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The Potential Therapeutic
Application of Peptides and
Peptidomimetics in Cardiovascular
Disease
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Vincenzo De Feo3*

1 Sir William Dunn School of Pathology, University of Oxford, Oxford, UK, 2 Department of Pharmacy, University of Naples
Federico II, Naples, Italy, 3 Department of Pharmacy, University of Salerno, Salerno, Italy

Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity
worldwide. Numerous therapies are currently under investigation to improve pathological
cardiovascular complications, but yet, there have been very few new medications
approved for intervention/treatment. Therefore, new approaches to treat CVD
are urgently required. Attempts to prevent vascular complications usually involve
amelioration of contributing risk factors and underlying processes such as inflammation,
obesity, hyperglycaemia, or hypercholesterolemia. Historically, the development of
peptides as therapeutic agents has been avoided by the Pharmaceutical industry
due to their low stability, size, rate of degradation, and poor delivery. However,
more recently, resurgence has taken place in developing peptides and their mimetics
for therapeutic intervention. As a result, increased attention has been placed upon
using peptides that mimic the function of mediators involved in pathologic processes
during vascular damage. This review will provide an overview on novel targets and
experimental therapeutic approaches based on peptidomimetics for modulation in CVD.
We aim to specifically examine apolipoprotein A-I (apoA-I) and apoE mimetic peptides
and their role in cholesterol transport during atherosclerosis, suppressors of cytokine
signaling (SOCS)1-derived peptides and annexin-A1 as potent inhibitors of inflammation,
incretin mimetics and their function in glucose-insulin tolerance, among others. With
improvements in technology and synthesis platforms the future looks promising for the
development of novel peptides and mimetics for therapeutic use. However, within the
area of CVD much more work is required to identify and improve our understanding of
peptide structure, interaction, and function in order to select the best targets to take
forward for treatment.

Keywords: cardiovascular disease, cardiovascular system, inflammation, peptides, peptidomimetics

Abbreviations: ABCA1, ATP-binding cassette transporter A1; ACEIs, Angiotensin-converting enzyme inhibitors; Apo,
Apolipoprotein; ARBs, Angiotensin II Receptor Blockers; CVD, Cardiovascular disease; DPP4, Dipeptidyl peptidase 4;
GLP-1R, Glucagon-like peptide-1 receptor; KIR, Kinase inhibitory region; MI, Myocardial infarction; NO, Nitric oxide;
NSAID, Non-steroidal anti-inflammatory drug; PPI, Protein-protein interactions; PSF, Prostacyclin stabilization factor;
SOCS, Suppressors of Cytokine Signaling; STAT, Signal transducer and activator of transcription; Tkip, Tyrosine kinase
inhibitor peptide; VLDL, Very low-density lipoproteins.
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INTRODUCTION

Cardiovascular disease remains a leading cause of mortality
and morbidity worldwide. In developed countries, risk factors
such as hypertension, hyperglycemia, and hypercholesterolemia
are accepted as having a key role in driving CVD (Leening
et al., 2016). Researchers and clinicians have spent
significant time and effort investigating the role of these
risk factors in the development and progression of CVD,
yet there have been a limited number of new medications
approved for CVD-related intervention and/or treatment.
Therefore, new approaches to treat CVD are needed.
Attempts to prevent vascular complications usually involve
amelioration of contributing risk factors and underlying
processes such as inflammation, obesity, hyperglycaemia, or
hypercholesterolemia (Navickas et al., 2016; Pirlamarla and
Bond, 2016).

Targeting lipids has been the major strategy used in
treating CVD to date. Hypercholesterolemia plays a key role
in peripheral coronary artery disease progression, mainly
atherosclerosis. High concentration of low density-lipoprotein
(LDL) particles in plasma drives cholesterol accumulation
in arteries setting up the initial stage of atheroma plaque
formation (Libby et al., 2011; Manduteanu and Simionescu,
2012). Excessive lipid accumulation in the arterial intima
induces a significant inflammatory response resulting in
increased pro-inflammatory cytokines, adhesion molecules, and
chemokine expression, which leads to endothelial dysfunction
and leukocyte infiltration (Manduteanu and Simionescu, 2012;
Schett et al., 2013; LeBert and Huttenlocher, 2014). Further
influx (mainly macrophages, T cells, and vascular smooth
muscle cells) of cells into the lesion area triggers plaque
hardening and growth. Finally, vessel diameter decreases
and, if the plaque is unstable, it can cause significant
clinical consequences such MI or stroke (Fuster et al.,
2005).

The current first line drugs used in CVD treatment to date
are ACEIs, ARBs, anticoagulants, cholesterol-lowering drugs
(statins), beta-blockers, and some anti-inflammatory medicines
(NSAID, glucocorticoids). The majority of these drugs have
shown efficacy but many are also associated with a wide range
of side-effects and are therefore inadequate to use in long-
term treatment regimens (Nathan, 2002; Lawrence et al., 2002;
Costopoulos et al., 2013; Cheng et al., 2014; Pellicori and
Costanzo, 2015; Stein and Raal, 2015).

This review will explore novel targets and experimental
therapeutic approaches based on peptidomimetics for
modulation in CVD including atherosclerosis, vascular diabetic
complications and MI, among others.

PEPTIDES AS THERAPEUTICS

Therapeutic peptides are described as naturally occurring
short amino acid monomer chains, shorter than 100 amino
acids, and they act by binding to specific cell surface
receptors, where they trigger intracellular pathways (Vlieghe

et al., 2010). They have been shown to possess desirable
pharmacological profiles and their specificity has been
seen to translate into outstanding safety, tolerability, and
efficacy profiles in humans, in stark contrast to traditional
small molecules (Vlieghe et al., 2010; Goodwin et al.,
2012).

The idea of using peptides as therapeutic agents has
been historically ignored by pharmaceutical companies due
to several limitations including size, which makes them
very susceptible to degradation by peptidases, the lack of
effective methods for delivery, poor transport properties
through biologic membranes, low oral bioavailability, rapid
excretion, and poor target specificity resulting from the
flexible nature of peptides (Table 1) (Vagner et al., 2008).
More recently, however, in light of advances in processing
technologies, there has been a renewed interest in peptides
and peptidomimetics as potential therapeutic agents. This
is partly due to numerous improvements made to stability,
transport, affinity profiles, and oral availability (Goodwin
et al., 2012; Fosgerau and Hoffmann, 2015). Furthermore,
the introduction of alternative delivery methods by new
adjuvant and carrier systems have been developed, and the
advance of proteomics identifying innumerable PPI targets,
has increased the interest in peptides and their mimetics as
potential therapeutic drugs (Liskamp et al., 2011; Akram et al.,
2014).

To date, more than 7000 naturally occurring peptides have
been described (Fosgerau and Hoffmann, 2015). The first
chemical synthesis of a therapeutic peptide was that of oxytocin in
1953. Recombinant synthesis of proteins was introduced in 1974,
and recombinant human insulin, the first approved therapeutic
peptide to be manufactured by recombinant fermentation, was
introduced in 1982 (Puttagunta and Toth, 1998). Although
being used for the last five decades, it still enjoys the fame of
being the most generally prescribed peptide worldwide (McGill
et al., 2016). At present, there are more than 60 peptide-
based drug products that have reached approval and nearly
140 in clinical trials (Lax and Meenan, 2012; Uhlig et al.,
2014).

To address these key technical hurdles to use peptides as
medicines, a number of modifications strategies (thanks to robust
peptide-chemistry approaches developed in recent years) have
been widely adopted. Several bioactive peptides have proven to
be highly functional with many serving as potent agonists and
antagonists against numerous receptors implicated in disease

TABLE 1 | Advantages and disadvantages of peptides as therapeutics.

Advantages Disadvantages

Broad range of targets Limited oral bioavailability

Low toxicity Elevated production costs

High chemical and biological diversify Short half-life and rapid clearance

High potency and selectivity Low metabolic stability

Good efficacy, safety, and tolerability Poor membrane permeability

Low accumulation in tissues Tendency for aggregation

Standard synthetic protocols They can contain immunogenic sequences
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progression (Kaspar and Reichert, 2013; Peptide Therapeutics
Market, 2015).

Transformation of peptides to peptidomimetics is one
intriguing mechanism to use peptide sequences as potential
therapeutic agents. Peptides can be adapted to stable
mimics that expose similar effects to their peptide analog
but show increased consistency in structure, more target
specificity, increased stability to proteolytic digestion and
greater cell membrane permeability. Therefore, peptides
have been chemically altered to include unnatural amino
acid substitutions, backbone amide bond modifications,
or rigid scaffolds or the addition of hydrophobic residues
(Gentilucci et al., 2006; Vagner et al., 2008; Vlieghe et al.,
2010).

Among the major drawbacks faced by the use of peptides
as drugs is their delivery. To date, injections remain the most
common route of administration. However, oral delivery would
be preferable because of its high level of patient compliance
which increases the therapeutic value of a drug. So the challenge
remains to improve the oral bioavailability from less than 1% to
at least 30–50%. Recently, development of orally and nasal active
preparations have been proposed as a result of encapsulation of
peptides in nanoparticles (e.g., liposomes, synthetic polymers,
or fullerenes) which shields the drug from protease digestion
until required, therefore increasing stability (Mason, 2010; Bruno
et al., 2013). Other strategies under investigation to overcome
peptide barriers include use of protease inhibitors, absorption
enhancers, or conjugated molecules in combination with the
peptide structure, such as antibodies to improve targeting,
carbohydrates to increase solubility, or lipids to enhance peptide
permeability (Shaji and Patole, 2008; Bruno et al., 2013; Di,
2015)

Equally, synthesis costs are a big issue. The synthesis of
peptides relies heavily on expensive coupling reagents, resins and
protected amino acids, so cheaper methods for their synthesis
and purification are required (Mason, 2010). In line with this,
chemical methods such as click chemistry and peptide synthesis
reactors that can handle large amounts of reaction material for
solid-phase peptide synthesis can substantially lower costs as well
as improve the chemistry (Sohma et al., 2004; Fabbrizzi et al.,
2014).

Another major breakthrough has been the variety drive in
technology platforms to study PPIs. With more information
related to 3D structure of protein complexes and PPIs and their
importance in human diseases, peptide- and peptidomimetic-
based therapeutic agents have become a major area of drug
design, competing with natural products, synthetic small
molecules, and antibody-based therapies (Gao et al., 2015).

Considering all the upgrades in peptide systems, and
the rapid developments in proteomics, bioinformatics, and
peptide libraries, it is expected that by 2020, the global
Peptide Therapeutics market will reach over $25 billion
(Global Peptide Therapeutics Market, 2016). This dramatic
market increase is driven by both growing incidences of
cardiovascular and metabolic diseases, and also technological
enhancements in peptide synthesis that include high-throughput
approaches.

PEPTIDOMIMETIC-BASED THERAPY IN
CARDIOVASCULAR DISEASE

Attempts to prevent cardiovascular diseases usually involve
control and improvement of causative risk factors such as
hypercholesterolemia, inflammation, hyperglycaemia, obesity,
insulin resistance, or high blood pressure. Limitations in
currently available device therapies and pharmacologic drugs
in CVD has prompted wider investigation into new treatment
modalities such peptides and their mimetics.

APOLIPOPROTEIN MIMETIC PEPTIDES

Dyslipidemia is one of most relevant risk factors for coronary
artery disease. Therefore, one of the key goals of cardiovascular
therapies is to reduce LDL cholesterol accumulation in the
subendothelial space lining the artery wall, thereby preventing
the progression of atherosclerosis and reducing the risk of
heart attack and stroke. A plasma LDL cholesterol reduction
of 1 mmol/L has been reported to reduce the risk of
cardiovascular events by approximately 20% (Stoekenbroek
et al., 2015). HDL is considered to promote the removal of
free cholesterol from peripheral tissue and its transport to
the liver for eventual clearance. ApoA-I, the major protein
component of the HDL particle, is predominantly responsible
for the anti-atherogenic properties attributed to HDL (Fisher
et al., 2012). ApoA-I is critical for the process of reverse
cholesterol transport and cellular cholesterol homeostasis.
Several murine pre-clinical models of atherosclerosis have shown
potent protective effects of apoA-I following prophylactic and
therapeutic intervention (Gordon et al., 2011). Furthermore,
genetic ablation of apoA-I in LDL receptor knockout mice,
was shown to significantly promote atherosclerosis progression
(Moore et al., 2003).

In addition to its role in cholesterol transport, other
vascular beneficial effects have been attributed to apoA-
I (Mangaraj et al., 2016). Recent studies have reported a
potential anti-inflammatory role for apoA-I in the regulation
of monocyte/macrophage recruitment to local sites of
inflammation, via modulation of lipid rafts in cellular membranes
which resulted in suppression of PI3K/Akt signaling (Iqbal et al.,
2016). It also displays anti-oxidant properties as shown by its
ability to inhibit LDL oxidation, remove lipid hydroperoxides,
and also protect endothelial cells from apoptosis (Suc et al.,
1997; Podrez, 2010; Rosenbaum et al., 2015). Furthermore, its
structural homology with PSF has contributed to its anti-clotting
and anti-aggregation effects on platelets which has strengthened
its cardioprotective role (Yui et al., 1988). All in all, apoA-I is
widely considered as a promising target for CVD treatment, and
different therapeutic approaches have been developed to mimic
its function.

ApoA-I is a 243 amino acid molecule with a secondary
structure of 10 amphipathic αα-helices necessary for its
interaction with lipids (Davidson et al., 1996). This secondary
structure has been used as a template to design a range of apoA-I
mimetic peptides. Although they are functionally similar to the
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native protein, they have unique structural properties (Table 2)
(Stoekenbroek et al., 2015).

The first apoA-I mimetic peptide, 18A, was synthesized
by Anantharamaiah et al. (1985; Venkatachalapathi et al.,
1993). Subsequently, this 18 amino acid peptide has undergone
numerous modifications to generate variant mimetic peptides
with increased homology to apoA-I, higher lipid affinity and
enhanced anti-atherogenic properties (Garber et al., 1992). An
example of a such a variant is 4F, the most well-studied apoA-I
mimetic, that reproduces the helical and amphipathic portion of
apoA-I which is key for its function (Navab et al., 2005). Other
peptides such as D-4F and L-4F, consist of the D- and L-isomers
of the amino acids and show similar functionality as apoA-I,
with D-4F being more stable via oral administration (Navab
et al., 2002). However, although initially demonstrating potent
anti-inflammatory, anti-oxidant, and atheroprotective effects in
pre-clinical experimental models in apoE null mice and in human
aortic cell cultures, 4F peptides have failed to show any efficacy in
human trials (Li et al., 2004; Bloedon et al., 2008; Van Lenten et al.,
2008; Watson et al., 2011).

Several other apoA-I mimetics have been developed to
overcome some of the weaknesses of previous peptides. For
example, the 6F peptide emerged as a promising apoA-I mimetic
which did not require end blocking to be effective, and therefore
reduced overall costs for synthesis. This peptide was also
shown to possess potent anti-inflammatory, anti-oxidant, and
atheroprotective effects in pre-clinical experimental models in
LDL receptor-null mice (Chattopadhyay et al., 2013; Navab

et al., 2013). 5A peptide was synthesized based on an existing
37 pA peptide structure to which five amino acids where
replaced in order to decrease its cytotoxicity associated with its
elevated lipid affinity (Remaley et al., 2003). In this way, 5A
was less toxic and more specific to the ATP-binding cassette
transporter A1(ABCA1) in cholesterol transport. Moreover, this
apoA-I mimetic reduced pro-inflammatory adhesion molecule
expression, neutrophil infiltration, and oxidative stress in animal
models of inflammation in rabbits and also in vitro in human
coronary artery endothelial cells (Tabet et al., 2010). 5A was
also shown to be atheroprotective in pre-clinical mouse models
and there are current proposals under consideration to take this
mimetic forward into clinical trials (Amar et al., 2010).

ETC-642 is a 22 amino acid apoA-I mimetic peptide that offers
numerous beneficial effects on LDL and HDL particles, including
reduction of pro-inflammatory oxidized LDLs, potent induction
of cholesterol transport, and increase of cholesterol content in the
HDL fraction. It has also been attributed with significant anti-
inflammatory properties in several studies of acute and chronic
inflammation in rabbits, where it was shown to reduce TNFα

induced expression of NF-Kb and endothelial adhesion molecule
expression (Di Bartolo et al., 2011a,b). Furthermore, ETC-642
was shown to inhibit plaque formation in an experimental model
of atherosclerosis in hyperlipidemic rabbits (Iwata et al., 2011).

In 2010, a systematic study of 22 different apoA-I mimetic
peptides reported by D’Souza et al. (2010) showed that the
structural modifications of each peptide were related with their
different capacity and specificity of cholesterol efflux and their

TABLE 2 | Apolipoprotein mimetic peptides.

ApoA-1 peptide Structure/Sequence Clinical implications Reference

18A DWLKAFYDKVAEKLKEAF First and shortest peptide reported to
clear phospholipid

Venkatachalapathi et al., 1993

4F Ac-DWFKAFYDKVAEKFKEAF-NH2 Anti-inflammatory, anti-oxidant and
atheroprotective effects in experimental
models

Li et al., 2004; Bloedon et al., 2008;
Van Lenten et al., 2008

6F DWLKAFYDKFFEKFKEFF Potent anti-inflammatory, anti-oxidant
and atheroprotective effects in mice;
not require end blocking to be effective

Chattopadhyay et al., 2013; Navab
et al., 2013

37pA 18A-P-18A Cellular cholesterol efflux via ABCA1 Remaley et al., 2003

5A 18A-P-DWAKAAYDKAAEKAKEAA Atheroprotective, anti-inflammatory,
anti-oxidant. Specific for ABCA1 in
cholesterol transport.

Amar et al., 2010; Tabet et al., 2010

ETC-642 PVLDLFRELLNELLEALKQKLK Potent induction of cholesterol
transport and increase of HDL fraction;
anti-inflammatory, anti-atherosclerotic

Di Bartolo et al., 2011b; Iwata et al.,
2011

FAMP H-ALEHLFTLYEKALKALEDLLKKLL-OH Enhance HDL biological function via
ABCA1; atheroprotective

Uehara et al., 2013

ApoE Peptide

ATI-5261 EVRSKLEEWFAAFREFAEEFLARLKS Induction of ABCA1-mediated
cholesterol transport; reduction of aortic
lesion area and plaque lipid content

Bielicki et al., 2010

Ac-hE18A-NH2 Ac-LRKLRKRLLR-18A-NH2 Potent reduction in plasma cholesterol;
clearing of atherogenic lipoproteins,
reduction of atheroma plaque and
improvement of endothelial function

Gupta et al., 2005; Datta et al., 2010

Name, sequence and clinical implications of the most studied Apo mimetic peptides in different laboratories. Modified from (White et al., 2014). Other references used:
(Di Bartolo et al., 2011b; Uehara et al., 2013).
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inhibitory effects on inflammation and LDL oxidation. In this
analysis none of the peptides tested were found to be equally
effective in all anti-atherogenic functions (D’Souza et al., 2010).

Many of these apoA-I mimetic peptides are in pre-clinical
stages of development (Smith, 2010; White et al., 2014; Uehara
et al., 2015). A newly described apoA-I mimetic peptide, called
FAMP (Fukuoka University APOA-I mimetic peptide), has been
reported to function via ABCA1 in a highly specific manner.
This novel mimetic peptide has been shown to effectively
enhance HDL biological function and it also has atheroprotective
functions in apoE-deficient mice (Uehara et al., 2013).

More recently, apoE mimetic peptides were shown to have a
beneficial impact on HDL functionality. ApoE is a 299 amino acid
protein that plays an important role in clearing apoB-containing
remnant particles mainly chylomicrons (that absorb lipids from
the diet in the intestine), very low-density lipoproteins (VLDL,
that transport triglycerides to tissues), and other lipoproteins
that can be atherogenic (Bocksch et al., 2001). ApoE clears
lipoproteins by LDL receptor-independent mechanisms. It also
plays a crucial role in the regulation of plasma cholesterol levels,
given that it contains an LDL binding domain in its structure
(Hatters et al., 2006; Mahley et al., 2006). In addition, other
beneficial effects have been attributed to apoE including anti-
inflammatory, anti-oxidant, and anti-coagulant properties (Ali
et al., 2005; Pham et al., 2005; Gaudreault et al., 2012).

Several mimetic peptides based on apoE structure have
been recently designed (Table 2). Among them, ATI-5261
is a 36 amino acid peptide that has been reported to
induce ABCA1-mediated cholesterol transport and reduce
aortic lesion area and plaque lipid content in several pre-
clinical models of atherosclerosis in mice (Bielicki et al.,
2010). Anantharamaiah et al. (1985) developed various synthetic
dual-domain apolipoprotein peptides which are structurally
and functionally similar to apoA-I and apoE but mimic the
cholesterol-lowering properties of apoE (Datta et al., 2001;
Sharifov et al., 2011). The most characterized is Ac-hE18A-NH2,
composed of a region of the LDL binding domain of apoE
linked to the apoA-I mimetic 18A (Sharifov et al., 2011). This
peptide was shown to dramatically reduce plasma cholesterol in
several dyslipidemic animal models and had the extra advantage
of clearing atherogenic lipoproteins due to the presence of the
LDL binding domain, resulting in the reduction of atheroma
plaque formation and the improvement of endothelial function
(Gupta et al., 2005; Datta et al., 2010). This novel intravenously
administered-peptide has been assigned orphan drug status and,
under the name AEM-28, is currently undergoing initial (phases
1 and 2) clinical assessment (White et al., 2014).

Many of these peptides are still in pre-clinical phases of
development and to date it has been difficult to identify an
efficacy parameter for apo mimetics in human trials collectively.
One major reason for the discrepancy observed in humans
and mice could be differences in the composition of lipid
associated proteins. A study from Gordon et al. (2015) utilized
a mass spectrometry approach to demonstrate a high degree
of shared homology amongst a range of proteins associated
with LDL and HDL. However, a small minority of proteins
did exhibit significant differences which could reflect in

major metabolic differences between species (Gordon et al.,
2015).

Surprisingly, there are no reported studies which have
compared the efficacy of statins versus apoA-I mimetics in
humans to date. LDL-lowering statin therapy is currently
considered the ‘gold standard’ treatment for CVD. Statins are
very effective and safe in atherogenic dyslipidemia treatment.
However, they have shown to lack benefit for retarding
residual adverse cardiovascular events. Even under optimal statin
treatment, patients with familial hypercholesterolemia present
with high level of LDL cholesterol and there are also patients who
are intolerant or unresponsive to statins, highlighting a potential
role for the use of apo mimetics in such patients (Boekholdt et al.,
2013; Ahn and Choi, 2015; Uehara et al., 2015). Given the current
interest in this field we can expect to have novel apo mimetic
peptides in the near future to aid in the prevention and treatment
of patients with cardiovascular disorders.

SOCS1-DERIVED MIMETIC PEPTIDES

It is widely accepted that inflammation participates in all
stages of atherosclerosis, from its initiation to its thrombotic
complications (Libby et al., 2011). Therefore, targeting
inflammatory mediators that dynamically take part in chronic
inflammation which underlies disease could be an interesting
clinical strategy. In this context, SOCS proteins, which are at
the crossroad of multiple inflammatory pathways, have recently
emerged as a potential therapeutic target with anti-inflammatory
functions (Linossi et al., 2013; Trengove and Ward, 2013). SOCS
are negative-feedback regulators of the JAK/STAT pathway,
which drive the production of cytokines and inflammatory
factors that affect atherosclerotic processes, including leukocyte
recruitment, migration, and proliferation of vascular cells, foam
cell formation and apoptosis (Marrero, 2005; Miklossy et al.,
2013). Among the eight members of this family of proteins
(SOCS1-7 and CIS), SOCS1 and SOCS3 are of particular interest
because they contain a conserved 12-residue KIR that is involved
in direct suppression of JAK activity and they have also been
linked to a variety of pro-inflammatory and pro-atherogenic
factors including lipoproteins, lipids, high glucose, angiotensin II,
and insulin (Alexander, 2002; Yoshimura et al., 2007; Liang et al.,
2013). Furthermore, experimental studies in mice and murine
aortic cells demonstrate that SOCS overexpression reduces
inflammation and cardiovascular disease (Tajiri et al., 2012; Qin
et al., 2014). Studies based on peptides mimicking the action
of SOCS proteins have been reported in different experimental
settings (Table 3). The first SOCS mimetic peptide developed
was JAK2 Tkip (Flowers et al., 2004). This short 12-mer peptide
was shown to suppress the expression of inflammatory cytokines
such as TNFα, inhibit lymphocyte proliferation as well as
IFNγ-induced macrophage activation and NO production in
mice (Mujtaba et al., 2005; Ahmed et al., 2009). SOCS1-KIR
peptidomimetic was reported to inhibit STAT activation by
Th1 and Th17 cytokines in leukocytes as well as suppress the
expression of pro-inflammatory mediators and activation and
migration of vascular cells and macrophages in vitro (Ahmed
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et al., 2015). SOCS1-KIR was also shown to be atheroprotective
in a type I diabetes mouse model, decreasing vascular plaque
accumulation of lipids, macrophages, and T cells, and reducing
aorta expression of pro-inflammatory cytokines and chemokines
(Recio et al., 2014). More recently, this SOCS1-KIR peptide
was demonstrated to further improve diabetes associated-renal
damage in mice as well as reduce inflammation and fibrosis in
diabetic kidneys (Recio et al., 2016).

Doti et al. (2012) recent studies focused on identifying new
improved mimetic peptides of the KIR region of SOCS1 but with
enhanced affinity, stability, and potency profiles. Among them,
PS-5 was highlighted because it bound to JAK2 more efficiently
than KIR and also prevented the IFNγ-induced activation of
STAT and its downstream inflammatory effects (Doti et al., 2012;
Madonna et al., 2013).

In summary these peptidomimetics emerge not only as potent
anti-inflammatory agents but also as promising future drugs
in the treatment of cardiovascular complications in diabetic
patients.

INCRETIN MIMETICS

In diabetic patients, the control of blood glucose levels is a
major goal to prevent further tissue damage and cardiovascular
events such as stroke, heart attack, or end-stage renal disease
(Snell-Bergeon and Wadwa, 2012). Incretin mimetic-based
therapies, with particular focus on GLP-1R agonists and DPP4
inhibitors, are currently leading therapeutic agents available
for type 2 diabetes treatment (Drucker and Nauck, 2006). As
peptidomimetics, GLP-1R agonists mimic the actions of the
endogenous hormone GLP-1 in that they stimulate glucose-
induced insulin secretion, suppress glucagon secretion and
hepatic glucose production and delay gastric emptying. In
addition, GLP-1 has been reported to enhance peripheral
glucose disposal (very important in diabetes) as well as promote
pancreatic beta cell growth and differentiation (Drucker and
Nauck, 2006; Meier, 2012). Furthermore, GLP-1R agonists can
act both in a short and long-term manner, allowing personalized
patient regimes to be offered (Neumiller, 2015).

DPP-4 is the enzyme that inactivates GLP-1, therefore its
inhibition emerges as another potential target to increase
circulating levels of GLP-1 thereby increase circulating incretin
levels (Deacon et al., 1998, Deacon, 2011).

Incretin mimetics present other favorable properties such as
a low hypoglycaemia risk, the ability to address postprandial
hyperglycemia (DPP-4 inhibitors and short-acting GLP-1R

agonists), and potential for weight reduction (GLP-1R agonists;
Neumiller, 2015).

Interestingly, besides regulation of glucose homeostasis,
GLP-1 mimetic peptides have also been shown to exert
cardioprotective effects in cardiovascular-related death, non-
fatal MI, and non-fatal stroke (Advani et al., 2013; Wroge and
Williams, 2016).

In the last decade, three different GLP-1R agonists have
been approved for clinical use; Exenatide, first approved in
2005, Liraglutide and Lixisenatide; Albiglutide, Dulaglutide, and
Semaglutide are in last phases of evaluation (Table 4) (Eng et al.,
1992; Meier, 2012). One particular feature of Exenatide and
Lixisenatide is that, in contrast to the endogenous GLP-1 which
is degraded within 1–2 min by DDP-4, they are both DDP-4-
resistant. While Exenatide requires a twice daily dosing regime,
Lixisenatide can be given once a day because it has a higher
affinity for GLP-1R. However, they have a similar half-life (2–4 h;
Madsbad et al., 2011; Bhavsar et al., 2013; Kalra et al., 2016).
Extended stability and longer half-life of these compounds would
be favorable. In contrast, Liraglutide, can be administered once
a day and has half-life of 13 h as a result of a modification to
the peptide backbone with palmitic acid. This compound has
been reported to induce significant weight loss and reduce blood
pressure as well as diabetes prevalence in type 2 diabetic patients
(Juhl et al., 2002; Russell, 2013).

Albiglutide and Dulaglutide are incretin mimetics with
increased half-life (4–7 days) which allow for weekly
administration. This extension of their half-life is feasible
owing to their fusion with different molecules that confer them
stability (i.e., human albumin; Rosenstock et al., 2009). There
are two completed studies with Albiglutide that demonstrate
the safety and efficacy of weekly, subcutaneously injected doses
compared to other treatments such as Liraglutide or insulin.
Dulaglutide is administered by subcutaneous injection once
weekly for up to 24 months at seven doses (Jimenez-Solem
et al., 2010). Semaglutide is to date the last one in the list of
GLP-1 mimetics which are under clinical assessment. Phase III
studies of this compound confirm that it can be administered
subcutaneously once weekly and it improves glycaemic control
in type 2 diabetes patients in a superior way than Exenatide.
Semaglutide also reduces the risk of major cardiovascular events
and decreases appetite and food intake, therefore becoming
an interesting drug to be used in obese patients (Nauck et al.,
2016).

Incretin mimetics are the current preferred drug to treat type 2
diabetes owing to their wide range of beneficial effects. However,
although many of them are already in clinical use, evolution of

TABLE 3 | SOCS mimetic peptides.

Peptide Structure/Sequence Properties Reference

Tkip WLVFFVIFYFFR Anti-inflammatory Mujtaba et al., 2005; Ahmed et al., 2009

S0CS1-KJR DTHFRTFRSHSDYRRI Atheroprotective, anti-inflammatory Recio et al., 2014, 2016; Ahmed et al., 2015

NewSOCSl-K1R DTHFRTFRSH Anti-inflammatory Doti et al., 2012

PS-5 DTC(Acm)RQTFRSH Anti-inflammatory Doti et al., 2012; Madonna et al., 2013

Name, sequence, and properties of the most relevant SOCS mimetic peptides in different laboratories. Modified from (Doti et al., 2012; Ahmed et al., 2015).
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this group of peptides is not complete. There are still a high
number of studies focused on improving patient convenience and
compliance so looking for strategies to reduce dosing frequency
or developing oral administrated compounds.

ANNEXIN-A1 MIMETIC PEPTIDES

Given that MI remains a major cause of death worldwide
and the current therapies based in revascularization of the
ischemic tissue (anti-oxidants and calcium channel blockers)
have shown insufficient success, novel strategies are needed to
treat patients with MI. In this context, the therapeutic potential
of glucocorticoid-regulated anti-inflammatory mediator
annexin-A1 has been demonstrated in different systemic
inflammatory disorders. Annexin-A1 is a glucocorticoid-
inducible 37 kDa protein, highly expressed by macrophages,
that activates the family of formyl peptide receptors and inhibits
different processes related to myocardial reperfusion injury
such as polymorphonuclear leukocyte activation, migration,
and infiltration (Ambrose et al., 1992; De Caterina et al.,
1993; La et al., 2001; Perretti and Gavins, 2003; Qin et al.,
2015).

Due to the potent anti-inflammatory and cardioprotective
properties of endogenous annexin-A1, several studies utilized
experimental models to examine the role of the exogenous
protein and its derived peptides (Perretti and Gavins, 2003).
The main benefits attributed to annexin-A1 peptide mimetics
include cardioprotection based on their anti-inflammatory
effect to preserve myocardial viability after MI but also
other inflammation-independent properties that directly

protect cardiomyocytes viability and contractile function
(Qin et al., 2015). The subcutaneous administration of
annexin-A1 N-terminal derived peptide Ac2-26 has been
shown to confer protection against ischemia-reperfusion
injury by reducing myeloperoxidase activity and IL-1β

levels in the infarcted heart, as well as down-regulate
monocyte accumulation and inhibit phagocytic activity
of macrophages in different rodent experimental models
(Getting et al., 1997; La et al., 2001). Another annexin-A1
mimetic is CGEN-855A, a 21 amino acid peptide displays
anti-inflammatory effects by inhibition of polymorphonuclear
neutrophils recruitment and also provides protection against
ischemia-reperfusion-mediated injury to the myocardium
after being injected intravenously in mice (Hecht et al.,
2009).

CONCLUSION AND FUTURE
PERSPECTIVES

The view that peptides hold multiple properties as therapeutics,
including suitable pharmacokinetic profiles, low toxicity
and immunogenicity, and desirable solubility features, is
broadly accepted. Since many of the classical limitations
they possess to act as drug agents are being overcome
by improving techniques and modifications, the use of
peptides and peptidomimetics as a therapeutic strategy is
growing.

Although the use of these molecules in CVD treatment is
gaining traction, more effort is needed to improve therapeutic
potential. With further studies of the structures, interactions, and

TABLE 4 | Incretin mimetic peptides.

Peptide Structure/Sequence Dosing Status Reference

Exenatide 39 aa peptidase-resistant peptide s.c. twice daily or once
weekly

Approved for T2 diabetes Madsbad et al., 2011;
Bhavsar et al., 2013

Liraglutide 31 aa peptide linked to lipid s.c. once daily Approved for T2 diabetes Juhl et al., 2002; Russell,
2013

Lixisenatide 44 aa peptidase-resistant peptide s.c. once daily Approved for T2 diabetes Kalra et al., 2016

Albiglutide Tandem repeat of 30 aa peptide
fused with human albumin

s.c. once weekly Regulatory review- Rosenstock et al., 2009

Dulaglutide 46 aa peptide fused with IgG4 Fc s.c. once weekly Phase III for T2 diabetes Jimenez-Solem et al., 2010

Semaglutide 37 aa acylated peptide s.c. once weekly Phase III for T2 diabetes Nauck et al., 2016

HM11260C,
LAPS-Exendin

Exendin-4 analog conjugated to
human Ig fragment

s.c. once weekly or once
monthly

Phase II for T2 diabetes Kaspar and Reichert, 2013

NN9926, OG9S7GT GLP-1 analog; long-acting Oral Phase I for T2 diabetes Kaspar and Reichert, 2013;
Mittermayer et al., 2015

ZY0G1 GLP-1 agonist Oral Phase I for T2 diabetes Kaspar and Reichert, 2013;
Mittermayer et al., 2015

TT401 Dual agonist s.c. once weekly Phase I for T2 diabetes,
obesity

Kaspar and Reichert, 2013;
Mittermayer et al., 2015;
(“TransitionTherapeutics
announces results of
clinical study of type 2
diabetes drug candidate
TT-401,” 2013)

Name, structure, administration dose and clinical status of the most relevant incretin mimetic peptides. Modified from (Irwin and Flatt, 2015).
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functions of proteins and mediators implicated in CVD, more
peptides will be discovered and developed. With this strategy,
the use of these molecules could provide good opportunities for
cardiovascular prevention and treatment, surpassing some of the
limitations of current therapies.
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