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Groups with a p-element acting with a single
non-trivial Jordan block on a simple module in

characteristic p

David A. Craven

Communicated by Christopher W. Parker

Abstract. Let V be a vector space over a field of characteristic p. In this paper we com-
plete the classification of all irreducible subgroups G of GL.V / that contain a p-element
whose Jordan normal form has exactly one non-trivial block, and possibly multiple trivial
blocks. Broadly speaking, such a group acting primitively is a classical group acting on
a symmetric power of a natural module, a 7-dimensional orthogonal group acting on the
8-dimensional spin module, a complex reflection group acting on a reflection representa-
tion, or one of a small number of other examples, predominantly with a self-centralizing
cyclic Sylow p-subgroup.

1 Introduction

The classification of primitive permutation groups that contain a pa-cycle (see
[32] and [6, p. 229]) has been of great use in answering a variety of problems in
permutation group theory. In a different direction, groups generated by transvec-
tions have been studied by many authors, culminating in a complete determination
in [17]. A simultaneous generalization of these two concepts, when the transvec-
tions are unipotent, is the idea of a minimally active element. This is a unipotent
element u whose Jordan normal form has at most one block of size greater than 1,
and all other blocks of size 1. (This is equivalent to dim.CM=CM .u/.u// � 1, or
ŒM; u� \ CM .u/ having dimension at most 1, where M is the underlying vector
space.) Such elements also appeared in work of Oliver, Semeraro and the author
[3] in the context of exotic fusion systems. The more general concept of almost
cyclic elements in matrix groups has been looked at for sporadic groups [4] and
Weil modules for classical groups [5], and minimally active elements for algebraic
groups have been studied in [29] and [30]. (An almost cyclic matrix is a matrix
that is similar to the sum of a scalar matrix and a matrix whose minimal and char-
acteristic polynomials coincide.)

The author is financially supported by the Royal Society, being awarded a University Research
Fellowship.
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720 D. A. Craven

In this article we give a general classification theorem for all irreducible
subgroups of GL.M/ that contain a minimally active element. In some cases,
most notably irreducible but imprimitive subgroups, because of the wide range
of examples, we give a general construction of such groups but cannot in any real
sense give a full classification.

Theorem 1. Let M be a vector space over a field k of characteristic p, and let
G � GL.M/ be an irreducible subgroup. If G contains a unipotent element u
such that dim.CM=CM .u/.u// D 1, then one of the following holds:

(i) G acts imprimitively on M , the element u acts on M with a single Jordan
block (i.e., dim.CM .u// D 1) and if

M DM1 ˚M2 ˚ � � � ˚Mt

is the finest direct sum decomposition stabilized by G, then t is a power of p
and ut stabilizes each Mi and acts with a single Jordan block on each Mi .

(ii) p is odd and M factorizes as M1 ˝M2 with dim.Mi / D 2, and u lies in
the central product SL2.k/ ıSL2.k/ with the obvious action on M , with u
acting on M with a block of size 3 and a block of size 1.

(iii) G stabilizes a factorization of M as M1 ˝M2 with dim.M/ D 4; 8; 9,
p D 2; 3; 2, respectively, and o.u/ D 4; 9; 8, respectively, with u acting on
M with a single block if dim.M/ D 4; 8, and a block of size 8 and one of
size 1 if dim.M/ D 9.

(iv) p is a Fermat or Mersenne prime 2n ˙ 1, dim.M/ D 2n, G is a subgroup
of the extraspecial-type group .Z4 ı 21C2n/:Sp2n.2/, o.u/ D p and u acts
with a block of size p and one of size 1 if p is Mersenne, and a single block
if p is Fermat,

(v) p D 3, dim.M/ D 2n for n D 2; 3, G is a subgroup of the extraspecial-
type group .Z4 ı 21C2n/:Sp2n.2/, o.u/ D 3; 9, respectively, and u acts with
either a block of size 3 and a block of size 1, or a single block of size 8.

(vi) the image of G in PGL.M/ is almost simple, and G acts absolutely irre-
ducibly.

Cases (i)–(v) are in some sense general, although note that (ii), (iii) and (v)
only occur for dim.M/ < 10, with (i) and (iv) being the generic case. For (i) in
particular, and also for the other cases, we give more information and are more
specific about which classes occur in the relevant sections. Of course, for (vi) we
can be much more specific, and this is the content of the next theorem. We say that
G � GL.M/ is tensor decomposable if M DM1 ˝ � � � ˝Mt with G stabilizing
the factors, so that G is a subgroup of GL.M1/ o Symt .
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Groups with a p-element acting with a single non-trivial Jordan block 721

Theorem 2. Let M be a vector space over a field of characteristic p, and let
G � GL.M/ be an irreducible subgroup such that the image of G in PGL.M/

is almost simple. Suppose that G acts primitively and tensor indecomposably.
If G contains a unipotent element u such that dim.CM=CM .u/.u// D 1, then (up
to automorphism) G is one of the following:

(i) a linear or unitary group acting on a symmetric power of the natural module,
a classical group, G2.q/, 2G2.q/, 2B2.q/, or 3D4.q/ acting on the natural
module (minimal module for G2), or PSL3.2a/:2 in characteristic 2 and M
of dimension 8,

(ii) the group Spin7.q/ acting on the 8-dimensional spin module,

(iii) a subgroup of a complex reflection group acting on a non-trivial composition
factor of a reflection representation,

(iv) a group with a self-centralizing cyclic Sylow p-subgroup with dim.M/ �

o.u/C 1,

(v) one of the groups

(a) Alt7 � SL4.2/,

(b) 2 � Alt7 � SU4.3/,

(c) 3 �M22 � SL6.4/,

(d) J2 � SL6.4/,

(e) 3 �M10 � GL9.4/,

(f) 3 � J3 � SL9.4/.

(For (i) of this result, we allow C2 to be viewed as B2 and A3 as D3, so they have
two “natural” modules.)

We give exact descriptions of all pairs of almost simple groups and simple
modules such that the group contains an element acting minimally actively in
various results throughout the paper, but there are far too many to list here. Alter-
nating groups are in Propositions 16 and 18, sporadic groups are in Proposition 23,
Lie-type groups in characteristic not p are in Propositions 24, 30, 32 and 36, and
Lie-type groups in characteristic p are given in Propositions 19, 20 and 21.

Given the results in [4, 5, 29, 30], what remains for almost quasisimple groups
is the alternating groups, outer automorphisms of groups of Lie type in defining
characteristic, outer automorphisms of sporadic groups, and groups of Lie type in
cross characteristic acting on non-Weil modules. After a preliminary section estab-
lishing notation and proving some important basic lemmas, in Section 3 we prove
Theorem 1. After this, we work with almost simple groups, studying alternating
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722 D. A. Craven

groups in Section 4, Lie-type groups in defining characteristic in Section 5 and spo-
radic groups in Section 6. In Section 7 we give some preliminaries about groups
of Lie type in cross characteristic, and then Sections 8 and 9 consider classical and
exceptional groups respectively. Finally, Section 10 establishes Theorem 2.

2 Notation and preliminaries

Throughout this paper, let p be a prime and let k be an algebraically closed field of
characteristic p. LetG be a finite group such that p j jGj, and let u be a p-element
of G.

For specific groups, we write Altn for the alternating group of degree n, to
distinguish it from the algebraic group of type A, and write Symn for consistency.
Similarly, a cyclic group of order n will be denoted Zn rather than Cn. Groups of
Lie type are given their standard names of SL, PSL, PSp, and so on.

All modules considered are finite-dimensional and defined over k. We denote
the trivial module by k or kG if the group needs to be emphasized, and if H is
a subgroup ofG andM is a kG-module, thenM #H is the restriction ofM toH .
As usual,˚ and˝ denote direct sum and tensor product, withƒi .M/ and S i .M/

denoting the exterior and symmetric powers of M .
If M is a kG-module and u is a p-element, then the action of u on M is con-

jugate in GL.M/ to a triangular matrix and has a Jordan normal form, made up
of blocks of various sizes. If the action of u is conjugate to a triangular matrix
with Jordan blocks of sizesm1; : : : ; mr , then we say that u has type .m1; : : : ; mr/
onM . We often place themi in weakly decreasing order, but this is not necessary.

The modules of interest are as follows.

Definition 3. Let G be a finite group and let k be an algebraically closed field of
characteristic p > 0. If u is a p-element of G and M is a kG-module, then u acts
minimally actively on M if, in the Jordan normal form of u on M , there is at most
one Jordan block of size greater than 1, i.e., if u has type .m; 1; : : : ; 1/ for some
m � 1 onM , or equivalently if ŒM; u� \ CM .u/ is at most 1-dimensional. We say
that M is minimally active if there exists a non-trivial 2-element acting minimally
actively on M .

Notice that the identity acts minimally actively on all modules, and all p-ele-
ments act minimally actively on 1-dimensional modules.

We use the term minimally active here, following [3], rather than almost cyclic,
following [4, 30], because almost cyclic elements need not be p-elements, where
p is the characteristic of the underlying field, i.e., unipotent elements of the corre-
sponding GL.M/. Since we definitely require this extra hypothesis, we prefer to
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Groups with a p-element acting with a single non-trivial Jordan block 723

use this more specific term, to avoid leading the reader to believe we have classi-
fied all irreducible groups containing almost cyclic elements.

In our work we often need to know how many conjugates of a given element u
generate the normal closure of hui in a given group, so we introduce some notation,
following [10].

Definition 4. Let G be a finite group and let u be an element of G. We denote by
˛.u/ the smallest number of conjugates u1; : : : ; u˛.u/ of u such that

hu1; : : : ; u˛.u/i D hu
G
i;

i.e., the fewest number of conjugates of u needed to generate the normal closure
of hui. Write

˛.G/ D max
u2G

˛.u/:

Of course, if a group has even order and is not dihedral, then ˛.G/ � 3, and
˛.G/ is the maximum of ˛.u/ for all elements u of prime order. In [10], various
bounds for almost simple groups were obtained, and we will use them frequently
to get general constraints on finite groups with elements acting minimally actively
on a simple module. For example, in Lemmas 11 and 12 we show that ˛.u/ D 2
for some specific conjugacy classes of permutations inside symmetric groups.

We collect several basic facts about minimally active modules now.

Lemma 5. Let G be a finite group and let M be a faithful kG-module.

(i) If u acts minimally actively on M , then u acts minimally actively on any
submodule or quotient of M , and on the dual of M .

(ii) If u is contained in a subgroup H of G and acts minimally actively on M ,
then u acts minimally actively on M #H .

(iii) IfM DM1 ˚M2 and u acts minimally actively onM , then huGi acts triv-
ially on at least one of the Mi .

(iv) If M is simple and u acts minimally actively on M , then

dim.M/ � ˛.u/ � .o.u/ � 1/:

More generally, if a D dim.M/ � dim.CM .u//, then dim.M/ � a � ˛.u/.

(v) Suppose thatM andN are kG-modules with dim.M/ � dim.N /, and such
that u acts non-trivially on M ˝N . We have that u acts minimally actively
on M ˝N if and only if either dim.M/ D 1 and u acts minimally actively
on N , or p is odd, dim.M/ D dim.N / D 2, and u acts non-trivially (i.e.,
has type .2/) on both M and N .
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724 D. A. Craven

(vi) If u acts non-trivially and minimally actively on ƒ2.M/, then u has type
.2/, .2; 1/ or .3/ on M , or p is odd and u has type .4/ on M .

(vii) If u acts non-trivially and minimally actively on S2.M/, then p is odd and
u has type .2/ on M , or p � 5 and u has type .3/ on M .

Proof. The first three parts are clear. For the fourth part, note that the codimension
a ofCM .u/ is at most o.u/�1, whence the codimension ofCM .hu; ug2 ; : : : ; ugr i/

is at most ra � r.o.u/ � 1/. If G is generated by r conjugates of u, then this is
CM .G/ D 0, so that dim.M/ � ra � r.o.u/ � 1/, as claimed.

For (v), note that if dim.M/ D 1 and u acts minimally actively on N , then the
result is clear, and if p is odd and u acts as a single Jordan block of size 2 on both
M and N , then u acts on M ˝N with type .3; 1/, so one direction holds. For
the other, if dim.M/ D dim.N / D 2 and p D 2, then u acts onM ˝N with type
.2; 2/, and otherwise dim.N / � 3. If u acts trivially on M , then it must act non-
trivially on N , and the action of u on M ˝N contains two copies of the action
of u on N (as dim.M/ � 2) so that u cannot act minimally actively. If u acts non-
trivially onM and dim.N / � 3, thenM contains a u-invariant subspace on which
u acts with type .2/, and N contains a u-invariant subspace with type either .3/ or
.2; 1/. In the first case, u acts on the tensor product of these subspaces as .4; 2/ (or
.3; 3/ if p D 3), and in the second as .3; 2; 1/ (or .2; 2; 2/ if p D 2), so u does not
act minimally actively in either case, by applying (i).

For the statements about exterior and symmetric powers, recall that

S2.A˚ B/ D S2.A/˚ .A˝ B/˚ S2.B/

and similarly for exterior squares. Thus if u has at least three blocks, then it con-
tains a submatrix of type .2; 1; 1/, and the symmetric and exterior squares of this
have two blocks of size 2. From Table 1, we see that u acts minimally on ƒ2.M/

and S2.M/ when claimed, and that u cannot act minimally on either of these
when .3; 1/ or .5/ is a submatrix of the type of u on M . All other possibilities are
in Table 1, and this completes the proof.

In characteristic 2, we will have to consider modules that are not exterior
squares, but exterior squares with one or two trivial composition factors removed.

Lemma 6. Let p D 2, let G be a finite group and let M be a faithful, simple
module of dimension at least 6. If V is obtained fromƒ2.M/ by removing at most
two trivial composition factors, then V is not minimally active for any non-trivial
2-element of G.

Proof. The exterior square of a block of size 6 has type .8; 6; 1/, so even a sub-
module of codimension 2 cannot be minimally active for u. Similarly, the exterior
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Groups with a p-element acting with a single non-trivial Jordan block 725

Type Symmetric square Exterior square

.2/ .3/ (p ¤ 2),
.2; 1/ (p D 2)

.1/ (all p)

.2; 1/ .3; 2; 1/ (p ¤ 2),
.2; 2; 1; 1/ (p D 2)

.2; 1/ (all p)

.3/ .5; 1/ (p ¤ 2; 3),
.3; 3/ (p D 3),
.4; 2/ (p D 2)

.3/ (all p)

.3; 1/ .5; 3; 1; 1/ (p ¤ 2; 3),
.3; 3; 3; 1/ (p D 3),
.4; 3; 2; 1/ (p D 2)

.3; 3/ (all p)

.4/ .7; 3/ (p ¤ 2; 5),
.5; 5/ (p D 5),
.4; 4; 2/ (p D 2)

.5; 1/ (p ¤ 2),

.4; 2/ (p D 2)

.5/ .9; 5; 1/ (p ¤ 2; 5),
.5; 5; 5/ (p D 5),
.8; 4; 3/ (p D 2)

.7; 3/ (p ¤ 5),

.5; 5/ (p D 5)

Table 1. Types of symmetric and exterior squares.

square of a matrix of type .4; 1/ has type .4; 4; 2/, so again we cannot find a min-
imally active submodule of codimension 2 for u. The exterior square of a matrix
of type .3; 1; 1/ has type .3; 3; 3; 1/ and that of .2; 14/ has type .24; 17/, so again
this cannot work. Every type for u acting on M contains one of these types as
a submodule, hence u cannot act minimally actively on V .

We now give a lemma on when a power of an element can be minimally active.
This uses the classification of groups generated by transvections given in [17].

Lemma 7. Let G be a finite group and letM be a faithful, simple kG-module. Let
u be a p-element and suppose that a non-trivial element v of hupi acts minimally
actively on M . Then v acts as a transvection on M . Furthermore, G contains
a classical group in its natural representation as a normal subgroup, or p D 2, k
contains F4, and G is either 3 � Alt6 � GL3.k/ or 3 � PSU4.3/ � GL6.k/.

Proof. The pth power of a single Jordan block of size ap is the sum of p blocks
of size a; from this it is easy to see that the pth power of a single block of size
ap C b is the sum of b blocks of size aC 1 and p � b blocks of size a. In order
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726 D. A. Craven

for this to be minimally active, we must have a D b D 1. Thus u is the sum of one
block of size pa C 1 for some a and blocks of size at most pa, and an element v
of order p in hui is a transvection, i.e., has type .2; 1n�2/ for n D dim.M/.

Since G possesses a faithful simple module in characteristic p, Op.G/ D 1.
(There are many ways to see this: one is that parabolic subgroups act reducibly
in the general linear group, and the normalizer of a p-subgroup is contained in
a parabolic.) The subgroup H generated by all conjugates of v is a normal sub-
group ofG, whence acts semisimply onM as a sum of conjugate modules but also
v acts minimally actively, whenceH acts irreducibly onM by Lemma 5 (iii). Thus
H is an irreducible subgroup of GL.M/, withOp.H/ D 1, containing a transvec-
tion, so is one of the groups on Kantor’s list in [17, Theorem II].

Of these, we need to check which have a transvection as a proper power of
a p-element. Classical groups certainly do (cases (T1) and (T2) in Kantor’s list),
whereas no 2-element powers to a transposition in Symn (cases (T3) and (T9)),
and case (T6) has Sylow p-subgroups of exponent p. Cases (T4) and (T8) are
not irreducible, and (T5) and (T7) have a single class of involutions, which must
be transpositions, and do not have exponent 2, so are examples. This exhausts
the list.

If the Sylow p-subgroup of G is cyclic, then we can say more about mini-
mally active modules. This next lemma is a generalization of [3, Propositions 3.7
and 3.9], and the proof follows the same method. We do not give all the back-
ground on Green correspondence needed for their proof here, and instead refer to
[3, Section 3] and the references therein.

Lemma 8. Let G be a finite group and let M be a faithful, simple kG-module.
Suppose that the Sylow p-subgroup U of G is cyclic and generated by u.

(i) If NG.U /=U is abelian (for example, if CG.u/ D Z.G/ � hui), then u acts
minimally actively on M if and only if dim.M/ � o.u/C 1.

(ii) If CG.u/ is abelian and M is minimally active, then dim.M/ < 2 � o.u/.

(iii) If M is minimally active, then dim.M/ � o.u/C b, where b < jCG.u/j.

Proof. By Lemma 7 we may assume that ifM is minimally active, that it is u that
acts minimally actively.

If dim.M/ D a � o.u/ for some integer a � 1, then M is projective and u acts
with a blocks of size o.u/; thus M is minimally active if and only if dim.M/ D

o.u/. Hence we can suppose thatM is not projective. Let V denote the Green cor-
respondent ofM inNG.U /, so thatM #NG.U /D V ˚X , where V is an indecom-
posable kNG.U /-module and X is a relatively hupi-projective kNG.U /-module.
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Groups with a p-element acting with a single non-trivial Jordan block 727

We next aim to understand the action of u on V . Note that V is indecomposable
and all indecomposable modules for p-soluble groups are uniserial, and all compo-
sition factors of V lie in the same block ofNG.U / and have the same dimensionm.
(This follows since the Brauer tree of a block of a p-soluble group is a star.) Thus
the action of u is as m blocks of the same size r , where dim.V / D mr .

Suppose that X D 0. Since u acts non-trivially on M , this means that r > 1,
so that m D 1 if and only if u acts minimally actively on M . In particular, if M
is minimally active, then dim.M/ < o.u/. Since m is the dimension of a simple
NG.U /=U -module, ifNG.U /=U is abelian, then this meansm D 1, so if X D 0,
then u acts minimally actively on M . This proves all parts of the result when
X D 0.

SinceX ¤ 0, and clearly u acts non-trivially onX , it must act trivially on V by
Lemma 5 (iii), so V is an indecomposable kNG.U /=U -module, hence a simple
module as this is a p0-group. Since X is relatively hupi-projective, by Green’s
indecomposability criterion we see that all Jordan blocks of u on X have size
a multiple of p, so there is exactly one, and dim.X/ � o.u/. This completes the
proof of (i) since dim.V / D 1 in this case.

Otherwise we need to bound the dimension of a simple NG.U /=U -module:
since jNG.U /=CG.U /j has order dividing p � 1, if CG.U / is abelian, then any
simple NG.U /-module has dimension at most p � 1: thus

dim.M/ � o.u/C .p � 1/ < 2o.u/;

as needed. Finally, asNG.U /-modules are orbits of CG.U /-modules by Clifford’s
theorem, they have dimension at most jCG.U /j � 1 (the ‘�1’ is because the trivial
is always in a separate orbit) proving the third part.

We move on to examining p-elements acting on direct sum and tensor product
decompositions.

Lemma 9. Let G be a finite group and let u 2 G be a p-element. Suppose that
u acts minimally actively on a faithful, simple kG-module M . Suppose that H is
a normal subgroup of G and that G D H hui. Let 1 < t D jG W H j and suppose
thatM #H is the sum of t non-isomorphic simple modules. The action of u onM ,
and of ut on each composition factor ofM #H , is as a single Jordan block, of size
the dimension of the module.

Conversely, if ut acts on each composition factor of M #H as a single Jordan
block, then u acts minimally actively on M with a single Jordan block.

Proof. We note at the start that t is a power of p. Since the restriction of M to H
is the sum of t non-isomorphic modules, we have the decomposition

M #HDM1 ˚M2 ˚ � � � ˚Mt ;
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728 D. A. Craven

where Mi � u DMiC1. Suppose that m D .m1; : : : ; mt / is a fixed point of u, so
that in particular each mi 2Mi is a fixed point of ut . Note that, since m � u D m,
we must have that mi � u D miC1, whence there is a one-to-one correspondence
between the u-fixed points of M and the ut -fixed points of M1, and in particular
their dimensions are equal.

Writing d D dim.M1/, so that dim.M/ D dt , if u has type .a; 1dt�a/, then
dim.M/hui D dt�aC1. This has to be equal to dim.M1/

hut i, which is at most d .
This yields

dt � aC 1 � d:

First suppose that a � t , so that ut D 1. This yields

dt � t C 1 � dt � aC 1 D d;

i.e., .d � 1/.t � 1/ � 0, yielding either d D 1 or t D 1, the latter of which is
impossible.

Thus suppose that ut ¤ 1. Since u has type .a; 1dt�a/, we need to know how
ut acts: a block of size a, when raised to the t th power, has type ..˛ C 1/ˇ ; ˛t�ˇ /,
where a D t˛ C ˇ and 0 � ˇ < t . Thus the action of ut on M has type

..˛ C 1/ˇ ; ˛t�ˇ ; 1td�a/:

These must be distributed equally among the t distinct Mi , whence t j ˇ and this
means that ˇ D 0. This means that ut acts on M with type .t˛; 1t.d�˛//, which
means that it acts on each Mi with type .˛; 1d�˛/.

Thus we now have that

1C t .d � ˛/ D dim.M/hui D dim.M1/
hut i
D d � ˛ C 1;

so t D 1 (again, impossible) or d D ˛, in other words, ut acts with a single Jordan
block, and therefore so does u, as claimed.

For the converse, since ut fixes a unique 1-space on each Mi , any fixed point
of umust lie inside this span. But ut acts on this t -space as a transitive permutation
module, hence fixes a unique 1-space. Thus u acts with a single Jordan block,
as claimed.

Along with unipotent elements permuting direct sums, we need unipotent ele-
ments permuting tensor products.

Lemma 10. Let G be a finite group and let u be a p-element. Let H be a normal
subgroup of G such that G D H hui, and let M be a faithful, simple kG-module
that is not isomorphic to a non-trivial tensor product of two modules, and whose
restriction toH factors as a tensor productM1˝M2˝� � �˝Mt of kH -modules,
where jG W H j D t > 1 and dim.Mi / > 1. If u acts minimally actively onM , then
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one of the following holds:

(i) p D t D 2, dim.Mi / D 2; 3, u2 has type .2; 2/ or .4; 4; 1/ on M .

(ii) p D t D 3, dim.Mi / D 2, u3 has type .3; 3; 2/ on M .

Conversely, if p, t , dim.M/ and the action of ut is as above, then u acts minimally
actively on M .

Proof. First suppose that ut D 1. Notice that for any element v1 in M1, writing
viC1 D vi � u, we can arrange the Mi so that vi 2Mi and v1 ˝ � � � ˝ vt is fixed
by u. The subspace spanned by all other monomials in the tensor product is also
fixed by u, so M #hui is the sum of a trivial module of dimension dim.Mi / and
a permutation module with basis the monomials in the tensor product. Since all
other orbits than v1 ˝ � � � ˝ vr have length greater than 1, if u is minimally active,
then there is a single orbit on the monomials. However, this is clearly impossible,
for example since the number of monomials is dim.Mi /

t � dim.Mi / > t , unless
p D t D dim.Mi / D 2.

We therefore may assume that hui \H ¤ 1, so that ut is a non-trivial p-ele-
ment. If u acts minimally actively on M , then ut has at most t non-trivial blocks.
We will prove that, for almost all possible Jordan normal forms of ut , there must be
more than t non-trivial blocks in its t -fold tensor power. Note that, if this is shown
for a block of type .˛1; : : : ; ˛r/, then it is shown for any type .ˇ1; : : : ; ˇs/ with
s � r and ˛i � ˇi for all 1 � i � r , because for the cyclic group of order a, the
kZa-module with indecomposable summands of dimensions ˛1; : : : ; ˛r is a sub-
module of that with dimensions ˇ1; : : : ; ˇs , and hence the t -fold tensor power of
the former is also a submodule of the latter.

Suppose that p D 2. If ut is a single block of size 2, then the t -fold tensor power
of the action of ut is as 2t�1 blocks of size 2, and this is greater than t for t � 3.
Thus if t � 4 (as t must be a power of 2), then u cannot act minimally actively
at all. Thus we may assume that t D 2.

If ut is a block of size 3, then the tensor square has type .4; 4; 1/, so is a can-
didate. If ut is a block of size 4, then the tensor square has type .4; 4; 4; 4/, so we
eliminate all blocks of size at least 4, leading to the result in the lemma.

We now check that these two cases occur. For dim.M1/ D 2, we have that u
has order 4 and its square acts as .2; 2/, so u must have a single block of size 4.
For dim.M1/ D 3, u has order 4 and its square acts as .4; 4; 1/, so u must act as
.8; 1/ (as blocks of sizes 5, 6 and 7 square to have types .3; 2/, .3; 3/ and .4; 3/,
respectively). Thus u must be minimally active in these cases.

Now suppose that p is odd, and again we consider the t -fold tensor power of
a block V of size 2. For the first few tensor powers, we describe them now. In this
table we assume that t < p.
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t type

1 .2/

2 .3; 1/

3 .4; 22/

4 .5; 33; 12/

5 .6; 44; 25/

6 .7; 55; 39; 15/

These are easily generated as tensoring a block of size i by a block of size 2
yields two blocks, of size i � 1 and i C 1, at least when i < p. It is easy to see
that the start of the t -fold product for arbitrary t is

.t C 1; .t � 1/t�1; .t � 3/.t�1/.t�2/=2�1; : : : /;

and so for t � 5 there are more than t non-trivial blocks of size less than t in the
.t � 1/-fold tensor power of a single block. This means that there are more than p
non-trivial blocks in the p-fold power of a single block, and at least two of them
have size p, for p � 5. (If p D 3, tensoring .3; 1/ by .2/ yields .3; 3; 2/, so the
second statement holds but not the first.)

For t > p, we write this as a single tensor product of V ˝p and V ˝.t�p/. The
first of these contains two blocks of size p, whose product with V ˝.t�p/ consists
entirely of blocks of size p, and hence the product contains at least 2.t � p/ > t
blocks of size p when t > p is a power of an odd p.

This proves that u is not minimally active if p � 5, or p D 3 and t � 9. If
p D t D 3 and V is a block of size 3, then V ˝3 is the sum of nine blocks of
size 3, and if V is the sum of a 1- and 2-dimensional module, then V ˝3 has type
.35; 22; 14/. Thus if dim.Mi / � 3, then we are also done.

We are left with V having dimension 2, in which case V ˝3 has type .3; 3; 2/, as
we saw above. If u has order 9 and u3 acts as .3; 3; 2/, then we use the table below
that displays the blocks of u3, given a block of u.

u 1 2 3 4 5 6 7 8

u3 1 12 13 2; 12 22; 1 23 3; 22 32; 2

We clearly see that u cannot have blocks of size other than 8, and hence u acts
with a single block, as claimed.

The next two lemmas are needed in our analysis of minimally active modules
for (central extensions of) symmetric groups.
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Lemma 11. LetG D Symn for some n, and suppose that u 2 G is of order at least
4 and has no cycles of length 1 or 2. Then ˛.u/ D 2.

Proof. Of course, u D .1; 2; : : : ; n/ and v D .1; 2/ generate Symn, so hu; uvi has
index at most 2 in Symn, and we see that ˛.u/ D 2 when u is a single cycle.

Suppose that u has cycle type .m1; : : : ; mr/, with all mi � 3, and mr � 4.
Write n0 D 0, ni D

Pi
jD1mi , and for 1 � i � r � 1, let

�i D .ni�1 � .i � 2/; ni�1 � .i � 3/; : : : ; ni � i; n � i/;

a cycle of length mi . Finally, let

�r D .nr�1 � .r � 2/; nr�1 � .r � 3/; : : : ; n � r � 1; n; n � r/;

and let u be the product of the �i . The second generator is

v D .n1; n � 1/.n2 � 1; n � 2/ : : : .nr�1 � .r � 2/; n � .r � 1//.n � r; n/:

Notice that uv is just the .n � 1/-cycle .1; : : : ; n � 1/, and that

Œu; v� D .1; n1 C 1/.n1; n2; n � 1/.n2 � 1; n3 � 1; n � 2/

: : : .nr�2 � .r � 3/; nr�1 � .r � 3/; n � .r � 2//

.n � r; n � .r � 1/; nr�1 � .r � 2/; n/;

so that Œu; v�6 is a double transposition. LettingH D hu; vi, we note thatH is tran-
sitive and contains an .n � 1/-cycle, hence 2-transitive and so primitive. Since it
contains a double transposition, and by [6, Example 3.3.1] a primitive subgroup of
Symn containing a double transposition contains Altn for n � 9, we get ˛.u/ D 2
in this case as well.

The remaining cases to check are for n D 7; 8 and u with cycle type .4; 3/,
.5; 3/ and .4; 4/. In the first case, Sym7 is generated by .1; 2; 3; 4/.5; 6; 7/ and
.1; 2; 3; 5/.4; 6; 7/, and in the second and third cases, the group Alt8 is generated
by .1; 2; 3; 4; 5/.6; 7; 8/ and .1; 2; 3; 4; 6/.5; 7; 8/, and also by .1; 2; 3; 4/.5; 6; 7; 8/
and .1; 2; 5; 6/.4; 3; 7; 8/.

Lemma 12. Let G D Symn for some n � 9. If u 2 G has cycle type .n � 2; 2/,
.n � 4; 2; 2/ or .n � 6; 2; 2; 2/, then ˛.u/ D 2. If n D 10 and u has cycle type
.4; 4; 2/, then ˛.u/ D 2 also.

Proof. In the first case, let

u D .1; n � 1/.2; 3; : : : ; n � 3; n; n � 2/; v D .2; n � 1/.n � 2; n/:

Again, uv D .1; 2; : : : ; n � 1/ and the same proof applies as Lemma 11, as v is
itself a double transposition.
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In the second case, let

u D .1; n � 1/.2; n � 2/.3; : : : ; n � 4; n; n � 3/;

v D .2; n � 1/.3; n � 2/.n � 3; n/:

Then uv is as in the previous case, but now we need to find an element of small
support, and this is

Œu; v� D .1; 3; n; n � 3; n � 2/.2; 4; n � 1/;

and so Œu; v�5 is a 3-cycle, and we are done.
In the third case, let

u D .1; n � 1/.2; n � 2/.3; n � 3/.4; : : : ; n � 5; n; n � 4/;

v D .2; n � 1/.3; n � 2/.4; n � 3/.n � 4; n/:

Again, uv is as before, but if n � 10, then

Œu; v� D .1; 3; 5; n � 2/.2; 4; n; n � 4; n � 3; n � 1/;

and Œu; v�6 D .1; 5/.3; n � 2/, as needed. If n D 9, then u2 is a 3-cycle, and we
are again done.

Finally, we simply give generators of Sym10 of the appropriate cycle types:

.1; 2; 3; 4/.5; 6; 7; 8/.9; 10/ and .1; 5; 4; 7/.2; 3; 8; 10/.6; 9/:

This completes the proof.

We also need to determine better bounds on ˛.u/ for u a unipotent element in
GLn.2/ than ˛.u/ � n given in [10]. While this bound is sharp for transvections,
simply by considering the fixed-point subspace, we need elements close to regular
elements. Indeed, by [8], with the exception of SL4.2/, SLn.p/ is generated by
two regular unipotent elements for all primes p, and all n � 3. We give this in
a lemma for reference.

Lemma 13 ([8]). Let G D SLn.p/ for some n � 2. If u is a regular unipotent
element of G, then ˛.u/ D 2.

Proof. This is proved in [8] for all cases except for SL4.2/ D Alt8, where the reg-
ular unipotent class is in bijection with the class containing u D .1; 2; 3; 4/.5; 6/.
Letting v D .1; 5; 7; 8/.4; 6/, we note that hu; vi generates a primitive subgroup of
Altn containing .uv2/5 D .5; 8; 6/. This completes the proof.

From this, we can get that if u is a 2-element of maximal order in SLn.2/,
then ˛.u/ � 4; it is likely that this could be improved still further, but not without
considerably more work.
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Lemma 14. Let G D SLn.2/, and let u be a unipotent element of maximal order
in G. If n is even, then ˛.u/ � 3 and if n is odd then ˛.u/ � 4.

Proof. Write V for the natural module for G. Suppose that u has type .a; 1n�a/
on V for some a � n

2
C 1, so that in particular CV .u/ has dimension less than

1
2

dim.V /. Let u1 and u2 be regular unipotent generators of SLa.2/, written as ma-
trices inG, so with type .a; 1n�a/. The action ofH1 D hu1; u2i on V has a single
simple submodule W of dimension a, and all other simple submodules trivial.

Write v1; : : : ; va for a basis of W , and extend the basis to vaC1; : : : ; vn on
which H1 acts trivially. Let u3 act as follows:

vi � u3 D

8̂<̂
:
v1 C vn; i D 1;

vi ; 2 � i � n � aC 1;

vi C vi�1; n � aC 2 � i � n:

Of course, u3 has the correct type. We claim that H D hu1; u2; u3i acts irre-
ducibly on V , so letX denote anH -submodule of V . SinceW is a simpleH1-sub-
module, eitherX\W D 0 orW � X : ifW � X , then v1 2 X , so vn 2 X and we
see that each vi 2 X , so that V D X . Thus X \W D 0, and so H1 acts trivially
on X , yielding X is a subspace of hvaC1; : : : ; vni. However, repeated application
of u3 to any element of this space eventually leaves it, as we must project onto va,
so that X D 0. ThusH is irreducible on V , containing a copy of SLa.2/ acting on
V in a non-self-dual way, henceH 6� Sp.V /. SinceH contains a transvection, we
can apply [17, Theorem II]: eitherH D G,H is a classical group (all contained in
Sp.V / as the characteristic is 2) or a symmetric group (again, contained in Sp.V /
as the simple modules are self-dual), so since H 6� Sp.V /, we have that H D G,
as needed.

If n � aC 1 D a, i.e., n D 2aC 1, then the above argument fails: in this case,
generate SLn�1.2/ with three elements, and use the fourth to get the full SLn.2/.

If the ui have another type, with a single block of size a and various smaller
blocks instead, then choose the ui exactly as before: note that every subspace
of V stabilized by ui is also stabilized by the previous ui , and so since we had an
irreducible subgroup before we must have an irreducible subgroup again. Since it
still contains a transposition, we still have SLn.2/, as needed.

We end this section by giving the notation used for almost quasisimple groups.
Our groups G will have the property that G D hF �.G/; ui for some p-element u,
that G0 D F �.G/ is quasisimple and that Z.G/ D Z.G0/. If M is a faithful
simple kG-module then this yields an embedding of G into GL.M/. Our con-
ditions on G are equivalent to the imageH of G in PGL.M/ being almost simple,
and H 0 being simple with H=H 0 generated by a p-element of H .
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3 Reduction to almost simple groups

This section uses Aschbacher’s classification of maximal subgroups of classical
groups [1] (see also [19, 25, 31], and in particular [19], which modifies the classes
of Aschbacher, and whose notation we will use here) to reduce to the case given at
the end of the last section, where G is an almost quasisimple group. Thus we have
eight classes C1; : : : ;C8 of maximal subgroups, together with almost quasisimple
groups S . We will determine which elements of the Ci contain minimally active
elements.

We assume in this section that G is a subgroup of GL.M/ for an n-dimensional
k-vector spaceM , with u 2 G being a p-element acting minimally actively onM .
As we are only concerned with irreducible modules, we stipulate that G acts irre-
ducibly on M . In particular, G cannot lie in a parabolic subgroup, class C1.

If G acts imprimitively on M , then G stabilizes a direct sum decomposition

M DM1 ˚M2 ˚ � � � ˚Mt

of M . Taking this decomposition to be as fine as possible, we see that G is a sub-
group of GLn=t .k/ o Symt (Aschbacher’s class C2). The action of u on this group
is in Lemma 9: u must act with a single non-trivial block, t is a power of p, and
ut acts with a single block on each Mi . Hence G lies in a wreath product A o B ,
where ut 2 A acts on M1 with a single Jordan block, and the t -cycle .1; : : : ; t /
lies in B . Furthermore, given such a setup we always obtain an element u. Thus
there are many groups acting imprimitively onM with minimally active elements.

If we extend the field and the module is no longer irreducible (G is contained
in an extension field subgroup, class C3), then we can apply Lemma 5 (iii) to see
that G cannot have a minimally active element.

Suppose thatG acts primitively and absolutely irreducibly onM , and preserves
a tensor decomposition

M DM1 ˝M2 ˝ � � � ˝Mt ;

so that G is a subgroup of GLm.k/ o Symt with n D mt . Now we can apply Lem-
mas 5 (v) and 10, which show that one of the following holds:

(i) n D 4 and p is odd, with G a subgroup of SL2.k/ � SL2.k/ and o.u/ D p
acting with type .3; 1/,

(ii) n D 4 and p D 2, with o.u/ D 4 acting with type .4/,

(iii) n D 8 and p D 3, with o.u/ D 9 acting with type .8/,

(iv) n D 9 and p D 2, with o.u/ D 8 acting with type .8; 1/.

We also showed in that lemma that these cases occur, and we will not comment
further on this case. These are classes C4 and C7.
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If G is contained inside a subfield subgroup in the class C5 (of the form
NGLn.k/.GLn.k0//), then since our property is independent of the field over which
we take our module M , we replace k by k0 and so this case can be ignored.

If G is contained inside another classical group (i.e., class C8), then we apply
this classification of maximal subgroups to that group instead.

Thus we are left with C6, extraspecial-type subgroups, and S , which is the focus
of all subsequent sections of the paper.

Let r ¤ p be a prime, and let R denote an extraspecial group of order r1C2m

for some m. If r D 2, we allow R to be either an extraspecial group or the central
product with Z4. Note that a faithful, irreducible representation of R in charac-
teristic not r has dimension n D rm, so we may embed R into GLn.k/ for k an
algebraically closed field of characteristic p, and k any field of characteristic p
except when R D Z4 ı r1C2m and k needs a fourth root of unity. Let G denote
the normalizer in GLn.k/ of R, and let M be the natural module for G. More
information about G can be found in [19, 25, 31].

We want to prove that ifG contains a minimally active element, then the param-
eters r; p;m are very tightly controlled. To do so, we need to know something
about G=R, which is a classical group. In Section 7, particularly Proposition 26,
we get information about the orders of p-elements of classical groups in character-
istic different from p. Rather than deferring the proof of this result until then, we
include it here, but use the definitions and notation from that section. The reader
is recommended to skip the proof of this result until they have reached Section 7;
the proof is similar to those contained in Section 8.

Proposition 15. If u 2 G acts minimally actively onM , then r D 2 and one of the
following holds:

(i) m is an odd prime, p D 2m � 1 is a Mersenne prime, and u has order p,
acting with type .p; 1/,

(ii) m is a power of 2, p D 2m C 1 is a Fermat prime, and u has order p, acting
with type .p � 1/,

(iii) m D 2, p D 3, o.u/ D 3 acting with type .3; 1/ (not all elements of order 3
have this property),

(iv) m D 3, p D 3, o.u/ D 9, acting with type .8/.

Proof. If r is odd, then Op
0

.G/ D R Ì Sp2m.r/ is a split extension, and so if u is
a p-element of G, we may assume that u lies in H D Sp2m.r/. By [9, Section 5],
if p is odd, then H acts on M as the direct sum of the two Weil modules, of
dimensions 1

2
.rm�1/ and 1

2
.rmC1/, and so u cannot act minimally actively onM

by Lemma 5 (iii). If p D 2, then M is uniserial of length 3 (see [9, Lemma 5.2])
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with socle series W , k and W , where W is a Weil module, and since W is not
minimally active for p D 2 by Theorem 28 we eliminate this case as well.

Thus r D 2 and hence p is odd. Here G=R Š H , where H D GO˙2m.2/ or
Sp2m.2/, and the orthogonal-type groups are contained in R:Sp2m.2/, so we will
work solely with that group. Let d denote the order of 2 modulo p, so that p
divides ˆd .2/. We have that ˛.u/ � mC 3 in all cases, since p is odd.

Let us suppose that the image in H of u lies in a Levi subgroup of H , say
Sp2m�2a.2/ � Sp2a.2/. Taking preimages in G yields a central product G1 ıG2,
where

G1 D R1:H1 D .4 ı 2
2.n�a/C1/:Sp2.m�a/.2/;

G2 D R2:H2 D .4 ı 2
2aC1/:Sp2a.2/:

The action of this group on M is a tensor product of actions of the Gi , and since
the tensor product of two modules cannot be minimally active unless they both
have dimension at most 2 by Lemma 5 (v), we have that m D 2 and p D 3. This
case will be considered later.

Thus we may assume that the Sylow p-subgroup of G, and hence H , does not
lie in any proper Levi subgroup of H . This in particular means that d divides 2m.

Suppose that d is either 2m, or m is odd and d D m; in both cases d is reg-
ular, so CH .u/ is abelian and of odd order since the image of u is semisimple
in H and therefore CH .u/ is reductive. Thus CG.u/ splits as the direct product
of CR.u/ and a subgroup C isomorphic to CH .u/. Thus R D CR.u/ ı ŒR; u�,
and since u does not lie in a Levi subgroup of H , CR.u/ D Z.R/ � Z.GL.M//.
This shows that CG.u/ D Z.R/ � C , and in particular CG.u/ is abelian, so that
2m D dim.M/ � 2o.u/ if u acts minimally actively on M by Lemma 8 (ii). As
dim.M/ D 2m and o.u/ j ˆd .2/ j .2m ˙ 1/, it follows that if .2m ˙ 1/ is not a
prime power, then 2o.u/� 2

3
.2m˙1/ < 2m, and so o.u/D 2m˙1. Thus 2m˙1 D

ˆd .2/, so that m is either a power of 2 or is a prime, and 2m ˙ 1 is a Fermat or
Mersenne prime, or is 9 D 23 C 1, but 2 has order 2 modulo 3, not 6.

In these cases, CH .u/ is abelian and indeed is simply hui, so the subgroup
CG.u/ D Z.R/ � hui is cyclic, and we may apply Lemma 8 again to show that u
acts minimally actively on M , and we are done.

If d D m for m even, then the Sylow p-subgroup of H has rank 2, and lies
inside the Levi subgroup Spm.2/ � Spm.2/, so u can only act minimally actively
if m D 1, i.e., p D 3, as we saw above.

Suppose that the Sylow p-subgroup of G is abelian, so that o.u/ is a divisor of
ˆd .2/, for d j 2m with d ¤ m; 2m. If d is odd, then d � m

2
, and if d is even then

d � 2m
3

: in the first case, o.u/ � .2m=2�1/ and in the second o.u/ � .2m=3C1/.
Since ˛.u/ � mC 3 and dim.M/ D 2m, we get

.mC 3/ � .o.u/ � 1/ � 2m;
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which has solutions only for m � 4: noting that d ¤ 1 and d j 2m, we get d D 2
form D 3; 4. In this case p j ˆ2.2/ D 3 and the Sylow 3-subgroups of Sp6.2/ and
Sp8.2/ are non-abelian, so there are no solutions.

If the Sylow p-subgroup of G is non-abelian, then d divides m and also pd is
at most m if d is odd and 2m if d is even. Suppose that p � 5: then d � 3, and
if d D 3, then p D 7, if d D 4, then p D 5, and if d � 5, then p � 11. If p D 5,
then m � 10, and if p � 7, then m � 21. We have d � 2m

5
, and

o.u/ � m.22m=5 � 1/;

where the Weyl contribution ism and the toral contribution is of course 22m=5 � 1.
Thus the inequality ˛.u/ �o.u/ > dim.M/ for u to act minimally actively becomes

m.mC 3/.22m=5 � 1/ � 2m

form � 10, and the only solutions are form D 10; 11; 12, so we must have p D 5.
In this case o.u/ � 25 so we get 25.mC 3/ � 2m for m � 10, and this obviously
has no solutions.

We therefore have p D 3 so d D 2, and o.u/ � 3m. This yields the inequality

.3m � 1/.mC 3/ � 2m;

which is satisfied for m � 7. The Sylow 3-subgroup of Sp2m.2/ lies inside the
Levi subgroup Sp6.2/ � Sp2m�6.2/ for 4 � m � 7, so these cases need not be
considered.

We now collect together the cases we need to check, which are only m D 2; 3
for p D 3. For .Z4 ı 21C4/:Sp4.2/, we have that the element u is contained in
.Z4 ı 2

1C4/:.Sp2.2/ � Sp2.2//, so the action of u on M can be factored as the
tensor product of two matrices. If u lies in one of the factors, then this would have
type .22/, but if it is diagonal, then it would act as 2˝ 2, so type .3; 1/, minimally
active.

For .Z4 ı 21C6/:Sp6.2/ � SL8.9/, if o.u/ D 3, then ˛.u/ � 4 (and hence u
cannot act minimally actively) unless u lies inside a Levi subgroup Sp2, which of
course means that u is not minimally active (as u cannot lie inside such a Levi).

Thus o.u/ D 9: insideZ3 oZ3 � Sym9, elements of order 9 square to the fixed-
point-free class of elements of order 3, and so inside Sp2.2/ o Sym3 � Sp6.2/ we
see that elements of order 9 power to the class that lies diagonally across all three
Sp2.2/ factors. Therefore the action of u3 on M has type .3; 3; 2/, as this is the
type of the third tensor power of a block of size 2. As blocks of size 5, 6, 7 and 8
power to have types .2; 2; 1/, .2; 2; 2/, .3; 2; 2/ and .3; 3; 2/, respectively, we see
that umust have a single block of size 8, hence is minimally active, as needed.

Thus we have considered all of the Ci , and so we may assume that G is a mem-
ber of S . Furthermore, this completes the proof of Theorem 1.
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4 Alternating groups

In this section we use the notation at the very end of Section 2: let G0 be a central
extension of an alternating group Altn for n � 5, let u be a p-element of G such
that G D hG0; ui. (Note that, since Out.G0/ is a 2-group, we have that u 2 G0
unless p D 2.) When n D 5; 6; 7; 8 we get very different answers to the general
case: for n D 5 this is because Alt5 is isomorphic to SL2.4/ and PSL2.5/; for Alt6
it is because of the extra outer automorphism, the exceptional triple cover, and the
isomorphism with PSL2.9/; for Alt7, it is the exceptional triple cover; and for Alt8
it is the isomorphism with SL4.2/.

Because of this, the first proposition deals with those four individual groups.
Because of their small order, one can check all calculations easily on a computer,
and we just say a few words about its proof. In this proposition, cases (ii) and (iii)
are written as if they are general statements, which they are, even though there is
only one instance of each in the range 5 � n � 8.

Proposition 16. Let G0 be a central extension of Altn for 5 � n � 8, and let u be
a p-element ofG such thatG D hG0; ui. Let V denote the non-trivial composition
factor of the permutation module for G. If u acts minimally actively on a non-
trivial simple module M , then (up to outer automorphism in the case n D 6) one
of the following holds:

(i) G D Altn for p odd and G D Symn for p D 2, u is a single cycle of
length pa for some pa � n and M D V ,

(ii) G D Altn for n D 2a C 2, a � 2, p D 2, u has cycle type .2a; 2/ and
M D V ,

(iii) G D Symn for n D 2a C 4 with a � 2, p D 2, u has cycle type .2a; 2; 2/
and M D V , with u acting as .2a; 1; 1/,

(iv) G D Alt5, p D 2, o.u/ D 2 and dim.M/ D 2,

(v) G D Sym5, p D 2, o.u/ D 4 and dim.M/ D 4,

(vi) G D Alt5, p D 3, o.u/ D 3 and dim.M/ D 3,

(vii) G D 2 � Alt5, p D 3, o.u/ D 3 and dim.M/ D 2,

(viii) G D Alt5, p D 5, o.u/ D 5 and dim.M/ D 5,

(ix) G D 2 � Alt5, p D 5, o.u/ D 5 and dim.M/ D 2; 4,

(x) G D PGL2.9/ or G DM10, p D 2, o.u/ D 8 and dim.M/ D 8 (three
and one representation respectively),

(xi) G D 3 �M10, p D 2, o.u/ D 8 and dim.M/ D 6; 9,
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(xii) G D 3�Alt6, p D 2, o.u/D 2; 4 and dim.M/D 3 (four representations),

(xiii) G D Alt6, p D 3, o.u/ D 3 and dim.M/ D 3,

(xiv) G D 2 � Alt6, p D 3, o.u/ D 3 and dim.M/ D 2 (two representations),

(xv) G D 2 � Alt6, p D 5, o.u/ D 5 and dim.M/ D 4 (two representations),

(xvi) G D 3 � Alt6, p D 5, o.u/ D 5 and dim.M/ D 3; 6 (two representations
each),

(xvii) G D 6 � Alt6, p D 5, o.u/ D 5 and dim.M/ D 6 (four representations),

(xviii) G D Alt7, p D 2, u D .1; 2; 3; 4/.5; 6/ and dim.M/ D 4,

(xix) G D 2 � Alt7, p D 3, u is the preimage of the element .1; 2; 3/.4; 5; 6/
and dim.M/ D 4,

(xx) G D 2 � Alt7, p D 5, o.u/ D 5 and dim.M/ D 4,

(xxi) G D 3 � Alt7, p D 5, o.u/ D 5 and dim.M/ D 3; 6 (two representations
each),

(xxii) G D 6 � Alt7, p D 5, o.u/ D 5 and dim.M/ D 6 (four representations),

(xxiii) G D 2 � Alt7, p D 7, o.u/ D 7 and dim.M/ D 4,

(xxiv) G D 3 � Alt7, p D 7, o.u/ D 7 and dim.M/ D 6 (two representations),

(xxv) G D 6 � Alt7, p D 7, o.u/ D 7 and dim.M/ D 6 (four representations),

(xxvi) G D Alt8, p D 2, u D .1; 2/.3; 4/.5; 6/.7; 8/ and dim.M/ D 4,

(xxvii) G D Alt8, p D 2, u D .1; 2; 3; 4/.5; 6; 7; 8/ and dim.M/ D 4, with u
acting as .3; 1/,

(xxviii) G D Alt8, p D 2, u D .1; 2; 3; 4/.5; 6/ and dim.M/ D 4,

(xxix) G D 2 � Alt8, p D 7, o.u/ D 7 and dim.M/ D 8.

In all cases, unless otherwise specified u acts on the simple module M with type
.dim.M// if dim.M/ � o.u/, and as .o.u/; 1dim.M/�o.u// otherwise.

Proof. For n D 5, when p is odd, we simply check all simple modules for 2 � Alt5,
and for p D 2 we check all simple modules for Alt5 and Sym5.

Next, we deal with n D 6. For p D 5 we check all simple modules for 6 � Alt6,
and since NG.u/=hui is cyclic, we only need to know which have dimension at
most 6 by Lemma 8, so we get what is above.

For p D 3 we check all simple modules for 2 � Alt6 D SL2.9/, and the answer
will be the same as for SL2.q/ in defining characteristic.
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For p D 2, here we have Alt6, the three extensions of Alt6 by an outer auto-
morphism, so Sym6, PSL2.9/ and M10, the central extension 3 � Alt6, and the last
group 3:M10, since the M10 outer automorphism is the only one preserving the
centre of 3 � Alt6. This group is not necessarily well defined, so we give more
details now.

Let G be a group of the form 3 �M10. By a quick computer calculation, G is
generated by two conjugates of u for o.u/ D 4; 8 and by three if o.u/ D 2, by
checking this is true for M10.

The only faithful simple modules for G have dimensions 6 and 9, by [16], with
the 6 restricting to 3 � Alt6 as the sum of two non-isomorphic 3-dimensional simple
modules. Thus here we are in the situation of Lemma 9, and u2 must act with
a single Jordan block of these 3s. This means that o.u2/ D 4 and so o.u/ D 8.
Furthermore, the only action of u that squares to Jordan block structure .3; 3/
is .6/, so that u does indeed act minimally actively on M of dimension 6.

For the module M of dimension 9, this restricts simply to 3 � Alt6, and only
u of order 8 could act minimally actively on M . This time, we are resigned to
constructing the normalizer inside GL9.4/ of 3 � Alt6 and simply computing the
action of these elements of order 8, and they do act as .8; 1/ on the two dual
9-dimensional simple modules.

ForG0 a central extension of Alt7, for p D 5; 7, CG.u/ D huiZ.G0/ and so we
only need dim.M/ � p C 1 by Lemma 8. For p D 3, we find the two simple mod-
ules for 2 � Alt7 which are minimally active for the conjugacy class of elements of
order 3 that have the smallest centralizer. For p D 2, the outer automorphism in-
verts the centre of 3 � Alt7, so we only need concern ourselves with G one of Alt7,
Sym7 and 3 � Alt7, all of which are easily constructible.

For Alt8, we simply need to consider Alt8 and 2 � Alt8 for p odd, and Alt8 and
Sym8 for p D 2, which is easy to do directly.

From now on we let G0 be a central extension of an alternating group Altn
for some n � 9. We first need to decide which elements of Symn act minimally
actively on the non-trivial composition factor of the permutation module. The next
lemma does this.

Lemma 17. Let G D Symn, and let V denote the non-trivial composition factor
of the permutation module for G. If u acts minimally actively on V , then one of
the following holds:

(i) u is a single cycle of length pa for some pa � n, acts on V with type
.pa � 2/ or .o.u/; 1n�o.u//,

(ii) n D 2a C 2, a � 2, p D 2, u has cycle type .2a; 2/ and acts on V with type
.n � 2/ D .2a/,
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Groups with a p-element acting with a single non-trivial Jordan block 741

(iii) n D 2a C 4 with a � 2, p D 2, u has cycle type .2a; 2; 2/ and acts on V
with type .n � 2; 12/,

(iv) n D 3a C 3 with a � 2, p D 3, u has cycle type .3a; 3/ and acts on V with
type .n � 1; 1/.

Proof. Let M denote the permutation module for G. Note that V is obtained
fromM by removing either a single trivial summand if p − n, or removing a trivial
submodule and a trivial quotient if p j n.

Note that the action of u onM has type the cycle type of u, so if u has more than
one cycle of length at least 4, more than two cycles of length at least 3, or more
than three non-trivial cycles, then u cannot act minimally actively on V , as V is
obtained from M by removing at most two trivials.

Therefore we are left with checking the types .m; 1n�m/, .m; 2; 1n�m�2/,
.m; 22; 1n�m�4/ and .m; 3; 1n�m�3/, with p any prime, 2, 2 and 3, respectively.

First suppose that u fixes a point, so that u 2 Symn�1. The restriction of V
to Symn�1 is either simple if p j n, or isomorphic to the permutation module on
Symn�1 if p − n. From this we can use induction to easily see that if u fixes a point
and is minimally active, then u acts like a single cycle, and the type of u on V is
as above. Thus it remains to check cycles types of the form .m; 2/, .m; 2; 2/ and
.m; 3/, for m D 2a, 2a and 3a, respectively.

If u has cycle type .pa; p/ for p D 2; 3, then up fixes a point, whence its action
on V is known from the above working to have p blocks of size pa�1 and p � 2
blocks of size 1. Since the action of u on the permutation module has Jordan blocks
one of size pa and one of size p, and the action of u on V is a subquotient of this,
it must be that u acts with one block of size pa and p � 2 of size 1, as needed.

We now need to consider u of type .2a; 2; 2/, which lies inside the subgroup
H D Symn�4 � Sym4. The permutation module for H is simply the direct sum
of the permutation modules for Symn�4 and Sym4, and has as a subquotient of
codimension 4 a semisimple module obtained by removing all four trivials. The
action of u on the 2-dimensional simple subquotient of the second summand is
trivial, since .1; 2/.3; 4/ lies in the kernel of every simple module for Sym4. Thus u
acts on this semisimple module with blocks .m � 2; 1; 1/, wherem D 2a, with this
semisimple module being itself a subquotient of V . As u2 acts on V with blocks
.m
2
; m
2
; 1; 1; 1; 1/, we see that the only possibility for the action of u consistent

with both piece of information is that it has type .m; 1; 1/.

Proposition 18. Let G0 be a central extension of Altn for n � 9, and let u be
a p-element of G with G D hG0; ui. Let V denote the non-trivial composition
factor of the permutation module for G. If u acts minimally actively on a non-
trivial simple module M , then (up to outer automorphism in the case n D 6) one
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of the following holds:

(i) G D Altn for p odd and G D Symn for p D 2, u is a single cycle of length
pa for somepa � n andM D V , and u acts with type .n/ or .o.u/;1n�o.u//,

(ii) G D Altn for nD 2aC2, a � 2, p D 2, u has cycle type .2a; 2/ andM D V ,
acting with type .2a/,

(iii) G D Symn for n D 2a C 4 with a � 2, p D 2, u has cycle type .2a; 2; 2/
and M D V , acting with type .n � 2; 1; 1/,

(iv) G D Altn for n D 3a C 3 with a � 2, p D 3, u has cycle type .3a; 3/ and
M D V , acting with type .n � 1; 1/,

(v) G D 2 � Alt9, p D 3, o.u/ D 9 and dim.M/ D 8, acting with type .7; 1/,

(vi) G D 2 � Alt9, p D 7, o.u/ D 7 and dim.M/ D 8, acting with type .7; 1/.

Proof. We consider two cases.

Case 1: p odd. We first assume that G0 D Altn. We start by checking that there
are no simple modules for G0, other than the trivial module and V , that have
dimension at most 2n � 2. By [14, Theorem 7 and Table 1] for n � 12 we have
that this holds, and the dimensions of simple modules are known for n � 11, so
we can check that this holds.

We can do the same thing forG0 D 2 � Altn: by [20] for n � 12 we have that all
faithful representations of G0 are of dimension greater than 2n � 2. Thus we need
to check 9 � n � 11: for all odd primes the minimal degrees are 8, 16 and 16, with
all other faithful modules have dimension larger than 2n � 2, unless n D 10 and
p D 5, in which case the minimal degree is 8.

For p D 11 this cannot yield a minimally active module as CG.u/ D hui�Z.G/
and so dim.M/ � p C 1 D 12 by Lemma 8.

For p D 7, since ˛.u/ D 2, we eliminate n D 10; 11, and for n D 9 we see
that CG.u/ D hui �Z.G/ and so u acts minimally actively on M if and only if
dim.M/ � p C 1 D 8 by Lemma 8 again. Since dim.M/ D 8, this means they
are minimally active.

For p D 5, we check that u acts on the 8-dimensional simple modules for
2 � Alt9 as .4; 4/, so not minimally active, and for 2 � Alt10 both classes act as
.4; 4/, so again no minimally active faithful modules, hence none for 2 � Alt11
either by restriction.

Finally, for p D 3 we have o.u/ D 9. For Alt9 the 8-dimensional module is
minimally active, with action .7; 1/, but for n D 10; 11 the action on the 16-dimen-
sionals has blocks .9; 7/, so not minimally active.

Brought to you by | University of Birmingham
Authenticated

Download Date | 12/7/18 4:24 PM



Groups with a p-element acting with a single non-trivial Jordan block 743

Thus if u is a p-element such that ˛.u/ D 2, the only simple modules on which
u acts minimally actively are the trivial and V , unless n D 9 and G0 D 2 � Alt9.
Note that if o.u/ D 3, then since ˛.G/ � n

2
by [10, Lemma 6.1], we have that

dim.M/ � 3n
2

by Lemma 5 (iv), soM is either trivial or V ; hence we will assume
that o.u/ � 5.

Let G0 D Altn or G0 D 2 � Altn for some n � 9. By Lemma 11, if the image
of u in Altn has no fixed points, then ˛.u/ D 2 and we are done by the previ-
ous paragraph, so we may assume that the image of u in Altn lies in Altn�1; we
restrict a simple module M on which u acts minimally actively to H D Altn�1 or
H D 2 � Altn�1. Suppose thatH D Altn�1 first. If a trivial submodule or quotient
lies in this restriction, then M is a composition factor of the permutation module
on the cosets of H , so is either trivial or V . Moreover, since the composition fac-
tors of the restriction are minimally active, we know that the composition factors of
M #H are either trivial or copies of VH , the corresponding simple module for H .
Since u acts on VH with a block of size at least o.u/ � 2, if there were more than
one composition factor ofM #H isomorphic with VH , then these two large Jordan
blocks cannot form blocks of the form o.u/; 1a unless 2.o.u/ � 2/ � o.u/C 1,
i.e., o.u/ D 5, and then dim.VH / would need a block of size 3, only possible if
H D Alt5, but then n D 6, which is not allowed. Thus M #H has at most one
copy of VH , and can have no trivials as they would have to be submodules or
quotients, so dim.M/ � n � 1, as needed.

IfH D 2 � Altn�1, then all composition factors of the restriction ofM toH are
non-trivial. If n D 9, then from Proposition 16 we see that p D 7. Since Alt9 is
generated by two 7-cycles, M is therefore a module that appears in the compu-
tations above. If n D 10, then again p D 7, this time by induction and using this
proposition. Again, ˛.u/ D 2, and soM does not exist as it does not appear above.
Finally, for n � 11 there can be no examples as there are no examples for n D 10.
This completes the proof.

Case 2: p D 2. Here we do not need to consider 2 � Altn but do need to consider
G D Altn andG D Symn. If ˛.u/ D 2, then again we need that dim.M/ � 2n�2,
in fact merely dim.M/ � 2.o.u/ � 1/. From [14, Theorem 7 and Table 1] we
have dim.M/ > 2n � 2 for M ¤ k; V for all n � 15, and for n � 14 we have
that o.u/ � 8, so we just need dim.M/ � 14, for which there are two modules
for G D Alt9 with this property, both of dimension 8 (but not isomorphic to V ).
However, Alt9 does not contain elements of order 8, so these cannot be examples.

If ˛.u/ D 2, so thatM D V , then by Lemma 17 we know that u acts minimally
actively on V if and only if we are in cases (i)–(iii) of the proposition. Thus we
may assume that ˛.u/ > 2, and in particular we cannot be in the situations given
in Lemmas 11 and 12.
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Suppose that u has at least three 2-cycles and does not have order 2: we can
write u D u1u2, where the supports of the ui are disjoint, and where u1 has cycle
type .2a; 2; 2; 2/ for some a � 2. WriteHi for the symmetric group on the support
of ui , H D H1H2 D H1 �H2, and note that the restriction M #H is minimally
active. The simple kH -modules are tensor products of simple kHi -modules, and
by Lemma 5 (v) a tensor product of two non-trivial simple modules is not min-
imally active (unless they both have dimension 2), we see that the composition
factors of M #H are (minimally active) simple modules for one of the Hi . But
H1 has no non-trivial minimally active modules, so H1 lies in the kernel of M ,
clearly nonsense as M is faithful.

Suppose that u has at least one 2-cycle and at least two cycles of length at least 4.
Again, write u D u1u2, this time with u the product of all of the cycles of length at
least 4, unless there are exactly two of length exactly 4, in which case add another
2-cycle. (If u has cycle type .4; 4; 2/, then ˛.u/ D 2 by Lemma 12.) Defining
the Hi and H as above, we again note that no non-trivial minimally active mod-
ules exist for H1, and so get the same contradiction. Since every fixed-point-free
element has one of these properties, we have covered all fixed-point-free cases.

Thus u fixes a point and lies insideH D Symn�1. As for p odd, we restrict toH
and note that the exact same proof works, as long as n � 10. In order to apply the
argument for the case p odd to p D 2, we need to exclude the case G0 D Alt9, as
for Alt8 there are minimally active simple modules other than k and V . However,
we already checked Alt9, so we may do this. Thus M #H has at most one copy of
V and possibly trivial factors, and therefore M is a submodule of the permutation
module on H , i.e., M D k or M D V , as needed.

5 Lie type in defining characteristic

In the notation of the end of Section 2, this section considersG0 a central extension
of a simple group of Lie type in characteristic p.

Let G be a simple, simply connected algebraic group defined over the field k,
and letF be a Frobenius morphism on G . With the exceptions of a few quasisimple
groups (e.g., 2 ��C8 .2/, 3 � PSL2.9/, and so on) if G0 is a quasisimple group of
Lie type, then for some choice of G and F above, G0 D GF . Moreover, from
[7, Table 6.1.3] we see that if Z.G0/ is a p0-group, which we require in order
to have a faithful irreducible module, then G0 is always GF (unless G0 is an
extension of Sp4.2/

0 D Alt6, which was examined in the previous section). Hence
for this section we can always take G0 to be the fixed points of G under F .

Furthermore, every simple kG0-module is the restriction of a simple kG -mod-
ule, and by Steinberg’s tensor product theorem, every simple module for G0 is
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a tensor product of Frobenius twists of p-restricted simple modules. Since tensor
products of simple modules cannot be minimally active unless they have dimen-
sion 1 or 2 by Lemma 5 (v), we thus consider p-restricted simple modules for G .

As every unipotent class of G appears in G0, when checking the action of
a unipotent element on a given p-restricted simple module, we can use either G

or any of the quasisimple groups G0 over the various ground fields. For explicit
calculations, we of course will usually chooseG0 to be the smallest group, so over
the field Fp.

If u 2 G0, then the problem has been almost completely solved already, in [29]
and [30], which dealt with all types apart from C and D in characteristic 2. Here
we will finish that last case, and also consider the case where u induces an outer
automorphism on G0. The next proposition completes the proof for u 2 G0. (In
this proposition, (iv) and (v) can be viewed as subcases of (ii), using the isomor-
phisms B2 Š C2 and A3 Š D3, but we separate them out for clarity.) We use the
notation L.�/ for highest weight modules, using the same conventions as in for
example [29] and [30] above. For weights of small rank we can write the weight in
full, e.g., 110, but for larger rank it is more clear to write as a sum, so the previous
example would be �1 C �2.

Proposition 19. Let G0 be a quasisimple group of Lie type, and let u 2 G0 be
a non-trivial unipotent element. IfM is a simple kG0-module on which u acts min-
imally actively, then up to outer automorphism of G0, one of the following holds:

(i) G0 D SL2.pa/,M D L.i/ for 0 � i � p�1, orM D L.1Cpj / of dimen-
sion 4 for some 1 � j � a

2
and p odd, u has type .i C 1/ and .3; 1/, respec-

tively,

(ii) G0 is of type A, 2A, B or C for all primes, D, 2D or 3D4 for p odd, 2B2
for p D 2, M is the natural module,

(iii) p > 3, G0 D SL3.pa/ or SU3.pa/, u has type .3/ on the natural module,
M D L.2�1/ of dimension 6, u has type .5; 1/,

(iv) p is odd,G0 D SL4.pa/ or SU4.pa/, u has type .4/ or .2; 2/ on the natural
module, M D L.�2/ of dimension 6, u has type .5; 1/ or .3; 13/, respec-
tively,

(v) p is odd, G0 D Sp4.p
a/, u has type .4/ or .2; 2/ on the natural module,

M D L.�2/ of dimension 5, u has type .5/ or .3; 12/,

(vi) p is odd, G0 D Spin7.p
a/, u is regular unipotent, M D L.�3/ of dimen-

sion 8, u has type .7; 1/,

(vii) G0 DG2.pa/ or 2G2.32aC1/, u is regular unipotent,M D L.�1/ of dimen-
sion 7 (or 6 for p D 2), u has type .7/ (or .6/ for p D 2).
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Proof. If G0 D SL2.pa/, then for M D L.�/ p-restricted we see that u always
acts with a single block, and for L.�/ not p-restricted we use Lemma 5 (v), which
shows that p is odd and M is the tensor product of two 2-dimensional mod-
ules, i.e., L.1C pj /. By applying a field automorphism we may assume that
1 � j � a

2
.

For G0 of type A, or types B , C and D and p odd, [29, Theorem 1.3] gives
(ii)–(vi). (Note that the case of p D 3 for G0 D SL3.pa/ was erroneously in-
cluded in [29], but can be excluded by Lemma 5 (vii).) For G0 of exceptional
type [30] shows that only (vii) occurs, so we are left with types B=C and D in
characteristic 2.

Let G0 D Sp2n.2
a/ first. By [23, Chapter 4] every Jordan block of odd size

appears an even number of times, so there can be no element of order 4 in G0 that
powers to a transvection. Thus if u is not itself a transvection, no power of u is
one. By [10], ˛.u/ � nC 3 if u is not a transvection, and of course since G0 acts
on a 2n-dimensional space the order of u is at most 2an, where an is the smallest
power of 2 that is at least n. By Lemma 5 (iv) we have

dim.M/ � ˛.u/ � .o.u/ � 1/ � .nC 3/.2an � 1/:

(If u is a transvection, then ˛.u/ D 2nC 1, and so dim.M/ � 2nC 1, so that M
is the natural module.) By [24, Theorems 4.4 and 5.1], if n � 8, then M is one
of the standard module, its symmetric square (does not occur for p D 2), or its
exterior square with a trivial removed (with two trivials removed if n is even).

For n � 3, by Lemma 6 we see that this exterior square cannot be minimally
active for u, and for n D 2 the simple modules for Sp4.2/ are the trivial, the
natural and its image under the graph automorphism, and the Steinberg. Since
Sp4.2/ D Sym6, we use Proposition 16. Therefore we can assume that M is nei-
ther the natural L.�1/ nor the non-trivial factor of its exterior square L.�2/, and
that n � 3.

For 3 � n � 7, we use [24, Theorem 4.4] to get the following table of low-
dimensional modules, with modules listed in order of increasing dimension.

n Bound Modules

3 42 100, 001, 010
4 49 1000, 0001, 0100, 0010
5 120 10000, 00001, 01000, 00100
6 135 �1, �2, �6
7 150 �1, �2, �7
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Groups with a p-element acting with a single non-trivial Jordan block 747

As we have excluded L.�1/ and L.�2/, we need to consider the spin module
L.�n/ for Sp2n.2/ for 3 � n � 7, and the modules L.0010/ and L.00100/ for
Sp8.2/ and Sp10.2/, respectively.

For Sp8.2/, L.0010/ is 48-dimensional, and since ˛.u/ � 7 for u not a trans-
vection, we must have that o.u/ D 8 if u acts minimally actively. If u has type
.6; 12/, .6; 2/ or .8/ on the natural module, then an easy computer calculation
shows that u has type .84; 62; 22/, .84; 62; 22/ or .86/, respectively, on L.0010/,
so cannot be minimally active.

For Sp10.2/,L.00100/ has dimension 100, and since ˛.u/ � 8 for u not a trans-
vection, we must have that o.u/ D 16 if u acts minimally actively, so u is the
regular unipotent element. This element has type .164; 14; 10; 62/ on L.00100/,
and so is not minimally active.

Finally, letM D L.�n/. Note that the restriction ofM to the Sp2n�2-parabolic
has two composition factors, both isomorphic toL.�n�1/. For n D 3, we compute
the Jordan block structure of all unipotent elements onL.�3/ and get the following
table.

Class Action on L.�1/ Action on L.�3/

C1 2; 14 24

A1 22; 12 22; 14

A
.2/
1 22; 12 24

A1 C C1 23 24

C2 4; 12 42

A2 32 32; 12

C3.a1/ 4; 2 42

C3 6 6; 2

In particular, we see that there are no minimally active elements in Sp6.2/
on L.001/. Thus we proceed by induction on n. If u in Sp2n.2/ acts minimally
actively on L.�n/, then place u inside an Sp2n�2.2/-parabolic: it must act mini-
mally actively on the indecomposable module for this group with socle L.�n�1/,
whence in particular it acts minimally actively on this submodule by Lemma 5 (i).
Since there are no non-trivial elements of Sp2n�2.2/ that act minimally actively
on L.�n�1/ by induction, umust act trivially on L.�n�1/, whence o.u/ D 2. One
can see this either because the unipotent radical of the parabolic is elementary abel-
ian, or because the action of u on L.�n/ must have blocks only of size 1 and 2,
since there are two composition factors of the restriction ofL.�n/ to the parabolic.
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748 D. A. Craven

At any rate, this is impossible since ˛.u/ � 2nC 1 and

dim.M/ D 2n > 2nC 1 � ˛.u/ � .o.u/ � 1/

by Lemma 5 (iv).
We therefore need to consider groups of type D now. Let G0 D �˙2n.2/, and

note that ˛.u/ � nC 3 by [10, Theorem 4.4] (as transvections induce the graph
automorphism onG0, so do not lie inG0 itself). By placingG0 inside Sp2n.2/, we
see that no unipotent element can act minimally actively on L.�2/ since this is the
restriction of the corresponding module for Sp2n.2/. (See for example [26, Table 1,
MR4].)

Using the bound dim.M/ � ˛.u/�.o.u/�1/ from Lemma 5 (iv), and [24, Theo-
rems 4.4 and 5.1], we get the possible minimally active modules are the natural
L.�1/, and L.�2/ (already eliminated above) for n � 9, and for 4 � n � 8 we get
the table below.

n Bound Modules

4 49 (1000, 0010, 0001), 0100, (0011, 1010, 1001)
5 56 �1, �2, (�4, �5)
6 135 �1, �2, (�5, �6)
7 150 �1, �2, (�6, �7)
8 165 �1, �2, (�7, �8)

The brackets indicate the groupings under the outer automorphism group. For
n � 5 we need to check the two half-spin modules, but for n D 4 there are other
modules to check, with the 48-dimensional modules L.0011/ and so on only
occurring because our bound for ˛.u/ is lax: checking by computer that ˛.u/ D 2
when o.u/ D 8 inside �C8 .2/, we can therefore exclude them.

For n D 5, we note that D5 lies inside E6 acting as (up to automorphism)
L.0/˚L.�1/˚L.�5/ on the minimal module forE6. As the dimension of L.�5/
is 16, we therefore need at least 17 � o.u/ trivial Jordan blocks in the action
of the corresponding unipotent class of E6 on the minimal module: examining
[22, Table 5], only the class A1 of elements of order 2 have enough blocks of
size 1, and of course if o.u/ D 2, then dim.M/ � 2n < 16 (using [10, Theo-
rem 4.4] and Lemma 5 (iv)) which does not work either. For n � 6, we use induc-
tion, exactly the same as for type C . This completes the proof.

We now consider the case where u induces an outer automorphism on G0. We
start with u inducing a graph automorphism on an untwisted group G0. In this
case, p D 2 unless G0 is type D4, and then p D 2; 3. We will then examine field
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Groups with a p-element acting with a single non-trivial Jordan block 749

and mixed field-graph automorphisms on untwisted groups, and finally how the
automorphisms of the twisted groups compare with those of the untwisted groups.

In this proposition, (iii) may be thought of as the case n D 3 of (v), but we
separate them for clarity.

Proposition 20. LetG0 be a quasisimple group of Lie type in characteristic p, and
suppose that u lies in the coset of a graph automorphism on G0. If M is a mini-
mally active, non-trivial simple module for G, then one of the following holds:

(i) G D SLn.2a/:2, M D L.�1/˚ L.�n�1/ has dimension 2n, and u2 is the
regular unipotent element,

(ii) G D SL3.2a/:2, M D L.11/ has dimension 8, and u has order 8,

(iii) G D SL4.2a/:2, M D L.010/ has dimension 6, and there are four possible
classes for u,

(iv) G D Sp4.2
a/:2 for a odd,M D L.10/˚ L.01/ has dimension 8, and u2 is

the regular unipotent element,

(v) G D SOC2n.2
a/ for n � 4 and M is the natural module L.�1/.

Proof. Since u induces a graph automorphism onG0, we have thatG0 is untwisted
by [7, Theorem 2.5.12 (f)].

Suppose that u induces a graph automorphism on G0 and that p D 2, so that
G=G0 has order 2. We go through each possibility in turn, of type A, type D,
C2, F4 and E6. (Note that G2 only possesses the graph automorphism of order 2
when p D 3, so this case does not occur.) Notice that, ifM #G0

is simple, then by
Lemma 10 we may assume that it is 2-restricted or G0 D SL3.2a/ and M #G0

is
the product of two 3-dimensional simple modules: but this is never graph stable,
so we can ignore this case.

If G0 D E6.2a/, then, since o.u/ � 32 and ˛.u/ � 9, we have the bound
dim.M/ � 9 � 31 D 279 if M is minimally active, by Lemma 5 (iv). The adjoint
moduleL.�2/ is the only (non-trivial) graph-stable simple module with dimension
at most 279, and the action of unipotent elements on this is given in [22]. For u
to be minimally active, u2 2 G0 must have at most two non-trivial Jordan blocks,
but this is not the case. If M #G0

is not simple, then by Lemma 9 u2 acts with
a single Jordan block, which is not possible by Proposition 19.

For G0 D F4.2a/, the exponent of the Sylow 2-subgroup of G0 is 16, thus
o.u/ � 32. Since ˛.u/ � 8 from [10, Theorem 5.1], this gives dim.M/ � 248.
The dimensions of the simple modules are 1; 26; 26; 246; 246, and 676 and above.
The (non-trivial) modules of dimension at most 246 are not graph-stable, and so
as in the previous case we apply Lemma 9 and Proposition 19 to prove that no
examples occur.
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750 D. A. Craven

ForG0 D Sp4.2
a/ (we may assume that a � 2 since a D 1 yields Sym6, which

has been considered already), there are only four 2-restricted modules: the trivial,
the two 4-dimensional modules L.10/ and L.01/, swapped by the graph automor-
phism, and L.11/: the regular element acts with four blocks of size 4 on the L.11/
so this cannot extend to a minimally active module for G, and if u squares to the
regular then L.10/˚ L.01/ is minimally active by Lemma 9, since u2 acts with
a single Jordan block on L.10/. However, u can only induce a graph automor-
phism of order 2 if the Sylow 2-subgroup of Out.G0/ has order 2 by [7, Theo-
rem 2.5.12 (e)], with the graph automorphism squaring to a field automorphism in
the other cases.

For G0 of type D, note that G0:2 D SOC2n.2
a/ lies inside Sp2n.2

a/, with
dim.M/ � .nC 3/ � .o.u/ � 1/ unless u is a transvection by [10, Theorem 4.4],
and so we get the same bound as for the unipotent elements for the simple group
of type C in the proof of Proposition 19. Using the tables from [24], we see that
for n � 5, every simple module for G that satisfies the bound on dim.M/ is the
restriction of a simple module for type C , and hence is minimally active only if
the module is for type C . This yields only the natural module, which is of course
minimally active. When n D 4, we get for G0 the modules 0000 (trivial), 1000
(natural), 0010˚ 0001 (sum of the two half-spins), 0100 (exterior square of nat-
ural), and 0011 of dimension 48. These are all also the restriction of a module
for Sp8.2

a/, and so we are again done.
The last case for p D 2 is G0 D SLn.2a/. If M #G0

is not simple, then by
Lemma 9 we have that v D u2 acts as a single Jordan block on each factor: thus v
is the regular element and M is the sum of the natural and its dual.

Thus we may assume that M #G0
is simple, i.e., M #G0

is a graph-stable
simple module, and 2-restricted by our discussion at the start of the proof. If v has
maximal order inG0, then ˛.u/ � 4 by Lemma 14, and writing an for the smallest
power of 2 that is at least n, we have that dim.M/ � 4 � .2an � 1/. We now use
[24, Theorems 4.4 and 5.1] to get thatL.�1 C �n�1/ is the only graph-stable mod-
ule of dimension at most this for n � 7. For SL6.2a/ we have the module L.�3/,
with L.0110/ for SL5.2a/. For n � 4 there are several possibilities and we deal
with them later.

If u does not have maximal order, then o.u/ � an and ˛.u/ � n by [10, Theo-
rem 4.1], so that dim.M/ � n.an � 1/ < 2n

2. We again use [24] to see which
graph-stable modules we need to consider: doing so yields smaller bounds than
the previous case, and so we need only consider n D 3; 4, and the specific mod-
ules for larger groups above.

We quickly show that L.�1 C �n�1/ is not minimally active if n � 5: it is
obtained from the tensor product of the natural and its dual by removing at most
two trivial factors, and so if u inducing a graph on L.�1 C �n�1/ is minimally
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Groups with a p-element acting with a single non-trivial Jordan block 751

active, then v acts with at most two non-trivial blocks on the module. As in the
proof of Lemma 6, if v acts with at least two non-trivial blocks on L.�1/, then
the action of v on the tensor square has at least eight non-trivial blocks, whence
u cannot act minimally actively if one removes at most two trivials. If v acts with
a trivial block and a block of size at least 3, then v acts on the tensor square
with blocks at least of size .4; 4; 3; 3; 1; 1/, so u cannot be minimally active when
removing two trivials. Similarly, if v contains a block of size at least 4, then v acts
on the tensor square with at least four blocks of size at least 4, and if v acts on the
natural with a block of size 2 and at least three trivial blocks, then v acts on the
tensor square with at least five blocks of size at least 2, hence again u cannot be
minimally active.

The actions of the classes of SL6.2/ on L.�3/ are given in the following table.
None of these can be the square of a minimally active element, so we are done.

Type on L.�1/ Type on L.�3/

2; 14 26; 18

22; 12 28; 14

23 210

3; 13 36; 12

3; 2; 1 42; 32; 22; 12

32 44; 14

4; 12 44; 22

4; 2 44; 22

5; 1 72; 32

6 82; 22

For SL5.2/, the dimension of L.0110/ is 74, so if o.u2/ � 4, then this module
fails the bound ˛.u/ � .o.u/ � 1/, as ˛.u/ � 5. However, the only element v of
SL5.2/ with order 8 is the regular unipotent element, and for this one ˛.v/ D 2 by
Lemma 13, so this module cannot be minimally active.

We are thus left with n D 3; 4. For n D 4, we examine Proposition 16, which
states that the 6-dimensional module L.�2/ is the only graph-stable minimally
active module, and here there are several classes that work. For n D 3, we simply
check the simple modules for PGL2.7/ D SL3.2/:2, and an element of order 8 acts
with a single Jordan block on both L.10/˚ L.01/, in line with the proposition,
and also on the 8-dimensional module L.11/, as seen in [5, Theorem 1.2].
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For p D 3, we only have the group �C8 .3
a/ to consider, and since the graph

automorphism of order 3 permutes the central involutions of the Spin group reg-
ularly, we may assume that G0 is simple. If M is minimally active and M #G0

is not simple, then u3 must act with a single Jordan block on each composition
factor of M #G0

by Lemma 9, but this does not occur by Proposition 19. Thus
M #G0

is simple: the smallest non-trivial, graph-stable simple module has dimen-
sion 28, and the next smallest has dimension 195 (see [24, Appendix A.41]), and
since ˛.u/ D 2 if o.u/ D 9 and ˛.u/ � 4 if o.u/ D 3 for G0 D P-C8 .3/, we have
that dim.M/ D 28 and M D L.�2/. Since u is minimally active, u3 has at most
three non-trivial Jordan blocks. However, of the 27 non-trivial unipotent classes of
3-elements in�C8 .3/, all have at least four non-trivial blocks onL.�2/. Thus there
is no candidate for M .

Having dealt with the case where u induces a graph automorphism, we are left
with the case where u induces either a field automorphism or a mixed field-graph
automorphism on the untwisted group G0.

Proposition 21. Let G0 be a quasisimple group of Lie type in characteristic p,
and suppose that u induces an outer automorphism on G0 that is not a graph
automorphism. If M is a minimally active simple module for G, then up to outer
automorphism of G one of the following holds:

(i) p D 2, G D SL2.22a/:2, M D L.1C 2a/ of dimension 4,

(ii) p D 3, G D SL2.33a/:3, M D L.1C 3a C 32a/ of dimension 8,

(iii) p D 2,G D SL3.22a/:2, u induces either a field or the product of a field and
graph automorphism onG0,M DL.1C2a; 0/ orM D .1; 2a/, respectively,
both of dimension 9,

(iv) p D 2, G D SU3.22a/:2, u induces the unique outer automorphism of
order 2 on G0, dim.M/ D 9 is such that M #G0

is simple,

(v) G D G0:t ,M #G0
DM1 ˚ � � � ˚Mt with ut 2 G0 acting on eachMi with

a single Jordan block, the possibilities for which are given in Proposition 19.

Proof. We begin with the case where G0 is untwisted.
Suppose thatM is minimally active and thatM #G0

is the simple moduleL.�/.
By Lemma 10, either L.�/ is (up to Frobenius twist) a p-restricted module, or
p D 2 and G0 D SL3.2a/, or p D 2; 3 and G0 D SL2.pa/, with M a product of
p twists of the natural module. If u induces a field automorphism, then u replaces
a highest weight � D a1�1 C � � � C an�n with p˛a1�1 C � � � C p˛an�n for some
˛ � 1, and since graph automorphisms permute the ai , for u to fix L.�/ it cannot
be p-restricted.
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In the remaining cases of SL3.2a/ and SL2.pa/ for p D 2; 3, we have from
Lemma 10 that u has order p and M is the tensor product of the modules in
a single orbit under the action of u: for G0 D SL2.pa/, this orbit is clear, whereas
for SL3.2a/ if u is a pure field automorphism, we get that L.1; 0/ and L.2a; 0/
form an orbit, and if u is the product of the field and the graph, it is L.1; 0/ and
L.0; 2a/, yielding the modules in the statement of the proposition.

We therefore have that M #G0
is not simple, and is the sum of t simple factors

M1; : : : ;Mt , each stabilized by ut . By Lemma 9, ut acts on eachMi with a single
Jordan block, and since ut cannot act as a pure graph automorphism on theMi , we
must therefore have that ut 2 G0, and so the conclusion of the proposition holds
here as well.

Now suppose that G0 is twisted, so that u must be a field automorphism: if
M #G0

is simple, then it cannot be p-restricted, so as with the untwisted case
we get that G0 is of type A2 and we proceed similarly to the case of SL3.2a/.
If M #G0

is not simple, then we get the same proof as for the untwisted case,
yielding the result above.

There are many examples of (v) above, and some that may appear to be but are
not. For example the group 3D4.3/:3 with M of dimension 24, is the sum of three
8-dimensional modules permuted by the graph automorphism. Each 8-dimensional
module for 3D4.3/ possesses minimally active elements by Proposition 19, but
since the simple group of type D does not contain an element acting with a single
block of size 8, there can be no minimally active u for M .

As another negative example, we consider G D 2G2.3/, which has a module
M of dimension 27 where the derived subgroup G0 acts on M as the sum of
three blocks, and G0 contains an element v (of order 9) acting on each factor with
a single Jordan block, but there is no element u 2 G such that u3 D v (as then the
Sylow 3-subgroup would be cyclic).

We should enumerate which possibilities from Proposition 19 actually have
an element acting with a single block, so that they can be inputs into case (v)
in Proposition 21. For the group G0 D SL2.pa/, we have that u acts as a single
block on L.i/ for i < p, but acts as .3; 1/ on L.1C pi /. For G0 of type A, 2A,
B , 2B , and C , there is an element acting with a single Jordan block, but not
for those of type D. We can include the 5-dimensional module for Sp4.p

a/ in
those above via the isomorphism B2 Š C2, and we also haveG2 with the minimal
module.

Hence, if G0 D SUn.pp/ for some n; p for example, one may form the group
G D SUn.pp/:p, and let u be an element of g whose pth power is the regular
unipotent element of G0. In this case the hypotheses of (v) are satisfied, so this is
an example.
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Largest 2-element Largest 2-element
G0 of G nG0 G0 of G nG0

M12 4 He 16

M22 8 HN 8

HS 8 Fi22 16

J2 8 Fi024 16

McL 8 ON 8

Suz 16 J3 8

Table 2. Exponents of Sylow 2-subgroups of Aut.G0=Z.G0// for G0 a sporadic
quasisimple group with non-trivial outer automorphism group.

6 Sporadic groups

In [4], all almost cyclic, and in particular minimally active elements were found
for the case where G0 is a central extension of a sporadic simple group, and where
G D G0. In this short section we deal with the case where u induces an outer
automorphism of G0. Since jOut.G0/j � 2, we will always assume in this section
that p D 2.

We can easily determine the outer classes of 2-elements from [2], and in Table 2
we give the largest order of such a 2-element, with the obvious intent to use
the formula dim.M/ � ˛.u/ � .o.u/ � 1/ from Lemma 5 (iv). For this we also
need estimates for ˛.u/ and dim.M/: the latter appears in [15], and the former
in [4, Theorem 3.1]. (This gives ˛.u2/, but of course ˛.u/ � ˛.u2/. If o.u/ D 2,
then we can use [10, Table 1].)

We get the following lemma.

Lemma 22. Let G0 be a sporadic simple group, and suppose that u 2 G nG0 is
a 2-element. If o.u/ � 8, then ˛.u/ D 2. If o.u/ D 4, then ˛.u/ � 3. If o.u/ D 2,
then ˛.u/ � 8, with ˛.u/ � 4 if G0 D J2.

Proof. From the tables in [2], we see that u cannot square to 4A when G0 D HS,
nor to 2A when G0 D Fi22. If G0 D J2, then the class 4B squares to 2A, so we
need to check how many conjugates generate G in this case: a quick computer
calculation shows that ˛.u/ D 2 for this class.

If o.u/ D 2, then we use the bounds on ˛.G/ given in [10].

Combining this information with Table 3, we see that the only possibilities for u
acting minimally actively are that G0 DM22; J2. For G DM22:2, the only can-
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Minimal non-trivial Minimal non-trivial
G0 simple module G0 simple module

M12 10 He 51

M22 10 HN 132

HS 20 Fi22 78

J2 6 Fi024 3;774

McL 22 ON 10;944

Suz 110 J3 78

Table 3. Minimal dimensions of non-trivial representations of G0.

didate simple module has dimension 10, and elements of order 8 act on this with
type .8; 2/, so this is not an example. For G D J2:2, the 6-dimensional simple
modules of G0 are swapped by the outer automorphism, so that dim.M/ � 12. In
order for u to act minimally actively on this it must act as a single Jordan block
by Lemma 9, but that is clearly impossible. The next smallest dimension is 28
(see [16, p. 102]) so there are no examples here either.

This proves that u 2 G0 in all cases, so we get the following proposition, proved
in [4].

Proposition 23. Suppose thatG0 is a central extension of a sporadic simple group,
and let u be a p-element of G such that G D hG0; ui. If u acts minimally actively
on a non-trivial simple module M , then G D G0 and one of the following holds:

(i) G DM11, p D 11, o.u/ D 11 and dim.M/ D 9; 11 (one representation
each) or dim.M/ D 10 (two representations),

(ii) G DM12, p D 11, o.u/ D 11 and dim.M/ D 11 (two representations),

(iii) G D 2 �M12, p D 11, o.u/ D 11 and dim.M/ D 10 (two representations)
or dim.M/ D 12 (one representation),

(iv) G D 3 �M22, p D 2, o.u/ D 8 and dim.M/ D 6 (two representations),

(v) G D 2 �M22, p D 11, o.u/ D 11 and dim.M/ D 10 (two representations),

(vi) G DM23, p D 23, o.u/ D 23 and dim.M/ D 21,

(vii) G DM24, p D 23, o.u/ D 23 and dim.M/ D 23,

(viii) G D J2, p D 2, o.u/ D 8 and dim.M/ D 6 (two representations) requires
F4 � k,
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(ix) G D 2�J2, pD 7, o.u/D 7 and dim.M/D 6 (two representations) requires
F49 � k,

(x) G D 6 � Suz, p D 11; 13, o.u/ D p and dim.M/ D 12 (two representa-
tions),

(xi) G D Co3, p D 23, o.u/ D 23 and dim.M/ D 23,

(xii) G D Co2, p D 23, o.u/ D 23 and dim.M/ D 23,

(xiii) G D 2 � Co1, p D 23, o.u/ D 23 and dim.M/ D 24,

(xiv) G D J1, p D 11, o.u/ D 11 and dim.M/ D 7,

(xv) G D 3 � J3, p D 2, o.u/ D 8 and dim.M/ D 9 (two representations),

(xvi) G D 3�J3, p D 17; 19, o.u/D p and dim.M/D 18 (four representations),

(xvii) G D 2 � Ru, p D 29, o.u/ D 29 and dim.M/ D 28 (two representations).

Unless specified, the field of definition of these representations is the smallest k
such that jZ.G0/j divides jk�j.

7 Groups of Lie type in cross characteristic: preliminaries

In this section we tackle groups of Lie type in characteristic r where r ¤ p, so
let q be a power of r . We specifically exclude the case where the group is also
a group in characteristic p, so for SL3.2/ for example, p ¤ 2; 7. If G0 is a clas-
sical group and M is a Weil representation, or if G0 D PSL2.q/, with u inducing
an inner-diagonal automorphism on G0 in both cases, then all minimally active
u are classified in [5], but the case where u induces particularly a non-diagonal
outer automorphism on M is missing. In this section we give some notation and
introduce some previous results, particularly on minimal dimensions of irreducible
representations.

Let G0 be a quasisimple group of Lie type, defined over the field Fq , let r be
the prime dividing q, and let p ¤ r be another prime. With a few exceptions given
in [7, Table 6.1.3], G0 is (a quotient of) the fixed points of a Frobenius endomor-
phism of a simple, simply connected algebraic group in characteristic r .

Note that those groups of Lie type that are isomorphic to alternating groups have
already been covered in Proposition 16, and we will ignore them from now on. We
will also ignore cases where G0 is isomorphic to a group in characteristic p, so
under the isomorphisms:

� PSL2.4/ Š PSL2.5/ Š A5,
� PSp4.2/

0 Š PSL2.9/ Š A6,
� PSL4.2/ Š A8,
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� PSL3.2/ Š PSL2.7/,

� PSU3.3/ Š G2.2/0,

� PSL2.8/ D 2G2.3/
0,

� PSU4.2/ Š PSp4.3/.

We find all simple, minimally active modules for classical G with G0 possessing
one of the central extensions given in [7, Table 6.1.3] now. For G0 of exceptional
type, see Proposition 36 except for 2E6.2/, for which standard arguments work.

In the next result, if there is more than one central extension n �G (for example,
G D PSL3.4/ has more than one 4-fold extension), we use the numbering of these
from the Atlas [2], and we use [16] for information about the existence of certain
simple modules for central extensions.

Proposition 24. Let G0 be a central extension of one of the following groups:
PSL3.2/, PSL3.4/, PSU4.2/, PSU4.3/, PSU6.2/, Sp6.2/,�7.3/,�

C
8 .2/. Let u be

a p-element of G such that G D hG0; ui. If u acts minimally actively on a non-
trivial simple module M , then one of the following holds:

(i) G D SL3.2/, p D 3, o.u/ D 3 and dim.M/ D 3 (two representations)
requires F9 � k,

(ii) G D 2 � SL3.2/, p D 3, o.u/ D 3 and dim.M/ D 4 (two representations)
requires F9 � k,

(iii) G D 6 � PSL3.4/, p D 5; 7, o.u/ D p and dim.M/ D 6 (two representa-
tions), with u acting as .5; 1/ or .6/,

(iv) G D 41 � PSL3.4/, p D 7, o.u/ D 7 and dim.M/ D 8 (four representa-
tions), with u acting as .7; 1/,

(v) G D PSU4.2/, p D 5, o.u/ D 5 and dim.M/ D 5 (two representations)
requires F25 � k or dim.M/ D 6 (one representation), with u acting as .5/
or .5; 1/,

(vi) G D 2 �PSU4.2/, p D 5, o.u/ D 5 and dim.M/ D 4 (two representations)
requires F25 � k, with u acting as .4/,

(vii) G D 61 � PSU4.3/, p D 5; 7, o.u/ D p and dim.M/ D 6 (two representa-
tions), with u acting as .5; 1/ or .6/,

(viii) G D 31 � PSU4.3/, p D 2, o.u/ D 8 and dim.M/ D 6 (two representa-
tions), with u acting as .6/,
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(ix) G D 31 � PSU4.3/:22, p D 2, u can have order 2, 4, 8 (but not all elements
of orders 2 or 4), and dim.M/ D 6 (two representations), with u acting as
.2; 14/, .4; 12/ and .6/,

(x) G D Sp6.2/, p D 3, o.u/D 3; 9 and dim.M/D 7, with u acting as .3; 14/
or .7/ (minimally active elements of order 3 are from the smallest conju-
gacy class),

(xi) G D Sp6.2/, p D 5; 7, o.u/D p and dim.M/D 7, with u acting as .5; 12/
and .7/,

(xii) G D 2 � Sp6.2/, p D 3; 7, o.u/ D 7; 9 and dim.M/ D 8, with u acting as
.7; 1/,

(xiii) G D 2 ��C8 .2/, p D 3, u has order 9, or u has order 3 with centralizer
Z6 � PSp4.3/, and dim.M/ D 8,

(xiv) G D 2 ��C8 .2/, p D 5, u has order 5 with centralizerZ10 � PSL2.5/, and
dim.M/ D 8,

(xv) G D 2 ��C8 .2/, p D 7, o.u/ D 7 and dim.M/ D 8.

Unless specified, the field of definition of these representations is the smallest k
such that jZ.G0/j divides jk�j.

Proof. If G0 has PSL3.2/ as a quotient, then p ¤ 2; 7, as these were considered
in Section 5. Thus p D 3, G D SL2.7/, o.u/ D 3, and CG.u/ D hui �Z.G/, so
that M is minimally active if and only if dim.M/ � p C 1 D 4 by Lemma 8.

Now let G0 be a central extension of PSL3.4/, and to begin let p D 3. The
Sylow 3-subgroup of PGL3.4/ has exponent 3: PSL3.4/ has a unique class of
elements u of order 3 and is generated by two conjugates of them, so if u acts
minimally actively, then dim.M/ � 4, but the minimal dimension for a simple
module for .4 � 4/ � PSL3.4/ is 6. (The Schur multiplier of PSL3.4/ is 4 � 4 � 3.)

Alternatively, u could lie outside PSL3.4/ in G, and then G is generated by
three conjugates of u, so dim.M/ � 6. However, we cannot form a central exten-
sion of PGL3.4/ by a 2-group as the outer automorphism acts transitively on the
involutions in the Z4 �Z4 Sylow 2-subgroup of the Schur multiplier, and the
minimal dimension for PGL3.4/ is 19.

When p D 5, the normalizer of a Sylow 5-subgroup of PSL3.4/ is D10, so we
apply Lemma 8 to see that M is minimally active if and only if dim.M/ � 6.
Similarly, the normalizer of a Sylow 7-subgroup of PSL3.4/ is Z7 ÌZ3, so again
dim.M/ � 8 by Lemma 8. There are 6-dimensional representations of 6 � PSL3.4/
modulo 5 and 7, and 8-dimensional representations of 41 � PSL3.4/.

If G0 is a central extension of PSU4.2/ D PSp4.3/, then p D 5. For p D 5,
the Sylow 5-subgroup has order 5, generated by u, and CG.u/ D hui �Z.G/, so
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thatM is minimally active if and only if dim.M/ � p C 1 D 6. There are modules
for PSU4.2/ of dimensions 5 and 6, and of 2 � PSU4.2/ of dimension 4, completing
the proof.

Let G0 be a central extension of PSU4.3/, so that p D 2; 5; 7. For p D 5; 7,
the Sylow p-subgroup is of order p, generated by u, and CG.u/ D hui �Z.G/,
so that dim.M/ � p C 1 by Lemma 8. There is a module of dimension 6 for
61 � PSU4.3/, so this is minimally active for both primes. For p D 2, as Out.G0/
is D8 and the Schur multiplier is 3 � 3 � 4 there are many potential groups G.

If G0 D PSU4.3/, then from [16] we see that dim.M/ D 20 or dim.M/ � 34.
The order of u 2 G is 2; 4; 8 from [2], and for u 2 G0, ˛.u/ D 2 if o.u/ D 4; 8,
with ˛.u/ D 3 if o.u/ D 2. As Out.G0/ D D8, u4 2 G0, so the only way that u
can act minimally actively is if o.u/ D 8, u2 … G0, and ˛.u/ D 3. However, by
constructing Aut.G0/ in Magma, we check that ˛.u/ D 2 for all u of order 8,
hence there are no non-trivial minimally active modules ifZ.G0/D 1. In Aut.G0/,
we have ˛.u/ D 2 if o.u/ D 8, ˛.u/ � 4 if o.u/ D 4, and ˛.u/ � 6 if o.u/ D 2.

Thus G0 is either 31 � PSU4.3/ or 32 � PSU4.3/. In the second case, we have
dim.M/ � 36, so we again see that there are no minimally active modules by the
above computations for ˛.u/, as dim.M/ � 14 forM to be minimally active. Thus
G0 D 31 � PSU4.3/, and from [2, p. 53] we see that the only outer automorphism
that centralizes G0 is 22, so we let G be either G0 or G0:22.

The only non-trivial simple module for G0 of dimension at most 14 has dimen-
sion 6 (two up to duality), and this extends toG0:22. InsideG0 elements of order 8
act with type .6/, and in G0:22 (modulo a central involution, this is the complex
reflection group G34 in Shephard–Todd notation) there are elements of orders 2,
4 and 8 (with the last one not in G0) that act with types .2; 14/, .4; 12/ and .6/,
respectively.

Let G0 be a central extension of PSU6.2/, so that p D 3; 5; 7; 11. If p D 7; 11,
then CG0

.u/ D hui �Z.G0/, so that dim.M/ � p C 1 if and only if M is mini-
mally active by Lemma 8. However, dim.M/ � 21 for all odd p by [21], a contra-
diction. If p D 5, then o.u/ D 5 and ˛.u/ D 2, so that dim.M/ � 8 for minimally
active M , another contradiction. If p D 3, then there is an outer automorphism of
order p, but in PGU6.2/ the exponent of the Sylow 3-subgroup is still 9, so if
˛.u/ D 2 when o.u/ D 9 and ˛.u/ � 10 for o.u/ D 3, then we are done. The
former follows by a computer calculation, and the latter follows from [10, Theo-
rem 4.1].

Let G0 be a central extension of Sp6.2/, so that p D 3; 5; 7. The Sylow 7-sub-
group of G0 is cyclic, and if u is a generator for it, then CG0

.u/ D hui �Z.G/,
so that dim.M/ � p C 1 D 8 if and only if M is minimally active. There is
a 7-dimensional simple module for Sp6.2/ and an 8-dimensional simple module
for 2�Sp6.2/, so these are minimally active. If p D 5, then the Sylow 5-subgroupP
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has order 5, and ˛.u/ D 2 for u of order 5, yielding dim.M/ � 8 for minimally
active modules. The module of dimension 7 is minimally active, with u of type
.5; 12/, but on the module of dimension 8 the action has type .42/.

For p D 3, if o.u/ D 9, then ˛.u/ D 2, and if o.u/ D 3, then ˛.u/ � 4, so
dim.M/ � 16 for M minimally active. There are three such non-trivial simple
modules, of dimensions 7, 8 and 14. The 14-dimensional module is not minimally
active, but elements of order 9 act with a single Jordan block on the other two
modules. In addition, elements of order 3 from the smallest class, with centralizer
of order 2160 in Sp6.2/, act on M of dimension 7 with type .3; 14/.

The next group isG0 a central extension of�7.3/, with primes 2; 5; 7; 13. From
[21], dim.M/ � 27 if M is non-trivial. Note that o.u/ � 13, and ˛.u/ D 2 if
o.u/ � 5, ˛.u/ � 3 for o.u/ D 4, ˛.u/ � 4 if o.u/ D 3 and ˛.u/ � 7 if o.u/ D 2.
Thus there are no minimally active modules forG0. However, Out.G0/ has order 2,
and from [2] we see that the exponent of the Sylow 2-subgroup of Aut.�7.3// has
order 8; in this case, ˛.u/ is as before if o.u/ D 2; 8, and ˛.u/ � 4 if o.u/ D 4.
Again, there can be no non-trivial simple minimally active modules.

The final group on our list is �C8 .2/, where p D 3; 5; 7. For G D 2 ��C8 .2/,
˛.u/D 2 for o.u/D 5; 7; 9, and ˛.u/� 4 for o.u/D 3. The 8-dimensional simple
module for G is minimally active for p D 7, with type .7; 1/, and for p D 5 the
three classes of elements of order 5 have type .5; 1; 1; 1/, and .4; 4/ twice, with
the two classes of elements of order 5 having centralizer Z5 � SL2.5/ and the
minimally active one having centralizer Z10 � PSL2.5/.

For p D 3, we need to consider G D 2 ��C8 .2/ and �C8 .2/:3: the former case
is easy, with elements of order 9 acting on the 8-dimensional module as .7; 1/, and
one of the three classes of elements of order 3 with centralizer of order 155;520
have type .3; 15/ and the other two having type .24/; again these two have central-
izer Z3 � Sp4.3/, and the one we want has centralizer Z6 � PSp4.3/. (There are
two classes of elements of order 3 with smaller centralizer.)

To deal with �C8 .2/:3, note that from [16] we get that dim.M/ � 28, and
o.u/ D 3; 9. Since ˛.u/ � 4 by [10, Theorem 4.4], elements of order 3 cannot
work, and elements u of order 9 must cube to an element v D u3 of order 3 in
G0 that acts on M with at most three blocks of size 3. Since dim.M/ D 28 or
dim.M/ � 48, we have dim.M/ D 28, and the five conjugacy classes of elements
of order 3 act onM as .36; 110/; .37; 22; 13/ and .39; 1/, so it cannot be minimally
active. This completes the proof for �C8 .2/.

Because of Proposition 24, if G is classical, then we may take G0 to be a quo-
tient of one of the groups SLn.q/, SUn.q/, Sp2n.q/, Spin2nC1.q/ and Spin˙2n.q/.
The order of G0.q/ is given by a polynomial qN

Q
i ˆi .q/

ai , where N and the
ai are integers, and ˆi denotes the i th cyclotomic polynomial. If u is a p-element
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and p − q, then p divides one of the ˆi .q/; let d denote the order of q modulo p,
so that p j ˆd .q/ and p − ˆe.q/ for all 1 � e < d . (If p D 2, we let d be the
order of q modulo 4.) This next well-known lemma tells us about the powers of p
dividing various cyclotomic polynomials.

Lemma 25. Let p ¤ r be a prime and suppose that q is a power of r .

(i) Writing d for the order of q modulo p, p j ˆe.q/ if and only if e D pad for
some a � 0 (except if p D 2 and d D 2, where 2 j ˆ1.q/ as well).

(ii) If e is not the order of q modulo p, then p2 − ˆe.q/.

(iii) We have

ˆd .q
p/ D

´
ˆd .q/ � p̂d .q/ if p − d ,

p̂d .q/ if p j d:

Therefore for all d , the powers of p dividing ˆd .qp
a

/ and paˆd .q/ are
the same.

We now need information about the cross-characteristic Sylow structure of
a group of Lie type, which is described in [7, Theorem 4.10.2]. We give a summary
now, tailored to our needs.

Proposition 26. Let G0 D G0.q/ denote a quasisimple group of Lie type, with
Z.G0/ a p0-group. Let d denote the order of q modulo p, and let pa be the exact
power of p dividing ˆd .q/. Let P be a Sylow p-subgroup of G0. There exists an
abelian normal subgroup P0 ofG0, of exponent pa, such that P=P0 is isomorphic
to a subgroup of the Weyl group of G0, unless one of the following holds:

(i) p D 3, G0 D 3D4.q/, where P0 has exponent paC1,

(ii) p D 2, G0 D 2G2.q/, where P is elementary abelian of order 8.

Furthermore, ifG is an almost simple group containingG0 as a normal subgroup,
with G=G0 consisting of diagonal automorphisms, then the same results hold.

This means that, in the notation of the proposition, if the exponent of the Sylow
p-subgroup of the Weyl group of G0 is pb , then the exponent of P is at most
paCb (except in the one case, where it is at most paCbC1).

To get a bound for the maximal order of u, we finally need to consider the
outer automorphism group of G0, which is more or less completely described
in [7, Theorem 2.5.12]. Thus the contribution to o.u/ comes from three sources:
the toral contribution, the p-part of ˆd .q/ (except for 3D4), the Weyl contribu-
tion, the exponent of the Sylow p-subgroup of the Weyl group, and the outer con-
tribution, the exponent of the Sylow p-subgroup of the outer automorphism group
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ofG0. This is usually far greater than the actual maximal order of u, and so we use
this to reduce the possible options for G0, and then use more explicit techniques
to get better bounds on o.u/ if required.

Notice that the Sylow p-subgroup of G0 is abelian if and only if p divides
exactly one of the ˆd .q/ that divide jG0j, or in other words, if the Sylow p-sub-
group ofG0 is non-abelian and the order of q modulo p is d , then bothˆd .q/ and
p̂d .q/ divide jG0.q/j.
We also need to consider regular semisimple elements, in particular to know

that their centralizer is abelian when u is a regular semisimple element in a cyclic
Sylow subgroup. This result appears in [3, Proposition 9.1]. We remind the reader
of the definition of a regular number. If W is a Coxeter group, a regular element
is an element that acts regularly on the reflection representation, and a regular
number is an number that is the order of a regular element. These are enumerated
in [28, Section 5].

Lemma 27. Let p be a prime and let q be a power of a prime r ¤ p, and let G.q/
be a finite group of Lie type. Suppose that the order of q modulo p is a regular
number, and that the Sylow p-subgroup of G.q/ is cyclic. If u is a generator for
the Sylow p-subgroup of G.q/, then the centralizer CG.u/ is abelian.

8 Classical groups in cross characteristic

In this section we consider the case where G0 is a central extension of a classical
group in characteristic r ¤ p.

In [5], Di Martino and Zalesski solve the problem of which elements of quasi-
simple classical groups act minimally actively on the Weil modules (in fact, they
do all almost cyclic elements). However, they only allow u to induce a inner-
diagonal outer automorphism on G0 if it is linear or unitary, and only an inner
automorphism ifG0 is symplectic. The theorem in [5], applied to minimally active
modules only (i.e., where u is a p-element and the characteristic of the field is p),
is as follows.

Theorem 28. Let G0 be one of SLn.q/ (n � 3), SUn.q/ or Sp2n.q/, and let u
either be in G0 or induce an inner-diagonal automorphism on G0 if G0 is not
symplectic. Suppose thatG0 is not one of the groups considered in Proposition 24.
If u acts minimally actively on a Weil module, then one of the following holds:

(i) G D Sp2n.q/, n is a power of 2, pa D qnC1
2

for some a � 1, o.u/ D pa,

(ii) G D Sp2n.3/, n ¤ p is an odd prime and pa D 3n�1
2

for some a � 1, with
o.u/ D pa,
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(iii) G0 D SUn.q/, n ¤ p is an odd prime at least 5, pa D qnC1
qC1

for some
a � 1, and o.u/ D pa,

(iv) G D SU3.3/, p D 7, o.u/ D 7,

(v) G0 D SLn.q/, n ¤ p is an odd prime, pa D qn�1
q�1

for some a � 1, and
o.u/ D pa.

We will add to this by proving the following result.

Proposition 29. Let G0 be a central extension of a simple special linear, unitary
or symplectic group, but not one of the groups in Proposition 24. Let u 2 G be
a p-element, and let M be a simple module on which u acts minimally actively.
IfM #G0

involves a Weil module, then u induces an inner-diagonal automorphism
on G0.

We begin by proving, for G0 classical and not of type PSL2, that if M is not
a Weil module, then the possibilities for an element ofG acting minimally actively
are very limited, restricted mostly to cases of exceptional Schur multipliers given
in Proposition 24.

Table 4 is a summary of what we will need about the dimensions of Weil
modules, and lower bounds for the dimensions of non-Weil modules for classi-
cal groups, assuming that G0 is not one of the groups in Proposition 24. (Let �n
be 1 if p divides q

n�1
q�1

and 0 otherwise.)

8.1 Groups SLn.q/, n � 3

For this subsection we let G0 be a quotient of SLn.q/ for n � 3, and we exclude
the cases of PSL3.2/ D PSL2.7/, PSL4.2/ D Alt8, and PSL3.4/ which are con-
sidered in Propositions 16 and 24. Suppose that M is a non-trivial simple module,
but not a Weil module. From Table 4, the dimension of M is at least

.qn�1 � 1/

�
qn�2 � 1

q � 1
� 1

�
for n � 5.

Note that if u is a p-element of G, then, as we saw in Proposition 26 and the
discussion afterwards, the order of u is bounded by a product of numbers: the
exponent of the Sylow p-subgroup of the outer automorphism group (the outer
contribution); the exponent of the Sylow p-subgroup of the Weyl group (only if
the Sylow p-subgroup of G0 is non-abelian, the Weyl contribution); the p-part
of ˆd .q/ (the toral contribution).

We will let G0 be a group G.qt / and assume that u induces an automorphism
on G0 that projects onto a field automorphism of order t in Out.G0/.
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Group Bound Reference

SLn.q/ (Weil) qn�q
q�1
� �n [11]

SLn.q/ (Weil) qn�1
q�1

[11]

SLn.q/, n D 3; 4 (non-Weil) .q�1/.qn�1�1/
gcd.n;q�1/ [11]

SLn.q/, n � 5 (non-Weil) .qn�1 � 1/.q
n�2�q
q�1

� �n�2/ [11]

SUn.q/ (Weil) qnCq.�1/n

qC1
[12]

SUn.q/ (Weil) qn�.�1/n

qC1
[12]

SU3.q/ (non-Weil) .q�1/.q2C3qC2/
6

[12]

SU4.q/ (non-Weil) .q2C1/.q2�qC1/
2

� 1 [12]

SUn.q/, n � 5 (non-Weil) qn�2.q�1/.qn�2�q/
qC1

[12]

Sp2n.q/, q odd (Weil) qn˙1
2

[9]

Sp2n.q/, all q (non-Weil) q.qn�1/.qn�1�1/
2.qC1/

[9], [27]

�2nC1.q/ qn�1.qn�1 � 1/ [13]

�C2n.q/ qn�2.qn�1 � 1/ [21]

��2n.q/ .qn�1 C 1/.qn�2 � 1/ [21]

Table 4. Minimal dimension of a non-trivial projective representation for simple
classical groups.

Proposition 30. Suppose that G0 is a central extension of a special linear group
PSLn.qt / for some n � 3, with .n; qt / ¤ .3; 2/; .3; 4/; .4; 2/, and let u be a p-ele-
ment of G such that G D hG0; ui. If u acts minimally actively on a non-trivial
simple moduleM that is not a Weil module, thenG D PSL3.3/, pD 13, o.u/D 13
and dim.M/ D 11; 13.

Proof. Let G0 be a central extension of PSLn.qt / for some n � 3 and t � 1, with
the exclusions given above of PSL3.2/, PSL3.4/ and PSL4.2/. First, let n D 3; 4,
and note that if M is a non-Weil simple module, then

dim.M/ �
.qt � 1/.q.n�1/t � 1/

gcd.n; qt � 1/
:

If the Sylow p-subgroup of SLn.qt / is abelian, then, in the notation introduced
after Proposition 26, the Weyl contribution is 1, the toral contribution is at most
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ˆd .q
t /, where d D 1; : : : ; n, and the outer contribution is t , since diagonal auto-

morphisms are not of concern by Proposition 26. Thus in all cases, we have that
o.u/ � ˆ3.q

t /�t , in fact o.u/ � ˆ3.q/�t2 by Lemma 25. From [10, Theorem 4.1],
˛.u/ � n for p > 2, and we have a lower bound for dim.M/ from Table 4. The
equation dim.M/ � ˛.u/ � .o.u/ � 1/ for minimally activeM from Lemma 5 (iv)
now yields

.qt � 1/.q.n�1/t � 1/

gcd.n; qt � 1/
� n..q2 C q C 1/t2 � 1/I

since p j t , we can assume that t is odd, and all solutions are for t D 1, with
q D 2; 3; 4; 7 for n D 3 and q D 2; 3 for n D 4. Removing those excluded from
the start of this section, for t D 1 we need consider .n; q/ D .3; 3/; .3; 7/; .4; 3/.
For PSL3.7/, the only prime for which the Sylow p-subgroup is abelian is p D 19,
dim.M/ � 96 (by Table 4) and ˛.u/ � 3, so it in fact fails the bound. For PSL4.3/,
dim.M/ � 26 (again, table 4) and p D 5; 13, with o.u/ D p. Since ˛.u/ � 4, this
shows that p D 5 cannot yield a minimally active module, and for p D 13 we
see that CG0

.u/ D Z.G0/ � hui, so that dim.M/ � p C 1 for M to be minimally
active by Lemma 8. Thus there are no examples here.

For PSL3.3/ we have p D 13, and again CG0
.u/ D hui (there are no central

extensions) so we may apply Lemma 8. The simple modules from [16] have
dimensions 1, 11, 13, 16 and 26, so those of dimensions 11 and 13 are minimally
active.

Suppose that the Sylow p-subgroups are non-abelian, so that p D 2; 3. First
assume p D 3: the exponent of the Sylow 3-subgroup of the Weyl group is 3, and
the toral contribution of o.u/ is at most qt C 1, in fact t .q C 1/ by Lemma 25.
The outer contribution is at most t , so that o.u/ � 3t2.q C 1/. Thus our equation
dim.M/ < ˛.u/ � o.u/ becomes

.qt � 1/.q.n�1/t � 1/

gcd.n; qt � 1/
< 3nt2.q C 1/I

which yields only t D 1 and .n; q/D .3; 2/;.3; 4/;.4; 2/, all of which are excluded.
For p D 2, we have a graph automorphism to consider as well. The toral con-

tribution to o.u/ is at most q C 1, the Weyl contribution is at most n and the outer
contribution if the lowest common multiple of 2 and t .

Hence ˛.u/ � o.u/ is at most nmt.q C 1/ � lcm.2; t/, where m D n for n � 5,
m D 4 for n D 3 and m D 6 for n D 4. We will check both Weil and non-Weil
modules simultaneously, and all n, so we need

nmt.q C 1/ � lcm.2; t/ � ˛.u/ � o.u/ > dim.M/ �
qnt � qt

qt � 1
� 1:
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For n � 5 we only get .n; q; t/ D .5; 3; 1/. For n D 4 we get .n; q; t/ D .4; 3; 1/,
.4; 5; 1/, and for n D 3 we get qt � 23.

For PSL5.3/, the exponent of the Sylow 2-subgroup is 16, so that o.u/ � 32,
˛.u/ � 5, and dim.M/ � 120. Thus we need o.u/ D 32, and in this case v D u2

is an element of PSL5.3/ of order 16. However, a simple computer check confirms
that ˛.v/ D 2 for these elements, so that there is no minimally active module.

For PSL4.3/ and PSL4.5/, we have ˛.u/ � 4 if hui \G0, generated by v say,
is non-trivial. Since the exponent of a Sylow 2-subgroup of both groups is 8, we
get that o.u/ � 16, and dim.M/ � 26; 124, respectively. This eliminates PSL4.5/
as dim.M/ > o.u/ � ˛.u/ (using Lemma 5 (iv)). For PSL4.3/, if o.v/ D 8, then
˛.v/ D 2 and if o.v/ D 4, then ˛.v/ � 3. Thus we can only get a minimal action
of u on M if dim.M/ D 26 (the next smallest is dimension 38) and o.u/ D 16,
with u therefore inducing the graph automorphism on M . However, there is no
element of Aut.PSL4.3// of order 16, as we see from [2, pp. 68–69]. Thus we get
no minimally active modules here either.

Finally, consider n D 3. If t D 1, then ˛.u/ � 3, and also the Weyl contribu-
tion to o.u/ is 2, not n which is 3. Thus in this case we get o.u/ � ˛.u/ to be
at most 12.q C 1/, which yields q � 13 for there to be a minimally active mod-
ule. If we replace q C 1 by the 2-part of q

2�1
2

, which is the actual toral contri-
bution, we obtain q � 9. For these groups we check in [2] that the exponents of
the Sylow 2-subgroups of Aut.PSL3.q// are 8; 8; 16; 16, as q D 3; 5; 7; 9, respec-
tively. Since dim.M/ � 12; 30; 56; 90 from the table above, and ˛.u/ � 3, we see
that in fact G0 D PSL3.3/ is the only possibility. In this case, if u 2 G0:2 has
order 4 or 8, we use a computer to check that ˛.u/ D 2, and if u 2 G0:2 has
order 2, then ˛.u/ � 4 by [10, Theorem 4.1]. Since if M is minimally active then
dim.M/ � ˛.u/ � .o.u/ � 1/, we see that dim.M/ � 14, so the 12-dimensional
simple module is the only possibility, with o.u/ D 8 (the simple modules for G0
have dimensions 1, 12, 16 and 26). However, both classes of elements of order 8
in G0:2 have type .8; 4/ on M of dimension 12, so it is not minimally active.

Thus let n � 5 and p be odd. If M is not a Weil module, then

dim.M/ � .q.n�1/t � 1/

�
q.n�2/t � qt

qt � 1
� 1

�
;

and for all u, ˛.u/ � n. If the Sylow p-subgroup of G0 is abelian, then o.u/ is
at most .qnt � 1/=.q � 1/ � t , and using the formula dim.M/ < o.u/ � ˛.u/ yields
only PSL5.2/. As dim.M/ � 75 for non-Weil modules from the formula above,
and the order of prime-power elements of PSL5.2/ is at most 8 or 31, we see that
o.u/D 31Dˆ5.2/. But in this caseCG0

.u/D hui, so that dim.M/� pC1D 32,
and there are therefore no examples.
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Thus the Sylow p-subgroup of G0 is non-abelian, and therefore p divides two
separate ˆd -tori: from Lemma 25, we see therefore that if qt has order d mod-
ulo p, dp � n, and therefore the toral contribution to u is at most qnt=p � 1, with
the Weyl contribution at most n and the outer contribution t . We therefore have
that o.u/ � nt.qbnt=3c � 1/ (as p � 3), and using the formula yields

n2t .qbnt=3c � 1/ > .q.n�1/t � 1/

�
q.n�2/t � qt

qt � 1
� 1

�
;

which has no solutions for n � 5. This completes the proof.

Having determined which non-Weil modules can be minimally active, we turn
our attention to the Weil modules for odd primes p, where u induces a non-
diagonal outer automorphism, which must involve a field automorphism of order
at least 3.

As in the proof of the previous proposition, the order of an element of G0 is at
most either t .qn � 1/ or tn.qbn=3c � 1/, and we multiply this by the outer contri-
bution, which is t , and ˛.u/, which is at most n, to get an estimate for o.u/ � ˛.u/.
We then compare that to .qnt � qt /=.qt � 1/ for t � 3, and find only one pos-
sible solution: PSL3.8/:3, of course with p D 3. In this case, dim.M/ � 72 by
[16, p. 187], and o.u/ � 9 by [2, p. 74], so this cannot work either.

Thus if u 2 G acts minimally actively on a Weil module, then it induces a inner-
diagonal automorphism on G0, proving Proposition 29 for linear groups.

8.2 Groups SUn.q/

This looks very similar to the linear case in the previous subsection. We start by
dealing with non-Weil representations, with the cases n D 3; 4 having to be dealt
with separately, and at the same time proving that there are no minimally active
modules for p D 2, Weil or non-Weil. This then allows us to prove easily that
u cannot act minimally actively on a simple module without inducing an inner-
diagonal automorphism on G0, just as with the linear case.

Note that we exclude PSUn.q/ for .n; q/ D .3; 2/; .4; 2/; .4; 3/; .6; 2/. For
PSU3.3/ D G2.2/0, we require p ¤ 2; 3.

Proposition 31. Suppose that G0 is a central extension of a special unitary group
PSUn.qt / for some n � 3, with .n; qt / ¤ .3; 2/; .4; 2/; .4; 3/; .6; 2/, and let u be
a p-element of G such that G D hG0; ui. If u acts minimally actively on a non-
trivial simple module M , then M is a Weil module.

Proof. Let G0 be a central extension of PSUn.qt /, excluding the groups listed
above the proposition, and let M denote a non-Weil simple module. We first con-

Brought to you by | University of Birmingham
Authenticated

Download Date | 12/7/18 4:24 PM



768 D. A. Craven

sider the case n D 3, where dim.M/ � 1
6
.qt � 1/.q2t C 3qt C 1/, and p is either

2 or 3, or divides one of qt � 1, qt C 1, or q2t � qt C 1 D ˆ6.qt /. We apply
Lemma 25 to replace ˆd .qt / by tˆd .q/, as in the case for PSLn.qt /. Unless
qt D 3 and p D 2, from [10, Theorem 4.1] we have that ˛.u/ � 3.

If p ¤ 2; 3, we have that o.u/ � t2ˆd .q/, with the Weyl contribution being
trivial, the toral contribution being tˆd .q/ for d D 1; 2; 6, and the outer contri-
bution being t . (Note that diagonal automorphisms need not be considered, as
in PSLn.qt /, using Proposition 26.)

If d D 1; 2, then we only end up with PSU3.3/, and if d D 6, then since this
is a regular number CG0

.u/ is abelian by Lemma 27, and hence if M is mini-
mally active, then dim.M/ � 2o.u/ by Lemma 8. This forces t D 1 and q < 7, so
only q D 3; 5, since q D 2; 4 are excluded. For q D 3; 5, q2 � q C 1 D 7; 21, and
so p D 7 in both cases. However, this now excludes q D 5, leaving only q D 3.
Here, if M is not a Weil module, then dim.M/ � 14, and there are therefore no
examples.

If p D 3, then the toral contribution is at most q C 1, the Weyl contribution
is 3 and the outer contribution is t , so we place this in our formula to get only
.n; q; t/ D .3; 2; 3/; .3; 5; 1/. The exponents of the Sylow 3-subgroups of the auto-
morphism group Aut.PSU3.qt // for qt D 5; 8 are 3 and 9, respectively, whereas
dim.M/ � 20; 56, respectively, from [16]. Thus there are no minimally active
modules for p D 3.

Suppose that p D 2. The toral contribution is at most t .q C 1/, the Weyl con-
tribution is at most n, and the outer contribution is at most 2t . Unless n D 4 or
G0 D PSU3.3/, we have ˛.u/ � n. Thus ˛.u/ � o.u/ � 2t2n2.q C 1/, and for this
to be at least dim.M/ (for any non-trivialM , not just non-Weil modules), for n� 5
we have that .n; q; t/D .5; 3; 1/; .6; 3; 1/. In these two cases, dim.M/� 60; 182,
whereas the exponent of the Sylow 2-subgroup of Aut.PSU5.3// is 16, and the
exponent of the Sylow 2-subgroup of PSU6.3/ is 16, so that of the automorphism
group is at most 32. If v 2 PSUn.3/ for n D 5; 6 has order 8 or 16, then ˛.v/ � 3,
so that M cannot be minimally active.

If n D 4, then ˛.u/ � 6, and this yields q D 3; 5; 7 for t D 1, and q D 3 for
t D 2. For q D 3; 5; 7; 9, dim.M/ � 20; 104; 300; 656, with the exponents of the
Sylow 2-subgroups of G0 being 8; 8; 16; 16, respectively. Thus only q D 3 can
yield a minimally active module, but PSU4.3/ is excluded from consideration.

For n D 3 we need better bounds, because for t D 1 we get q � 19 satisfying
the bound

2t2n2.q C 1/ �
qnt � qt

qt C 1
;

and for t D 2we get q D 3. The Weyl contribution (n in the above inequality) may
be replaced by 2, and the toral contribution (t .q C 1/ above) may be replaced by
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the 2-part of 1
2
.q2t � 1/. Doing so yields qt � 9, and replacing o.u/ with the cor-

rect exponents, which are 8; 8; 16; 16 for qt D 3; 5; 7; 9, respectively, means that
qt D 9 can be excluded, as dim.M/ � 6; 20; 42; 72. If ˛.u/ D 2 for u of max-
imal order, then this will exclude qt D 5; 7 as well: this can be checked and is
indeed the case, yielding G0 D PSU3.3/ D G2.2/0, so already considered. This
completes the proof for p D 2, all simple modules and all n � 3.

We now let n D 4, and now p is odd. If p > 3, then the Sylow p-subgroup is
abelian, so d D 1; 2; 4; 6, and the toral contribution is at most t .q2 C 1/; the Weyl
contribution is 1; and the outer contribution is t . Since ˛.u/ � n and dim.M/ �
1
2
.q2t C 1/.q2t � qt C 1/ � 1, plugged into ˛.u/ � o.u/ > dim.M/ yields

nt2.q2 C 1/ >
1

2
.q2t C 1/.q2t � qt C 1/ � 1;

which yields t D 1 and q D 2; 3, both of which are excluded from consideration.
If p D 3, then the Weyl contribution is 3 and the toral contribution is at most

t .q C 1/, with t the outer contribution, yielding

3nt2.q C 1/ >
1

2
.q2t C 1/.q2t � qt C 1/ � 1:

Again, only qt D 2; 3 satisfy this, which have been excluded.
Thus n � 5. First suppose that the Sylow p-subgroup is abelian. The toral con-

tribution is at most t .qn � 1/=.q � 1/ (as this is greater than t .qn C 1/=.q C 1/,
and the order d of qt modulo p is either at most n or 2m for some oddm � n), the
Weyl contribution is 1, and the outer contribution is at most t . For M a non-Weil
module, the inequality ˛.u/ � o.u/ < dim.M/ becomes

nt2.qn � 1/

q � 1
>
q.n�2/t .qt � 1/.q.n�2/t � qt /

qt C 1
;

and this forces t D 1 and .n; q/ D .5; 2/; .5; 3/; .6; 2/; .7; 2/; .8; 2/. To eliminate
these, we first ignore the ts, and then produce better estimates for the toral contri-
bution than .qn�1/=.q�1/: for n D 5; 7we get .qnC1/=.qC1/, which eliminates
.5; 3/ and .7; 2/, and for n D 8 we use .q7 C 1/=.q C 1/, which eliminates .8; 3/.
Since .6; 2/ is not being considered in this proposition, we are left with PSU5.2/.
Here p D 5; 11, dim.M/ � 43 for non-Weil modules from [16, pp. 182–184], and
it is easy to see that ˛.u/ D 2 for o.u/ D 5; 11 by a computer check (alternatively
we can use the fact that CG.u/ is abelian and apply Lemma 8). Thus there are no
minimally active non-Weil modules in this case.

If the Sylow p-subgroup is non-abelian, then, as with the linear case, the toral
contribution is at most t .qbn=3c C 1/ and the Weyl contribution is at most n,
yielding

n2t2.qbn=3c C 1/ >
q.n�2/t .qt � 1/.q.n�2/t � qt /

qt C 1
;

Brought to you by | University of Birmingham
Authenticated

Download Date | 12/7/18 4:24 PM



770 D. A. Craven

where we get t D 1 and .n; q/ D .5; 2/; .6; 2/, although PSU6.2/ is excluded. For
G0 D PSU5.2/, only the Sylow 3-subgroup (and the Sylow 2-subgroup of course)
is non-abelian, and Out.G0/ has order 2, we have G0 D G and so u has order at
most 9, and ˛.u/ D 2 if o.u/ D 9, and ˛.u/ � 5 if o.u/ D 3, with dim.M/ � 44

from [16, p. 181]. Thus there is no non-Weil simple minimally active module for
this group.

As with linear groups, we now check that if u induces an automorphism that is
not inner-diagonal onG0, then u does not act minimally actively on a Weil module.
From the previous proposition we may assume that p is odd, so that t � 3.

Suppose that the Sylow p-subgroup of G0 is abelian: as in the proof of the
proposition we see that o.u/ � t2.qn � 1/=.q � 1/, and so we get

nt2.qn � 1/

q � 1
>
qnt � qt

qt C 1
;

yielding .n; q/ D .3; 2/; .4; 2/ for t D 3, and no solutions for t � 5. Thus p D 3,
but the Sylow 3-subgroup of G0 is definitely not abelian.

If the Sylow p-subgroup of G0 is non-abelian, then the toral contribution is at
most t .qbn=3c C 1/, the Weyl contribution is at most n, and this time we get

n2t2.qbn=3c C 1/ >
qnt � qt

qt C 1
;

and this yields .n; q; t/ D .3; 2; 3/ as the only solution, so again p D 3. The Sylow
3-subgroup of Aut.PSU3.8// has exponent 9, and the dimension of a Weil module
is 56, with ˛.u/ � 3 by [10, Theorem 4.1], so u cannot act minimally actively on
a Weil module by Lemma 5 (iv).

This completes the proof of Proposition 29 for unitary groups.

8.3 Groups Sp2n.q/

For this subsection we let G0 be a quotient of Sp2n.q
t /, and we exclude the cases

of Sp4.2/ D Sym6, PSp4.3/ D PSU4.2/ and Sp6.2/ (the last two appear in Propo-
sition 24). Suppose that M is a non-trivial simple module, but not a Weil module,
which exist only for odd q. From the table near the start of this section, the dimen-
sion of M is at least qt .qnt � 1/.q.n�1/t � 1/=2.qt C 1/.

Proposition 32. Suppose that G0 is a central extension of a symplectic group
PSp2n.q

t / for some n� 2, with .n; qt /¤ .4; 2/; .4; 3/; .6; 2/, and let u be a p-ele-
ment of G such that G D hG0; ui. If u acts minimally actively on a non-trivial
simple moduleM that is not a Weil module, thenG D Sp4.4/, p D 17, o.u/ D 17,
and dim.M/ D 18.
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Proof. Let G0 D Sp2n.q
t / for some n � 2, some prime power q and some t � 1.

As in previous sections, u induces an automorphism that projects in Out.G0/ to a
field automorphism of order t . Since M is not a Weil module, we have

dim.M/ �
.qnt � 1/.qnt � qt /

2.qt C 1/
:

Let d be the order of qt modulo p.
If d D 2n, then u is regular, so dim.M/ < 2o.u/ by Lemma 27. We have that

o.u/ � t2.qn C 1/ by Lemma 25, since the outer contribution is t and the toral
contribution is at most t .qn C 1/, so we get

2t2.qn C 1/ �
.qnt � 1/.qnt � qt /

2.qt C 1/
:

If t D 1, then the solutions to this are q � 5 for n D 2, and q D 2 for n D 3. If
t > 1, we only get .n; q; t/ D .2; 2; 2/, but this needs p j t D 2 and p − q D 4,
a contradiction. We of course exclude .n; q/ D .2; 2/; .2; 3/; .3; 2/ for t D 1, as
we stated above, so we are left with .n; q/ D .2; 4/; .2; 5/ for t D 1. Here d D 4,
and ˆd .q/ D q2 C 1: 42 C 1 D 17 and 52 C 1 D 26. For q D 5 this means that
o.u/ D 13, and dim.M/ � 40, so this cannot work, but for Sp4.4/, the module
of dimension 18 could be minimally active. Since CG.u/ D hui in this case, it is
minimally active by Lemma 8.

Suppose that the Sylow p-subgroup is abelian. If d ¤ n, then we have the
bound o.u/ � t2.qd C 1/ with d � n � 1, and note that n � 3. We also have that
˛.u/ � nC 3 by [10, Theorem 4.3], so using Lemma 5 (iv) we get

.nC 3/ � t2.qd C 1/ � ˛.u/o.u/ � dim.M/ �
.qnt � 1/.qnt � qt /

2.qt C 1/
;

and the only solutions are for t D 1, with .n; q/ D .3; 2/; .4; 2/. The first can be
ignored using Proposition 24, and for the second we have d D 1; 2; 3; 4; 6, which
yield ˆd .2/ D 1; 3; 7; 5; 3. Since the Sylow 3-subgroup of Sp8.2/ is non-abelian,
we only get the cases d D 3; 4, so p D 7; 5. For p D 7 it is easy to check with
a computer that ˛.u/ D 2, o.u/ D 7, and dim.M/ � 35 by the degree bound
above. Thus there is no (non-trivial) minimally active simple module for this
group. For p D 5 we have o.u/ D 5 and ˛.u/ � 3, so that again there are no
examples.

We need also consider the case where d D n, so that o.u/ � t2.qn�1/=.q�1/.
Using ˛.u/ � .nC 3/ and Lemma 5 (iv), we get that if M is minimally active,
then

.nC 3/ � t2.qn � 1/

q � 1
� ˛.u/o.u/ > dim.M/ �

.qnt � 1/.qnt � qt /

2.qt C 1/
;
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which for t D 1 yields the solutions .n; q/ D .2; 2/, .2; 3/, .2; 4/, .3; 2/, .4; 2/,
.5; 2/, and for t � 2 yields only the solution .n; q/ D .2; 2/ for t D 2, which we
noticed earlier is not an example because p j t D 2 and p − q D 4. If n is odd, then
n is a regular number, so we may replace nC 3 by 2, as in the previous case, and
this removes the case .5; 2/. The cases .2; 2/; .2; 3/; .3; 2/ are excluded from our
analysis, and .4; 2/ has been dealt with, leaving only Sp4.4/, with p j ˆ2.4/ D 5.
We have dim.M/ � 18, o.u/ D 5 and ˛.u/ � 3 by a computer calculation, so
there is no example here either.

We may therefore assume that the Sylow p-subgroup is non-abelian, and hence
p divides the order of the Weyl group of type C , which is Z2 o Symn, and p � n
with p dividing two separate tori, so that p j ˆd .q/ and p j p̂d .q/. If p is
odd, then in particular this means that d � n

3
or d is even and d � 2n

3
, so in

either case the toral contribution is at most t .qd C 1/. The Weyl contribution is
at most n, and the outer contribution is t , so o.u/ � nt2.qd C 1/. This is of course
maximized at d D bn

3
c. As ˛.u/ is still at most nC 3, we get

.nC 3/ � nt2.qbn=3c C 1/ � ˛.u/o.u/ > dim.M/ �
.qnt � 1/.qnt � qt /

2.qt C 1/
;

The only solution is .n; q; t/ D .3; 2; 1/, which we have already excluded.
Thus p D 2. Here there is a diagonal automorphism, but we do not need to con-

sider these by Proposition 26, so the outer contribution is t . The Weyl contribution
is 2n, and the toral contribution is at most t .q C 1/ by Lemma 25, so the order of
a 2-element ofG0 is at most 2nt2.q C 1/ by Proposition 26. Since ˛.u/ � 2n, this
yields ˛.u/ � .o.u/ � 1/ � 2n.2nt2.q C 1/ � 1/. If M is minimally active, then,
by Lemma 5 (iv)

2n.2nt2.q C 1/ � 1/ � ˛.u/.o.u/ � 1/ � dim.M/ �
.qnt � 1/.qnt � qt /

2.qt C 1/
;

which has no solutions for t ¤ 1, and for t D 1 we get .n; q/ D .2; 2/, .2; 3/,
.2; 5/, .3; 2/, with the first and last eliminated since q must be odd. Since Sp4.3/ is
also excluded, this leaves G0 D Sp4.5/: from [2, p. 63] we see that o.u/ � 8, and
˛.u/ � 4 with dim.M/ � 40, so M cannot be minimally active. This completes
the proof.

We now have to complete the proof of Proposition 29 by checking that if u
induces an outer automorphism on G0 D Sp2n.q

t /, then u cannot act minimally
actively on a Weil module. First suppose that p is odd, so that u induces a field
automorphism and t � 3.

The dimension of M is 1
2
.qnt ˙ 1/ (recall that q must be odd) and as we saw

above, if the Sylow p-subgroup of G0 is abelian, then o.u/ � t2.qn C 1/, and
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as ˛.u/ � nC 3, if u acts minimally actively, then by Lemma 5 (iv) we have

t2.nC 3/.qn C 1/ �
1

2
.qnt � 1/;

which yields .n; q; t/ D .2; 3; 3/, but of course t , which is a power of p, cannot
divide q, so we get no examples.

If the Sylow p-subgroup is non-abelian, then

˛.u/o.u/ � .nC 3/nt2.qbn=3c C 1/;

as we saw in the proof of the previous proposition: thus we have

.nC 3/nt2.qbn=3c C 1/ �
1

2
.qnt � 1/;

and this has no solutions.
We thus reduce to p D 2. In this case, from [9, Section 5], we see that there

are two Weil modules, which have dimension 1
2
.qn � 1/ and are swapped by the

diagonal automorphism. By Theorem 28, v 2 G0 cannot act on these Weil mod-
ules with a single Jordan block, and hence by Lemma 9 if u induces a diagonal
automorphism on G0, then it cannot act minimally actively on the sum of the two
Weil modules.

Thus u acts as either a field automorphism or the product of a field and diagonal
(whichever stabilizes the two Weil modules), but in either case t � 2.

We have already bounded o.u/ by 2nt2.q C 1/, so with ˛.u/ � 2n we get

2n.2nt2.q C 1/ � 1/ � ˛.u/ � .o.u/ � 1/ � dim.M/ �
1

2
.qnt � 1/:

If t � 4, then there are no solutions, and for t D 2we get solutions .n; q/ D .2; 3/,
.2; 5/, .3; 3/. The exponents of the Sylow 2-subgroups of PSp4.9/, PSp4.25/ and
PSp6.9/ are 8; 8; 16, respectively, so o.u/ � 16; 16; 32, respectively. The dimen-
sions of the Weil modules are 40, 312, 364, respectively, and ˛.u/ � 4; 4; 6,
respectively, so the formula dim.M/ < ˛.u/ � o.u/ eliminates the second and third
options from being minimally active. Finally, for PSp4.9/, if we can reduce ˛.u/
for u of order 16 (hence v D u2 2 G0 of order 8) to 2, then we are done: this is
the case by an easy computer calculation, and we complete the proof of Proposi-
tion 29.

8.4 Groups �2nC1.q/ and �˙
2n

.q/

As we saw in Table 4, the minimal degree for Spin2nC1.q/ for .n; q/ ¤ .3; 3/
is qn�1.qn�1 � 1/.

Recall that the polynomial order of Spin2nC1.q/ is qn
2 Qn

iD1.q
2i�1/, so that if

p − q divides the order of Spin2nC1.q/, p divides qd ˙ 1 for some 1 � d � n.

Brought to you by | University of Birmingham
Authenticated

Download Date | 12/7/18 4:24 PM



774 D. A. Craven

Proposition 33. Let G0 be a central extension of one of the groups �2nC1.q/
for .n; q/ ¤ .3; 3/ and n � 3. Let u be a p-element of G such that G D hG0; ui.
There are no non-trivial minimally active simple modules for G.

Proof. Let G0 D �2nC1.qt / for some n � 3, some prime power q, and some
t � 1, and suppose that the Sylow p-subgroup of G0 is abelian, so that p divides
a single cyclotomic polynomial, and let d be the order of qt modulo p. The order
of u is at most t � tˆd .q/ � t2 � .qn C 1/. As ˛.u/ � nC 3 by [10, Theorem 4.4],
we get using Lemma 5 (iv)

.nC 3/ � t2.qn C 1/ > ˛.u/ � o.u/ > qt.n�1/.qt.n�1/ � 1/

if M is minimally active, and this forces t D 1 and .n; q/ D .3; 3/; .3; 5/. Omit-
ting the t from now on, replacing the upper bound qn C 1 for ˆd .q/ by each of
.qnC1/=.qC1/, .qn�1/=.q�1/, .q�1/ and .qC1/ eliminates .n; q/ D .3; 5/,
and .n; q/ D .3; 3/ is excluded already, so there are no solutions.

We now may assume that the Sylow p-subgroup is non-abelian, so that if p is
odd then o.u/ � t � n � t .qd C 1/ (as the Weyl group of type B is the Weyl group
of type C we can use the Weyl contribution from Proposition 32), but with both d
and pd dividing 2n. We thus get

.nC 3/ � n � t2.qd C 1/ > ˛.u/ � o.u/ > qt.n�1/.qt.n�1/ � 1/;

for d � n
3

, which is obviously maximized at d D bn=3c, still with no solutions.
If p D 2, then we get o.u/ � 2t � 2n � t .q C 1/ using Proposition 26 and the

fact that the order of an outer automorphism is at most 2t , and so now we have

2n � 4nt2.q C 1/ > ˛.u/ � o.u/ > qt.n�1/.qt.n�1/ � 1/;

(as ˛.u/ � 2n this time) which again has no solutions for .n; q; t/ ¤ .3; 3; 1/. This
completes the proof.

Having dispensed with the odd-dimensional orthogonal groups, we turn to the
even-dimensional ones. For�C2n.q/, the minimal degree is qn�2.qn�1�1/ (unless
G0 D �

C
8 .2/) and for ��2n.q/ the minimal degree is .qn�2 � 1/.qn�1 C 1/, so in

both cases dim.M/ > .qn�1 � 1/.qn�2 � 1/. If we use this bound, then we can
deal with both cases simultaneously. The polynomial order of Spin˙2n.q/ is

qn.n�1/.qn � 1/

n�1Y
iD1

.q2i � 1/:

We already found minimally active modules for 2 ��C8 .2/ in Proposition 24, and
the next proposition says that there are no more.
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Proposition 34. Let G0 be a central extension of one of the groups �˙2n.q/ other
than �C8 .2/, for n � 4. Let u be a p-element of G such that G D hG0; ui. There
are no non-trivial minimally active simple modules for G.

Proof. Our proof works the same as Proposition 33. If the Sylow p-subgroup is
abelian, then p is odd and o.u/ � t2ˆd .q/ � t2.qn C 1/. Placing this in our stan-
dard formula from Lemma 5 (iv), using ˛.u/ � nC 3 from [10, Theorem 4.4]
gives

.nC 3/t2.qn C 1/ � dim.M/ > .qt.n�1/ � 1/.qt.n�2/ � 1/:

This bound yields no solutions for t � 3, and for t D 1 the solutions

.n; q/ D .4; 2/; .4; 3/; .4; 4/; .4; 5/; .4; 7/; .5; 2/; .6; 2/:

If q is odd, then we may replace .qn C 1/ by 1
2
.qn C 1/, removing .4; 5/ and

.4; 7/ from the list.
If d D n or d D 2n, then u is regular, so CG0

.u/ is abelian by Lemma 27, and
so in this case we may replace ˛.u/ � .o.u/ � 1/ by 2o.u/ via Lemma 8, and so
(removing the t , which is equal to 1 anyway)

2.qn C 1/ > .qn�1 � 1/.qn�2 � 1/;

which only has a solution for .n; q/ D .4; 2/. Thus we may assume that d ¤ n; 2n,
in which case we may replace o.u/ by t2.qn�1 C 1/. Using this we reduce our
possibilities to .4; 2/ and .5; 2/.

As �C8 .2/ is excluded, we just consider G0 D ��8 .2/: from [16] we see that
dim.M/ � 33, and o.u/ D 3; 5; 7; 9; 17. Furthermore, we have that ˛.u/ D 2 for
o.u/ > 3, and ˛.u/ � 4 for o.u/ D 3, so there are no examples using the formula
dim.M/ � ˛.u/ � .o.u/ � 1/.

For G0 a central extension of �˙10.2/, dim.M/ is at least the smallest of
25�2.25�1 � 1/ D 120 and .25�1 C 1/.25�2 � 1/ D 119, so dim.M/ � 119. For
�C10.2/, o.u/ 2 ¹3; 5; 7; 9; 17; 31º, and for o.u/ � 7 we have that ˛.u/ D 2, with
˛.u/ � 3 for o.u/ D 5 and ˛.u/ � 5 for o.u/ D 3, which shows that u cannot act
minimally actively on a non-trivialM . For��10.2/, o.u/ 2 ¹3; 5; 7; 9; 11; 17º, and
the same statements hold for ˛.u/, so again u cannot act minimally actively on
a non-trivial M .

Suppose that p is still odd, but that the Sylow p-subgroup is non-abelian.
Thus p divides both ˆd .qt / and ˆdp.qt /, and d � n

3
. Since the Weyl group of

type D is a subgroup of the Weyl group of type B , we see that the exponent of the
Sylow p-subgroup of the Weyl group is at most n. Thus o.u/ � t2 �n � .qbn=3cC1/
and ˛.u/ � nC 3, and thus we need to check

t2n.nC 3/.qbn=3c C 1/ � .qt.n�1/ � 1/.qt.n�2/ � 1/;
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which only has solutions for t D 1, and then .n; q/ D .4; 2/; .5; 2/, which we have
already checked. This completes the proof for p odd.

Suppose that p D 2, so that the order of u is at most 4t2 � 2n � .q C 1/: Out.G0/
has exponent at most 4t , the Weyl contribution is at most 2n, and the toral con-
tribution is at most t .q C 1/. (To see that the exponent of Sylow 2-subgroup of
Out.G0/ is at most 4t and not 8t , note that if n is even, then the diagonal auto-
morphisms form Z2 �Z2, so we are done, and if n is odd, then the diagonal
automorphisms form either Z2 or Z4, with the graph automorphism inverting this
group [7, Theorem 2.5.12 (i)].) Since ˛.u/ � 2n, we get

16t2n2.q C 1/ � .qt.n�1/ � 1/.qt.n�2/ � 1/;

which has a solution only for .n; q; t/ D .4; 3; 1/. However, although information
on the Sylow 2-subgroups of Aut.�˙8 .3// is not available in [2], there are con-
structions of them on the online Atlas, and hence a computer algebra package
immediately tells you that the exponent is 8, not 32 as suggested by the formula
above. This proves that there are no minimally active modules for p D 2.

8.5 Groups SL2.q/

This short subsection deals with the groups G0 D SL2.q/, where p − q, q � 4
and q ¤ 4; 5; 7; 9 (as these are alternating groups or are given in Proposition 24).
In [5, Theorem 1.2], if SL2.q/ � G � GL2.q/, then all possibilities for u acting
minimally actively are determined, and given by the following lemma.

Lemma 35. Let G0 be a central extension of PSL2.q/ for q ¤ 4; 5; 7; 9. Suppose
that u induces an inner-diagonal automorphism onG0. If u acts minimally actively
on M , then one of the following holds:

(i) G D SL2.q/ for q D 2a, p D 2a ˙ 1 is a Fermat or Mersenne prime,
o.u/ D p, M is any simple module,

(ii) G D SL2.q/ for q odd, p is odd, 1
2
.q ˙ 1/ D pa, o.u/ D pa, dim.M/ �

o.u/C 1,

(iii) G D PSL2.q/ or PGL2.q/, q is a Fermat or Mersenne prime, p D 2, and
dim.M/ � o.u/C 1.

Thus we can assume that u 2 G acts as a field or product of a field and diag-
onal automorphism. Let G0 be a central extension of PSL2.qt / for some prime
power q and some t � 2 a power of p, with G D hG0; ui and jG W G0j D t . Note
that 1

2
.qt � 1/ is the smallest dimension of a non-trivial simple module for G0 if

q is odd, and qt � 1 is the smallest dimension if q is even.
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Suppose that hui \G0 D 1. If o.u/ is even, then ˛.u/ � 4 by [10, Lemma 3.1],
so dim.M/ � 4.t � 1/ by Lemma 5 (iv). This yields 1

2
.qt � 1/ � 4.t � 1/, so

t D 2 and qt � 9. Having excluded 4; 5; 7; 9, and since 8 need not be considered,
there are no solutions.

If o.u/ is odd, then as ˛.u/ D 2 by [10, Lemma 3.1], we see that dim.M/ �

2.t � 1/, and dim.M/ � 1
2
.qt � 1/. As t � 3, we only get qt D 8, but then the

minimal degree is qt � 1, not 1
2
.qt � 1/, and so there are no solutions here either.

Thus ut ¤ 1, and so p j .q ˙ 1/. If p D 2, the order of u is at most t2.q C 1/,
and ˛.u/ D 3 by [10, Lemma 3.1], so if u acts minimally actively on M , then we
have dim.M/ < 3

2
t2.q C 1/, whereas dim.M/ � 1

2
.qt � 1/. For t D 2 this yields

q � 11, for t D 4 this yields q D 3, and there are no solutions for t � 8.
Replacing t .q C 1/ with the 2-part of 1

4
.q2t � 1/ (which is the exponent of

the Sylow 2-subgroup of G0) yields q � 9. Finally, in the remaining cases, one
may check that the exponent of the Sylow 2-subgroup of Aut.PSL2.qt // is 8,
16 and 16, for qt D 25; 49; 81, respectively, and dim.M/ � 12; 24; 40, respec-
tively. This eliminates the case where qt D 81. Finally, in the remaining cases if
dim.M/ � qt � 1, then it cannot be minimally active, so it is only the two mod-
ules of dimension 1

2
.qt � 1/ that are important: for these, a computer calculation

shows that any element v ofG0 acts on them with only blocks of size o.v/, whence
u cannot act minimally actively.

Thus p is odd. First assume that q is even. The order of p is at most 1
2
t2.q C 1/,

and ˛.u/ D 2 by [10, Lemma 3.1], so that if u acts minimally actively, then we
have dim.M/ � t2.q C 1/, whereas dim.M/ � qt � 1. The only solution to this
is q D 2 and t D p D 3, which is the small Ree group 2G2.3/, hence will not be
considered as it is defining characteristic.

Hence we may assume that q is odd, in which case dim.M/ � 1
2
.qt � 1/. We

still have that ˛.u/ D 2 and o.u/ � 1
2
t2.q C 1/=2. This yields only one solution

again, namely q D 3 and t D 3, but then this is defining characteristic and not
in consideration. Thus there are no solutions when u does not induce an inner-
diagonal automorphism.

9 Exceptional groups in cross characteristic

In this section we deal with G0 a central extension of an exceptional group of Lie
type. We start by dealing with a few small groups, which feature because they have
exceptional Schur multipliers and so can have unusually small minimal faithful
degrees, the analogue of Proposition 24.

Proposition 36. Let G0 be a central extension of one of the simple groups G2.3/,
G2.4/, F4.2/, 2B2.8/. Let u be a p-element of G such that G D hG0; ui, and
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let M be a non-trivial simple module on which u acts minimally actively. One of
the following holds:

(i) G D G2.3/, p D 13, o.u/ D 13 and dim.M/ D 14,

(ii) G D 2 �G2.4/, p D 13, o.u/ D 13 and dim.M/ D 12,

(iii) G D 2 � 2B2.8/, p D 13, o.u/ D 13 and dim.M/ D 14 (two representa-
tions).

The field of definition is always F13.

Proof. The groupG2.3/ has outer automorphism group of order 2 and Schur mul-
tiplier of order 3, with the outer automorphism of 3 �G2.3/ inverting the centre, so
we only have to consider the groupsG D G2.3/,G D 3 �G2.3/ andG D G2.3/:2.
We simply check these one by one for p D 2; 7; 13, and get the single example
above.

The group G2.4/ has outer automorphism group of order 2 and Schur mul-
tiplier of order 2, so we need to consider G2.4/ and 2 �G2.4/ for p odd (so
p D 3; 5; 7; 13), where the minimal degree is 12. The order of u must be p, and
for p D 5; 7; 13 two conjugates of u generate G, so we can exclude p D 3; 5 by
Lemma 5 (iv) and focus on the 12-dimensional simple module for 2 �G2.4/ for
p D 7; 13. As the centralizer of an element of order 7 in G2.4/ has order 21,
we get dim.M/ � 10 by Lemma 8 and so can exclude this as well, leaving just
p D 13, where for G2.4/ the centralizer has order exactly 13, so an application
of the same lemma shows that the simple module of dimension 12 is minimally
active for u.

For the group G D F4.2/, there is an exceptional Schur multiplier of order
2: for G D 2 � F4.2/, the character degrees are known for p D 5; 7; 13; 17, but
the full set of character degrees is not known for p D 3. For p � 5, the mini-
mal faithful degree is 52, and for p D 3 (see [27]) states that it is at least 44.
A computer calculation shows that G is generated by two conjugates of u for
o.u/ D 5; 7; 9; 13; 17, and so there are no minimally active modules for these
elements. For o.u/ D 3, three conjugates suffice, and so there are no minimally
active modules here either.

Now let G0 be a central extension of the group 2B2.8/, where the exceptional
Schur multiplier is a Klein four group, but all extensions 2 � 2B2.8/ are isomorphic
because the outer automorphism of order 3 permutes them. Here p D 5; 7; 13, as
we can discount p D 3, since o.u/ D 3 and ˛.u/ � 3 by [10, Proposition 5.8],
and dim.M/ � 14. Thus we just check all simple modules forG D 2 � 2B2.8/ and
o.u/ D 5; 7; 13, noting thatM is minimally active if and only if dim.M/ � p C 1

because CG0
.u/ D Z.G0/ � hui via Lemma 8. We find just the one example for

p D 13.

Brought to you by | University of Birmingham
Authenticated

Download Date | 12/7/18 4:24 PM



Groups with a p-element acting with a single non-trivial Jordan block 779

In [10, Theorem 5.1], it is shown that ˛.G/ � `C 3 ifG is of exceptional type,
where ` is the untwisted rank ofG (with one exception ofG of type F4 and p D 2,
where ˛.G/ � 8).

We also need a bound on the orders of p-elements in an exceptional group of
Lie type. Broadly speaking, by Proposition 26 if q has order d modulo p, then
the order of a p-element is at most qd � 1 multiplied by the exponent of the Weyl
group. We give a general bound now.

Proposition 37. Let G0 be a central extension of one of G2.q/, F4.q/, E6.q/,
2E6.q/, E7.q/ and E8.q/ other than G2.2/, with p − q, and let u be a p-element
of G. The order u is at most q`C1 � 1, where ` is the untwisted rank of G.

Proof. Let u be a p-element, and let d be the order of q modulo p. If p does
not divide the order of the Weyl group, then p � 5 (p � 7 for E8.q/) and the
Sylow p-subgroup of the socle of G is abelian and has exponent at most ˆd .q/
by Proposition 26. The only outer automorphism of G that u can induce is a field
automorphism, as diagonal and graph automorphisms have order 2 or 3, and field
automorphism have order less than q � 1.

Thus o.u/ � ˆd .q/ � .q � 1/. All we therefore need is an upper estimate for all
ˆd .q/ where d divides one of the reflection degrees for G.

For G D G2, the largest is ˆ3.q/ D q2 C q C 1, so o.u/ � .q3 � 1/. For F4,
the largest is ˆ8.q/ D q4 C 1, so o.u/ � .q4 C 1/.q � 1/ � q5 � 1. For E6 the
largest is ˆ9.q/ D q6C q3C 1, so o.u/ � .q6C q3C 1/.q � 1/ � .q7 � 1/. For
2E6.q/ the largest isˆ18.q/ D q6 � q3 C 1, so again we have o.u/ � q7 � 1. For
E7 the largest is ˆ7.q/ D q6 C q5 C q4 C q3 C q2 C q C 1, so o.u/ � q7 � 1
again. Finally, for E8 the largest is ˆ30.q/ D q8 C q7 � q5 � q4 � q3 C q C 1,
so that o.u/ � ˆ30.q/.q � 1/ � q9 � 1. Thus in all cases,

o.u/ � q`C1 � 1:

Thus now p divides the order of the Weyl group, so p � 7, and we use Propo-
sition 26 again. The exponents of the Sylow p-subgroups of the Weyl groups of
exceptional groups are given below.

Group Exponents

G2 2, 3
F4 8, 3
E6 8, 9, 5
E7 8, 9, 5, 7
E8 8, 9, 5, 7
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For p D 7, we have G D E7; E8 and either the Sylow p-subgroup is abelian,
hence we are done by above, or p j .q ˙ 1/, whence the order of u is at most
7.q ˙ 1/.q � 1/ � 7.q2 � 1/, where the Weyl contribution is 7, the toral contri-
bution is .q ˙ 1/, and the outer contribution is at most .q � 1/. The product of
these is clearly less than q8 � 1.

For p D 5, we have that the order of u is at most 5.q2 C 1/.q � 1/ � 5.q3 � 1/,
using the same argument, as d D 1; 2; 4. Of course, this is still smaller than q7 � 1,
which is the required bound as G D E6; E7; E8.

For p D 3, the order of u depends on which group we are in. The toral con-
tribution is at most q C 1, the Weyl contribution is 3 for G2; F4 and 9 otherwise,
and the outer contribution is at most 3.q � 1/ (diagonal for "E6 and field automor-
phisms). For G D G2; F4 we get 3.q2 � 1/, which is at most .q3 � 1/ for G2.q/
(as q ¤ 2; 3), and at most q5 � 1 for all q � 2, so we get at most q`C1 � 1. For
G D E6; E7; E8, we get 27.q2 � 1/, which is less than .q7 � 1/ for all q � 2, so
in all cases again q`C1 � 1 will do.

For p D 2, we get that the toral contribution is at most q C 1, the Weyl contri-
bution is 2 for G2 and 8 for all other groups, and the outer contribution is at most
.q � 1/ for G2, F4 and E8, 2.q C 1/ for "E6, and .q � 1/ for E7, by [7, Theo-
rem 2.5.12], yielding at most 2.q2 � 1/ forG2, which is less than q3 � 1 for q � 3.

For F4 we get o.u/ � 8.qC1/ � .q5�1/, for "E6 we have 16.q2�1/.qC1/ �
.q7�1/ for all q � 3, and forE7; E8 we have o.u/ � 16.qC1/.q�1/ � .q8�1/,
as needed.

Now we know that every p-element in G has order at most q`C1 � 1, then
we get that dim.M/ < ˛.G/ � .q`C1 � 1/, and we can apply the Landazuri–Seitz–
Zalesskii bounds from [21] and [27].

˛.G/�.q`C1�1/

Group Landazuri–Seitz LS evaluated ˛.G/ evaluated

F4 (q � 4 even) q7

2
.q3�1/.q�1/ 448 (q D 4) � 8 � 248 (q D 4)

F4 (q odd) q6.q2�1/ 5832 (q D 3) � 7 � 1694 (q D 3)
"E6 q9.q2�1/ 1536 (q D 2) � 9 � 1143 (q D 2)
E7 q15.q2�1/ 98304 (q D 2) � 10 � 2550 (q D 2)
E8 q27.q2�1/ 402653184 (q D 2) � 11 � 5621 (q D 2)

This proves that these groups have no non-trivial minimally active modules,
but slightly better bounds are needed for the other groups, as the minimal faithful
degrees are closer to q`.

Brought to you by | University of Birmingham
Authenticated

Download Date | 12/7/18 4:24 PM



Groups with a p-element acting with a single non-trivial Jordan block 781

Proposition 38. Let G0 be the simple group G2.qt / for qt � 5, and let u be
a p-element of G such that G D hG0; ui. There are no non-trivial, minimally
active modules for G.

Proof. Let G0 be a central extension of G2.qt / for some prime power q and some
t � 1, and let G be obtained by adding on a field automorphism of order t to G0.
Since G2.2/0 D PSU3.3/ we have already dealt with it, and we dealt with G2.3/
and G2.4/ in Proposition 36, we may assume that qt � 5.

First suppose that p � 5, so that t D 1 or t � 5. From [10] we have ˛.G/ � 5,
and the Landazuri–Seitz bound [21] forG is qt .q2t � 1/. As p � 5, the order of u
is at most one of tˆd .q/ for d D 1; 2; 3; 6, with d D 3maximizing this, so we get

5t2.q2 C q C 1/ > ˛.G/ � .o.u/ � 1/ � dim.M/ � qt .q2t � 1/;

with t D 1 and q D 5 as solutions, and no solutions for t � 5. For G D G0 D
G2.5/, the primes other than 2; 3; 5 dividing jGj are 7 and 31, each dividing it
exactly once, whence we need a simple module of dimension at most 4 �.31�1/ D
120, but 124 is the minimal degree.

Suppose that p D 3, or p D 2 and q is not a power of 3. The toral contribution
is at most t .q C 1/, the Weyl contribution is at most 3, and the outer contribution
is t . Since ˛.u/ � 5, we get

15t2.q C 1/ > ˛.G/ � .o.u/ � 1/ � dim.M/ � qt .q2t � 1/;

which has no solutions for qt � 5.
If p D 2 and q is a power of 3, then we get the toral contribution to be t .q C 1/,

the Weyl contribution to be 2, and the outer contribution to be 2t , so similar to the
above expression, and we get

20t2.q C 1/ > qt .q2t � 1/;

which has no solutions for qt � 9. This completes the proof.

Proposition 39. Let G0 be the simple group 3D4.qt / for some q and t , and let u
be a p-element of G such that G D hG0; ui. There are no non-trivial, minimally
active modules for G.

Proof. Let G0 D 3D4.q
t / for some prime power q and some t � 1 (there are no

central extensions), and let G be obtained by adding on a field automorphism
of order dividing 3t to G0 (see [7, Theorem 2.5.12]). Note that ˛.G/ � 7 by
[10, Proposition 5.7].

If p � 5, then the Sylow p-subgroup ofG0 is abelian, so let d be the order of qt

modulo p, so that d D 1; 2; 3; 6; 12. If p j ˆ12.qt /, then from the list of maximal
subgroups in [18], we see thatCG0

.u/ is abelian, so dim.M/ � 2o.u/ ifM is min-
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imally active, by Lemma 8. Furthermore, o.u/ � t2ˆ12.q/ D t2.q4 � q2 C 1/,
and since dim.M/ � q3t .q2t � 1/ from [21], we get

2t2.q4 � q2 � 1/ � dim.M/ � q3t .q2t � 1/;

which has only the solution qt D 2, where p D 13. Here dim.M/ � 26 D 2o.u/

by [16, p. 253] so there are no non-trivial minimally active modules here.
If d D 1; 2; 3; 6, then the toral contribution is at most t .q2 C q C 1/, and the

outer contribution is t ; since ˛.u/ � 7, we get that if M is minimally active, then

7t2.q2 C q C 1/ � q3t .q2t � 1/;

where qt D 2 is again the only solution, this time with p D 7. A quick computer
check shows that for p D 7 we actually have ˛.u/ D 2, so that there are no non-
trivial minimally active modules here either.

Thus p D 2; 3 remain. If p D 3, then the order of u is at most 9t2.q C 1/ by
Proposition 26, using the fact that the exponent of the Weyl group of typeD4 is 12.
Since ˛.u/ � 7, we have that

7 � 27t2.q C 1/ � dim.M/ � q3t .q2t � 1/;

which is satisfied only for t D 1, q D 2; 3, with q D 3 not allowed as p − q. If
p D 2, then u has order at most 4t2.q C 1/, and again ˛.u/ � 7 so that

7 � 4t2.q C 1/ � dim.M/ � q3t .q2t � 1/;

which only has a solution for t D 1 and q D 2, not of interest as p D 2. Thus we
need to consider p D 3, G0 D 3D4.2/.

It is easy to check by computer that for any 3-element in G0, two conjugates
of it generate G0, and o.u/ � 9, so if u 2 G0, then dim.M/ � 2 � 8 D 16, smaller
than the minimal dimension of 25 [16, p. 251]. IfG=G0 has order 3, then the Sylow
3-subgroup still has exponent 9, so either o.u/ D 9, in which case two conjugates
of u generate G and dim.M/ � 16, or o.u/ D 3 and hui lies outside G0, and then
˛.G/.o.u/ � 1/ � 14, less than 25. This completes the proof.

Proposition 40. Let G0 be a central extension of a Ree or Suzuki group other
than 2B2.8/. There are no non-trivial, minimally active modules for smashG.

Proof. Let G0 be a central extension of a Suzuki group 2B2.2
2nC1/ for some

n � 2, so that p is odd. The minimal faithful degree for G0 is 2n.22nC1 � 1/
from [21], and from [10, Proposition 5.8] we have that ˛.G/ � 3. Note also that
there is no Weyl contribution as p is odd: the toral contribution is a divisor of one of
22nC1�1, 22nC1C2nC1C1 and 22nC1�2nC1C1, hence at most 22nC1C2nC1C1,
and the outer contribution is t j .2nC 1/.
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This yields

3t.22nC1 C 2nC1 C 1/ > ˛.u/ � .o.u/ � 1/

� dim.M/

� 2n.22nC1 � 1/;

which has no solutions for t D 1, and for t D 2nC1 only works for n � 5. If t > 1,
then p j .2nC1/: if p j .22nC1˙2nC1C1/ and p j .2nC1/, then p j .2˙2C1/,
so p D 5. The other alternative is that p j .22nC1 � 1/, in which case p D 1,
which is not allowed. Thus p D 5 always, so we need to consider n D 2 only,
as this is the only case where 5 divides 2nC 1.

Here we just need to be more precise, noting that the Sylow 5-subgroup of
2B2.32/:5 has order 125 but exponent 25, so actually dim.M/ � 72, less than the
minimal degree of 124.

We perform a similar analysis for the Ree groups G0 D 2G2.3
2nC1/ for n � 1,

where the Landazuri–Seitz bound is 32nC1.32nC1 � 1/, and from [10, Proposi-
tion 5.8] we have that ˛.G/ � 3. If p D 2, then o.u/ D 2 by Proposition 26, so
dim.M/ � 3 if M is minimally active, absurd; thus p is odd.

The order of any semisimple element of G0 is a divisor of one of 32nC1 � 1,
32nC1 C 1, 32nC1 C 3nC1 C 1 and 32nC1 � 3nC1 C 1, and the outer contribution
is at most 2nC 1: whence for u 2 G,

3 � .2nC 1/ � .32nC1 C 3nC1 C 1/ � 3 � .o.u/ � 1/

� dim.M/

� 32nC1.32nC1 � 1/;

if u acts minimally actively, which fails for all n � 1.
We end with the group G0 D 2F4.2

2nC1/. Here the Landazuri–Seitz bound
is 29nC4.22nC1 � 1/, and ˛.G/ � 7. The toral contribution is at most one of
22nC1 ˙ 1, 22nC1 ˙ 2nC1 C 1, 24nC2 ˙ 23nC2 C 22nC1 ˙ 2nC1 C 1, the Weyl
contribution is 3, and the outer contribution divides 2nC 1. Thus from the formula
dim.M/ � ˛.G/.o.u/ � 1/ for minimally active M , we get

21.2nC 1/.24nC2 C 23nC2 C 22nC1 C 2nC1 C 1/ > ˛.G/.o.u/ � 1/

� dim.M/

� 29nC4.22nC1 � 1/:

The only solution to this is n D 0, i.e.,G0 is the Tits group. Here it is easy to check
that G0 is generated by two conjugates of any element of order at least 3, that u
has order at most 13, and that dim.M/ � 26, thus there is no example here.
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10 Proof of Theorem 2

In this section we need to check that all of the minimally active modules that we
have found satisfy Theorem 2.

Proposition 41. IfG0=Z.G0/ is an alternating group, then Theorem 2 is satisfied.

Proof. We check the twenty-nine examples from Proposition 16 first, noting that
the symmetric group in its natural module is a complex reflection group; this
checks (i)–(iii). Cases (iv) and (v) are G0 D SL2.4/, so these are fine. Most of the
other cases are where G=Z.G/ has a self-centralizing cyclic Sylow p-subgroup,
where dim.M/ � p C 1: all of the cases where p D 5; 7 have this property, so we
are left with (x)–(xiv), (xviii)–(xix) and (xxvi)–(xxviii), with these last three cases
being the natural module for SL4.2/, so covered.

For (x)–(xiv) we have G0=Z.G0/ being Alt6. Case (xii) is the complex reflec-
tion group G27, and cases (xiii) and (xiv) are SL2.9/, leaving (x) and (xi). In (x)
the module is imprimitive, as is the 6-dimensional module in (xi), so we are left
with the 9-dimensional module for 3 �M10, which is on our list of exceptions.

Finally, case (xviii) is the restriction of the same module for Alt8, and case (xix)
is again on our list of exceptions.

The remaining alternating groups are from Proposition 18, where we either have
the permutation module or G D 2 � Alt9 and dim.M/ D 8, and this is the restric-
tion of the reflection representation of the Weyl group of E8, G37.

Proposition 42. If G0=Z.G0/ is a sporadic group, then Theorem 2 is satisfied.

Proof. These are given in Proposition 23. We first remove those cases where
there is a self-centralizing, cyclic Sylow p-subgroup, which are (i)–(iii), (v)–(vii),
(ix)–(xiv), (xvi) and (xvii). The remaining three cases are all for p D 2, and are on
our list of exceptions.

Proposition 43. If G0=Z.G0/ is a group of Lie type in cross characteristic, then
Theorem 2 is satisfied.

Proof. We start with the groups and modules in Proposition 24. Cases (vi)–(vii)
are G34, cases (ix) and (x) are the Weyl group of E7, G36, and (xii)–(xiv) are the
Weyl group of type E8, G37.

Cases (i)–(v) have cyclic Sylow p-subgroups that are self centralizing, while
(ii) is also contained in G34 and (iv) with the 6-dimensional module if G35. The
remaining case is (xi), which is contained in the Weyl group of type E8.

The companion proposition to Proposition 24 for exceptional groups is Propo-
sition 36, and all the groups in this have self-centralizing, cyclic Sylow 13-sub-

Brought to you by | University of Birmingham
Authenticated

Download Date | 12/7/18 4:24 PM



Groups with a p-element acting with a single non-trivial Jordan block 785

groups, and the group Sp4.4/ has a self-centralizing, cyclic Sylow 17-subgroup,
as in Proposition 32. The remaining non-Weil module is from Proposition 30, and
PSL3.3/ has a self-centralizing Sylow 13-subgroup of order 13.

If G0 is a central extension of PSL2.q/, then in all cases the Sylow p-subgroup
is cyclic and self centralizing, so this case is covered.

If M is a Weil module then u is a Singer cycle and so the Sylow p-subgroup
is cyclic and self-centralizing, as is the Sylow 7-subgroup of SU3.3/, so these are
also covered by the theorem.

Proposition 44. IfG0=Z.G0/ is a group of Lie type in defining characteristic, then
Theorem 2 is satisfied.

Proof. Each of the modules listed in Proposition 19 appears on our list, so u
induces an outer automorphism, and appears in Propositions 20 and 21.

For the groups in Proposition 20, (i) and (iv) are imprimitive, (v) is the natural
module, (iii) is the exterior square of the natural, and (ii) is mentioned explicitly.
The groups in Proposition 21 are either imprimitive in case (v), or stabilize a tensor
product in cases (i)–(iv).
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