process is also regulated by
AID (130–142) (Figure 1A).

This organizational program in SLOs is maintained by
the anatomical differentiation of specialized, resident stromal
cells that regulate migration and functional activation of the
immune cells in the different part of the follicle (138, 143–
149). The development of this stromal network and the signals
required for his homeostasis have been reviewed elsewhere
(150). TLS display a similar anatomical structure to support
naïve B and T cell recirculation, including the expression
of homeostatic lymphoid chemokines CXCL13, CCL21 and
CCL19 and the molecular complex peripheral node addressin
(PNAd) (97, 98, 151, 152). However, the complex anatomical
compartmentalization displayed in SLO is rarely acquired in TLS.
While the majority of reports on TLS describe a certain degree
of T/B cell segregation, vascular/stromal cell specialization and
expression of lymphoid chemokines, the presence of a more
complex organization of the TLS and the formation of functional
GC is highly variable within and amongst diseases (4, 153–
155). In TLS that form during chronic autoimmune processes,
the establishment of such disorganized microenvironment, rich
in survival factors and pro-inflammatory cytokines, but likely

missing key checkpoints for autoreactive cells screening, is likely
responsible for the local generation of pathogenic autoantibody
specificities and oncogenic mutations, ultimately favoring disease
progression (1, 9, 97, 98).

TLS IN AUTOIMMUNE CONDITIONS: A
LESSON FROM RHEUMATOID ARTHRITIS
AND SJÖGREN’S SYNDROME

In 1996, Nancy Ruddle described the presence of a “structural
chronic inflammatory process” caused by ectopic production
of lymphotoxin, in the context of chronic inflammation of the
pancreas (156). Since then, TLS formation has been associated
with a localized process of inflammation at sites of infection,
autoimmunity, cancer, and allograft rejection. The ultimate
pathogenic role of TLS is still debated (98, 151) and most likely
depends on the context, organ and type of disease. For the scope
of this review we will focus on the role of TLS in supporting the
autoimmune process in chronic autoimmune conditions and we
will discuss the role of TLS in Rheumatoid Arthritis (RA) and
primary Sjögren’s Syndrome (pSS) (33, 36, 135, 151, 157–162).

RA is the most common rheumatic autoimmune condition,
affecting 0.5–1% of the global adult population. The pathological
features of the disease include severe inflammation of the
synovial membrane that, in some cases, leads to tissue destruction
and subchondral bone erosions (163–166). Histologically, the
disease can be classified in 3 main histopathological subtypes:
a lymphoid type, mainly characterized by T and B cell
aggregates that form TLS; a myeloid type, characterized by diffuse
infiltration of prevalent monocyte and macrophages; and the
fibroid type, defined by scarce or no immune cell infiltration and
prevalent synovial fibroblast hyperplasia (151).

The presence of a “. . .marked infiltration of chronic
inflammatory cells (lymphocytes or plasma cells predominating)
with tendency to form “lymphoid nodules” was recognized already
in the 1957 RA classification criteria (167). In 1972, Munthe and
Natvig suggested that the RA synovial membrane is similar to an
active lymphoid organ, containing many lymphoid follicles with
GC that undergo local division and differentiation into plasma cells
with restricted Ig production (168). Later, Steere and colleagues
described “elements found in normal organized lymphoid tissue”
in synovial lesions from both RA and Lyme disease patients
(169); suggesting that the formation of GC-like structures in
the synovium is not specific for RA and can be driven by
the local antigenic stimulation. It took, however, more than
40 years after these first descriptions to introduce the concept
that B-cell affinity maturation could arise within the inflamed
synovium (170). It is now accepted that TLS are present in
less than half of RA patients who display so called “lymphoid”
synovitis (151) and that, in those patients, the presence of TLS is
associated with differential prognosis and disease manifestations
(151). TLS formation in the synovia have been also identified
in patients with psoriatic arthritis (171) and ankylosing
spondylitis (172, 173).

A similar phenomenon of leucocyte aggregation in lymphoid
like structures occurs in the salivary glands of patients affected
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FIGURE 1 | (A) In TLS, naïve B cells (NB), enter the follicle to initiate a classical germinal center reaction. In the dark zone, centroblasts (CB) proliferate and acquire

somatic hypermutations in their variable region. In the light zone, centrocytes (CC) are selected after their interaction with specific antigen found on the surface of

follicular dendritic cells (FDCs). Lectin-BCR signaling can potentially result in enhanced selection of B cells. Failure to receive survival signals from either TFH (T follicular

helper cells) or FDCs leads to B cell apoptosis. Successful affinity maturation results in either mature B cell (MB) of plasma cells generation. GC microenvironment can

control the outcome of the immune response by regulating the glycosylation profile of the antibodies. (B) TLS display a less organized anatomical structure and a

predominant infiltration of MB and marginal zone B cells (MB). Aberrant production of survival and chemoattractant signals is observed at these sites.

by pSS, a disease characterized by chronic inflammation
of the exocrine glands, with progressive loss of function
(sicca syndrome) and systemic activation of the humoral
response (174). Excessive B cell hyperactivity and extra-glandular
manifestation are observed in ∼30% of pSS patients and an
increased risk for lymphoma development has been described
in this condition. In 1974, Chused et al. first described the
presence of lymphoid-like structures in the salivary glands of

patients with pSS (175). This was followed by the report of local
antigenic stimulation within GC-like structures in the salivary
glands (176) and, 10 years later, by the description of FDC
network formation within the aggregates (177). In 1998, Stott
and colleagues provided the first experimental evidence of an
antigen-drivenGC response, defined by clonal B cell proliferation
and clone hypermutation within the salivary gland inflammatory
foci (37), and, since then, several features associated with
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lymphoneogenesis have been reported within pSS aggregates
(157, 178).

It is now recognized that during pSS, TLS form in the
minor salivary and/or parotid gland in around 30–40% of
patients (151) and those structures host a phenomenon of
oligoclonal B cell expansion and SHM of the Ig variable genes
(37). The formation of TLS in pSS salivary glands correlates
with increased B cell hyperactivity, the presence of anti-
SSA and anti-SSB autoantibodies, hypergammaglobulinemia
and cryoglobulinemia, supporting the hypothesis that TLS
persistence contributes to disease progression in pSS (179).
Our group has contributed to these reports, describing both
the expression of lymphoid chemokines and of AID within
highly organized aggregates that harbor in the salivary gland
of patients with pSS and MALT lymphoma (135, 180). The
relationship between TLS formation and disease progression in
pSS is still debated. TLS detection has been associated with
high antibody titer, systemic manifestations and lymphoma
development. However, the direct correlation between GC
formation in the salivary glands and lymphoma formation has
not been demonstrated, suggesting that the development of GC+
TLS within the salivary glands represent one of the stages in the
process of lymphomagenesis but is not per se sufficient to induce
lymphoma (135, 154, 161, 180–182).

In order to better understand the pathogenic effect that TLS
play in disease it is important to dissect the elements, present
within these structures that contribute to their function and
persistence in the tissue.

STRUCTURAL ELEMENTS OF TLS

Antigen
There is enough evidence to support the hypothesis that TLS
form to provide an immune response against locally displayed
antigens. There are suggestions that TLS formation is an antigen
(Ag)-driven process. In the mucosal associated lymphoid tissue
that forms during Helicobacter Pilori gastritis antigen clearance
following antibiotic treatment impacts on TLS maintenance and
progression to lymphoma (183), similarly inducible bronchial
associated lymphoid tissue can dissolve upon antigen clearance
(184). Maffia and colleagues explored the properties of Ag
presentation within TLS (58, 185) demonstrating that Ag
presentation is regulated by a random process of diffusion, rather
than selective Ag uptake by DCs. Those data are reinforced by
the anatomical structure of TLS where conduits, able to support
Ag movement and APC migration have been described (186). In
this context, the absence of a capsule could favor not only the
initial Ag delivery in the tissue, but the progressive accumulation
of new antigen specificities during the course of the immune
response, favoring the persistence of these structures in the
tissue.

During a classical immune response, the antigens are collected
by antigen presenting cells in the periphery and moved, via a
complex network of lymphatic vessels, to draining lymph nodes
(LNs) (187–189). LN space is pre-formed during the embryonic
development and anatomically set before the generation of
the immune response to accommodate optimal interaction

between APC, Ag and immune cells. Differently by SLOs, TLS
organization is not anatomically predisposed to organize such a
response and Ag presentation is often provided by non-immune
cells, such as stromal cells and epithelial cells (190–193).

Lack of Ag drainage could mechanistically explain TLS
formation. TLS form spontaneously in the lungs of mice deficient
for CCR7, a chemokine receptor required for the migration of
antigen-charged dendritic cells (DCs) to draining lymph nodes
(194). However, the reconstitution of these animals with CCR7-
sufficient cells is enough to re-establish the physiological delivery
of the antigen to the lymph node and to induce TLS resolution
in the tissue. This evidence appears to suggest that an intrinsic
defect in DCs is sufficient to trigger TLS establishment. However,
it is not clear whether this phenomenon could be also supported
by a defect of lymphatic drainage from the inflamed tissue.

The expansion of a functional network of lymphatic vessels
is required for appropriate antigen delivery to the SLOs. There
are several reports describing the dramatic remodeling of the
lymphatic vessels during inflammation, whereby the activation
of NF-κB pathway supported by the expression of LT, IL-1 and
TNFα, stimulates the expression of Prox1 and increases the
transcripts for the VEGF-R3, both of which are factors involved
in lymphoangiogenesis (195–201). TLS lack the presence of an
organized lymphatic system such as the one described in SLOs
(152). However, the expansion of the lymphatic vascular system
has been observed in these structures, in response to the same
cytokine milieu that regulates the maturation of the non-vascular
stroma at these sites (97, 105). It is not clear whether these
newly formed vascular structures are, however, able to establish
viable connections with pre-existing lymphatics. The failure to
do so would prevent efficient drainage of the antigen to the SLOs
and support the excessive antigenic stimulation in the peripheral
tissue (89, 202–206).

Lymphangiogenesis associated with tertiary lymphoid
structure (TLS) has been reported in numerous studies. Defects
in lymphangiogenesis in RA present with a reduction in
lymphatic flow, absence of lymphatic pulse and collapse of
draining LNs is observed during disease and is associated with
flare onsets as has been shown in vivo and ex vivo studies
performed by Schwarz and colleagues (207). Accordingly,
effective therapeutic approaches in RA, including anti-TNF and
B cell have been associated with the expansion of the lymphatic
bed (208) and increase in cell drainage from the synovium (209).

In a model of pSS our group demonstrated that during TLS
assembly an expansion of the lymphatic vascular network takes
place and this is regulated by the sequential engagement of IL-7
and LTβR signaling; suggesting the presence of a natural pro-
resolving mechanism for lymphocyte exit from the tissues during
TLS establishment (105).

The open questions related to the mobilization of Ag loaded
APC to the draining SLOs could be addressed in the future
by inducing TLS formation and tracking the movement of
labeled antigen-loaded DCs across vessels. The possibility to
interfere pharmacologically or genetically with the process of
lymphoangiogenesis and with the molecules responsible for cell
migration across these structures, is likely to elucidate this
complex phenomenon and to provide evidences on the role of
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aberrant antigen presentation and vascular disturbances in TLS
establishment and persistence.

Both RA and pSS are characterized by antibody production
against a discrete set of autoantigens and a large body of research
in this area has been focused around the identification of antigen
specificities within the TLS in the context of these diseases. The
presence of citrullinated proteins has been reported within the
synovia of RA patients by Baeten (210) and others, and associated
with the local expression of the enzyme peptidyl arginine
deiminase (PAD) in patients characterized by high systemic and
local levels of anti-citrullinated antibodies (APCA) (211). This
report fails to demonstrate the presence of the citrullinated
proteins within the synovial TLS and is in disagreement with
other studies reporting the detection of citrullinated proteins in
non-RA synovium lacking classical TLS (212); casting doubts on
the exclusive association between citrullinated protein expression
and TLS development in RA. Additional evidence that associate
the presence of TLS with the generation of auto-antibody
specificity against citrullinated peptides (but not necessarily local
display of the defined antigen) will be discussed in a different
section of this review.

Stronger evidences supporting the link between TLS and local
auto-antigen presentation have been provided in pSS. Ro/SSA
52 kDa, Ro/SSA 60 kDa and La/SSB belong to a intracellular
complex of RNA binding proteins that is physiologically
involved in the intrinsic response to viruses (213). The aberrant
expression of Ro and La has been reported in pSS patients upon
cellular apoptosis or extracellular transport in vesicles (214–216).
Moreover, the presence of anti-Ro52/TRIM21 specific plasma
cells has been demonstrated, at the boundaries of well-organized
TLS in pSS salivary glands, establishing a clear connection
between local antigen presentation and TLS formation in this
disease (158). The presence of extractable nuclear antigen
(ENA) antibodies against these two ribonucleoproteins is
pathognomonic for Sjogren’s and associated with more severe
systemic manifestation and worst prognosis (214, 216, 217).

Lymphocytic Components of TLS
We have recently reviewed the role of non-haematopoietic cells
in TLS establishment and organization (97, 98) and for the
scope of this issue focused on autoantibodies, we will limit the
discussion in this manuscript to the lymphocytic compartment.

Whilst mainly constituted of B cells and associated
with aberrant humoral responses and GC formation, TLS
establishment and maintenance strongly relies on T cells. In
humans, the presence of a shared TCR specificity among different
follicles in the RA synovium, has been described, suggesting the
presence of a common antigen for different TLS that form within
the synovial tissue (218). In line with this finding, depletion
of CD8+ T cells in human synovium-SCID mouse chimeras
hinders the formation on TLS (218).

Recently, efforts have been made to identify the cells and
signals required for TLS establishment and a series of reports have
highlighted the important role of IL-17+ T cells. Th17 cells are
required for iBALT formation (219) and for TLS establishment in
a model of experimental autoimmune encephalomyelitis (EAE);
the latter, dependent on the production of LT-αβ, IL-17 and IL-22

(22, 23, 220, 221). In human renal allograft rejection, Th17 cells
have been shown to promote ectopic GC formation in an IL-21
dependent manner (222). Aberrant differentiation of Th17 cells
in the absence of IL-27 has been also associated with aberrant TLS
formation in an experimental model of arthritis and in a model
of pSS (223, 224).

Our group has recently demonstrated the requirement of IL-
22 producing T cells in the early phases of TLS establishment
in murine salivary glands (39). In this model, IL-22 production,
similarly to the IL-17 production in the lungs and brain, appears
to regulate, independently but also in synergy with lymphotoxin
and TNF, the ectopic production of lymphoid chemokines that
defines TLS formation (97). These studies demonstrate that T
cells, and in particular Th17/Th22 cells, play an important role
in shaping the constituents of TLS in a manner that can support
subsequent B cell recruitment and germinal center formation.

Whether TLS provide a site of aggregation for naïve T
cell is not clear and whilst naïve T cell recruitment and
priming has been reported within TLS that form in pancreatic
tissue in NOD mice (225), it is more likely that effector T
cells and central memory recirculate in these structures, in
particular in the earliest phases of TLS assembly. On the
contrary it is now well accepted that TLS function as a site
for functional T cell polarization. TLS maintenance appears
to hinge on the functional relationship between T-follicular
helper cells and regulatory T cell populations. T cells displaying
a Tfh phenotype have been described in TLS, where they
are expected to regulate the GC reaction and the activation
of resident proliferating B cells (1). In the TLS that form
outside the arterial wall and control the atherosclerotic plaque
development, the presence of Tfh correlates with the organization
and maintenance of the ectopic B cell clusters (226). Functional
interference of the Tfh by ICOS-L blockade results in decreased
TLS formation and aberrant atherosclerotic plaque formation.
The opposite effect is obtained by depletion of T regulatory
cells, previously demonstrated to play a critical role in the
homeostatic control of the TLS and in the atherosclerotic
process (58).

The developmental program of Tfh in TLS is debated. There
are suggestions that this population in TLS derives from a
population of peripheral CXCR5+ T cells that migrate to
the peripheral tissue following the newly established CXCL13
gradient. These circulating CXCR5+ cells do not bear classical
signs of activation and would, by definition, preferentially
migrate to SLOs; however, the local differentiation of HEVs and
the expression of PNAd (the ligand for L-selectin) supports their
homing to the TLS (227). Others suggest that, within TLS, Tfh

locally differentiate from other T cell subpopulations, including
Th17. In support of this hypothesis, in EAE, Th17 cells appear
to acquire some characteristics of Tfh including the expression
of CXCR5, ICOS and Bcl6 (23). Similarly, within the inflamed
joints of RA patients, a population of PD1hiCXCR5−CD4+ T
cells termed “peripheral helpers” has been described that appear
to fulfill the function of Tfh within the periphery (228). In pSS the
expansion of Tfh cells has been reported and correlates with the
increasing frequency of memory B and plasma cells in the tissue
and blood (229, 230).
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Genetic manipulation in conditional knockouts is currently
in use to induce TLS formation in mice deficient for specific
T cell populations and will allow better definition of cellular
requirements for TLS formation.

Classically, fully established TLS are mainly characterized by
B cell infiltration and the inversion of the B/T cell ratio within
TLS has been used as an index of disease severity (231, 232). In
SLO, naïve B cells are known to receive antigen education and
co-stimulation; however, whether a similar phenomenon would
regularly occur in TLS is debated. Patients with pSS display
altered peripheral blood B cell frequencies with a predominance
of CD27− naïve B cells, diminished frequencies/absolute
numbers of CD27+ memory B cells in the periphery, and an
enrichment of mature B cells in the salivary glands (233, 234).
The presence of CD20+CD27+ B cells and plasmablasts is a
consistent finding in pSS salivary glands biopsies (235). Whilst
we have reported the presence of IgD+ naïve B cells, in particular
in large TLS (180), memory B cells remain the predominant
component of the infiltrates (180, 236). This casts doubts
over the possibility that naïve B cells are primed within the
TLS (235). In support of this hypothesis, bona fide GC B cells
(CD10+CD21+/−CD24+/−CD27−CD38+IgD− that express
AID) are rarely found within the B cell aggregates of TLS, that are
mainly inhabited by CD10−CD21+CD24+CD27±CD38−IgD+

marginal zone-like type II transitional B cells (159) (Figure 1B).
The connection between the marginal zone (MZ) and TLS

establishment is also not clear. There are several evidences
supporting the involvement of MZ B cells in autoimmunity,
including reports of preferential SHM and B cell proliferation
in MRL Fas/lpr mice spleen (237) and the presence of RF+

cells in the splenic marginal sinus bridging channels (238).
The low threshold of BCR activation, the numerous effector
functions of MZ B cells and the link between autoimmunity,
TLS and MZ lymphoma development in pSS suggests a direct
involvement of this population in TLS pathology (239, 240).
However, the origin of the MZ-like B cells and the relationship
between those and the ectopic GC has not been proven. In
humans, MZ B cells are allegedly able to recirculate and carry
a highly mutated B cell receptor (241–243), thus suggesting a
post-GC origin of this population. This is not the case in mice,
where MZ B cells are stable and permanently located in the
spleen (242–244). Interestingly, however, MZ-B cells in humans
share some phenotypic features of transitional B cells, a highly
autoreactive B cell population that emerge from the BM and
mature inside the spleen before entering the follicle (245–248),
suggesting the possibility that transitional immature autoreactive
cells are inhabiting the ectopic follicles. The recirculation pattern
and screening of transitional B cells has been described from
Spencer and co-authors in an elegant work that describes the
migration and BCR editing of this population in the gut-
associated lymphoid tissue (GALT) (245). This process, aimed
at modifying the specificity of autoreactive clones, is altered in
systemic lupus erythematosus (SLE), resulting in the expansion of
the autoreactive B cell repertoire (245). In diseases characterized
by TLS formation, such as pSS and RA, this recirculation pathway
could be also altered, favoring the migration of autoreactive
clones from the lymphoid organs to the TLS. Hereby, the aberrant

expression of survival factors and chemokines would support
clonal expansion in the absence of BCR editing and support
persistence of autoimmunity.

The use of mass cytometry on digested tissue and sections
are needed to better characterize in humans the phenotype and
functional features of the B cells inhabiting the TLS. The use of
transgenic mice engineered to track cells in vivo (249) will be
useful in inducible models of TLS to perform migration studies
in vivo.

TLS AS ABERRANT
MICROENVIRONMENTS FOR
AUTOREACTIVE B CELL SURVIVAL AND
DIFFERENTIATION

More than simply acting as a hub for lymphocyte migration,
TLS have also been shown to provide critical survival signals
for incoming lymphocytes and differentiated long-lived plasma
cells such as BAFF, IL-7, and CXCL12 (98, 250). The persistence
of TLS in the tissue, despite peripheral B cell depletion of post
Rituximab, has been reported in RA (251), SS and lymphoma
(252) and, more recently in peri-bronchial TLS described in
two patients with cystic fibrosis and chronic Pseudomonas
aeruginosa infection treated with B cell depletion therapy before
transplantation. The reason for this persistence most probably
resides on the excess survival factors, such as B cell activating
factor (BAFF) or IL-7 present within the TLS that protects tissue
infiltrating cells.

BAFF is a potent B-cell survival factor produced within
SLO GCs and in the periphery by fibroblasts and epithelial
cells (159, 248–253) Excess BAFF is known to rescue self-
reactive B-cells from peripheral deletion and allows their entry
into forbidden follicular and marginal zone niches (253). The
connection between BAFF, MZ B cells, loss of tolerance and TLS
emerged from studies in mice transgenic for BAFF (BAFF-Tg),
that develop a lupus-like syndrome followed by infiltration of
MZ-like B cells within salivary glands TLS (254). Interestingly,
BAFF-Tg asplenic mice that lack MZ-B and B1a cells, but retain
normal B1b cell numbers, develop lupus nephritis but lack TLS
in the salivary glands, suggesting that both BAFF and MZ-B cells
are required for TLS establishment in this model (255).

Other lymphoid survival cytokines including IL-7 have been
described in association with TLS establishment in chronic
diseases (162, 256–258). Gene expression levels of IL-7, IL-7
receptor (both IL-7Rα and IL-2Rγ subunits) and its downstream
signaling gene JAK3 are significantly elevated in RA patient
biopsies displaying TLS (259). Similarly, engagement of the IL-
7/IL-7R axis has been linked to formation of TLS in salivary
glands and associated with pSS pathology (22, 23, 33, 36, 37, 39,
58, 75, 89, 102–112, 112–262). Among other critical homeostatic
functions, IL-7 can abrogate the suppressive ability of Treg,
altering the balance between pro-inflammatory effector cells
vs. suppressive T cells (162, 256, 258). Consistent with these
observations, in vivo studies demonstrated the ability of IL-7 to
induce TLS formation (263–265). The reciprocal expression of T
and B cell survival factors in TLS is somehow strictly regulated by
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the critical balance between infiltrating T and B cells, probably in
response to gradients of lymphotoxin and TNF family members.
The mechanism regulating this production and the resulting
segregation of lymphocytes in T or B cell rich areas is still under
investigation (266).

We and others have provided evidence that a functional GC
response takes place within these structures. This supports the
concept that even if TLS do not initiate disease they are involved
in its progression. In particular, we have demonstrated that AID is
expressed in pSS salivary gland TLS in association with networks
of follicular dendritic cells (135) and that its expression is retained
in the large GCs found in parotid pSS-MALT lymphomas. On
the contrary, neoplastic B cells are found to be consistently
negative for AID expression (135). AID expression in GC B
cells controls susceptibility to apoptosis, ultimately regulating
the magnitude of the GC response (267). In SLO, low levels
of AID expression have been associated with defective somatic
hypermutation and decreased peripheral B cell tolerance (268).
AID expression in TLS is consistently low (as compared to SLOs),
thus potentially explaining the aberrant survival and lack of
selection of autoreactive B-cell clones in ectopic GCs.

Other data have been generated supporting the functional role
of TLS in sustaining the generation of novel antibody specificities.
Transplantation of TLS from pSS salivary glands infected with
Epstein-Barr virus (EBV) into SCID mice have been shown
to support the production of anti-Ro 52/anti-La 48 and anti-
EBV antibodies and the survival of autoreactive B cell clones
(158). Similar data have been produced for RA. The presence of
CD138+ plasma cells, characterized by immune reactivity against
citrullinated fibrinogen, has been described within AID+/CD21+

follicular structures (33). Moreover, the survival of these clones in
a transfer model of human biopsies in SCID mice, alongside the
detection of gamma-Cmu circular transcripts in synovial grafts,
has been reported. These observations provide evidence that
synovial TLS represents an independent compartment for B cell
maturation (33).

AUTOANTIBODY PRODUCTION GOES
LOCAL

The contribution of the immune response that arises within
TLS toward disease severity, including the production of
autoantibodies, remains controversial (151). Nonetheless there
are substantial evidences in support of local antibody production
within the inflamed synovium and convincing documentation
that the synovial microenvironment could independently favor
the production of RA specific antibodies (33)

Mellors et al. firstly described the presence of “plasma B
cells” that are able to react with FITC-labeled human IgG,
interpreting this result as evidence of synovial production of
rheumatoid factors (RF) by tissue-resident plasma cells (269).
The first solid indication of local IgG production in RA is dated
to 1968 with the report of Ig synthesis in rheumatoid synovium in
vitro (270). Further studies supported this observation suggesting
that gene selection, usage of kappa/lambda chains and class
switching follows a non-stochastic process in the RA synovium

(168). Similarly, the enrichment in RF+ B cells producing mono-
reactive, affinity matured, class switched antibodies in the RA
synovium is highly suggestive of a local process of affinity
maturation (271–273). On the contrary, clones producing mono-
reactive RF have not been obtained from the synovial tissue of
patients with osteoarthritis, where TLS do not form, supporting
the link between chronic autoimmune diseases and TLS (271–
275).

The production of anti-citrullinated protein antibodies
(ACPA) has been firmly associated with RA development (276)
and there are convincing evidences that these specificities can
be locally produced in the RA synovium within the TLS (277,
278). Both anti-cyclic citrullinated peptide (CCP) antibodies
(279) and anti-CCP producing B cells (280) have been detected
in the synovial fluid of RA patients and antibodies against
different citrullinated RA candidate antigens (vimentin, type
II collagen, fibrinogen and α-enolase) appear to be enriched
in the joint compared to paired serum (281). Notably, the
presence of anti-CCP antibodies in the synovium has been also
reported in RA seronegative patients (279, 282), thus highlighting
the dissociation between the systemic and local autoimmune
response. In support of this notion, the presence of FcRL4+

ACPA producing IgA-B has been reported in the synovium,
but not in the blood of RA patients (283). This observation
provides an indication that inflammatory joints provide a specific
microenvironment able to shape and influence B cell immune
phenotype and output.

The ability of TLS to sustain the whole autoimmune process
in the absence of SLO is debated. However, cloning of the
local B cell repertoire isolated from inflamed organs bearing
TLS is highly suggestive of the presence of a functional and
SLO-independent process of affinity maturation. Terminally
differentiated CD20−CD38+ cells, rheumatoid factor (RF)
producing B cells have been detected in the inflamed joints
of RA patients (284). Moreover, clonal analysis has provided
evidence of an antigen-dependent process of SHM, selection and
isotype switching in TLS positive RA synovium, indicating that
a dominant antigen-specific local immune response shapes the
synovial plasma cell repertoire (170, 285–290). Similarly, in pSS,
the multiclonal expansion of B cells within the salivary glands has
been described. Expansion of B cell clones bearing Humkv325, a
conserved V kappa gene usually associated with lymphomas, was
described previously in 1989 (291). Additional studies further
supported the notion that an antigen-driven germinal center-type
B cell response and somatic hypermutation occurs within the
salivary glands (37, 292, 293). The presence of clones that expand
and mature in the TLS does not prove that the autoimmune
process is initiated within the TLS, or that the presence of TLS
is causative of disease. However, a certain degree of antigen-
experience and affinity maturation of the B cell repertoire
undoubtedly occurs within TLS (33, 135, 153, 160, 294–296) and,
whilst the causal role of these structures in disease initiation
cannot be proved, TLS certainly display the ability to host and
perpetuate the autoimmune process. Production of Ig and RF
has been shown in other tissues, in addition to the synovium,
including rheumatoid pericardium (297), pleura (298), muscles
(299), and in the inducible bronchus-associated lymphoid tissue
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(iBALT) in patients with pulmonary complications of RA (219).
The presence of sputum autoantibodies in the absence of systemic
seropositivity, and the increased autoantibody:total Ig ratio in the
sputum (300) suggest that lymphoid tissue present in the bronchi
of RA lungs can also act as sites of antibody development.

Independent IgG and IgM synthesis has been also described
in pSS salivary glands (301) with later studies confirming
the presence of RF+ clones in ∼43% of patients with pSS
(302) and with the ability of salivary gland infiltrating B
cells to secrete antibodies specific for the Ro52/TRIM21,
Ro60 and La autoantigens (36, 179, 217, 303). In vitro
expression of recombinant antibodies derived from either newly
emigrant/transitional mature naïve B cells from pSS patients and
healthy individuals confirmed the presence of high frequencies
of autoreactive antibodies in both populations. This suggests a
general defective peripheral B cell tolerance in this condition
(304).

Analysis of Ig levels in different compartments (blood, saliva)
has further contributed to our understanding of the ability of
TLS to independently produce antibodies. Increased levels of IgA,
but not IgG- and IgM-RF, has been detected in the saliva of
patients with pSS (305). A study on isotype distribution of anti-
Ro/SS-A and anti-La/SS-B antibodies in the plasma and saliva of
patients with pSS demonstrated a correlation between the focus
score (the measured degree of salivary gland inflammation) and
autoantibody titers in saliva or blood. This report establishes a
pathogenic link between locally displayed autoantigens, presence
of antigen specific B cells in the inflamed tissue and autoreactive
Ig levels (306).

IMMUNOGLOBULINS AND
GLYCOSYLATION: THE SWEETER THE
BETTER?

It is becoming increasingly clear that antibody post-translational
modifications, in particular glycosylation, can influence their
function and pathogenicity. However, a relationship between
the pathogenic microenvironment established in the TLS and
the progressive acquisition of pathogenic post-translational
modifications has not been demonstrated.

Glycosylation is the process by which glycans are attached
to proteins, lipids and other molecules, thereby altering their
structure and influencing their biological activity. Whilst IgG
presents a single conserved N glycosylation site within the Fc
region, other subclasses are more heavily glycosylated (307). IgG
Fc glycosylation determines the binding of the globulins to their
receptors, FcRs type I (FcgammaRs) and II (SIGN-R1, DC-SIGN,
DCIR, CD22, and CD23), thereby influencing Ig downstream
pro-inflammatory, anti-inflammatory or immunomodulatory
effects (308, 309). In addition to conserved IgG Fc glycans,
∼15–25% of serum IgG contain glycans within the Fab domain.
Intriguingly, the attachment sites for N-glycans to the Fab
portion is determined by the process of somatic hypermutation
and, accordingly, Fab glycosylation could influence antibody
binding, activity, half-life, formation of immunocomplexes and
strength of BCR signaling [extensively reviewed in (310)].

The presence of altered glycosylation in RA was suggested
in the 1970s, but it wasn’t until 1985 when two studies from
Oxford and Japan demonstrated different galactosylation profiles
between normal individuals and patients with RA or OA (311).
Later, Axford and colleagues reported the presence of reduced
circulating B cell galactosyltransferase activity in RA (312), which
was later confirmed in other studies (313–315). Other post-
translational modifications have been described in RA. Several
studies have demonstrated the presence of an altered overall
glycosylation status within specific Ig subclasses (316) that can be
detected before disease onset (317). This correlates withmeasures
of disease activity (318, 319) and decreased sialylation of RF-IgG,
but not in non-RF-IgG (318, 320, 321).

More recently, the degree of IgG glycosylation has been
used to monitor treatment effectiveness (321) and, whilst no
differences have been observed in the Fc glycosylation pattern
between ACPA-IgG1 and total IgG1 in arthralgia patients, a
decrease in galactose residues have been observed in patients with
preclinical synovitis before the onset of RA; a change probably
supported by the increasingly inflammatory microenvironment
(322). The increased presence of agalactosylated IgG in the
synovial fluid as compared to serum samples of RA has also been
reported (323). Finally, Scherer et al. recently demonstrated the
presence of autoreactive IgG in synovial fluid with decreased
number of galactosylation and sialylation sites as compared
to serum. This latter difference appeared to be specific for
autoreactive specificities as no difference was observed in total
IgG glycosylation (324).

Elevated levels of asialylated IgG have been detected in
60% of pSS patients and those appear to correlate with
clinical manifestations, such as Raynaud’s phenomenon and
arthritis. A strong correlation with rheumatoid factor or IgA-
containing immune complexes was reported (325). Based on IgG
galactosylation, the pSS patients can be classified into two groups:
one with comparable galactosylation status as in RA patients with
the presence of RF, and the other similar to healthy individuals,
and RF seronegative (326).

More recently, studies on Fab glycosylation and disease
have been performed. Corsiero and colleagues reported the
relationship between increased molecular weight of anti-NET
antibodies and the presence of N-glycans onto the Fab domain
of autoreactive clones in RA, suggesting that the process of SHM
occurring in the synovium is responsible for the acquisition of-N
glycosylation sites (286). Acquisition of N-glycosylation sites and
subsequent enrichment in Fab-glycans in the variable domain of
ACPA-IgG has been further confirmed (327, 328). On a similar
note, it has been reported that there is a selective increase in
Fab-N glycosylation sites in ACPA specific clones. However,
the presence of those glycans didn’t appear to significantly
alter the antigen binding of the APCA. Accordingly, in silico
analysis suggested that the added glycans were not located
on the antibody binding sites (329). Moreover, an increased
frequency of N-glycans in the Fab ACPA domain, but in
association with altered antibody affinity, has been also reported
(330). Interestingly, this enrichment was more prominent on
ACPA isolated from synovial fluid compared with peripheral
blood (264), providing evidence that the local microenvironment
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influences the immunoglobulin glycosylation pattern. Hamza
et al. recently reported the high prevalence of acquired IgG N-
glycosylation sites in pSS suggesting a hypothesis that in pSS,
the selection pressures that shape the antibody repertoire in the
parotid glands results from an antigen-independent mechanism
and is driven by interactions between glycosylated B cell receptors
and lectins within the microenvironment (328). In summary,
the glycan composition can have different associations with the
disease, depending on the site of glycosylation. Decreased and
increased glycosylation for the Fc and Fab portion, respectively,
have been associated with RA and SS.

A relationship between post-translational modifications
and antibody pathogenicity has been proposed. Leader
et al. reported the presence of agalactosylated IgG in
synovial immunocomplexes, suggesting a pathogenic role
for agalactosylated IgG (331). However, the relationship between
glycosylation and RF activity is debated (318, 332). The presence
of N-linked glycosylation sites within the Fc portion of target
IgG has been also shown to markedly reduce RF binding in
vitro (333) whilst the ability of rheumatoid factors to selectively
bind hypogalactosylated IgG has been suggested (334). In
mice, desialylated but not sialylated immune complexes appear
to enhance osteoclastogenesis in vitro (335). Accordingly,
artificial sialylation of anti-type II collagen antibodies, including
ACPAs, but not other IgG can supress the development of
collagen-induced arthritis (CIA) (320, 336).

A potential pathogenic role of IgG glycosylation in pSS
pathogenesis, to our knowledge, has not been addressed yet. A
recent study pointed out that the Fc-mucin binding is enhanced
when antibodies are agalactosylated, offering a mechanistic
concept for increased binding on mucosal surfaces of the
inflammatory agalocysylated antibodies and potential antibody
pathogenicity (337).

Agalactosylated IgG levels were not found to be correlated
in twin pairs indicating a low influence from genetic factors
for IgG glycosylation (338). However, four loci contained
genes for glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and
MGAT3) have been highlighted in genome-wide association
studies for loci associated with IgG N-glycosylation (339). There
is evidence to support the notion that the microenvironment
can influence Fc IgG glycosylation. A recent study illustrates
the ability of CpG, IFN-gamma and IL-21 to increase Fc-linked
galactosylation and reduce bisecting N-acetylglucosamine levels
(340). Stimulation of a mouse B cell lymphoma line with IL-4 and
IL-5, but not LPS, has been shown to significantly decrease the
terminal glycosylation of secreted IgA (341) and IgM (342), but
substantially increase the terminal glycosylation of MHC Class-
I (342), suggesting that the glycosylation machinery works in a
protein-specific manner.

A mechanistic link between inflammation and post-
translational modification has been recently established by G.
Schett’s group in a manuscript illustrating the ability of IL-21
and IL-22 to regulate the expression of α2,6-sialyltransferase-1
in newly differentiating plasma cells, thus controlling the
glycosylation profile of secreted IgG (320). Interestingly, both T
cell-independent B cell activation (343) and tolerance induction
with T cell-dependent protein antigens (344) results in the

production of sialylated IgG. However, T cell independent
vaccination seems to result in a stronger induction of sialylated
antigen specific antibodies (345).

IgG glycosylation can also be controlled at an extracellular
level. IgG sialylation has been reported in the bloodstream,
through secreted ST6Gal1 (326). S-glycosyltransferases have also
been shown to alter the IgG molecule at sites of inflammation
with local platelets serving as nucleotide-sugar donors (346).
Other reports link the process of altered glycosylation to a
post-secretory degradative process involving oxygen free radicals
(347). All together these reports suggest the possibility that
the site of antibody synthesis can profoundly affect the post-
translational profile of the immunoglobulins.

Due to technological limitations, the extent of the
disease-related glycan alterations and the role of these
modifications in disease pathophysiology has not been
thoroughly addressed. A novel microfluidic-based method
to identify trace sulphated IgG N-glycans as biomarkers for
rheumatoid arthritis has been recently described (348) and
high-throughput methods for analysing IgG glycosylation have
also been introduced (349). These tools have been only used
in selected populations and their application on a larger scale
could, in the future, unveil differences and patterns not yet
captured.

To our knowledge, there has been no attempt to use these
stratification tools in the context of TLS associated pathologies.
The differential profile of glycosylation observed in Ig isolated,
respectively from serum and synovial compartments suggest the
fascinating hypothesis that SLO and TLS differentially regulate
these post-translational modifications (323, 324, 350). However,
the possibility that Ig derived from SLO and TLS present
substantially different “sugary fingerprints” and that those
patterns correlate with a certain degree of tissue involvement and
disease progression has still to be proven.

TLS AND LYMPHOMAGENESIS

If the concept of an association between progressive post-
translational modifications of the Ig repertoire and continuous
antigen exposure within a highly inflammatory environment
is true, we should be able to detect progressive accumulation
of Ig in patients undergoing malignant transformation through
the course of autoimmunity. The occurrence of non-Hodgkin’s
lymphoma (NHL) is pathogenically linked to TLS and represents
the most serious complication of pSS, but not RA (351).

B cell VH and VL gene analysis for pSS patients with
lymphoma revealed several point mutations in the germline
genes and intra-clonal sequence heterogeneity, in line with an
ongoing somatic hypermutation process sustaining lymphoma
growth (352, 353). It is believed that the emergence of
monoclonal RF B cells within the polyclonal infiltrate of the
salivary gland TLS represents a key developmental step in
lymphomagenesis. Chromosomal abnormalities and mutation
eventually converge in these B clones that present a proliferative
advantage, ultimately converting them into malignant clones.
Indeed, there is a strong bias for RF specific B cells in the salivary
gland MALT-type lymphoma (354–356), whilst alternative
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analysis of the B cell repertoire in micro dissected labial salivary
glands could not convincingly demonstrate predominance of
RF reactivity in the infiltrating clones (357). The relationship
between GC formation and lymphomagenesis has been recently
challenged and further studies will be required to clarify the
pathogenic link between TLS persistence and emergency of
malignant clones (161, 182, 358, 359).

The high incidence of acquired N-glycosylation sites found
in follicular lymphoma (360) would be suggestive of a similar
phenomenon in pSS associated MALT lymphoma; however,
contrary to these expectations, patients with MALT lymphoma
present low frequency of N-glycosylation sites (161, 182,
358, 359, 361). Longitudinal analysis of the glycosylation and
sialylation profile in patients with TLS undergoing lymphoma
transformations are needed to address these questions.

FUTURE PROSPECTIVE AND
CONCLUSIONS

In conclusion, TLS formation can be easily considered as a
hallmark of tissue autoimmunity. In the past few years a large
body of work has been generated aimed at dissecting key
aspects of TLS biology, however, many areas have to be further
addressed. The inter-dependency between SLOs and TLS has
to be better dissected in order to understand whether these
immune hubs are functional, both in the early phases as tolerance
is broken and, later, during disease progression. The signals
regulating migration pathways and differentiation of immune
cells within the TLS should also be investigated in vivo with

the prospective to target these pathways therapeutically. A better
knowledge around the signals involved in TLS establishment
and maturation, but in particular, the mechanisms regulating
GC formation and regulation should be acquired. Moreover, a
specific effort should be made to dissect the functional role of
TLS GCs in the development of lymphoma. Finally, key questions
should be answered around the cross-talk between the TLS and
their surrounding environment, dissecting the permissive factors
for TLS formation and persistence in the tissue.

The acquired knowledge on the role of non-haematopoietic
stromal cells in TLS biology has been critically important in
explaining why these structures are resistant to classical immune
cell therapy. In the future, potential combined therapy could
be utilized to interfere with the microenvironment alongside
targeting immune cells in TLS associated disease that is non-
responsive to classical immunosuppression.
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