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Abstract 

A multi-setup additive manufacturing (AM) platform that integrates the powder bed fusion (PBF) technology with 

a range of complementary pre- and post-processing steps has the potential to be an appealing and flexible 

production solution for addressing the technical requirements of the existing and new products. Especially, such 

multi-step manufacturing solutions could overcome the limitations of standalone additive, subtractive, replication 

and surface engineering processes by reinforcing their complementary capabilities. However, the lack of 

specially developed system-level tools to address interoperability issues in integrating PBF with other 

technologies leads to high uncertainty and overall risk in producing parts that incorporate geometries with 

different manufacturing requirements, e.g. parts with areas that can be cost-effectively machined while others 

require AM solutions. To address such open issues, this paper presents the development of generic hardware 

and software integration tools that can improve the system level performance of AM enabled process chains. In 

particular, the research reports the design and implementation of modular workpiece holding system and quality 

control strategy that can warrant the production of parts encompassing structures with distinctly different 

manufacturing requirements. An experimental validation of the proposed tools was performed to assess their 

capabilities in producing parts with high accuracy and repeatability. The results demonstrate that their synergistic 

utilisation can lead to significant improvements in producing AM sections on top of pre-machined preforms in 

regards to their positional accuracy and repeatability. It was observed that the positional accuracy in the hybrid 

additive-subtractive parts was improved thirtyfold with the system level tools from 0.604 mm and 0.442 mm to 21 

µm and 10 µm along X and Y axes, respectively. 

Keywords: Additive manufacturing, process chains, laser-based powder bed fusion, hybrid 

manufactured products, modular workpiece holding system, quality control strategy 
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1. Introduction 

In the fast-evolving technology markets, new and innovative products are being continuously developed with 

significantly improved performance in order to meet the rising global consumer requirements for their greater 

efficiency, customisation and better quality [1]. At the same time, such novel products should be fabricated with 

more sustainable manufacturing technologies that are capable of delivering higher productivity rates, reduced 

energy consumption and material usage, and thus lesser environmental impacts [2]. Therefore, various 

manufacturing processes such as milling, electrical discharge machining (EDM), laser machining (LM),  additive 

manufacturing (AM) and metal injection moulding (MIM) have been employed in fabricating new metallic products 

with continuously greater complexity as they can provide reliable and concurrently scalable solutions at relatively 

low manufacturing costs [3].  However, individual and/or stand-alone manufacturing processes often fail to 

deliver products that meet all the requirements concerning accuracy, geometrical complexity, surface integrity 

and manufacturing costs [3, 4]. This is due to their intrinsic technological limitations such as their capacity of 

processing certain materials only, inability to produce complex geometries or inhibitive production costs for use in 

high volume production [5]. Examples of such critical technological constraints of manufacturing processes 

include: 

• The shapes and sizes of milling cutters introduce constraints with respect to the size and the geometrical 

complexity of features that can be fabricated, e.g. internal vertical edges have corner radius and thus the 

edge sharpness is greatly determined by the tool diameter. The reduction of tool diameter can adversely 

affect the removal rates and process robustness and hence can significantly increase the manufacturing 

costs due to tool wear and breakage. In addition, the smaller tools require machine tools that support higher 

spindle speeds, thereby maintaining the high-speed machining (HSM) conditions required by the latest 

generation of milling cutters [6]. Another important requirement that could be considered as a constraint too 

when HSM complex structures is the use of computer aided manufacturing (CAM) software. Especially, the 

efficient use of such CAM tools require experienced operators to select specialised HSM machining 

strategies and then to validate the generated HSM toolpaths [7]. 

• AM processes can produce complex geometrical features but in general manufacturing companies are 

reluctant to adopt this relatively new technology due to the following reasons: (i) its efficient use 

necessitates experience and skill sets that are substantially different from those required to operate 

conventional machine tools; (ii) the availability of data preparation tools for achieving a fully digital 

information flow between design, AM processes and other post-processing steps; (iii) in the majority of 

cases, near net shape parts require post processing operations to meet their surface integrity and accuracy 

requirements [8, 9]; (iv) the existence of metallurgical defects, such as residual stresses and internal 

porosity due to unmelted/partially melted powders and gas entrapment, which can significantly impair the 

material’s mechanical properties [10]; (v) it is considered as a standalone process that is difficult to 

integrate with other necessary pre- and post-processing steps in existing manufacturing systems. As a 

result the AM processes are considered not sufficiently mature production solutions yet that can address 

the requirements of niche markets only, particularly for prototyping and small batch manufacture [11]. 

• MIM can be used to manufacture cost-effectively complex, near net shape metal parts in medium to large 

series which is typically more than 10,000 parts per year. A good dimensional control can be achieved while 

the surface finish, usually less than 1 µm (Ra), is sufficient in many application areas without any 

subsequent operations. Nevertheless, the MIM process has some limitations/constraints, such as:  (i) high 

tooling costs and therefore a viable manufacturing alternative for producing medium to large series of parts 

only; (ii) any process flexibility for producing parts with small variations require more complex tooling 

concepts with exchangeable inserts; (iii) the MIM parts should have a planar bearing surface for placing 

them in sintering furnaces; (iv) in most cases MIM is not suitable for producing big parts due to difficulties in 

maintaining an acceptable dimensional accuracy, high material costs and the necessity to use bigger 
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sintering furnaces; (v) big variations in wall thicknesses can lead to deformations due to inhomogeneous 

shrinkage during sintering. Therefore, the MIM’s efficient deployment require these constraints to be taken 

into account in part’s design and thus to minimise the manufacturing cost without impacting on part’s quality 

[12,13]. 

• Non-conventional technologies such as EDM and LM have relatively low material removal rates in 

comparison to mechanical machining processes and they often deliver a stochastic manufacturing 

performance due to the large number of process variables [14, 15]. 

The above mentioned limitations affect the capabilities of individual processes and thus the manufacturing 

options to meet the constantly growing requirements of the existing and newly immerging products. Therefore, 

the research community and industry have proposed more novel and flexible production solutions that integrate 

two or more technologies synergistically, referred to as hybrid manufacturing systems, to address their limitations 

as stand-alone processes [3-5, 16]. This is achieved by combining the capabilities of individual technologies and 

thus to capitalise on their complementarity. The literature review of hybrid manufacturing solutions reveals that 

the concept and its pilot applications have attracted considerable interest both from researchers and companies 

over the past ~10 years. Therefore, it is no surprising that a plethora of research efforts are focused now on 

developing this concept further and more importantly on its implementations in different contexts both by industry 

and academia [3-5, 16-18].  

Combinations of laser-based additive manufacturing with subtractive machining processes (for example, micro-

milling) are currently one of the important research and development directions in hybrid manufacturing. This is 

primarily due to these processes’ capabilities of adding and removing material selectively with controlled 

resolution and thereby addressing geometrical complexity in parts (internal and overhanging features), while 

reducing the material wastage and excessive cutting tool usage simultaneously [16, 19]. The industrial uptake of 

such manufacturing solutions is also demonstrated through the introduction of a number of hybrid machine tools 

in the market, e.g. LASERTEC 3D hybrid from DMG Mori [20], INTEGREX i-400AM from Mazak [21] and Lumex 

Avance-25 by Matsuura [22]. Despite their high manufacturing flexibility, these machine tools also do have some 

important limitations arising from the integration of processes with fundamentally different physical characteristics 

in a single machine setup. For example, a hybrid system that combines powder bed fusion with precision milling 

in a single machine tool has to meet the operating conditions of both processes. While the additive 

manufacturing step would require a controlled environment in the machine chamber in order to avoid the parts’ 

distortion and oxidation, the milling operation should accommodate the specific workholding sub-systems to 

withstand the cutting forces [23]. In addition, the productivity and cost-effectiveness of such combined 

manufacturing systems is greatly reduced because the integration of processes in a single set-up allows only 

one manufacturing technology to be active at a time [23]. The existence of metallurgical defects in the deposited 

material can also significantly impair the parts’ mechanical properties [10].  

In an attempt to resolve the limitations of single setup systems, researchers have turned their attention to multi-

setup manufacturing solutions, also referred to as process chains or pilot production lines, where the capabilities 

of complementary manufacturing processes are combined through their sequential integration into multiple 

machine setups’ production platforms. In this way, each manufacturing module can be optimised to address the 

specific performance requirements of an individual process rather than the requirements of all integrated 

manufacturing processes. So, the fundamental differences in the physical characteristics of integrated processes 

do not increase the engineering complexity of such multi-setup manufacturing solutions unnecessarily and 

therefore their overall cost does not increase considerably, compared to the single setup systems. Other 

important advantages of the process chain approach in combining manufacturing capabilities is that it can deliver 

much higher productivity due to the parallel utilisation of the integrated operations and provide the flexibility of 

synchronising the throughput of each manufacturing module [23]. However, despite these significant advantages 

over single setup hybrid AM systems, the industrial uptake of AM enabled process chains is yet to be realised. 



4 
 

The literature review also reveals that the research and development efforts focused on AM enabled process 

chains are scarce and even if AM pilot lines are proposed they do not offer the required level of reconfigurability 

to address the diverse manufacturing requirements of new and novel products with extremely complex 

geometrical designs [19, 23, 24-26]. This is mainly due to the lack of adequate system-level integration tools that 

can provide a seamless integration of all manufacturing modules in AM enabled production lines/platforms [19, 

23, 24-27]. The importance of system-level integration tools for developing multi-setup manufacturing solutions 

has already been reported in the context of LM process chains [28]. In particular, it is demonstrated that the 

development of adequate hardware and software integration techniques can provide the required level of 

flexibility, accuracy and robustness to combine LM with a range of complimentary processes for the scale-up 

production of miniaturised parts such as complex signal filtering components for novel communication devices 

[29].  

The aim of this research is the development of generic system level integration tools that can combine the 

proven standalone PBF technologies with a range of complementary pre- and post-processing steps in 

reconfigurable process chains. The next section introduces the proposed reconfigurable multi-setup AM enabled 

manufacturing platform and its critical requirements for system level integration tools. The development and 

implementation of generic system level tools are then presented which are subsequently validated for multi-setup 

AM production. Finally, the enabling capabilities of these system-level tools in deploying LPBF processes as 

modular technologies in multi-setup lines are discussed and conclusions are made. 

 

2. System level integration tools for AM enabled process chains 

 

2.1 Multi-setup AM manufacturing platforms 

The processing steps of the proposed multi-setup AM enabled platform that combines laser-based powder bed 

fusion (LPBF) with subtractive machining processes, e.g. milling, is shown in Figure 1. LPBF was selected as a 

proven and widely used standalone AM process by industry for producing complex metal parts with its relatively 

better built resolution, dimensional accuracy, surface quality and design freedom in comparison to other AM 

processes such as directed energy deposition (DED) technologies [30-32]. As shown in Figure 1, the processing 

flow of the proposed multi-setup manufacturing platform could be summarised as follows: (i) the generation of a 

CAD model; (ii) process planning and CAM preparation, where the CAD model is split into sub-volumes. Some of 

them are for machining while the others are for AM, and thus to allow each of them to be produced cost-

effectively owing to their specific shapes and technical requirements with respect to the integrated 

complementary technologies; (iii) the machining of the first volume that consists of solid sections from a block of 

material and thus to produce preforms for the follow up AM processing; (iv) scanning (data capture) of the 

machined preforms that can be considered optional as the preceding process can produce preforms with well-

defined datum (reference position) for the successive AM step; (v) AM of the second volume on top of the 

machined preforms employing LPBF; (vi) second scanning of the hybrid part, which is also optional and depends 

on the requirements of the follow up processing step for “rest-volume” data, generated by comparing the 

workpiece with its CAD model; (vii) post-processing operations to meet technical requirements associated with 

geometrical accuracy, surface integrity and material’s mechanical properties. 
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Figure 1. The processing steps of the laser-based process chain, which combines PBF with Machining  

2.2 Critical requirements for system-level integration tools  

It can be seen in Figure 1 that the successful utilisation of the AM enabled process chain necessitates the 

creation of both hardware and software integration tools that can ensure seamless interfacing of different 

processing steps. Despite the limited work reported so far on laser-based AM process chains, researchers have 

recognised the needs for such system-level integration tools with their direct impact on the manufacturing 

capabilities of multi-setup production platforms in regards to the cost-effective manufacture of complex parts with 

varying geometrical configurations and technical requirements [23, 27, 33]. The critical requirements for system-

level hardware tools are primarily concerned with the accurate and precise repositioning of parts and thus to 

reduce or even eliminate time-consuming manual workpiece setting-up routines for different processing steps 

[23, 33]. At the same time, the critical requirements for the software tools are associated with the needs for: (i) 

‘’smart’’ process planning methods for splitting the parts’ processing between subtractive and additive 

technologies integrated into the production lines and thus to autonomously identify the most time-efficient and 

cost-effective sequences of manufacturing operations [34-37]; (ii) product quality control strategies to ensure that 

parts’ technical requirements are met at each processing step and thus to enable the early detection of parts’ 

defects and also to prevent propagation of non-compliant products. It should be mentioned that the successful 

implementation of product quality control strategies requires the acquisition of product metrology data along the 

multiple processing setups. Such information should be used for a progressive correlation of workpieces’ data to 

final part requirements/CAD data and hence to detect any deviations in regards to the orientation, dimensional 

and geometrical tolerances that can trigger defect-rectifying routines. The software integration tools reported in 

this paper are mainly focused on developing such product quality control strategies through the implementation 

of capabilities for an efficient product data analysis at the interfaces between the manufacturing steps of the 

proposed multi-setup platform. The next two sub-sections discuss the technical requirements of both hardware 

and software integration tools of these process chains.   

2.2.1 Requirements for modular workpiece holding systems  

The successful integration of LPBF processes into multi-setup manufacturing platforms is highly dependent on 

achieving a seamless interfacing of all processing steps with the required positioning and alignment accuracy 

and repeatability [23, 26]. While achieving such interfacing between the multiple steps, the deployed workpiece 

alignment methods can be both very time consuming and not sufficiently accurate due to the necessity to 

perform a registration of the workpiece’s datum in each set-up by highly experienced operators [34, 38]. 

Furthermore, workpiece imperfections or defects can be a major cause for errors due to the use of different 

datum positions, fixtures, alignment devices and procedures in each processing setup of the production platform. 

Therefore, the following generic requirements were identified as critical and were taken into account when 



6 
 

designing a modular workpiece holding system for interfacing the multiple setups in the proposed production line 

with the needed accuracy, repeatability and reproducibility (ARR). 

 High ARR achievable in positioning parts when interfacing the LPBF process with necessary pre- and 

post-processing steps; 

 Modular workpiece holding device design based on standardised components for cost effective and 

robust implementation; 

 Compactness and minimal height to minimise the loss of build height when integrating the workholding 

device in the LPBF build chambers;  

 The necessity for common unifying interfacing solutions for integrating different modular technologies, 

e.g. for machining, LPBF, inspection and alignment, in process chains; 

 The necessity to support both manual and automated workpiece setting up routines; 

 Compatibility with different manufacturing processes and simple and fast integration in different multi-

setup systems; 

 Robust performance in harsh and abrasive environments, i.e. powder contamination in LPBF build 

chambers or the use of flood coolant during machining. 

2.2.2 Requirements for software integration tools 

The generic capabilities necessary for implementing advanced product quality control strategy should ensure 

that critical dimensional and geometrical tolerance requirements will be achieved in the proposed multi-setup 

production platform. These generic abilities should provide the pre-requisites for employing reliable product 

quality control strategies, in particular: (i) collection of traceable workpiece data with metrology modules at the 

interfaces between the manufacturing steps; (ii) processing tools for correlating data about workpieces to final 

part requirements/CAD data at the interfaces of the LPBF process with pre- and post-processing stages in the 

process chain; (iii) performing time-efficient feature-based geometrical reasoning and (iv) decision support tools 

for preventing the propagation of defects, process chain flow control, triggering defect rectifying routines and 

identifying shifts and trends in batches in regards to the parts’ critical dimensions.   

To create such generic capabilities the following specific requirements were identified as critical in designing 

system-level software tools for implementing the product quality control strategies in multi-setup platforms: 

 The product quality control strategies and their associated system-level tools should employ broadly 

used and commercially available software solutions;   

 Compatibility and connectivity to different metrology modules, i.e. 3D optical measurement devices or 

tactile measurement devices such as coordinate measuring machine (CMM); 

 Support of different data formats, i.e. clouds of points, .stl files, and other neutral file formats;  

 Necessity to support both manual and automated geometrical analysis of the collected metrology data; 

 Different filtering techniques for selecting the most relevant and discriminant process parameters and 

critical part structures/dimensions/surface features for defect and out of control signal detection;  



7 
 

 Capabilities to perform robust and reliable alignment routines on the collected metrology data in pre-

defined coordinate systems either on a global level, i.e. for the whole data set, or locally for selected 

data sub-sets only; 

 Built-in capabilities for automatic and user-defined feature-based extraction and reasoning on various 

geometries (simple prismatic shapes, sphere, planes, cylinders etc.) employing the collected metrology 

data; 

 Ability of correlating data about workpieces to final part requirements/CAD data and thus to extract ‘rest’ 

volumes [23-25] (remaining material stock for further processing) within a pre-defined tolerance levels.   

3. Implementation of the system-level integration tools  

 

3.1 Implementation of the modular workpiece holding system  

 

3.1.1 Modular LPBF workholding device 

Figure 2 depicts a schematic representation of a LPBF modular workholding device that was designed to 

address the requirements listed in section 2.1.1. It consists of commercially available standardised components 

that are well proven in different machining applications, whereas do not require frequent maintenance [30]. 

Figure 2(a) provides an exploded view of the LPBF workpholding device with all key components. In particular, it 

consists of main and secondary assembly units that are integrated into a protective chamber and thus to ensure 

robust performance in LPBF setups. The adequate sealing of the LPBF modular workholding device is achieved 

by fitting an O-ring on the top perimeter of the protective chamber that provides a tight fit between the main 

assembly unit and the bottom surface of the interface plate. In this way, the precisely machined mounting 

surfaces of the chuck, drawbar and pallet of the workholding device are satisfactorily protected from any 

undesirable contaminants such as chips/swarfs, cutting fluid during machining and powders during the LPBF 

processes. The incorporation into the design of a suitable protective chamber is especially important during the 

LPBF process, because the ball lock mechanism of the chuck can easily get stuck if there is not appropriate 

powder management solution in place [33] that can potentially lead to degradation of the workholding device’s 

ARR. The main assembly unit as shown in Figure 2(c) incorporates the following components: 

 a receiver (chuck) that can be precisely fixed and referenced either to a mechanical stage (rotary or 

linear) or the build substrate of a LPBF system and any other surface of the machine frame structure; 

 a drawbar that provides means to precisely attach the pallet of the workholding device manually or 

automatically; 

 A pallet that can carry the secondary assembly unit of the workpiece holding device.  

The secondary assembly unit shown in Figure 2(b) incorporates workholding extensions, i.e. interface plates and 

adapters/extensions that can ensure the necessary flexibility in realising different processing setups while 

meeting the requirements for positioning and fixing workpieces with various geometrical designs and dimensions. 

As shown in Figure 2(b), examples of the integrated workholding extensions into the secondary assembly unit 

include: 

 A plain interface plate;  

 Interface plate with integrated vice for holding preforms with different geometrical designs produced with 

various manufacturing technologies, such as MIM and machining 
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 Chucks for holding axis-symmetric preforms that can be directly post-processed, e.g. by milling and/or 

by laser polishing/structuring/texturing, following the LPBF process, without removing the workpiece 

from the holding device for any follow-up processing with the required ARR. 

The modularity of the proposed LPBF workholding device is ensured by using the same receivers (chucks) and 

pallets across all setups of the proposed production line. Thus, the workpieces have to be mounted only once 

onto the interface plate of the pallet and then carried throughout the entire sequence of the pre- and post-

processing steps. In this way, the same workpiece coordinate system (WCS) can be preserved with regards to 

the receiver in each processing setup of the multi-stage platforms, as shown in Figure 3. It is worth mentioning 

that the positional repeatability of such workholding device is better than 1 µm [27], and thus it can provide highly 

precise workpiece positioning on multiple setups with the required ARR.  

 

Figure 2. The schematic representation of the PBF modular workholding device for AM enabled process chains: 

(a) exploded view, (b) secondary assembly unit and (c) main assembly unit 



9 
 

 

Figure 3. The use of a common workholding system across the multiple setups of the proposed LPBF enabled 

process chain  

The next subsection 3.1.2 provides detailed information about the adopted approach for establishing a 

geometrical correlation between the coordinate systems of the modular workholding devices and processing 

modules in the proposed production line. 

3.1.2 Setting up procedure 

As outlined in Section 3.1.1, the modularity of the workholding system is ensured by having the same receiver 

(chucks) on all setups integrated in the manufacturing platform. This allows a common pallet to be used and 

transported between the different stages and thus to establish a geometrical correlation between the coordinates 

of the workholding system and that of each of the manufacturing modules in the platform. The setting-up of the 

chuck in the metrology and machining modules should be performed by using reference elements provided 

together with the components of the modular workholding devices following the procedures for correlating their 

coordinate systems to the modules’ machine coordinate system (MCS), as defined by their manufacturers [39]. 

However, this referencing approach cannot be applied to laser-based PBF systems due to the lack of physical 

link between the processing tool, i.e. the laser beam, and any datum/components of the LPBF setup. In 

particular, an absolute geometrical correlation between the laser beam and the LPBF MCS cannot be 

established in the same way as on machining and metrology modules. This is because the sub-systems of such 

modules are physically linked to the frames of the machine tools through mechanical joints and their absolute 

positions, coordinates can be determined in MCS with the required ARR [27]. On the contrary, any laser beam 

pointing errors in the LPBF setup could lead to undesired shifting of the processed area in regards to the MCS 

and hence it will not be possible to achieve LPBF with the desired ARR. Factors that can negatively affect the 

geometrical correlation of the laser beam to MCS of the LPBF system include: (i) laser beam pointing instabilities 

caused by environmental factors such as large changes in temperature and humidity over a short period of time 

[28], (ii) changes in the optical beam delivery path such as the addition, removal or displacement of optical 

elements (i.e. mirrors) and (iii) deterioration of the calibration map of the employed focusing lens [40, 41]. 
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Therefore, the establishment of a robust geometrical link between the chuck of the workholding system and the 

LPBF module require a specially defined referencing approach. Especially, a referencing procedure is necessary 

for finding the true position of the laser beam with respect to the workholding device coordinate System (WDCS) 

that will allow laser irradiation of preforms attached to a common pallet to be performed with required ARR. 

A graphical representation of the step-by-step procedure for correlating WDCS to the coordinate system of the 

LPBF system (LMCS) is depicted in Figure 4. In particular, the reference procedure includes the following steps.   

 

 

Figure 4. Graphical representation of the step-by-step procedure for referencing WDCS in LMCS  

Step 1: The chuck is installed and secured by using screws into the protective chamber of the LPBF workholding 

device. When installing the chuck, it is important to follow a predefined sequence in tightening the fixation screws 

with the same torque and thus to ensure that the top surface of the chuck is parallel to the mounting surface of 

the protective chamber (a dial indicator can be used to check the parallelism when mounting the chuck). Then, 

the workholding device is installed and fixed into the build chamber of the LPBF machine using the fixation holes.  

Step 2: A pallet representing a plain interface assembly is installed in the chuck via drawbar and is secured in 

place with a positioning accuracy and precision better than 0.002 mm [40]. LMCS determines the position of built 

parts in the LPBF module and the origin of LMCS is in the centre of the build chamber. However, it was already 

stressed that due to the lack of a physical link between the laser beam and any datum/components of the LPBF 

setup, the geometrical link between LMCS and WDCS is not known. Hence the latter has to be established in 

order to perform laser irradiation of preforms attached to a common pallet with the required ARR.   

Step 3: A pattern consisting of simple geometries, i.e. crosses as reference marks that can fit within the field of 

view of the employed focusing lens, has to be designed. The target position of each reference mark is recorded 

by the control software of the LPBF system assuming that the LMCS coincides with WDCS, i.e. the centre of the 

interface plate’s top surface. An example of a pattern with a series of crosses as reference marks which is 

designed and laser machined in the centre of a plain interface plate is shown in Figure 4 (step 3). In particular, 

the pattern consists of user-defined (n) number of crosses along the x and y axes of the interface plate with 

predefined nominal displacements dx and dy, respectively. In addition, there is one cross that is located at the 

centre of the pattern that represents the XY origin. Such a pattern could be used not only to correlate WDCS to 
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LMCS, but also to evaluate the positioning accuracy of the laser beam within the entire field of view of a given 

focusing lens. In this way, any local positional deviations of the laser beam, i.e. resulting from calibration errors, 

could be taken into account by applying the necessary positional compensation offsets when the processing/built 

files are generated. It should be also mentioned that the processing uncertainty could be reduced, especially the 

uncertainties associated with any local systematic positional errors across the focusing lens field of view, by 

reducing the distances between cross marks, i.e. dx and dy, while increasing their number.  

Step 4: Releasing the pallet with the produced pattern from the LPBF module and installing it into the optical 

metrology module with a positioning accuracy and precision better than 0.002 mm to inspect the laser-machined 

crosses. Since WDCS is already referenced in the optical metrology module coordinate system (OMCS) the 

crosses’ positional information is used to establish the geometrical correlation of WDCS in LMCS. In addition, the 

deviations of the laser-machined crosses from their programmed positions can be used to assess the positioning 

accuracy of the laser beam as explained in Step 3 and thus to apply positional compensation offsets when 

generating LPBF built/processing files.  The application of such local beam positioning offsets is critical for 

obtaining the required level of ARR in the suggested production line.  

3.2 Implementation of software integration tools  

The dataflow approach adopted in the multi-setup manufacturing platform to enable the fabrication of complex 

parts that conform to their geometrical product specification (GPS) [42] is shown in Figure 5. The product quality 

control tools should allow the part’s geometrical conformity after each processing step which should be 

monitored to ensure the implementation of the process chain flow control, i.e. for triggering defect rectifying 

routines and/or identifying shifts and trends in batches in relation to the parts’ critical dimensions. It can be seen 

in Figure 5, that the input data for the product quality control tools include CAD and CAM models as GPSs as 

well as workpiece/part measurement data that are acquired throughout the processing steps of the AM enabled 

platform. In particular, the input data should allow to: (i) correlate the workpiece coordinate systems of parts to 

the coordinate system of processing modules and (ii) perform geometrical analysis by comparing data between 

the final part requirements/CAD data (according to GPS) and the measured/scanned parts (point clouds) after 

each processing stage. Such a comparison should allow workpiece/part features that do not conform to GPS to 

be identified as early as possible along the process chain in order to rectify defects or prevent their propagation.  
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Figure 5. The dataflow approach of the proposed LPBF enabled manufacturing platform  

The step-by-step procedure for implementing the product quality control tool when integrating LPBF processes 

with the necessary pre- and post-processing modules is depicted in Figure 6. It should be stated that due to the 

complexity and diversity of the steps constituting the product quality control tool, a number of commercially 

available software can be used to achieve its envisaged capabilities, e.g. GeoMagic Control X, AutoDesk 

PowerShape and PowerMill in this research. The description of how these software tools can be deployed is 

provided below for each step of the proposed quality control procedure. 

Step 1. After the data capture employing an optical metrology module, the generated datasets are first filtered to 

minimise or even eliminate common problems, such as the existences of spikes, holes and noise, that can 

significantly impair the subsequent geometrical analysis. The filtering of measurement points should be 

performed directly on the metrology module employing suitable inspection software, e.g. GeoMagic Control X in 

this study that provides advanced algorithms for selecting the most relevant and discriminant metrology data.  

Step 2. The filtered metrology data is imported into a CAD environment, e.g. AutoDesk Powershape, and then 

WCS is correlated to OMCS to obtain the workpiece position in LMCS. This is possible because a modular 

workholding system is used across all the processing modules of the multi-stage production line (see Section 

3.1). Figure 6 exemplifies the extraction of the workpiece position in relation to OMCS. In particular, the 

horizontal displacement of the preform centre in regards to the OMCS is determined along the X and Y axes, 

respectively, together with the lateral preform rotation in the XY plane in regards to OMCS.  

Step 3. The geometrical analysis of the scanned workpiece against its nominal CAD model and thus to extract 

volumes for further processing.  In particular, the CAD model is imposed on top of the imported scan data as 

shown in Figure 6 and thus to identify volumetric geometrical deviations. As a result, “rest” volumes can be 

extracted for further processing and thus to meet the parts’ GPS. Such geometrical analyses can be performed 

in suitable CAD environment, e.g. AutoDesk PowerShape in this research.  

Step 4. The CNC programmes for the follow up processing module are generated based on the rest volumes 

obtained in Step 3. In particular, the extracted rest volumes should be imported into a CAM software, e.g. 

AutoDesk PowerMill in this research, and thus to generate the toolpaths for further processing.  
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Figure 6. The step-by-step procedure for implementing the proposed product quality control strategy  

 

4. Experimental validation 

 

4.1 Methodology 

The experimental validation of both the hardware and software system level tools was performed by producing 

the test part shown in Figure 7. The part was designed to fully cover the working envelop of the LPBF system 

used in the trials, which was a ConceptLaser M2 Cusing machine with a build volume of 250(X) x 250(Y) x 

280(Z) mm that was filled with a protective gas environment to avoid any oxidation. Therefore, the test parts’ 

overall dimensions were 245 (X) x 245 (Y) and 32 (Z) mm. In addition, The M2 LPBF machine was equipped with 

a 400 W fibre laser, a scanning head with a maximum beam deflection speed of 7 m/s and an F-Theta focusing 

lens to achieve a beam spot diameter of ~150 µm at the focal plane. 

Aluminium A6082 alloy was used to manufacture the test part due to its excellent corrosion resistance and good 

machinability. Its front face incorporated 9 equally spaced protrusions that are 85 mm apart both along the X and 

Y axes with overall dimensions of 20 (X) x 20 (Y) x 15.5 (Z) mm and a 5 mm diameter through-hole in the centre 

(see Figure 7). The other side of the part had 15mm deep eight M8 and twelve M6 holes that were used to attach 

the test part to the pallet of the workholding device as shown in Figure 7. Five of the test protrusions were 

designed without any lateral rotation, while the remaining four protrusions were rotated around their centres at 

15˚, 30˚, 45˚ and 60˚as depicted in Figure 7. In addition, the processing sequence of the test part protrusions 

was designed to validate the proposed multi-setup manufacturing approach. In particular, their 10 mm base 

sections were machined directly into the A6082 test part, while the 5.5 mm AM section on top of them was built 

using AlSi10Mg powder commonly used in LPBF systems. It is also worth mentioning that the dimensions of the 

AM sections were different (smaller), i.e. 17.5 mm (X) x 17.5 mm (Y) x 5.5 mm (Z) with a centre through-hole of 8 
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mm, compared to that of the machined base sections (preforms) on the test part. This was necessary in order to 

obtain a better access for inspecting the relative positions of the built AM sections with respect to the preforms. 

The AM sections were produced by using optimised processing parameters in another research [43], i.e. a laser 

power of 250 W, a scanning speed of 1500 mm/s, a scan space of 75 µm and an island size of 2 mm with a layer 

thickness of 30 µm [43]. The particle size of the AlSi10Mg powder was in the range from 20 to 63 µm with an 

average size of 35 µm. The obtained roughness (Sa) of their top surfaces was 5.5 µm, while that of the side 

walls was in the range between 8 and 10 µm.  

To assess the capabilities of the system level tools to improve the manufacturing accuracy and repeatability of 

AM enabled multi-setup platforms, six of the test protrusions (2-4 and 6-8) were produced utilising the proposed 

tools, while the rest three (1,5 and 9) without the use of them. In this way, it was possible to assess clearly the 

impact of the system level tools on the achievable geometrical accuracy and repeatability in producing hybrid 

parts. It is important to mention that the three protrusions produced without the system level tools were selected 

to encompass the full size of the M2 PBF working field as shown in Figure 7 and thus to minimise the effects of 

the lens calibration error on the evaluation of the manufacturing accuracy and repeatability.  

Figure 8 provides a graphical representation of the complete manufacturing sequence for producing the test part. 

The positional accuracy achievable with the proposed system level tools was assessed by measuring the 

positional deviations of the AM sections with respect to their machined preforms as shown in Figure 8. Ten 

measurements were performed on each of the nine hybrid protrusions. Furthermore, the positional repeatability 

was assessed by producing the test part twice. In particular, the AM sections were removed by machining 

following the first experimental trial in order to be produced again in the second test part. The repeatability of the 

suggested system level tools was determined by comparing the positional deviations of the AM cubes with 

respect to the machined preforms in the two trials. It should be noted here that the measurement of the nine 

machined preforms to obtain their respective positions in WDCS could be performed with a relatively low 

resolution metrology system, while the inspection of the hybrid parts should be carried out using a high resolution 

metrology system.  

 

Figure 7. The test part for the experimental validation of system level tools  
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Figure 8. The processing sequence for the multi-stage manufacturing of the test part  

4.2 Inspection systems 

Two optical measurement systems were employed in the pilot implementation of the LPBF enabled process 

chain to obtain both high and low resolution metrology data. The acquisition of high resolution metrology data (a 

resolution higher than 25 µm) was performed with a Focus Variation (FV) optical microscope, namely Alicona 

InfiniteFocus (IF) G5. It has x5, x10, x20, x50 and x100 objective lenses that provide lateral resolution of 3.52, 

1.76, 0.88, 0.64 and 0.44 µm, vertical resolution of 0.41, 0.1, 0.05, 0.02 and 0.01 µm and a repeatability of 0.12, 

0.03, 0.01, 0.003 and 0.001 µm, respectively [44].  The system has an integrated precision stage with travel 

range of 100 mm in X, Y and Z, and thus to extend its measurement envelope beyond the lenses’ fields of view. 

A maximum measurable height of 22 mm could be achieved with the x5 lens, while the maximum measurable 

area of the Alicona system is limited by the travel range of the integrated stages, which is 10000 mm2 [44]. The 

acquisition of low resolution metrology data (lower than 25 µm) was performed with a 3D scan arm probe, 

namely Faro Edge ScanArm HD that was equipped with a hard touch-probe and a laser line probe. Its effective 

laser scan line length can be varied in the range from 80 to 150 mm by adjusting the distance between the 

measurement surface and the laser line probe, while there are 2000 measurements points per line [45]. The best 

measurement accuracy and repeatability achievable with the laser line probe is 25 µm when using the minimum 

scan width of 80 mm. The maximum measurement range of the Faro Edge ScanArm is 1.8 m [45]. 

The measurement uncertainty (U) was calculated according to Equations 1-3: 

�̅� =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
               (Equation 1) 

𝑠𝑑 = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

(𝑛−1)
           (Equation 2) 

𝑈 =
𝑠𝑑

√𝑛
                           (Equation 3) 

Where: sd is the standard deviation of the data set, xi - the result of the ith measurement, n - the total number of 

measurements, and ͞x - the arithmetic mean of the n results considered. It should be mentioned that the 

uncertainty calculations in this research were carried out based on ten repetitive measurements in accordance to 

the guidelines of the United Kingdom Accreditation Service (UKAS) [46]. 

 

4.3 Referencing and compensation procedures  

The referencing of LMCS to WDCS is critical for achieving the desired level of positional accuracy in the 

proposed process chain as discussed in section 3.1.2. The test patterns were used to correlate LMCS with 
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WDCS of the M2 LPBF system and also to calculate its beam positional compensation offsets. The patterns 

included nine equally spaced 2mm long alignment crosses at 20 mm apart both in the horizontal and vertical 

directions. The centre cross (cross 5) coincides with the centre of the scanning field of the F-theta lens. 

Measurements of the test patterns were performed with the high resolution optical microscope (Alicona G5) with 

a x20 magnification lens that provided lateral and vertical resolutions of 0.88 µm and 0.05 µm, respectively. The 

measurement results for the nine laser marked alignment crosses for the M2 LPBF system are shown in Table 1. 

The positional deviations of the crosses in WDCS could be attributed to two error sources: one related to the 

positional correlation of LMCS in WDCS and one to the calibration errors of the F-theta lens. Therefore, the 

compensation offsets when programming the positions of the AM sections should include two components: one 

for the positional deviation of LMCS in relation to WDCS and the other for the F-Theta lens calibration errors.  

The offset that corrects the lens calibration errors can be calculated by taking the absolute value of the average 

lens calibration error that can be determined by subtracting the nominal position of the crosses in LMCS from 

their measured position in LMCS. Figure 9 shows the plots of the focusing lens calibration errors both along X 

and Y axes for the working field of the M2 system used in this work. As expected, it increases with the increase 

of the offset from the centre of its F-Theta working field both along X and Y axes. For example, the average 

calibration error along Y axis is smaller than 15 µm when the y coordinate position is 0, while it is bigger than 50 

µm both along the positive and negative directions when the offset from the centre is 20 mm. As it can be seen 

in Figure 9, a similar trend is observed for the calibration error along the X axis of the F-theta lens working field 

even though the average calibration error is relatively smaller. It is worth mentioning that, in order to assess the 

consistency of the calibration errors across the whole lens working field, an additional test pattern with 121 

crosses was produced that covered an area of 200 mm (X) x 200 (Y) mm and the obtained results were in line 

with those from the smaller test pattern. Thus, the F-theta lens’ working field is stretched about its centre with an 

average value of 0.039 mm and 0.048 mm along X and Y axes, respectively. Therefore, the compensation offset 

for the lens calibration errors along both axes is taken as the average of these two values, which is in particular 

0.043 mm for the M2 LPBF system.  

The compensation offset that correlates LMCS with WDCS can be calculated by taking the inverse of the 

average positional deviations of the crosses without the lens calibration errors. Figure 10 depicts the plots of the 

positional deviations for the M2 LPBF system used in this study that include both linear and rotational 

displacement components of the nine alignment crosses both along X and Y axes. The gradient of the linear fit to 

the plotted data represents the rotational displacement in radians, while the Y-intercept denotes the linear 

movement in mm. Based on the results in Figure 8, the positional correlation of LMCS with WDCS along the X 

and Y axes are defined by Equations 4 and 5, respectively.  

𝑊𝐷𝐶𝑆𝑥 =  −0.0026(𝐿𝑀𝐶𝑆𝑥)  −  0.522 Equation 4 

𝑊𝐷𝐶𝑆𝑦 =  0.0026(𝐿𝑀𝐶𝑆𝑦) −  0.324  Equation 5 

In particular, the compensation offset to correlate LMCS with WDCS includes linear displacements of 0.522 mm 

and 0.324 mm along X and Y axes, respectively, and a rotational movement by 0.0026 radians (clockwise 

direction in XY plane) as stated in Table 1. 
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Table 1. Measurements results of the laser marked test pattern with the nine alignment crosses and calculation 

of compensation offsets for the M2 PBF system 

Parameter Cross1  Cross2 Cross3 Cross4 Cross5 Cross6 Cross7 Cross8 Cross9 

Nominal positions in LMCS 

X [mm] -20 0 20 -20 0 20 -20 0 20 

Y [mm] -20 -20 -20 0 0 0 20 20 20 

Average measured positions in WDCS (based on 10 measurements) 

X [mm] -20.503 -0.469 19.602 -20.575 -0.527 19.546 -20.629 -0.592 19.463 

Y [mm] -20.440 -20.386 -20.332 -0.346 -0.319 -0.272 19.702 19.765 19.801 

Average measured positions in LMCS (based on 10 measurements) 

X [mm] -20.026 0.005 20.062 -20.053 0 20.058 -20.052 -0.018 20.037 

Y [mm] -20.047 -20.049 -20.050 0.031 0 0.001 20.067 20.078 20.058 

Positional deviation (no lens calibration errors)  

X [mm] -0.477 -0.474 -0.460 -0.522 -0.527 -0.512 -0.577 -0.574 -0.574 

Y [mm] -0.393 -0.337 -0.282 -0.378 -0.319 -0.273 -0.365 -0.313 -0.257 

Lens calibration errors  

X [mm] -0.026 0.005 0.062 -0.053 0 0.058 -0.052 -0.018 0.037 

Y [mm] -0.047 -0.049 -0.050 0.031 0 0.001 0.067 0.078 0.058 

Compensation offsets in correlating LMCS to WDCS  

X [mm] 0.522 

Y [mm] 0.324 

Rotational angle about Z axis (in XY plane)  [rad] 0.0026 (clockwise) 

Compensation offset to account for lens calibration errors in X and Y 

X&Y [mm] 0.043 

 

 

Figure 9. Plot of the focusing lens calibration errors (a) along X and (b) Y axes of the working field  
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Figure 10. Plot of the positional deviations (without the lens calibration errors) of the nine alignment crosses 

along (a) X and (b) Y axes of the working envelope  

 

5. Results and Discussions 

 

Figure 11 depicts the processing steps of the multi-setup manufacturing sequence for producing the test parts 

described in Section 4.1. The modularity of the suggested workpiece holding device is demonstrated by installing 

receivers in each module integrated in the process chain and thus to carry the test parts throughout the entire 

AM enabled process chain without applying any process setting-up routines in its individual modules. Table 2 

provides the measurement results obtained on the test parts after each step in the process chain. The positional 

accuracy of the preforms following their machining was within 90 µm with a measurement uncertainty of 2 µm, 

while the maximum deviations recorded for protrusions 6 and 8 were 88 and 80 µm along X and Y axes, 

respectively. Nevertheless, through the scanning step, the true positions of the preforms prior to the AM phase 

were obtained to mitigate the influence of machining errors on the positional / geometrical accuracy of the hybrid 
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parts. In addition, the application of beam positional offsets is critical for building the AM sections with the 

required accuracy and repeatability on top of the preforms as discussed in Section 4.1. Thus, Table 2 provides 

the final coordinates of the AM sections that should be taken into account when generating the files for the AM 

step. In particular, they include the positional compensation offsets calculated in Section 4.3 that account both for 

beam calibration errors and also for the misalignment of LMCS with respect to WDCS. In addition, Table 2 gives 

the measured positions of the nine AM sections in the two test parts that were subsequently compared to the 

preforms’ positions to assess the achievable positional accuracy and repeatability with the system level tools in 

the multi-stage production line. The maximum measurement uncertainty for the AM sections was 5 µm, which 

was higher than that for the preforms even though they were inspected with the high resolution optical 3D 

microscope. This can be explained with the higher surface roughness of the AM sections in comparisons to the 

machined preforms.   

Figure 12 shows the top views of the nine hybrid test protrusions from the first experimental trial. The positional 

errors of the AM sections in relation to the machined preforms are clearly visible. In particular, the three test 

protrusions (1, 5 and 9) that were produced without utilising the proposed system level tools exhibited much 

higher positional deviations in comparison to the others that were built using them. For example, it can be seen 

in Figure 12 that the AM sections of test protrusions 1, 5, and 9 are all shifted towards the bottom left corner in 

regards to the machined preforms. The observed positional deviations could be attributed to a number of factors 

including misalignment of WCS in relation to LMCS, beam calibration errors and inability to compensate the 

machining errors of the preforms originating from the pre-processing step. The lack of reliable and consistent 

referencing of WCS to LMCS is due to the high level of uncertainty in setting-up the laser-based PBF process, 

especially with the use of only four fixation holes to correlate the laser beam to the workpiece. Additionally, beam 

calibration errors are a common issue in any laser processing system that employs optical scanning heads and 

F-theta lenses to move the beam on the workpiece [41] and they could lead to significant deterioration of the 

machining accuracy. Nevertheless, the use of the proposed hardware and software system level tools to produce 

the other six test protrusions (2-4 and 6-8) resulted in substantial improvements in the positional accuracy of the 

AM sections with respect to the machined preforms as can be seen in Figure 12. In particular, the modular 

workpiece holding system provided accurate and precise positioning of the parts within the different modules of 

the multi-setup manufacturing platform. Besides, through the application of process and part related 

compensation offsets, the suggested quality control procedures can ensure the fabrication of parts conforming to 

their geometrical product specification requirements.  

The positional deviations both along X and Y axes of the F-theta working field that were obtained for the nine 

hybrid test protrusions in the two experimental trials are provided in Figure 13.  Especially, the deviation plots 

depict clearly the increase of the positional accuracy and repeatability achieved when the system level tools were 

deployed. For example, it can be seen in Figure 13(a) that the positional deviations along the X axis of the AM 

sections produced without the use of the system level tools were relatively systematic for all three protrusions 

and the maximum deviation of 0.604 mm was recorded in protrusion 9. Even though the deviations along Y axis 

are somehow smaller and less systematic than those observed for the X axis, it can be seen in Figure 13(b) that 

the maximum positional deviation recorded in protrusion 1 was as high as 0.443 mm. However, Figure 13 also 

reveals that the average positional deviations of the six AM sections produced with the system level tools in the 

two experimental trials were 21 µm and 10 µm along X and Y axes, respectively, while the maximum deviation 

of 43 µm was recorded in the X coordinate of protrusion 3 in the first experimental trial.  The comparison of the 

results from the two experimental trials also unveils that the average positional repeatability with the system level 

tools along X and Y axes were 8 µm and 19 µm, respectively. It is worth mentioning that the positional 

repeatability of the three protrusions produced without the system level tools was comparable with that observed 

for the other six test protrusions as both test parts were mounted on the same modular workpiece holding device 

in the two experimental trials. Nonetheless, this is another evidence for the capabilities of the modular 

workholding system in ensuring reliable and repeatable repositioning of parts within the different modules of the 

manufacturing platform.  
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The results from the experimental study clearly show that the synergistic utilisation of both the software and 

hardware system level tools leads to considerable (more than thirtyfold) improvement in the positional accuracy 

and repeatability of the AM sections produced on top of the preforms in the two additive-subtractive test parts. It 

should also be noted that such positional accuracy is comparable with the processing resolution of the LPBF 

systems that typically produce parts with surface roughness in the range of 5 to 15 µm while their geometrical 

accuracy is usually within tens of microns [11, 43]. Therefore, the proposed system level tools can deliver high 

positional accuracy and repeatability when producing hybrid parts and thus can reduce the required geometrical 

tolerances for the post-processing operations and make them comparable with those for monolithic AM 

components. This implies considerable cost, energy and waste material savings when deploying the proposed 

AM enabled production line.  

Table 2. Measurements results of the hybrid manufactured test parts produced in the two experimental trials 

Notes: P1 to P9 denote the nine protrusions of the test parts 

Parameter P1 P2 P3 P4 P5 P6 P7 P8 P9 

Nominal position of test proportions’ centres 

X [mm] -85 0 85 -85 0 85 -85 0 85 

Y [mm] -85 -85 -85 0 0 0 85 85 85 

The average positions of machined preforms’ centres in WDCS (based on 10 measurements) 

X [mm] -85.002 0.004 84.997 -85.046 -0.037 84.964 -85.068 -0.088 84.932 

Y [mm] -84.995 -84.971 -84.935 -0.022 0.029 0.080 84.997 85.033 85.058 

U [mm] 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 

Beam positional compensation offsets for the calibration errors of the F-theta lens 

X [mm] 0.043 0 -0.043 0.043 0 -0.043 0.043 -0 -0.043 

Y [mm] 0.043 0.043 0.043 0 0 0 -0.043 -0.043 -0.043 

Beam positional compensation offsets in referencing LMCS and WDCS (see Table 1) 

X [mm] 0.522  

Y [mm] 0.324 

Rotational 
angle [rad] 

0.0026 (clockwise) 

 Programmed positions of AM sections’ centres in LMCS with all compensation offsets for both trials 

X [mm] -85 0.305 85.254 -84.480 0 84.443 -84.279 0.650 85 

Y [mm] -85 -84.604 -84.791 0.523 0 0.18 85.499 85.314 85 

Average measured positions of AM sections’ centres in WDCS from Trial 1 (based on 10 measurement) 

X [mm] -85.569 0.027 85.040 -85.052 -0.557 84.993 -85.051 -0.075 84.328 

Y [mm] -85.438 -84.976 -84.945 -0.033 -0.237 0.086 84.993 85.026 84.997 

U [mm] 0.004 0.004 0.005 0.004 0.003 0.003 0.003 0.004 0.004 

Average measured positions of AM sections’ centre in WDCS from Trial 2 (based on 10 measurement) 

X [mm] -85.546 0.036 85.032 -85.026 -0.548 84.989 -85.049 -0.089 84.323 

Y [mm] -85.401 -84.950 -84.919 -0.019 -0.226 0.088 85.012 85.055 84.999 

U [mm] 0.003 0.003 0.004 0.005 0.004 0.004 0.003 0.003 0.004 

Positional deviations of AM sections with respect to machined preforms in WDCS  from Trial 1 

X [mm] -0.567 0.023 0.043 0.006 -0.520 0.029 0.017 0.013 -0.604 

Y [mm] -0.443 -0.005 -0.01 -0.011 -0.266 0.006 -0.004 -0.007 -0.061 

Positional deviations of AM sections with respect to machined preforms in WDCS  from Trial 2 

X [mm] -0.544 0.032 0.035 0.020 -0.511 0.025 0.019 -0.001 -0.609 

Y [mm] -0.406 0.021 0.016 0.003 -0.255 0.008 0.015 0.022 -0.059 

Positional repeatability of the system level tools 

X [mm] 0.023 0.009 -0.008 0.014 0.009 -0.004 0.002 -0.014 -0.005 

Y [mm] 0.037 0.026 0.026 0.014 0.011 0.002 0.019 0.029 0.002 
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Figure 11. Processing steps for the multi-stage manufacturing of the test part 
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Figure 12. Top views of the nine test protrusions to evaluate the positional errors of the AM sections with respect 

to their preforms 
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Figure 13. The plots of the positional deviations of nine AM sections with respect to the machined preforms in the 

two experimental trials along (a) X and (b) Y axes of the F-theta working field.  

Note: In the plots, X axis denotes the test cube number, while Y axis provides the positional deviations in mm. 

 

6. Conclusions 

This paper presents the development of generic hardware and software system level tools for AM enabled multi-

setup manufacturing platforms that can integrate proven standalone LPBF systems with a range of 

complementary pre- and post-processing technologies. In particular, the research reports the design and 

implementation of modular workpiece holding system and product quality control strategy that can enable the 

fabrication of hybrid parts that conform to their geometrical product specification requirements.  The following 

conclusions can be made: 

- The lack of sufficiently advanced system level integration tools in AM process chains leads to high 

positional deviations between the AM and machining sections of hybrid parts.  

- The modular design of the proposed workpiece holding device for LPBF systems allows the precise and 

accurate repositioning of parts throughout the entire production line without the need to perform any 

setting up procedures for individual processing modules. 

- The product quality control strategy when using system level tools underpins the fabrication of hybrid 

parts that conform to their product geometrical requirements. Especially, by deploying the suggested 

tools it is possible to minimise critical manufacturing errors in hybrid parts, i.e. positional misalignments 



24 
 

between their AM and machined sections. These errors are due to a number of factors such as 

misalignments in the working coordinate systems of the modules in the AM enabled multi-setup 

platforms, process specific errors, e.g. beam calibration errors in AM, and inability to monitor and rectify 

parts’ geometrical unconformities after each processing step. 

- The synergistic utilisation of both software and hardware system level tools can lead to significant 

improvements in the positional accuracy and repeatability when producing AM sections on top of the 

preforms in hybrid parts. In particular, it was observed that positional accuracy in the hybrid parts was 

improved thirtyfold with the system level tools, from 0.604 mm and 0.442 mm to 21 µm and 10 µm 

along X and Y axes, respectively. 

- The capabilities of the proposed system level tools to deliver high positional accuracy and repeatability 

in hybrid parts implies considerable cost, energy and waste material savings when deploying the 

suggested AM enabled process chain. 
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