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Key points

� A surge in cortisol during acute physiological and pathophysiological stress may precipitate
ventricular arrhythmia and myocardial infarction.

� Reduced cardiovagal baroreflex sensitivity and heart rate variability are observed during acute
stress and are associated with an increased risk of acute cardiac events.

� In the present study, healthy young men received either a single IV bolus of saline (placebo) or
hydrocortisone, 1 week apart, in accordance with a randomized, placebo-controlled, cross-over
study design.

� Hydrocortisone acutely increased heart rate and blood pressure and reduced cardiovagal
baroreflex sensitivity and heart rate variability in young men.

� These findings suggest that, by reducing cardiovagal baroreflex sensitivity and heart rate
variability, acute surges in cortisol facilitate a pro-arrhythmic milieu and provide an important
mechanistic link between stress and acute cardiac events

Abstract Surges in cortisol concentration during acute stress may increase cardiovascular risk.
To better understand the interactions between cortisol and the autonomic nervous system,
we determined the acute effects of hydrocortisone administration on cardiovagal baroreflex
sensitivity (BRS), heart rate variability (HRV) and cardiovascular reactivity. In a randomized,
placebo-controlled, single-blinded cross-over study, 10 healthy males received either a single IV

bolus of saline (placebo) or 200 mg of hydrocortisone, 1 week apart. Heart rate (HR), blood
pressure (BP) and limb blood flow were monitored 3 h later, at rest and during the sequential
infusion of sodium nitroprusside and phenylephrine (modified Oxford Technique), a cold pressor
test and a mental arithmetic stress task. HRV was assessed using the square root of the mean of
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the sum of the squares of differences between successive R-R intervals (rMSSD). Hydrocortisone
markedly increased serum cortisol 3 h following infusion and also compared to placebo. In
addition, hydrocortisone elevated resting HR (+7 ± 4 beats min−1; P < 0.001) and systolic BP
(+5 ± 5 mmHg; P = 0.008); lowered cardiovagal BRS [geometric mean (95% confidence interval)
15.6 (11.1–22.1) ms/mmHg vs. 26.2 (17.4––39.5) ms/mmHg, P = 0.011] and HRV (rMSSD 59 ±
29 ms vs. 84 ± 38 ms, P = 0.004) and increased leg vasoconstrictor responses to cold pressor test
(� leg vascular conductance −45 ± 20% vs. −23 ± 26%; P = 0.023). In young men, an acute
cortisol surge is accompanied by increases in HR and BP, as well as reductions in cardiovagal
BRS and HRV, potentially providing a pro-arrhythmic milieu that may precipitate ventricular
arrhythmia or myocardial infarction and increase cardiovascular risk.

(Received 8 June 2018; accepted after revision 14 August 2018; first published online 21 August 2018)
Corresponding author J. P. Fisher: College of Life and Environmental Sciences, University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK. Email: j.p.fisher@bham.ac.uk

Introduction

Cortisol is the principal glucocorticoid in humans and has
important metabolic (e.g. mobilization of glucose, fatty
acids and amino acids), immune (e.g. anti-inflammatory)
and cardiovascular (e.g. maintenance of normal blood
pressure) functions. The hypothalamic-pituitary-adrenal
(HPA) axis is activated during periods of stress and
stimulates the production and release of cortisol. The
surge in cortisol during acute stress may precipitate left
ventricular dysfunction, ventricular arrhythmia and myo-
cardial infarction (Brotman et al. 2007). Although the
interaction between cortisol and the autonomic nervous
system has been implicated in the increased cardiovascular
risk of acute stress (Brotman et al. 2007), the modulatory
effects of cortisol on cardiac autonomic control remain
incompletely understood.

Reduced cardiovagal baroreflex sensitivity (BRS) has
been identified in a variety of cardiovascular diseases
(Eckberg & Sleight, 1992) and has been shown to pre-
dict mortality following myocardial infarction (La Rovere
et al. 1998) and in patients with chronic heart failure
(Mirizzi et al. 2013). Acute mental stress impairs BRS
(Broadley et al. 2005; Durocher et al. 2011), potentially
facilitating a pro-arrhythmic milieu and providing an
important mechanistic link between mental stress and
acute cardiac events (Finlay et al. 2016). In healthy
humans, exogenous administration of cortisol acutely
(within 6 h) increases heart rate (HR) (Dodt et al.
2000; Heindl et al. 2006) via a number of suggested
mechanisms, including parasympathetic withdrawal and
reduced cardiovagal BRS. Although experimental evidence
is presently lacking in humans, evidence from animal
studies supports the hypothesis that glucocorticoids can
elicit centrally mediated alterations in BRS (Rong et al.
1999; Ouyang & Wang, 2000; Bechtold & Scheuer, 2006;
Scheuer, 2010). In rats, administration of glucocorticoids
in the rostral ventrolateral medulla (RVLM) (Rong et al.
1999) and the nucleus tractus solitarii (NTS) (Ouyang &

Wang, 2000) rapidly alters the activity of baroreceptive
neurons and depresses baroreflex control of HR. A
cortisol-induced impairment in BRS may be an important
mechanism by which acute stress increases cardiovascular
risk (Brotman et al. 2007); however, to our knowledge,
there have been no prior studies assessing the direct acute
effects of cortisol on resting cardiovagal BRS in humans.
The effect of longer-term oral glucocorticoid therapy on
BRS in humans has been examined with equivocal results
that are at odds with the animal studies noted above (Rong
et al. 1999; Ouyang & Wang, 2000; Bechtold & Scheuer,
2006; Scheuer, 2010). Although 7 days of administration of
hydrocortisone (200 mg day−1) increased BRS (Tam et al.
1997), no alteration in BRS was observed following 7 days
of the synthetic glucocorticoid prednisone (60 mg day−1)
(Cottin et al. 2015). Examination of the acute effects
of glucocorticoids on BRS circumvents the potential
confounding influence of longer-term peripheral effects
(e.g. change in total body water, sodium content,
glucocorticoid receptor desensitization). Hydrocortisone
acutely augments the diastolic blood pressure (BP)
response to a cold pressor test (Heindl et al. 2006).
However, whether this is attributable to an exaggerated
peripheral vasoconstrictor response is unclear.

We aimed to determine the acute effects of hydro-
cortisone on: cardiovagal BRS, HRV, BP variability
and cardiovascular reactivity to the cold pressor test
and a mental arithmetic stress task. Cardiovagal BRS
was principally evaluated using the modified Oxford
pharmacological technique (sequential of bolus infusions
of sodium nitroprusside and phenylephrine) but in the
absence of an agreed ‘gold standard’ method of assessing
BRS (Lipman et al. 2003; Malliani & Montano, 2004;
Parati et al. 2004), ‘spontaneous’ approaches (sequence
technique, transfer function analysis) were also utilized.
Although the latter rely on spontaneously occurring
fluctuations in heart period and BP to derive an index of
closed-loop cardiovagal BRS, the advantage of the former
is that arterial pressure is moved through a wider range,

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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thus perturbing the system to assess open-loop cardiovagal
BRS. We hypothesized that, in healthy young males, an IV

bolus of hydrocortisone would acutely reduce cardiovagal
BRS and HRV, as well as increase cardiovascular reactivity
via increased vascular responsiveness.

Methods

Subjects

The study procedures were approved by National Research
and Ethics Service Committee West Midlands – Edgbaston
(11/WM/0298) and the study conformed with the
standards set by the latest revision of the Declaration of
Helsinki, except for registration in a database. Written
informed consent was obtained from each participant.
Ten male participants (median age 27.0 years, inter-
quartile range 23.8–34.5 years, body mass index 24 ± 3
kg m2) were recruited from the University of Birmingham,
UK, and surrounding areas. All participants were free
from cardiovascular, pulmonary, renal, metabolic and
neurological conditions, and none were taking any pre-
scription or over-the-counter medications. Experiments
were conducted in a quiet room, in standardized
conditions with a temperature of 24°C. Participants were
asked to abstain from alcohol consumption for 24 h prior
to testing, as well as caffeine and food intake for 12 h prior
to testing.

Experimental protocol

Each participant was investigated on two occasions
separated by 1 week, in accordance with a placebo-
controlled, single-blinded, cross-over design. Participants
were randomized to receive either placebo or hydro-
cortisone on the morning of the first visit using a
randomization method in two groups of five (Schulz &
Grimes, 2002). The choice was blinded to the participant
throughout the duration of the study but not the
investigator. Computer generated random sequences were
used to determine the order of drug administration. None
of the subjects reported any side effects (e.g. allergic-like
reactions, nausea, abdominal pain and heartburn) and
did not report being able to distinguish between hydro-
cortisone and placebo administration.

Participants attended the research laboratory at 09.00 h.
An IV catheter was inserted into a superficial vein at the
antecubital fossa for blood sampling and injections. Base-
line blood samples were taken for biochemistry, including
renal function (serum creatinine), electrolytes (sodium,
potassium), plasma osmolality, baseline cortisol and
adrenocorticotrophin hormone (ACTH). All participants
were then administered either 200 mg of hydrocortisone
(Solu-Cortef; Pfizer, New York, NY, USA) or placebo (9%
saline solution) IV. Following this, subjects were given

a standardized light breakfast and observed in a quiet,
temperature-controlled room.

At 12.00 h, height and weight were measured and
body mass index was determined (weight/height2). The
participants assumed a comfortable supine position and
were instrumented with the measurement equipment
(HR, BP, leg blood flow). Further blood samples were
taken (cortisol, ACTH, catecholamines, serum electro-
lytes, serum osmolality and haematocrit) after which
participants rested quietly for a further 30 min. During the
final 10 min of this period, data were recorded. Following
this resting baseline, the following procedures were under-
taken during which the participants remained supine: (i)
sequential infusion of 100 μg of sodium nitroprusside
(SNP) and 150 μg of phenylephrine (PE) 1 min later
[modified Oxford Technique (MOT)] (Rudas et al. 1999);
(ii) cold pressor test (immersion of right hand in a
container of cold water at 4°C for 2 min) (Victor et al.
1987); and (iii) mental stress task [paced auditory serial
arithmetic task (PASAT) for 6 min] (Gronwall, 1977).
During the PASAT test, a series of single digit numbers
was presented to the participants for 6 min using a
pre-recorded audio file on a computer. Participants were
instructed to add each number that they heard to the pre-
vious number presented to them, and to retain the last
number to add to the next number they heard (Gronwall,
1977; Veldhuijzen van Zanten et al. 2005). To make the
task progressively more challenging, the numbers were
presented every 3.5, 3.0 and 2.5 s, respectively, in three
consecutive blocks each lasting 2 min. An experimenter
checked their responses against the correct answers and
alerted the participant with a loud buzzer noise with
each incorrect answer, hesitation or once during every
10 additions if no mistakes were made. In addition,
participants were instructed to view themselves in a
mirror for the duration of the mental stress task to
increase their levels of self-awareness. Together, these
elements of time pressure, social evaluation, punishment
and self-awareness have been shown to increase the
provocativeness of the stress task (Veldhuijzen van Zanten
et al. 2004). A 10-point scale was used to obtain perceived
pain and stress ratings from the subjects following the cold
pressor test and the PASAT mental stress task, respectively.

Each test was separated by �20 min of recovery, such
that the total duration of the autonomic function test
battery was �60 min.

Measurement of haemodynamic parameters

HR was measured using a lead II ECG (BioAmp; AD
Instruments, Bella Vista, Australia). Beat-to-beat BP
measurements were made using photoplethysmography
(Portapres; Finapres Medical Systems, Amsterdam, The
Netherlands) and calibrated with brachial BP measure-
ments made using an automated sphygmomanometer

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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(Omron 705IT; Omron Healthcare Europe BV,
Hoopddorp, The Netherlands). Leg and forearm blood
flow were measured simultaneously using venous
occlusion strain gauge plethysmography (Joyner et al.
2001). In brief, a lightweight indium-in-silastic strain
gauge was positioned around the right calf and the right
forearm at the point of greatest circumference (Hokanson
EC-6 plethysmograph; DE Hokanson, Bellevue, WA,
USA). Cuffs were placed around the wrist and ankle
and inflated to a pressure of 200 mmHg and maintained
for 1 min to achieve arterial occlusion (Burggraaf et al.
2000). Sixty seconds later, cuffs placed around the thigh
and upper arm were rapidly inflated (within 0.75 s)
to 50 mmHg (Hokanson E20 rapid cuff inflator and
AG101 air source; DE Hokanson) to evoke venous
occlusions. Venous occlusion was repeated three times
during 1 min, with the forearm and thigh cuffs inflated
for 5 s and then deflated for 10 s each time. Leg blood
flow and leg vascular conductance (LVC) {[blood flow
(mL 100 mL−1 min−1)/mean BP (mmHg)] × 1000)}
were determined at rest, during the cold pressor test and
during the PASAT mental stress task. Given the reported
variability in the leg blood flow responses to mental stress
(Carter et al. 2005), forearm blood flow and forearm
vascular conductance (FVC) were also determined during
the PASAT mental stress task. Ratings of perceived pain
and stress were obtained using a 10-point scale after the
cold pressor test and PASAT, respectively.

Blood sampling

Blood samples for analysis of hormones were centrifuged
immediately and the plasma was stored at −80°C.
Plasma ACTH levels were determined using an enzyme-
linked-immunosorbent assay (ELISA) (Abnova, Taipei
City, Taiwan). The sensitivity was < 1 pg mL−1 and the
intra-assay and inter-assay coefficients of variation were
� 4.2% and � 6.2%, respectively. Serum cortisol levels
were determined using an ELISA (Abcam, Cambridge,
UK). The sensitivity was 2.44 ng mL−1 and the
intra-assay and inter-assay coefficients of variation were
� 9.0% and � 9.8% respectively. Serum electro-
lyte concentrations, glucose, serum osmolality and
haematocrit were determined in accordance with standard
laboratory methods.

Data analysis

Analogue signals were interfaced with an analogue-
to-digital converter (PowerLab; AD Instruments) and
a personal computer equipped with data acquisition
software (LabChart; AD Instruments). Cardiovascular
variables were sampled at a rate of 1000 Hz. Beat-to-beat
values of HR and BP were calculated offline using
LabChart software (LabChart, AD Instruments). BRS

was assessed using three methods: the modified Oxford
technique (GMOT) (Rudas et al. 1999; Adlan et al. 2017);
the ‘sequence technique’ (GSEQ) (Parati et al. 1988); and
low frequency transfer function gain (GLFTF) (deBoer et al.
1987). The modified Oxford technique involved sequential
IV bolus infusions of sodium nitroprusside (100 μg) and
phenylephrine (150 μg) 1 min apart, during which arterial
BP and RR-interval were simultaneously recorded (Rudas
et al. 1999; Adlan et al. 2017). Infusion of these agents
results in a fall and subsequent rise in arterial BP that
activates and deactivates the arterial baroreceptors. The
relationship between the arterial BP and RR-interval was
analysed during the phenylephrine-induced rise in systolic
BP. Analysis began at the first concordant change in
systolic BP and RR-interval after phenylephrine infusion
until the systolic BP and RR-interval changes were
discordant (Rudas et al. 1999). Baroreflex delays were
accounted for by associating systolic BP with concurrent
(resting RR-interval greater than 800 ms) and sub-
sequent RR-intervals (resting RR-interval between 500
and 800 ms) (Pickering & Davies, 1973; Eckberg &
Eckberg, 1982). RR-interval values were averaged over
3 mmHg pressure bins to account for respiratory-related
variations (Ebert, 1990). Saturation and threshold regions
of the baroreflex curve were excluded and the linear
relationship between systolic BP and RR-interval (GMOT)
was determined using piecewise regression (Studinger
et al. 2007). A minimum of 10 points was required and
only values with r2 � 0.6 were accepted. The ‘sequence
technique’ was used to provide a spontaneous measure
of cardiac baroreflex sensitivity (Parati et al. 1988).
Commercially available software (CardioSeries, version
2.4; CardioSeries, Ribeirão Preto, SP, Brazil) was used to
identify sequences of three or more consecutive cardiac
cycles where increases/decreases in systolic BP (of at
least 1 mmHg) were related to lengthening/shortening
in RR-interval of the following cardiac cycle (i.e. lag
+1). The slope of the regression line (RR-interval vs.
systolic BP) was calculated individually and all slopes
were averaged to provide an overall sensitivity gain (GSEQ)
(Parati et al. 1995). A minimum threshold of 1 mmHg
for systolic BP and 1 ms for RR-interval was applied,
and only sequences with an r2 > 0.8 were accepted. Low
frequency transfer function gain (GLFTF) was determined
using cross-spectral analysis of systolic BP (input) and sub-
sequent RR-interval (output) in the low frequency range
(0.047–0.156 Hz) (deBoer et al. 1987). Only values with a
coherence �0.5 were included. The low frequency range
has the advantage of representing spontaneous oscillations
in BP and RR-interval without the effects of breathing (La
Rovere et al. 1998).

Time domain, frequency domain and non-linear indices
of short term HRV were determined from a 10 min resting
period (Kubios HRV, Kuipio, Finland) in accordance with
guidelines from the Task Force of the European Society

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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of Cardiology and the North American Society of Pacing
Electrophysiology (1996). Time domain indices included
square root of the mean sum of the squares of difference
between adjacent inter-beat intervals (rMSSD), number
of pairs of adjacent inter-beat intervals differing by more
than 50 ms in the entire recording expressed as an absolute
value (NN50) and a percentage of all inter-beat inter-
vals (pNN50%). Frequency domain indices (using fast
Fourier transform) of R-R intervals included total power
(TP), very low frequency power (VLF, range 0–0.04 Hz),
low frequency power (LF, range 0.04–0.15 Hz) and high
frequency (HF, range 0.15–0.4 Hz). Absolute values for
TP, VLF, LF and HF were determined in addition to
normalized units for LF, HF and ratio of LF/HF power.
In addition, non-linear indices of HRV were determined:
SD of the Poincare plot SD1, SD2 and the SD1/SD2 ratio.
rMSSD, NN50, pNN50% and heart rate fluctuations in the
HF power range are suggested to be principally indicative
of cardiac parasympathetic activity (Anonymous, 1996).
The physiological correlates to LF power fluctuations and
the LF/HF ratio remain uncertain (Eckberg, 1997). A
Poincaré plot analysis was undertaken by plotting the
values NNn+1 against the values of NNn (Sassi et al. 2015).
SD1 provides an estimate for short term HR variability
(Mourot et al. 2004), whereas SD2 is influenced by both
parasympathetic and sympathetic activity (De Vito et al.
2002). The SD1/SD2 ratio provides a measure of the
relationship between SD1 and SD2.

Time and frequency domain parameters of systolic
and diastolic BP variability were determined from a
10 min resting period (CardioSeries). Time domain
indices included SD and variation of coefficient (VC =
SD/BP × 100). Frequency domain indices (using fast
Fourier transform) included LF power (range 0-0.04 Hz)
and HF power (range 0.15–0.4 Hz). BP oscillations in
the LF range are assumed to principally represent vaso-
motor activity whilst HF oscillations represent respiratory
influences (Parati et al. 1995).

Statistical analysis

Statistical analyses were performed using SPSS, version 19
(SPSS Inc, Chicago, IL, USA). Continuous variables were
assessed for normality using the Kolmogorov–Smirnov
test. Baseline differences in parameters were tested using
a two-tailed paired Student’s t test. Non-parametric data
was log-transformed (natural). The effect of treatment
(with hydrocortisone or placebo) during each of the
tasks was tested using repeated measures analysis of
variance (ANOVA) with Bonferroni adjustments for
multiple comparisons. Differences between the percentage
changes (% �) in parameters from baseline during each
cold pressor test and mental stress task were assessed
using a two-tailed paired Student’s t test. For statistical
purposes, when a measurement exceeded the range of

assay detection, a value corresponding to the limit of
detection was used. Based on a previous study (Heindl
et al. 2006), a sample size calculation indicated that seven
patients were required to show a mean difference in HR
of 7 ± 5 beats min−1 before and after hydrocortisone.
Data are expressed as the mean ± SD or geometric mean
[95% confidence interval (CI)]. P � 0.05 was considered
statistically significant.

Results

Biochemical parameters

There was no significant difference in baseline
concentrations of serum cortisol, ACTH, glucose,
electrolytes (sodium, potassium), creatinine and plasma
osmolality in the placebo and hydrocortisone trials
(Table 1). Hydrocortisone elevated serum cortisol
concentrations 3 h after infusion and suppressed ACTH
compared to placebo. At 3 h post-hydrocortisone
administration, serum cortisol values exceeded the limit
of detection in seven of 10 participants and a value of
1400 nmol L−1 was used for statistical purposes (i.e. the
upper limit of detection). In the three participants for
whom serum cortisol was measurable (as a result of a
modified dilution strategy) at 3 h post-hydrocortisone
administration, serum cortisol was 2637 ± 42 nmol L−1.
Hydrocortisone did not influence serum glucose, electro-
lytes, creatinine, plasma osmolality or haematocrit (hydro-
cortisone 42 ± 2 vs. placebo 41 ± 2%; P = 0.215).

Haemodynamic parameters

Resting HR was elevated following hydrocortisone
administration compared to placebo (+7 ± 4 beats min−1;
P < 0.001) (Table 2). Hydrocortisone also elevated resting
systolic BP (+5 ± 5 mmHg; P = 0.008) but did not alter
resting diastolic or mean BP, leg blood flow and LVC.
Compared to placebo, there was a trend for increased
forearm blood flow (P = 0.095) and FVC (P = 0.065)
following hydrocortisone.

Cardiovagal BRS

Cardiac BRS was reduced with hydrocortisone adminis-
tration (GMOT geometric mean hydrocortisone 15.6, 95%
CI = 11.1–22.1 vs. placebo 26.2, 17.4–39.5 ms/mmHg;
t = −3.165, P = 0.011; GSEQ 17.1 ± 5.9 vs. 23.2 ±
12.6 ms mmHg−1; t = −2.290, P = 0.048; GLFTF 12.6 ± 7.6
vs. 17.2 ± 9.0 ms mmHg−1; P = 0.05) (Fig. 1). SNP and
PE infusion induced a similar fall and rise in systolic BP in
the hydrocortisone and placebo conditions (fall in systolic
BP after SNP geometric mean 26, 95% CI = 21–34 vs. 26,
19–36 mmHg; t = 0.107, P = 0.917; rise in systolic BP
after PE 26 ± 8 vs. 24 ± 11 mmHg; t = 0.628, P = 0.546).

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 1. Effect of hydrocortisone on biochemical parameters

ANOVA

Placebo Hydrocortisone Time Drug Interaction

Cortisol (nmol/L−1)
09.00 h 132.9 (97.4–181.3) 154.5 (107.5–222.0) <0.001 <0.001 <0.001
12.00 h 93.7 ± 37.0∗ 1771.2 ± 598.0∗†

ACTH (mmol/L−1)
09.00 h 3.0 ± 0.7 3.6 ± 1.5 0.004 0.035 <0.001
12.00 h 3.4 ± 1.6 0.7 ± 0.4∗†

Glucose (mmol/L−1)
09.00 h 4.5 (4.3–4.8) 4.3 (3.9–4.7) 0.325 0.772 0.158
12.00 h 4.3 ± 1.1 4.9 ± 1.1

Na+ (mmol/L−1)
09.00 h 141.3 ± 2.0 142.0 ± 1.6 0.623 0.799 0.079
12.00 h 141.8 ± 2.5 140.8 ± 1.1

K+ (mmol/L−1)
09.00 h 4.4 (4.1–4.6) 4.3 (4.2–4.5) 0.360 0.348 0.087
12.00 h 4.2 ± 0.2 4.4 ± 0.4

Creatinine (μmol/L−1)
09.00 h 83 (75–92) 82 (74–91) 0.062 0.003 0.207
12.00 h 79 (70–90) 76 (68–84)

Plasma osmolality (mmol kg−1)
09.00 h 291.4 ± 4.2 291.8 ± 3.2 0.589 0.833 0.564
12.00 h 291.9 ± 5.6 290.3 ± 6.6

Values represent mean ± standard deviation or geometric mean (95% CI). Comparisons were made using a repeated measures one
way analysis of variance (ANOVA) with Bonferroni correction. Post hoc significance P < 0.05 ∗compared with 9 am, † compared with
placebo. ACTH = adrenocorticotrophin hormone.

Table 2. Effect of hydrocortisone on resting haemodynamic parameters

Placebo Hydrocortisone t d.f. P value

Heart rate (beats min−1) 50.9 ± 9.7 57.8 ± 9.0∗ 6.117 9 <0.001
Systolic BP (mmHg) 113.6 ± 7.9 118.8 ± 6.8∗ 3.395 9 0.008
Diastolic BP (mmHg) 64.7 (61.0–68.7) 64.3 (61.9–66.9) −0.270 9 0.793
Mean BP (mmHg) 81.2 ± 5.8 82.5 ± 4.0 0.971 9 0.357
Leg blood flow (mL 100 mL−1 min−1) 1.9 ± 0.8 1.9 ± 0.7 −0.492 9 0.635
LVC (AU) 24.7 ± 12.3 22.6 ± 8.4 −0.023 9 0.982
Forearm blood flow (mL 100 mL−1 min−1) 2.4 ± 1.1 3.3 ± 1.2 1.866 9 0.095
Forearm vascular conductance (AU) 28.6 ± 13.7 39.8 ± 13.1 2.099 9 0.065

Values represent the mean ± SD or geometric mean (95% CI). Non-parametric data were transformed and comparisons made using
a paired t test. ∗P � 0.05 compared with placebo. AU, arbitrary units.

HRV

Time domain parameters of HRV (rMSSD, NN50,
pNN50%) were reduced following hydrocortisone
compared to placebo (Table 3). Absolute HF power was
reduced following hydrocortisone, whereas there was a
tendency for LF power to decrease (P = 0.057). There
was no significant difference in normalized values of HF
power, LF power and LF/HF ratio between trials. SD1 was
reduced with hydrocortisone, whereas the numerical fall in
SD2 was not statistically significant (P = 0.215). The ratio

of SD1/SD2 fell following hydrocortisone administration
(P = 0.042).

BP variability

Time domain parameters of systolic BP variability
tended to increase with hydrocortisone, whereas
frequency domain parameters remained unaffected
(Table 3). Hydrocortisone had no effect on diastolic BP
variability.
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Cardiovascular reactivity

Cold pressor test. As expected, HR and BP rose during
the cold pressor test, whereas leg blood flow and LVC
fell (Fig. 2). Hydrocortisone administration resulted in a
greater reduction in leg blood flow (–33 ± 24 vs. −7 ±
28 �%; t = 2.713; P = 0.027) and LVC (–45 ± 20 vs.
−23 ± 26 �%; t = 2.798; P = 0.023) during the cold pre-
ssor test. Although there was a trend for increased systolic
BP responses with hydrocortisone compared to placebo
(+21 ± 10 vs. +14 ± 15 � mmHg; t = 1.640; P = 0.135),
there were no differences in diastolic BP (+11 ± 4 vs. 10 ±
5 � mmHg; t = 1.562; P = 0.153) or HR (+3 ± 4 vs.
4 ± 4 � beats min−1; t = −0.657; P = 0.528) responses.
There was no difference in the perceived pain rating during
the cold pressor test between hydrocortisone and placebo
(6.6 ± 2.2 vs. 7.1 ± 2.0; t = −0.785, P = 0.453).

PASAT mental stress task. As expected HR, BP, leg blood
flow, forearm blood flow and FVC rose during the PASAT,
whereas LVC tended to rise (Fig. 3). There was no
difference in HR (+10 ± 8 vs. +11 ± 7 � beats min−1;
t = −0.296; P = 0.774), systolic BP (+10 ± 13 vs. +11 ±
14 � mmHg; t = −0.279; P = 0.787), diastolic BP (+6 ±
6 vs. +6 ± 8 � mmHg; t = −0.098; P = 0.924), leg
blood flow (+19 ± 20 vs. +25 ± 27 �%; t = −0.935;
P = 0.185) and LVC (+10 ± 19 vs. +16 ± 25 �%;
t = vs.0.934; P = 0.375) responses to the PASAT between
hydrocortisone and placebo trials. However, there was a
trend for reduced forearm blood flow (geometric mean
+32, 95% CI = 14–69 vs. +56, 29–107 �%; t = −1.685;
P = 0.126) and FVC (geometric mean +21, 95% CI = 8–59

vs. +50, 23–108 �%; t = −2.103; P = 0.069) responses
following hydrocortisone administration. There was a
tendency for reduced perceived stress (10-point scale)
during the PASAT with hydrocortisone (4.8 ± 1.9 vs. 5.7 ±
1.8 points out of 10; t =−0.785, P = 0.095); however, there
was no difference in performance (geometric mean 74,
95% CI = 53–103 vs. 82, 74–91%; t = −0.828, P = 0.429).

Discussion

We report, for the first time, that acute hydrocortisone
administration elicits an increase in HR that is associated
with a reduction in cardiovagal BRS and HRV in young
men. In addition, we observed that hydrocortisone
administration significantly increased systolic BP and
exaggerated the leg vasoconstrictor responses to cold
pressor test, whereas vasodilatory forearm responses to
mental stress tended to be reduced in young men.

Cortisol and BRS

Reduced cardiovagal BRS and HRV are known to have
deleterious cardiovascular consequences and are pre-
dictive of increased mortality (Wolf et al. 1978; Bigger et al.
1992; La Rovere et al. 1998; Mirizzi et al. 2013). There is
an increased incidence of cardiac events during times of
stressful life events (Rosengren et al. 2004). Mental stress
evokes acute surges in cortisol and reduces BRS (Broadley
et al. 2005; Durocher et al. 2011), with the latter being
abolished by the inhibition of cortisol production with
metatyrapone (Broadley et al. 2005). Similarly, intense
physical stress (exercise) is also associated with decreased
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Table 3. Effect of hydrocortisone on resting HR variability and BP variability parameters

Placebo Hydrocortisone t d.f. P value

HR variability
rMSSD (ms) 84.1 ± 37.6 58.7 ± 28.8∗ −3.801 9 0.004
NN50 (count) 242.2 ± 80.5 188.2 ± 100.7∗ −2.491 9 0.034
pNN50 (%) 49.0 ± 16.7 33.8 ± 18.8∗ −4.453 9 0.002
Total power (ms2) 5627 (3358–9429) 4258 (2757–6576) −1.318 9 0.220
VLF power (ms2) 2089 (1210–3605) 2176 (1308–3620) 0.143 9 0.890
LF power (ms2) 1523 (816–2842) 982 (647–1491) −2.180 9 0.057
HF power (ms2) 1587 (900–2800) 887 (502–1566)∗ −3.192 9 0.011
LF power (nu) 49.0 ± 13.8 52.3 ± 13.8 0.711 9 0.495
HF power (nu) 51.0 ± 13.8 47.7 ± 13.8 −0.711 9 0.495
LF/HF ratio 1.12 ± 0.66 1.28 ± 0.71 0.640 9 0.538
SD1 59.6 ± 26.6 41.6 ± 20.4∗ −3.801 9 0.004
SD2 105.0 (79.2–139.2) 90.1 (74.1–109.5) −1.333 9 0.215
SD1/SD2 0.55 ± 0.18 0.44 ± 0.13∗ −2.368 9 0.042

BP variability
Systolic BP

SD (mmHg) 6.4 ± 1.4 7.4 ± 1.2 1.997 9 0.077
VC (%) 5.5 (4.8–6.1) 6.3 (5.5–7.2) 1.731 9 0.117
LF power (ms2) 7.3 ± 4.7 7.4 ± 3.2 0.061 9 0.953
HF power (ms2) 1.5 (0.8–2.7) 1.4 (0.9–2.3) −0.625 9 0.548
LF power (%) 29.9 ± 7.6 27.7 ± 5.9 −0.887 9 0.398
HF power (%) 12.2 ± 7.3 9.0 ± 5.4 −1.163 9 0.275

Diastolic BP
SD (mmHg) 3.5 ± 0.8 3.1 ± 0.8 −1.337 9 0.214
VC (%) 5.4 ± 1.4 5.0 ± 1.4 −0.752 9 0.471
LF power (ms2 ) 2.9 (1.9–4.4) 2.2 (1.6–3.1) −1.472 9 0.175
HF power (ms2) 0.5 ± 0.2 0.5 ± 0.3 −0.079 9 0.939
LF power (%) 36.4 ± 6.6 36.9 ± 6.5 0.252 9 0.807
HF power (%) 6.7 ± 1.6 9.1 ± 4.1 1.776 9 0.110

Values represent the mean ± SD or geometric mean (95% CI). Non-parametric data were transformed and comparisons made using
a paired t test. ∗P � 0.05 compared to placebo. HF, high frequency (0.15–0.4 Hz); LF, low frequency (0.04–0.15 Hz); NN50, number of
pairs of adjacent NN intervals differing by more than 50 ms; pNN50, NN50 as a percentage of all NN intervals; nu, normalized units;
rMSSD, root mean square of successive differences; SD, standard deviation of the Poincare plot; VLF, very low frequency (0–0.04 Hz);
BP, blood pressure; VC, variation of coefficient (SD/BP × 100).

BRS, an increased risk of cardiac events, and a robust
increase in cortisol (Jurimae et al. 2007; Fisher et al. 2015).
Our observation that acute hydrocortisone administration
reduced BRS in young men, may help explain the
associations between acute stress-induced increases in
cortisol and cardiovascular risk (Brotman et al. 2007).

Our findings concur with animal studies showing that
exogenous cortisol decreases cardiovagal BRS as a result of
a modulatory influence within areas of the central nervous
system important for baroreflex regulation (e.g. RVLM,
NTS) (Rong et al. 1999; Ouyang & Wang, 2000; Scheuer
& Bechtold, 2002; Bechtold & Scheuer, 2006; Scheuer,
2010). However, it is possible that cortisol acts upon
other structures within the baroreflex arc such as afferent
structures (e.g. vascular structures, afferent terminals),
efferent target-organ structures (e.g. sino-atrial node or
smooth muscle) and efferent nerves (Chapleau & Abboud,
2001). The cortisol-induced increase in HR and systolic

BP found in our study, as well as in previous studies
(Takahashi et al. 1983; Dodt et al. 2000; Scheuer & Mifflin,
2001; Vozarova et al. 2003; Heindl et al. 2006), may
suggest a centrally-mediated resetting of the baroreflex.
A rise in systolic BP would be expected to increase
baroreceptor firing resulting in a compensatory fall in HR
and inhibition of sympathetic outflow to the peripheral
vasculature. Thus, it appears that an upwards and
rightwards resetting of the baroreflex curve accompanies
the observed reduction in cardiac BRS with acute
hydrocortisone administration, as occurs in hypertension
and heart failure. A reduction in cardiac parasympathetic
activity may also explain the cortisol-induced increased
HR we report. We demonstrated that hydrocortisone
acutely reduced several indices of HRV in young men
that have been associated with cardiac parasympathetic
activity (i.e., rMSSD, pNN50%, HF power) (Anonymous,
1996), although it should be recognized that the
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physiological correlates of HRV are debated (Parati et al.
2006; Taylor & Studinger, 2006). Nevertheless, reduced
HRV is a pathogenic feature of cardiovascular diseases
(e.g. hypertension and heart failure) and has been shown
to be of prognostic significance after myocardial infarction

(Wolf et al. 1978; Bigger et al. 1992; Anonymous, 1996).
Rassias et al. (2011) demonstrated that endotoxin
administration reduced HRV but, when preceded by a
6 h infusion of hydrocortisone (sufficient elevate plasma
cortisol concentrations to �996–1380 nmol L−1) the
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Figure 2. Cold pressor test
Heart rate (A), mean BP (B), LVC (C) and leg blood
flow (D) during rest, CPT and recovery following
pre-treatment with intravenous placebo (black)
and hydrocortisone (white). Data represented as
the group mean ± SEM. Times series is shown on
the left. No significant interactions were found
between time (rest, CPT and recovery) and drug
(placebo or hydrocortisone) conditions when
assessed using ANOVA with repeated measures.
Bar charts on the right represent changes from
baseline. Significance was determined using a
paired Student’s t test. ∗P � 0.05 compared to
baseline.
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day prior to receiving endotoxin, the reduction in HRV
was blunted. Given the animal work demonstrating
that cortisol acts within the central autonomic nuclei to
reduce rather than increase cardiovagal control, a more
probable explanation for the findings of Rassias et al.
(2011) relates to a secondary effect on HRV resulting from

the interaction between hydrocortisone and endotoxin.
Indeed, administration of hydrocortisone in patients
with sepsis reduces their requirement for vasopressors
agents (Sprung et al. 2008) suggestive of an increase in
vascular reactivity. Previous work in humans has provided
mixed findings with regard to the effect of exogenously
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Figure 3. Mental stress task
Heart rate (A), mean BP (B), LVC (C), leg blood flow
(D), forearm vascular conductance (E) and forearm
blood flow (F) during rest, mental stress task
(PASAT) and recovery following pre-treatment with
IV placebo (black) and hydrocortisone (white). Data
represented as the group mean ± SEM. Times
series is shown on the left. No significant
interactions were found between time (rest, PASAT
and recovery) and drug (placebo or
hydrocortisone) conditions when assessed using
ANOVA with repeated measures. Bar charts on the
right represent changes from baseline. Significance
was determined using a paired Student’s t test.
P � 0.05 compared to baseline.
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administered glucocorticoids on BRS, with both increases
(Tam et al. 1997) and no differences (Cottin et al. 2015)
being reported. The contrast with the present study
findings maybe attributable to our selection of an acute
IV dose (200 mg hydrocortisone), rather than a 1-week
oral dose (200 mg day−1 hydrocortisone (Tam et al.
1997) or 60 mg day−1 prednisone (Cottin et al. 2015),
which obviates potential longer-term peripheral effects
(e.g. change in total body water, sodium content) with
potential hemodynamic and neural autonomic control
implications.

Cortisol and cardiovascular reactivity

BP responses to the cold pressor test and mental stress have
previously been used as an index of sympathetic reactivity
of the vasculature (Freeman, 2006) and, if exaggerated,
can predict the development of hypertension (Treiber et al.
2003). We found that cortisol acutely increased leg vaso-
constrictor and systolic BP (trend) responses to cold water
and inhibited forearm vasodilatory (trend) responses to
mental stress in young men. Cortisol-induced increases
in pressor responsiveness have been demonstrated
in prior studies with both acute (Heindl et al.
2006) and longer-term (Sudhir et al. 1989) hydro-
cortisone supplementation and may reflect potentiation of
catecholamines (epinephrine/norepinephrine) by cortisol
in vascular smooth muscle (Besse & Bass, 1966). The
altered vascular responsiveness following cortisol may

also be explained by changes in endothelial function.
Glucocorticoids reportedly alter endothelial function via
stimulation and production of endothelin (circulating
peptide with vasoconstrictor properties) (Morin et al.
1998) and inhibition of the nitric oxide synthase (NOS)
isoforms inducible NOS and endothelial NOS (Radomski
et al. 1990; Wallerath et al. 1999). In one study, cortisol
inhibition blocked mental-stress induced impairments
in endothelial function as assessed by flow mediated
dilatation (Broadley et al. 2005).

Experimental considerations

It is a limitation of the present study that women were not
recruited. Oestrogen can act at central autonomic nuclei
(e.g. RVLM, NTS) to enhance BRS in rats (Saleh et al.
2000), although there is conflicting evidence regarding the
influence of sex and ovarian hormones on cardiovagal BRS
in humans (Fisher et al. 2012). The findings of the present
study should only be considered applicable to men until
additional studies are undertaken to clarify whether there
are sex differences in the effect of acute hydrocortisone
administration on cardiac autonomic regulation.

Our study design (single-blinded, placebo-controlled
cross-over) is a strength of the present study allowing
a direct assessment of the effects of hydrocortisone. We
cannot distinguish between the direct effects of cortisol
and subsequent compensatory mechanisms (e.g. cortisol
suppresses ACTH through negative feedback of the HPA

0

0

2

4

6

8

20

40

60

0

20

40

60

0

20

40

60E

F

Δ 
F

V
C

 (
%

)

F
V

C
 (

ar
bi

tr
ar

y 
un

its
)

Rest PASAT Recovery

Rest PASAT Recovery

PASAT Recovery

PASAT Recovery

Placebo
Hydrocortisone

Phase p<0.001
Drug p=0.058
Interaction p=0.722

P=0.069

P=0.126
Phase p<0.001
Drug p=0.091
Interaction p=0.802

F
or

ea
rm

 b
lo

od
 fl

ow
 (

m
l/1

00
m

l/m
in

)

Δ 
F

or
ea

rm
 b

lo
od

 fl
ow

 (
%

)

Figure 3. Continued

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



4858 A. M. Adlan and others J Physiol 596.20

axis). We therefore cannot rule out whether some of
our findings are a result of ACTH suppression. The
autonomic assessments used in the present study have
inherent limitations because of the inaccessibility of the
parasympathetic nervous system (e.g. HRV is used as an
indirect measure of parasympathetic influences on the
sinus node) and we did not measure sympathetic activity.

In the absence of a consensus regarding the criterion
measure of BRS, we comprehensively evaluated BRS
using the modified Oxford pharmacological technique
(sequential of bolus infusions of sodium nitroprusside and
phenylephrine) and ‘spontaneous’ approaches (sequence
technique, transfer function analysis). The relative merits
of methodical approaches used to assess BRS have
been debated vigorously (Lipman et al. 2003; Malliani
& Montano, 2004; Parati et al. 2004) and thus will
only be covered briefly here. A key advantage to
the ‘spontaneous’ approaches is that BRS can be
non-invasively derived from easily obtainable continuous
recordings of heart period and BP without exogenous
perturbation to the arterial baroreceptors. However, under
these closed-loop conditions, it is uncertain whether
the heart period fluctuations are responding to, or
contributing to, changes in BP (Diaz & Taylor, 2006).
Such considerations are circumvented by the modified
Oxford pharmacological technique where BP is briefly
altered, thus allowing the assessment of open-loop cardio-
vagal BRS. However, an important consideration of this
technique is the potentially confounding influence of
sodium nitroprusside, given the actions of nitric oxide on
the sinoatrial node and autonomic nerves (Chowdhary
& Townend, 1999; Hogan et al. 1999). Importantly, in the
present study, the variety of methods that we used to assess
BRS corroborated one another, with each indicating a
decrease in BRS with acute hydrocortisone administration.

The hydrocortisone dosage used in the present study
is clinically indicated in conditions such as severe
inflammatory disease and adrenocortical insufficiency,
where an IV bolus of up to 500 mg of hydrocortisone
may be administered (Anonymous, 2018). Unfortunately,
the measured cortisol concentration exceeded the limit
of detection of the assay used in seven of the 10
participants. In the other three participants, cortisol
concentration 3 h post-hydrocortisone administration
reached 2637 ± 42 nmol L−1. Therefore, we expect that
cortisol concentration achieved was in excess of that pre-
viously reached in studies employing longer-term 7-day
oral supplementation at the same 200 mg dose (Whitworth
et al. 2005). The latter has been commonly used as a model
of cortisol induced hypertension, whereas our approach
may be more akin to a model of acute stress induced surge
in cortisol, as may be seen evoked by robust stressors
such as mental stress (�550 nmol L−1) (Traustadottir
et al. 2005; Jayasinghe et al. 2016), physical exercise
(590 ± 81 nmol L−1, 30 min after a maximal 6000 m

rowing ergometer test) (Jurimae et al. 2007), surgery (e.g.
>1500 nmol L−1) (Lamberts et al. 1997) and severe illness
(828–7173 nmol L−1) (Sandberg et al. 1956). Under basal
conditions, cortisol is released in a pulsatile manner with
a circadian and approximately hourly rhythm, resulting in
an oscillating plasma concentration (Spiga et al. 2014). By
contrast to a chronic supplementation of hydrocortisone
where a desensitization of the glucocorticoid receptor
may occur, the single IV bolus of hydrocortisone in that
strategy we employed probably fully saturates all receptors
and avoids issues of receptor desensitization. However, it
is acknowledged that the plasma cortisol concentrations
observed in the present study are towards the upper
limits of the physiological range. Additional studies are
required to determine the BRS and HRV responses to
lower hydrocortisone doses, particularly in light of the
observations of Rassias et al. (2011) who demonstrated
that a moderate (sufficient to increase plasma cortisol
to �996–1380 nmol L−1) but not high (sufficient to
increase plasma cortisol to 2208–2760 nmol L−1) dose of
hydrocortisone helped to maintain HRV during an end-
otoxin challenge in humans. The haemodynamic actions
of glucocorticoids occur via multiple classical genomic
and non-genomic mechanisms (Falkenstein & Wehling,
2000) and the hydrocortisone dosing strategy used (i.e.
acute vs. chronic) may influence the relative importance
of these mechanisms. IV administered hydrocortisone
(100 mg) reportedly produces a high peak concentration
at 30 min before decreasing exponentially (Jung et al.
2014) and therefore may have declined throughout the
autonomic function test battery. Only single measure of
cortisol concentration was obtained following exogenous
supplementation (3 h) and repeated assessments were not
made. Therefore, it is unknown whether the endogenous
cortisol responses to acute stress were altered when super-
imposed upon a background of exogenously administered
cortisol; however, in the study by Heindl et al. (2006), no
such interactive effects were noted.

During acute stress, there is complex co-activation and
interaction between the HPA axis and the sympathetic
nervous system. The increased HR and systolic BP noted
in the present study may represent heightened sympathetic
activity, although this may not be the result of increased
central sympathetic outflow per se. Glucocorticoids can
up-regulate cardiac β1-adrenergic receptor sensitivity
(Nishimura et al. 1997), which can potentiate the
effects of circulating epinephrine and norepinephrine. In
prior studies, resting muscle sympathetic nerve activity
decreased (Dodt et al. 2000) or did not change (Vozarova
et al. 2003; Heindl et al. 2006) following glucocorticoid
administration. Peripheral vasoconstriction probably does
not contribute to the rise in systolic BP because LVC
remained unaffected in the present study and diastolic BP
did not increase. The short time course of our study did not
allow the renal actions of cortisol (i.e. increased sodium
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and water retention) to take effect and cannot explain
the rise in systolic BP, especially because haematocrit and
plasma osmolality were unchanged.

Our findings suggest a possible mechanism by which
acute stress increases cardiovascular risk. During acute
stress, the surge in cortisol may result in an acute
depression in BRS and HRV, along with increased
peripheral vasoconstrictor responsiveness, increased
sympathetically-mediated positive cardiac inotropic
activity and impairment in vasodilatory mechanisms.
Thus, this could provide a pro-arrhythmic milieu that pre-
cipitates ventricular arrhythmia, myocardial infarction,
left ventricular dysfunction and increased cardiovascular
mortality.
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