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Abstract

We prove that for integers 2 6 ` < k and a small constant c, if a k-uniform
hypergraph with linear minimum codegree is randomly ‘perturbed’ by changing
non-edges to edges independently at random with probability p > O(n−(k−`)−c),
then with high probability the resulting k-uniform hypergraph contains a Hamilton
`-cycle. This complements a recent analogous result for Hamilton 1-cycles due to
Krivelevich, Kwan and Sudakov, and a comparable theorem in the graph case due
to Bohman, Frieze and Martin.

Mathematics Subject Classifications: 05C65, 05C45, 05C80

1 Introduction

Hamilton cycles are one of the most fundamental and widely studied structures in graph
theory. We call a graph Hamiltonian if it contains a Hamilton cycle, that is, a cycle that
covers all of the vertices of the graph. Many properties of Hamilton cycles in graphs are
well understood, for example, minimum degree conditions [13] and random thresholds [32]
that guarantee the existence of a Hamilton cycle.

A k-uniform hypergraph, or k-graph, is comprised of a vertex set and an edge set, where
each edge consists of k vertices. This generalises the notion of a graph (the case k = 2).
For k-graphs there a number of distinct but equally natural extensions of Hamiltonicity.
Indeed, for 1 6 ` 6 k−1 we say that a k-graph is an `-cycle if there exists a cyclic ordering
of the vertices of the graph such that every edge consists of k consecutive vertices and
each edge intersects the subsequent edge (in the natural order of the edges) in exactly `
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vertices. We say that a k-graph H contains a Hamilton `-cycle if it contains an `-cycle
as a spanning subgraph. Note that a necessary condition for this is that k − ` divides n,
since every edge of the cycle contains exactly k − ` vertices which were not contained in
the previous edge.

Given integers n and k and a probability p, we can form a random k-graph with vertex
set [n] by including each k-tuple of vertices as an edge with probability p, independently

of all other choices. We denote the resulting random k-graph by H
(k)
n,p. This is the most

well-studied notion of random k-graph, and generalises the Erdős-Renyi random graph
Gn,p = H

(2)
n,p.

1.1 Threshold probabilities for Hamilton `-cycles in random k-graphs

One of the most natural questions to ask is to identify threshold probabilities for the
existence of Hamilton cycles in H

(k)
n,p. In the graph case the following theorem established

very precise bounds on the critical probability for this property. This was independently
proved by Bollobás [5] and by Komlós and Szemerédi [27].

Theorem 1 ([5, 27]). For every function ω(n) for which ω(n) → ∞ as n → ∞, if

p > logn+log logn+ω(n)
n

then with high probability Gn,p contains a Hamilton cycle, whilst if

p 6 logn+log logn−ω(n)
n

then with high probability Gn,p does not contain a Hamilton cycle.

More recently Dudek and Frieze [14, 15] largely answered the analogous question for
k-graphs through bounds established in a pair of papers, which are combined together in
the following theorem (the case k = 3, ` = 1 was previously addressed by Frieze [17]).

Theorem 2 ([14, 15]). For every α > 0, every 1 6 ` 6 k− 1 and every function ω(n) for
which ω(n)→∞ as n→∞ there exists c, C > 0 such that if

p >


Cn−(k−1) log n if ` = 1, k = 3,

ω(n)n−(k−1) log n if ` = 1, k > 4,

ω(n)n−(k−2) if ` = 2,

Cn−(k−`) if 3 6 ` 6 k − 1,

then with high probability H
(k)
n,p contains a Hamilton `-cycle, whilst if

p 6

{
cn−(k−1) log n if ` = 1,

cn−(k−`) if ` > 2,

then with high probability H
(k)
n,p does not contain a Hamilton `-cycle.

In particular, the upper and lower bounds on the critical probability are separated by
a ω(n)-factor in the case ` = 1 for k > 4, and in the case ` = 2 for k > 3. In all other
cases the difference is a constant factor.
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1.2 Dirac-type conditions for Hamilton `-cycles in k-graphs

Dirac’s Theorem, a classical result of graph theory [13], states that any graph G on n > 3
vertices with minimum degree δ(G) > n/2 admits a Hamilton cycle. A great deal of
research in recent years has focussed on finding analogous results for hypergraphs, using
the following notions of minimum degree. Given a k-graph H and a set T of vertices of
H we define degH(T ), the degree of T , to be the number of edges in H which contain
T as a subset (we omit the subscript when H is clear from the context). For an integer
1 6 t 6 k − 1 the minimum t-degree of H, denoted δt(H), is then defined to be the
minimum value of deg(T ) taken over all sets T ⊆ V (H) with |T | = t. In particular,
the parameters δ1(H) and δk−1(H) are referred to as the minimum vertex degree and
minimum codegree of G respectively.

The following theorem collects together the results of a series of papers by numerous
authors over several years; it establishes asymptotically for every k and ` the best-possible
minimum codegree condition which guarantees the existence of a Hamilton `-cycle in a
k-graph.

Theorem 3 ([19, 26, 29, 30, 35, 36]). For any k > 3, 1 6 ` < k and η > 0, there exists n0

such that if n > n0 is divisible by k − ` and H is a k-graph on n vertices with

δk−1(H) >


(
1
2

+ η
)
n if k − ` divides k,(

1
d k
k−`
e(k−`) + η

)
n otherwise,

then H contains a Hamilton `-cycle.

By contrast, the exact value of this threshold (for large n) has only been found in a
small number of cases, namely for k = 3, ` = 2 by Rödl, Ruciński and Szemerédi [37], for
k = 4, ` = 2 by Garbe and Mycroft [18], for k = 3 and ` = 1 by Czygrinow and Molla [11]
and for any k > 3 and ` < k/2 by Han and Zhao [20]. For other degree conditions,
less still is known; indeed the only cases in which the minimum t-degree threshold for a
Hamilton `-cycle is known even asymptotically are the cases k > 3, ` < k/2, t = k − 2
(due to Bastos, Mota, Schacht, Schnitzer and Schulenburg [3] with previous results for
the case (k, `, t) = (3, 1, 1) due to Buß, Hàn and Schacht [9] and Han and Zhao [21]) and
(k, `, t) = (3, 2, 1) (due to Reiher, Rödl, Ruciński, Schacht and Szemerédi [33]).

For a much more detailed exposition of the results briefly described in this subsection
we refer the reader to the recent surveys by Kühn and Osthus [31], Rödl and Ruciński [34]
and Zhao [39].

1.3 Hamilton `-cycles in randomly perturbed k-graphs

Comparing the results of the previous two subsections, we observe that the random k-
graphs around the threshold probability for containing a Hamilton `-cycle typically have
far fewer edges than those whose minimum degree is close to the minimum degree threshold
to force such a cycle. This invites the question of how far a typical graph of lower degree
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is from being Hamiltonian, motivating the following definition: given a k-graph H, the
p-perturbation of H is the k-graph H+

p on the same vertex set in which every edge of H
is an edge of H+

p and additionally each k-tuple of vertices which is not an edge of H is
an edge of H+

p with probability p, independently of all other k-tuples. For graphs this
setup was considered by Bohman, Frieze and Martin [4], who showed that if G has linear
minimum degree then adding a linear number of random edges suffices to ensure that G+

p

has a Hamilton cycle.

Theorem 4 ([4]). For every α > 0 there exists λ > 0 such that if G is a graph on n
vertices with δ(G) > αn and p > λ/n then with high probability G+

p contains a Hamilton
cycle.

More recently Krivelevich, Kwan and Sudakov [28] established a similar result for loose
cycles in perturbed k-graphs of linear minimum codegree.

Theorem 5 ([28]). For every k > 3 and every α > 0 there exists λ > 0 such that if H is
a k-graph on n vertices with δk−1(H) > αn and p > λn1−k then with high probability H+

p

contains a Hamilton 1-cycle.

These results can be viewed as demonstrating the fragility of graphs and k-graphs
which do not contain a Hamilton 1-cycle, as a relatively small perturbation of these graphs
will create such a cycle with high probability. Alternatively, comparing these results to
the random thresholds presented earlier suggests another interpretation in terms of how
many random edges must be added to a k-graph to create a Hamilton 1-cycle. Indeed,
Theorem 1 and the case ` = 1 of Theorem 2 show that if we start with an empty k-graph
we must add around n log n edges to achieve this, whereas Theorems 4 and 5 show that if
we start with a k-graph of linear minimum codegree then we need only add O(n) edges,
i.e. we save a factor of log n compared to starting with an empty k-graph.

After their proof of Theorem 5, Krivelevich, Kwan and Sudakov highlighted two natu-
ral directions for further research. The first of these is to consider if statements analogous
to Theorem 5 hold for Hamilton `-cycles where ` > 2. Secondly, Theorem 5 pertains only
to k-graphs of high minimum codegree, which is the strongest form of minimum degree
condition for k-graphs, and it is natural to consider whether a weaker notion of minimum
degree would suffice instead.

Our main result in this paper is the following theorem, which gives conditions for the
existence of a Hamilton `-cycle in a randomly perturbed k-graph for any 2 6 ` 6 k − 1.
Together with Theorem 5 this answers the question for all forms of Hamilton `-cycle in
k-graphs of linear minimum codegree. Moreover, for 2 6 ` 6 k − 2 we actually only
require a weaker form of minimum degree condition.

Theorem 6 (Main result). Fix integers 2 6 ` < k and define `′ := max(`, k − `). For
every α > 0 there exists c > 0 such that if H is a k-graph on n vertices such that
δ`′(H) > αnk−`

′
and k − ` divides n, then for p > n−(k−`)−c the k-graph H+

p contains a
Hamilton `-cycle with high probability.
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In particular, this shows that the number of random edges which need to be added to
a k-graph of linear minimum codegree to guarantee the existence of a Hamilton `-cycle is
O(n`−c) for some constant c > 0. Perhaps surprisingly, this gives a saving of a polynomial
factor in comparison to the number of random edges which mush be added to the empty
k-graph to achieve this, which is around n` by Theorem 2. In other words, the ‘effect’ of
starting with a dense hypergraph is much stronger for ` > 2 compared to the case ` = 1,
where we saved only a factor of log n.

Theorem 6 is best-possible in the sense that it would not hold if the minimum degree
condition δ`′(H) > αnk−`

′
were replaced by any condition of the form δ`′(H) > f(n)nk−`

′

with f(n) = o(n); we prove this assertion in Lemma 12.

1.4 Definitions and notation

For integers 1 6 ` < k we say that a k-graph P is an `-path if its vertices can be linearly
ordered so that every edge of P consists of k consecutive vertices and each edge of P
intersects the subsequent edge (in the natural order of the edges) in precisely ` vertices;
the length of P is the number of edges of P . In particular, an `-path P of length m has
b := m(k−`)+` vertices, and we say that the sequence (v1, . . . , vb) is a vertex sequence for
P if V (P ) = {v1, . . . , vb} and the edges of P are precisely the sets {vr(k−`)+1, . . . , vr(k−`)+k}
for 0 6 r 6 m− 1. Note that P is uniquely determined by its vertex sequence, but there
may be several vertex sequences for the same `-path. We say that an `-path P is a path
segment or subpath of an `-path Q or `-cycle C to mean that P appears as a subgraph of
Q or C.

Given an `-path P with vertex sequence (v1, . . . , vb) we refer to the ordered `-tuples
P beg = (v1, . . . , v`) and P end = (vb−`+1, . . . , vb) as ends of P . Since an `-path P may have
several vertex sequences, there may be multiple choices for ends of P if a vertex sequence
is not specified, but unless stated otherwise we make an arbitrary choice and simply refer
to these as the ends of P . The interior vertices of P are then the vertices which do not
lie in either end of P , and we write P int := V (P ) \ (P beg ∪ P end) for the set of interior
vertices of P . Note that if P and Q are `-paths with P end = Qbeg which have no vertices
in common outside this set, then the k-graph PQ with vertex set V (P )∪ V (Q) and edge
set E(P )∪E(Q) is an `-path also, with ends P beg and Qend. We will construct a Hamilton
`-cycle in H+

p by connecting several `-paths in H+
p in this manner.

We say that a k-graph H is k-partite if there exists a partition of V (H) into vertex
classes V1, . . . , Vk such that every edge e ∈ H has |e ∩ Vi| = 1 for each i ∈ [k]. Given
a k-graph H we write e(H) for the number of edges of H, and v(H) for the number of
vertices of H. We also frequently identify a k-graph with its edge set, for example, writing
|H| for e(H) and e ∈ H to mean e ∈ E(H). Given sets S, T ⊆ V (H) we write degH(S, T )
for the number of edges e ∈ E(H) with S ⊆ e and e \ S ⊆ T . In other words degH(S, T )
counts the number of ways to extend S to an edge of H by adding vertices from T . We
omit the subscript when H is clear from the context.

Given a function π : U → V and an ordered k-tuple R = (u1, . . . , uk) of elements of U
we write π(R) to denote the ordered k-tuple (π(u1), . . . , π(uk)). On the other hand, for an
unordered subset S ⊆ U we write π(S) for the image of S under π in the usual manner.
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For an ordered k-tuple R = (u1, . . . , uk) and an unordered set S = {v1, . . . , vk} of size k
we sometimes abuse notation by writing R = S to mean that S and u have precisely the
same elements, that is, {u1, . . . , uk} = {v1, . . . , vk}.

Given a set S and an integer k we write
(
S
k

)
for the set of subsets of S of size k.

We write x � y to mean that for any y > 0 there exists x0 > 0 such that for any
0 < x < x0 the following statement holds. Similar statements with more variables are
defined similarly. Note carefully that this is not the same as the common usage of � in
probabilistic arguments in which we say x� y if x/y → 0; the latter usage of the symbol
does not appear anywhere in this paper.

1.5 Proof outline and structure of the paper

The proof of Theorem 6 proceeds by an ‘absorbing’ argument. This is a powerful technique
for embedding large subgraphs in dense or random graphs and hypergraphs which has
yielded many successes over the past two decades. To find a Hamilton `-cycle in a k-
graph H, a typical absorbing argument consists of a ‘path cover lemma’, an ‘absorbing
lemma’ and a ‘connecting lemma’. We follow the same top-level approach, but each of
these three components must be tailored to the perturbing setting, as described below.

Path cover lemma. We use a special case of a seminal theorem of Johanssen, Kahn
and Vu regarding perfect tilings in k-graphs. This special case states that under the
conditions of Theorem 6, we can find a spanning collection P of vertex-disjoint `-paths
in H+

p of length close to `−1
c

. In fact, we find these paths entirely in H
(k)
n,p, and do not

appeal to the minimum degree condition of H at all. The reason for this is shown by the
construction we present in Lemma 12 to show that Theorem 6 is in a sense optimal; this
construction demonstrates that some k-graphs H satisfying δk−1(H) > αn can provide
only a few edges towards P . We note that since each path in P has constant length, the
size of P is linear in n. This differs from typical previous applications of the absorbing
method, in which we choose a constant number of paths of linear length.

Absorbing lemma. Our absorbing lemma states that, under the conditions of Theo-
rem 6, we can find a collection P of vertex-disjoint `-paths of constant length in H so that
for almost all sets S ∈

(
V (H)
k−`

)
there are many paths P ∈ P which can ‘absorb’ S in H+

p .
By this we mean that there is an `-path Q in H+

p with the same ends as P whose vertices
are the vertices in P and those of S. The point of this is that if P is a path segment of
an `-cycle C which does not include any vertex of S, then we may replace P by Q in C
and thereby ‘absorb’ the vertices of S into C. To prove this lemma we first present an
‘absorbing structure’ F , which contains an `-path P and also a set FA of size k− ` which
can be absorbed into P in F . Additionally the edges of F are partitioned into a ‘regular’
part Freg and a ‘random’ part Frand. We show that almost all ordered (k − `)-tuples of
vertices of H extend to many copies of Freg in H (i.e. not using any random edges); in
fact the number of extensions is a constant proportion of the maximum possible number
of extensions. We then show that when we expose the random edges of H+

p , with high
probability many of these extensions Freg gain the required edges of Frand to form a copy
of F . Together this shows that almost all ordered (k − `)-tuples of vertices of H extend
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to many copies of F in H+
p . We then randomly select a linear-size set of copies of F \FA,

and show that almost all ordered (k − `)-tuples are extended to a copy of F by many
of these copies, so taking the paths P from each of these copies then gives the desired
collection of absorbing paths (after removing the small number of paths which intersect
and adding a few extra paths to cover a small number of atypical vertices).

Connecting lemma. Our ‘connecting lemma’ states that, under the conditions of Theo-
rem 6, given a collection P of `-paths in H we can find an `-cycle C in H+

p which includes
every path P ∈ P as a path segment. To illustrate the proof of this, let P and Q be
`-paths which we wish to connect. Then we use the minimum degree condition to show
that there are many possible ways to extend P and Q each by t :=

⌈
k
k−`

⌉
− 1 edges in H

without overlapping. Indeed, the number of ways to do this is sufficient that, when we
expose our random edges, with high probability some of these extensions are joined by t
random edges to form an `-path of length 3t in H+

p which connects P and Q into a single
long `-path. In fact we show that with high probability we can do this while avoiding
any given small set of vertices, which allows us to iterate the connections to connect all
the paths in P into a cycle. We note that extending each of P and Q by t edges from H
ensures that the t random edges we use to complete the connection do not intersect the
original vertices of P or Q; this fact is crucial for us to have sufficiently many connecting
paths in the random graph.

Proof of Theorem 6. Finally, to prove Theorem 6 we combine the aforementioned
lemmas in the following way. We form H+

p by exposing edges in four rounds, permitting
two applications of the connecting lemma and one application each of the absorbing lemma
and path cover lemma. First, we apply the absorbing lemma to obtain a collection P of
‘absorbing’ `-paths so that almost all sets S ∈

(
V (H)
k−`

)
are ‘good’ in the sense that there

are many paths P ∈ P which can ‘absorb’ S in H+
p . We then apply the connecting lemma

to find a single `-path P which contains each path in P as a path segment. Following
this we randomly select a small reservoir set R, before applying the path cover lemma to
find vertex-disjoint `-paths of long constant length which cover every vertex of H except
for those in V (P ) or R. We then make a second application of the connecting lemma to
find an `-cycle C in H+

p which includes P and each of these `-paths as a path segment.
The cycle C then covers every vertex of H except for those in the reservoir R which
were not used for the second application of the connecting lemma. Finally, we complete
the proof by partitioning these leftover vertices into good (k − `)-tuples and greedily
absorbing these into the ‘absorbing’ paths obtained from the absorbing lemma (which are
now path segments of C). We note that it is necessary to make two separate applications
of the connecting lemma here since our collection P of ‘absorbing paths’ is too large to
be connected using the reservoir set R (which in turn cannot be any larger or we would
be unable to absorb all the leftover vertices into C).

Structure of the paper. In Section 2 of this paper we give formal statements of the three
principal lemmas described above, but we defer the proofs of the absorbing and connecting
lemmas to subsequent sections. Also in Section 2 we present the full proof of Theorem 6 as
outlined above, and give a construction which demonstrates the optimality of Theorem 6.
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Following this, in Section 3 we prove our ‘absorbing lemma’, and in Section 4 we turn
to the proof of our ‘connecting lemma’. Finally, we make some concluding remarks in
Section 5.

2 Proof of Theorem 6 and its optimality

The first subsection of this section includes the statements of the key lemmas described
in the proof outline, whilst in the second we use these to prove Theorem 6. The final
subsection gives examples demonstrating the optimality of Theorem 6.

2.1 Key lemmas

As described above, our ‘path cover lemma’ is provided by a special case of a seminal
theorem of Johanssen, Kahn and Vu [24] regarding the threshold probability for the

existence of an H-factor in H
(k)
n,p (an H-factor in a k-graph G is a spanning collection of

vertex-disjoint copies of H in G). For any k-graph H define d(H) := e(H)/(v(H) − 1),
and say that H is strictly balanced if d(H ′) < d(H) for every proper subgraph H ′ ( H.
Johanssen, Kahn and Vu showed that if a k-graph H is strictly balanced, then thH(n) is

a probability threshold for the existence of an H-factor in H
(k)
n,p, where

thH(n) = n−1/d(H) (log n)1/e(H) .

Observe that if P is an `-path k-graph of length m then, since P has (k−`)m+` vertices,
we have

d(P ) =
m

(k − `)m+ `− 1
=

1

(k − `) + `−1
m

.

So for 2 6 ` < k we find that d(P ) increases as m increases, and it follows that P is
strictly balanced. We therefore have the following theorem (the special case of Johanssen,
Kahn and Vu’s theorem for `-path k-graphs).

Theorem 7. Fix integers 2 6 ` < k and m > 1, and define b := (k − `)m + `.
Let P be the `-path k-graph of length m, so P has b vertices. If b divides n and p =
ω
(
log n1/mn−(k−`)−(`−1)/m

)
then with high probability H

(k)
n,p contains a P -factor.

Our ‘absorbing lemma’ is the next lemma, and is proved in Section 3. For this we
make the following definition: given a k-graph H, an `-path P in H and a (k − `)-tuple
S ∈

(
V (H)
k−`

)
, we say that P can absorb S in H if there exists an `-path Q in H with the

same ends as P and vertex set V (Q) = V (P ) ∪ S.

Lemma 8. Fix integers 2 6 ` < k, define t :=
⌈

k
k−`

⌉
− 1 and fix a constant c < 1/t.

Suppose that ξ � η � α, 1/k, and let H be a k-graph on n vertices with δk−`(H) > αn`.
If p > n−(k−`)−c, then with high probability there exists a collection P of at most ηn
vertex-disjoint `-paths in H and a set B ⊆

(
V (H)
k−`

)
such that

(a) each path in P has at most 3k2 vertices,
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(b) each vertex in V (H) \
⋃
P∈P V (P ) lies in at most ηnk−`−1 elements of B, and

(c) for each (k − `)-tuple S /∈ B there are at least ξn paths P ∈ P which can absorb S
in H+

p .

Our ‘connecting lemma’ is the following lemma, allowing us to connect a collection of
paths to form a single cycle. We prove this lemma in Section 4.

Lemma 9. Fix integers 2 6 ` < k, define t :=
⌈

k
k−`

⌉
− 1 and fix a constant c < 1/t.

Suppose that ϑ � α, 1/k, let H be a k-graph on n vertices and let P be a collection of
at most ϑn vertex-disjoint `-paths in H. Suppose that, writing X := V (H) \

⋃
P∈P V (P ),

for every set S ∈
(
V (H)
`

)
we have degH(S,X) > αnk−`. If p > n−(k−`)−c then with high

probability there exists an `-cycle C in H+
p with |V (C)∩X| 6 4k|P| such that C contains

each P ∈ P as a path segment.

Sometimes we will apply Lemma 9 to obtain an `-path which contains each P ∈ P
as a path segment (rather than an `-cycle with this property). This can be achieved by
simply deleting edges from the cycle given by Lemma 9, so we will do so without further
comment.

Finally, we also use the following theorem of Daykin and Häggkvist [12]. This states
that every k-graph with sufficiently high minimum vertex degree admits a perfect match-
ing, i.e. a spanning collection of disjoint edges.

Theorem 10. If k > 2 and k divides n, then every k-graph H of order n with δ1(H) >
k−1
k

((
n−1
k−1

)
− 1
)

contains a perfect matching.

2.2 Proof of Theorem 6

We now combine these lemmas to prove Theorem 6.

Proof of Theorem 6. Fix 2 6 ` < k and write `′ := max(`, k− `). Given α > 0, introduce
new constants satisfying

1/m� ξ � η � α, 1/k,

and define α′ := α/k! and b := m(k−`)+`. Let H be a k-graph on n vertices, where k−`
divides n, and suppose that δ`′(H) > αnk−`

′
, from which it follows that δ`(H) > α′nk−`

and δk−`(H) > α′n`. Finally, fix c < (` − 1)/m and p > n−(k−`)−c. We proceed by
a multiple exposure argument with four rounds. For this, let H1, H2, H3 and H4 be
independently drawn from H

(k)
n,p/4. Then by a standard coupling argument we may assume

that H ∪
⋃
i∈[4]Hi ⊆ H+

p .
We begin by using our first exposure round to apply our absorbing lemma, Lemma 8.

This states that with high probability there exists a collection P of at most ηn vertex-
disjoint `-paths in H ∪ H1 and a set B ⊆

(
V (H)
k−`

)
of (k − `)-tuples such that, writing

V (P) :=
⋃
P∈P V (P ),

(a) each path in P has at most 3k2 vertices,
(b) each vertex in V (H) \ V (P) lies in at most ηnk−`−1 elements of B, and
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(c) for each (k − `)-tuple S /∈ B there are at least ξn paths P ∈ P which can absorb S
in H ∪H1.

Let X := V \ V (P). Note that for every set S ∈
(
V (H)
`

)
there are degH(S) > δ`(H) >

α′nk−`-many (k − `)-tuples S ′ for which S ∪ S ′ is an edge of H. Since |
⋃
P∈P V (P )| 6

3k2ηn 6 α′n/2, at most α′nk−`/2 such sets S ′ intersect V (P), and it follows that we
have degH(S,X) > α′nk−`/2. We now make our second exposure round to apply our
connecting lemma, Lemma 9, with η and α′/2 in place of ϑ and α respectively. With high
probability this yields a single `-path P in H ∪H1 ∪H2 such that P contains each path
in P as a path segment and |V (P )| 6 |V (P)|+ 4k|P| 6 3k2ηn+ 4kηn 6 α′n/2.

Define X ′ := V \ V (P ). By exactly the same argument as above it follows that every
set S ∈

(
V (H)
`

)
has degH(S,X ′) > α′nk−`/2. Choose r with ξn 6 r 6 2ξn such that b

divides |X ′| − r, and choose a ‘reservoir’ set R of size r uniformly at random from all
subsets of X ′ of this size. Then for each set S ∈

(
V (H)
`

)
the degree degH(S,R) has a

hypergeometric distribution, so a standard Chernoff-type bound yields that

P
(

degH(S,R) 6
α′rk−`

4

)
6 exp(−Ω(nk−`)).

Let B[R] ⊆ B consist of all members of B which are subsets of R. Then using (b) we find
that for every vertex v ∈ V (H) \ V (P) the expected number of sets in B[R] containing
v is at most 2ηrk−`−1. So for each v ∈ V (H) \ V (P), since the number of sets in B[R]
containing v has a hypergeometric distribution, a standard Chernoff-type bound implies
that the probability that v is contained in more than 3ηrk−`−1 members of B[R] is at
most exp(−Ω(nk−`)). Taking a union bound over all such sets S ∈

(
V (H)
`

)
and vertices

v ∈ V (H) \ V (P) we find that with high probability every set S ∈
(
V (H)
`

)
satisfies

degH(S,R) >
α′rk−`

4
>
ξk−`α′

4
nk−`. (1)

and

every vertex v ∈ V (H) \ V (P) is contained in at most 3ηrk−`−1 members of B[R]. (2)

We now make make our third exposure round to apply our path cover lemma, Theo-
rem 7. Note for this that b divides |X ′ \ R| by our choice of r. So with high probability
we obtain a spanning collection P ′ of vertex-disjoint `-paths of length m in H3[X

′ \ R].
Note in particular that |P ′| < n/b. Let P ′′ := P ′ ∪ {P}, so P ′′ is a collection of at most
1 + n/b 6 n/m vertex-disjoint `-paths in H ∪H1 ∪H2 ∪H3, none of which intersect R.

Our fourth and final exposure round is to apply our connecting lemma, Lemma 9,
which we do with ξk−`α′/4 and 1/m here playing the roles of α and ϑ respectively there
(so (1) ensures that the degree condition of the theorem is satisfied). With high probability
this yields an `-cycle C in H+

p with |V (C)∩R| 6 4kn/m which contains each path in P ′′
as a path segment (so in particular C contains each path in P as a path segment).

Finally we use the absorbing paths within C to absorb the remaining vertices. Let
R′ := R \ V (C), so R′ consists of all vertices of R except those used to connect paths
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in the fourth exposure round. Since C contains every vertex outside R we also have
R′ = V (H) \ V (C). By assumption k− ` divides n and since C is an `-cycle k− ` divides
|V (C)|. It follows that k− ` divides n− |V (C)| = |R′|. Define an auxiliary (k− `)-graph
G with vertex set R′ and edge set

(
R′

k−`

)
\B. Then for every v ∈ R′, since v /∈ V (P), by (2)

and the fact that |R′| > |R| − |V (C) ∩R| > r − 4kn/m > (1− η)r we have

degG(v) >

(
|R′|

k − `− 1

)
− 3ηrk−`−1 >

k − `− 1

k

(
|R′|

k − `− 1

)
We may therefore apply Theorem 10 to find a perfect matching M in G. We then have
|M | = |R′|/k 6 r/k 6 ξn, so by (c) we can greedily assign each (k − `)-tuple e ∈ M to
a distinct path in P which can absorb it in H ∪H1. Since each of these paths is a path
segment of C, by absorbing each e ∈ M in this way we obtain a Hamilton (k − `)-cycle
in H+

p .

2.3 Optimality of Theorem 6

We now demonstrate the optimality of Theorem 6 in terms of the minimum degree con-
dition and the bound on p. To do this we use the following simple application of the
first moment method, which gives conditions under which H+

p does not contain a tiling
of `-paths of length m which covers at least half of the vertices of H.

Lemma 11. Fix integers 2 6 ` < k and m and a constant c > `/m. Let P be the `-path
k-graph of length m, so P has b := m(k − `) + ` vertices. For p < n−(k−`)−c, with high
probability there does not exist a set of at least n/(2b) vertex-disjoint `-paths each of length

m in H
(k)
n,p.

Proof. For simplicity we assume that 2b divides n; assuming otherwise makes very little
difference to the calculations but is notationally more awkward. Let P be the k-graph
formed by the disjoint union of n/(2b) copies of P , and say that an injective function

f : V (P) → V (H
(k)
n,p) is path-inducing if f(e) ∈ H

(k)
n,p for every e ∈ P . Let X be the

random variable which counts the number of path-inducing injective functions f : V (P)→
V (H

(k)
n,p), and note that if there exists a set of n/(2b) vertex-disjoint `-paths in H

(k)
n,p then

X > 1. Then since P has mn/(2b) edges and n/2 vertices we have

E(X) =

(
n

n/2

)
(n/2)!pmn/(2b) 6 2n

√
2πn

( n
2e

)n/2
(pm/b)n/2 <

√
2πn ·

(
n1−(k−`+c)m/b)n/2

By our choice of c we have (k−`+c)m/b = k−`+c
k−`+`/m > 1, and it follows that E(X) = o(n),

so with high probability we have X = 0 as required.

Lemma 12. Fix integers 2 6 ` < k. For every 0 < α < 1
12k2

there exists a k-graph H on
n vertices with δ`(H) > α

(
n
k−`

)
such that for every c > `/b 1

4αk
c, if p < n−(k−`)−c then with

high probability H+
p does not contain a Hamilton `-cycle.
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Proof. Given n and α we define a k-graph H := H(n, α) as follows. First let A and B be
disjoint sets with |A| = αn and |B| = n− |A|. Then take V := A∪B to be the vertex set
of H, so v(H) = n, and take every e ∈

(
V
k

)
with V ∩A 6= ∅ to be an edge of H. It follows

that δk−1(H) > αn so certainly we have δ`(H) > α
(
n
k−`

)
for each ` ∈ [k − 1].

Suppose that H+
p contains a Hamilton `-cycle C, so C has n vertices and n/(k − `)

edges. Label the vertices of C with [n] in the natural order. Now fix m := b 1
4αk
c and note

that by our assumption on α we then have 3k 6 m 6 1
4αk

. Write b := m(k − `) + ` and
r := bn/((k− `)(m+k))c. For each i ∈ [r] let Pi be the subpath of C of length m starting
at vertex (i−1)(k−`)(m+k)+1. Since each Pi has (k−`)m+` < (k−`)(m+k) vertices
the paths P1, . . . , Pr are vertex-disjoint subpaths of C. At most |A| 6 αn of the paths
Pi contain a vertex of A, so removing these we obtain a collection P of vertex-disjoint
`-paths of length m in H+

p [B] of size

|P| > r − αn >
n

(k − `)(m+ k)
− 1− αn >

(
3

4
− kmα

)
n

(k − `)m
>

1

2
· n

m(k − `)
>

n

2b
,

where the third and fourth inequalities hold by our assumptions on the size of m. However,
since H[B] is empty it follows that we have a collection of n/(2b) vertex-disjoint `-paths

of length m in H
(k)
n,p. For c > `/m and p < n−(k−`)−c this event has probability o(n) by

Lemma 11, so we conclude that with high probability there is no Hamilton `-cycle in
H+
p .

It follows from Lemma 12 that for any constant c > 0 Theorem 6 would not re-
main valid if the minimum degree condition were weakened to a condition that δ`′(H) >
f(n)nk−` for some f(n) = o(n). Likewise, for small α > 0 the constant c of Theorem 6
must satisfy c < `/b 1

4αk
c, that is, c declines with α.

3 The absorbing lemma

In this section we prove our absorbing lemma, Lemma 8. Our proof makes use of the
following Chernoff-type bounds for sums of independent random selections of bounded
integers. We omit the proofs of these since they are essentially identical to the proof of
Chernoff’s bound for binomially distributed random variables (see e.g. [23]), which is the
case when m = x1 = · · · = xt = 1. We also use the first of these in the proof of our
connecting lemma in Section 4.

Proposition 13. Fix p ∈ [0, 1] and integers x1, . . . , xt with 0 6 xi 6 m for each i ∈ [t],
and write S :=

∑
i∈[t] xi. Randomly form a subset I ⊆ [t] by including each i ∈ [t] in

I with probability p and independently of all other choices, and let X :=
∑

i∈I xi. Then
E(X) = pS, and for 0 < δ < 3/2 we have

P (X 6 (1− δ)E(X)) 6 exp

(
−δ

2E(X)

2m

)
,

and

P (X > (1 + δ)E(X)) 6 exp

(
−δ

2E(X)

3m

)
.

the electronic journal of combinatorics 25(4) (2018), #P4.36 12



Proposition 14. Fix p ∈ [0, 1] and let X1, . . . , Xn be independent random variables with
P(Xi = m) = p and P(Xi = 0) = 1 − p for each i ∈ [n]. Define X :=

∑
i∈[n]Xi. Then

E(X) = pnm, and for t > 6E(X) we have

P (X > E(X) + t) 6 exp

(
− t

m

)
.

We begin by defining the absorbing structures which we will use in the proof of
Lemma 8.

Definition 15. For integers 2 6 ` < k we define k-graphs F, Freg and Frand as follows.
Set T := 3(k− `) + 1, and note that Tk ≡ k (mod k− `), so there exists a k-graph which
is an `-path with L := Tk vertices. The vertex set of F is

V (F ) := {vji : i ∈ [k], j ∈ [T ]} ∪ {a1, . . . , ak−`},

and V (F ) is partitioned into vertex classes Vi for i ∈ [k], where for each i ∈ [k − `] we
have Vi := {vji : j ∈ [T ]} ∪ {ai} and for each i ∈ [k] \ [k − `] we have Vi := {vji : j ∈ [T ]}.
Furthermore, the edges of F are all sets which are edges of the `-path P (F ) with vertex
sequence

(v11, v
1
2, . . . v

1
k, v

2
1, v

2
2, . . . , v

2
k, . . . , v

T
1 , . . . , v

T
k ) (3)

and all sets which are edges of the `-path Q(F ) with vertex sequence(
v11, . . . , v

1
k,

a1, v
2
2, . . . , v

2
k,

v31, a2, v
3
3, . . . , v

3
k,

v41, v
4
2, a3, v

4
4 . . . , v

4
k,

...

vk−`+1
1 , . . . , vk−`+1

k−`−1, ak−`, v
k−`+1
k−`+1, . . . , v

k−`+1
k ,

vk−`+2
1 , . . . , vk−`+2

k ,

...

v
2(k−`)
1 , . . . , v

2(k−`)
k ,

v21, v
3
2, . . . , v

k−`+1
k−` ,

v
2(k−`)+1
1 , . . . , v

2(k−`)+1
k ,

...

vT1 , . . . , v
T
k

)
. (4)

In other words, the vertex sequence for Q(F ) is formed by the following modifications of
the vertex sequence for P (F ) in (3): first replace vi+1

i by ai for each i ∈ [k−`], then insert

the replaced vertices as a consecutive subsequence immediately following v
2(k−`)
k .
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Set FA := {a1, . . . , ak−`}, and define Frand to be the k-graph with vertex set V (F )\FA
whose edges are all edges of Q(F ) which contain both vk−`+1

k−` and v
2(k−`)+1
1 . Also define Freg

to be the k-graph on vertex set V (F ) with edge set F \Frand. Finally set F beg := (v11, . . . v
1
` )

and F end := (vTk−`+1, . . . , v
T
k ); we refer to F beg and F end as the ends of F .

The following properties of F follow immediately from the definition.

Proposition 16. For every k > 3 the k-graph F defined above satisfies the following
properties.

(i) P (F ) is an `-path in F with vertex set V (F ) \ FA and ends F beg and F end.
(ii) Q(F ) is an `-path in F with vertex set V (F ) and ends F beg and F end.

(iii) F has L+ k − ` = Tk + k − ` < 3k2 vertices.
(iv) Freg is k-partite with vertex classes V1, . . . , Vk.
(v) Frand has L vertices and consists of an `-path of length t :=

⌈
k
k−`

⌉
− 1 which has no

vertices in common with FA, F beg or F end, and also L− t(k−`)−` isolated vertices.

Proof. Both (i) and (ii) are immediate from our choice of edges of F and F (A), and (iii)
from our choice of V (F ), since Tk + k − ` = (3k + 1)(k − `) + k < 3k2. For (iv) observe
that every sequence of k consecutive vertices in (3) or (4) contains one vertex from each
of the k vertex classes, except for the sequences of k consecutive vertices in (4) which

contain both vk−`+1
k−` and v

2(k−`)+1
1 , but each edge of this type is in Frand by definition.

Finally, for (v) observe that v
2(k−`)+1
1 is the ((2k+ 1)(k− `) + 1)-th vertex of the sequence

in (4), and therefore is the first vertex of some edge. Since each edge of an `-path contains
k− ` vertices which are not contained in the subsequent edge the number of edges which
contain both vk−`+1

k−` and v
2(k−`)+1
1 is

⌊
k−1
k−`

⌋
=
⌈

k
k−`

⌉
− 1, as claimed.

In particular, properties (i) and (ii) show that the `-path P (F ) can absorb A in F
(recall that this means there is an `-path Q in F with vertex set P (F ) ∪ A and with the
same ends as P (F ), and Q(F ) has this property).

As described in the introduction, to prove Lemma 8 we first show that almost all
ordered (k − `)-tuples S of vertices of H extend to many copies of Freg in H in which S
plays the role of FA (no random edges are involved in this step). We do this in Lemma 17.
Following this, we show that when we expose the random edges of H+

p we find with high
probability that many of these extensions in fact give copies of F in H+

p ; this is done
in Lemma 18. Finally, at the end of the section we prove Lemma 8 itself by making
an appropriate random selection of such copies of F (with the vertices of FA removed).
However, for each of these steps counting unlabelled copies of F presents certain notational
inconvenience, and to avoid these we instead count injective maps from V (F ) to V (H)
which embed F in H. To this end, for the rest of this section fix an identification of
the vertices of V (F ) with the integers {1, . . . , L + (k − `)} such that the vertices of FA
correspond to the integers {L + 1, . . . , L + (k − `)}. Then, given a k-graph H, we can
think of maps π : [L + (k − `)] → V (H) as potential embeddings of F in H, and count
appropriate families of such maps.
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Given a k-graph H on n vertices, say that an ordered (k− `)-tuple A = (a1, . . . , ak−`)
of vertices of H is (γ, Freg)-extensible in H if there are at least γnL injective maps π :
[L+ (k − `)]→ V (H) for which π(L+ i) = ai for each i ∈ [k − `] and π(e) ∈ H for every
e ∈ Freg (in other words, π embeds Freg in H so that the vertices of FA correspond to
the vertices of A). We now present an extension lemma which states that our minimum
degree condition on H ensures that almost all ordered (k − `)-tuples of vertices of H are
(γ, Freg)-extensible in H.

Lemma 17. Fix integers 2 6 ` < k, and suppose that 1/n � γ � η � α. If H is a k-
graph on n vertices with δk−`(H) > αnk−`, then all but at most ηnk−` ordered k− `-tuples
S of vertices of H are (γ, Freg)-extensible in H.

Lemma 17 can be proved by a standard and straightforward application of hypergraph
regularity, using the fact that Freg is a k-partite k-graph, which implies that we can find
many copies of Freg within the clusters of an edge of an appropriately-defined reduced
k-graph. Because this is such a standard application of hypergraph regularity we did not
feel it merited the introduction of formal definitions of hypergraph regularity (which are
notationally very complex). Instead we simply sketch the key details of the proof.

Proof sketch. Apply the strong hypergraph regularity lemma to H (e.g. this could be the
form due to Rödl and Schacht [38], or the recent regular slice lemma of Allen, Böttcher,
Cooley and Mycroft [1] which requires somewhat less notation to be introduced). From
this we obtain a partition C of V (H) into a large constant number s of clusters of equal
size m and a reduced k-graph R with vertex set C (so the vertices of R are the clusters)
whose edges are all k-tuples of clusters {X1, . . . , Xk} ⊆ C such that, loosely speaking,
an appropriate subset of the edges of H with one vertex in each Xi form a ‘regular’ and
dense k-partite k-graph. We then have the following observations.

(1) For almost all ordered (k−`)-tuples S of vertices of H the vertices of S are contained
in k − ` distinct clusters of R (this follows by a straightforward counting argument
using the fact that there are a large number of clusters of equal size).

(2) For almost all sets e′ ∈
( C
k−`

)
of k − ` clusters of R, there is an edge e ∈ R with

e′ ⊆ e. This is due to the well-known fact (see e.g. [29, Lemma 4.3]) that the reduced
k-graph R of H ‘almost inherits’ the minimum degree condition δk−`(H) > αnk−`,
in that almost all (k − `)-tuples e′ of vertices of R have degR(e′) > (1− ε)αsk−` for
a small constant ε > 0.

(3) For every edge e = {X1, . . . , Xk} of R, almost all ordered (k − `)-tuples x =
(x1, . . . , xk−`) of vertices of H with xj ∈ Xj for each j ∈ [k − `] extend to many
copies of Freg in which x plays the role of FA (in order). Specifically, since Freg

has L vertices outside FA, the number of extensions is at least cmL = (c/sL)nL for
some constant c > 0. This follows from the extension lemma (for instance in the
form proved by Cooley, Fountoulakis, Kühn and Osthus [10]), the fact that Freg is
k-partite with L 6 3k2 vertices, and, crucially, that no edge of Freg contains more
than one vertex of FA.

the electronic journal of combinatorics 25(4) (2018), #P4.36 15



Combining these observations immediately yields the lemma.

We now turn our attention to Frand. Recall for this that H+
p = H ∪ H ′, where H ′

is drawn from H
(k)
n,p. By exposing the edges of H ′ in t rounds, we can assume that

H1∪· · ·∪Ht ⊆ H ′, where each Ht is independently drawn from H
(k)
n,q for q = p/t. We take

this approach and focus only on the copies of Frand for which the ith edge of Frand is an
edge of Hi for each i ∈ [t]; by doing so we ensure the independence of key events in our
argument. Given a constant proportion of all ordered L-tuples of vertices of H, the first
part of our next lemma gives bounds on how many of these form copies of Frand in the
multi-round process described above, whilst the second part bounds how many of these
copies contain a given vertex. Note that together with Lemma 17 this shows that almost
all (k − `)-tuples of vertices of H can be extended to many copies of F in this way.

Lemma 18. Fix integers 2 6 ` < k, define t and L as in Definition 15 and Proposition 16,
fix c < 1/t and q > 1

t
n−(k−`)−c, and let β = (1 − ct)/2, so β > 0. Arbitrarily label the

edges of Frand as e1, . . . , et. Let V be a set of n vertices, and let Π be the set of all injective
functions π : [L] → V . Also let H1, . . . , Ht be drawn independently from H

(k)
n,q on V , and

define Π∗ ⊆ Π to be the set of all π ∈ Π for which π(ei) ∈ Hi for every i ∈ [t]. Finally,
for each x ∈ [L] and each v ∈ V let Πx

v be the set of all π ∈ Π with π(x) = v. Then for
every γ > 0 and every Π′ ⊆ Π of size |Π′| > γnL we have

P
(
γqtnL

2t
6 |Π∗ ∩ Π′| 6 2tqtnL

)
= 1− exp

(
−Ω(n2β)

)
,

and for every v ∈ V and x ∈ [L] we have

P
(
qtnL−1

2t+1
6 |Π∗ ∩ Πx

v | 6 2tqtnL−1
)

= 1− exp
(
−Ω(nβ)

)
.

Proof. We begin with the first statement. So fix γ > 0 and a subset Π′ ⊆ Π of size
|Π′| > γnL. For each 0 6 i 6 t define Πi to be the set of injective functions π ∈ Π
for which π(ej) ∈ Hj for every j ∈ [i]. We expose the random k-graphs H1, . . . , Ht one
by one and show by induction on i that for each 0 6 i 6 t, with probability at least
1− exp

(
−Ω(n2β)

)
we have

γqinL

2i
6 |Πi ∩ Π′| 6 2iqinL. (5)

Since Πt = Π∗, the case i = t will then prove the statement. Observe first that (5) holds
for i = 0 with certainty (no random edges are involved in this statement). So suppose now
that inequality (5) holds for some i < t with probability at least 1− exp

(
−Ω(n2β)

)
, and

observe that the elements of Πi+1 are precisely those π ∈ Πi with π(ei+1) ∈ Hi+1. Write
S :=

(
V
k

)
, and for each S ∈ S let AS count the number of injections π ∈ Πi ∩ Π′ with

π(ei+1) = S. Then
∑

S∈S AS = |Πi ∩ Π′|. Moreover for each S ∈ S we have AS 6 k!nL−k

since the images of the vertices in ei+1 are fixed up to permutation. Now expose the
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edges of Hi+1 and let A count the number of number of injections π ∈ Πi ∩ Π′ with
π(ei+1) ∈ Hi+1. Then E(A) = q

∑
S∈S AS, so by Proposition 13, and using (5) for the first

and final inequalities, we have

γqi+1nL

2i+1
6
q|Πi ∩ Π′|

2
=
q
∑

S∈S AS

2
6 A 6 2q

∑
S∈S

AS = 2q|Πi ∩ Π′| 6 2i+1qi+1nL (6)

with probability

1− 2 exp

(
− E(A)

8k!nL−k

)
> 1− 2 exp

(
− γqi+1nL

2i+1 · 4k!nL−k

)
> 1− exp

(
−Ω(qtnk)

)
.

Since t(k − `) =
(⌈

k
k−`

⌉
− 1
)

(k − `) 6 k − 1 we have ttqtnk > nk−t(k−`)−tc > n1−tc > n2β.

It follows that (5) holds for i + 1 with probability 1 − exp
(
−Ω(n2β)

)
, completing the

induction for (5), and so completing the proof of the first part of the lemma.

We now show how to modify the above argument to prove the second part of the
statement. Fix vertices v ∈ V and x ∈ [L], and assume for the moment that t > 2
and x ∈ e1 ∩ et. Define r := |e1 ∩ et| 6 ` and, given R ∈

(
V
r

)
and S ∈

(
V
k−r

)
, let

ΦR,S ⊆ Πx
v be the set of injections π ∈ Πx

v with π(e1 ∩ et) = R and π(et \ e1) = S and set
Φ′R,S = ΦR,S ∩Π1. Moreover, for each S ′ ∈

(
V
k−r

)
let ΦR,S,S′ be the set of injections π ∈ Πx

v

with π(e1 ∩ et) = R, π(et \ e1) = S and π(e1 \ et) = S ′, and let Φ′R,S,S′ = ΦR,S ∩ Π1.
Observe that for any pairwise-disjoint R, S and S ′ we have

|ΦR,S,S′ | = m := (r − 1)!(k − r)!(k − r)!(n− 2k + r)!

(n− L)!
= Θ(nL−2k+r),

whilst |ΦR,S,S′ | = 0 if R, S and S ′ are not pairwise-disjoint. Moreover, we have |Φ′R,S| =∑
S′∈( V

k−r)
|Φ′R,S,S′ |. In other words |Φ′R,S| is the sum of a set of

(
n−k−r
k−r

)
independent

random variables which each take value m with probability q and value zero otherwise.
So

E(|Φ′R,S|) = qm

(
n− k − r
k − r

)
= Θ(qnL−k)

and we may apply Proposition 14 to obtain

P
(
|Φ′R,S| < qnL−k+β

)
> 1− exp

(
−Ω

(
qnL−k+β

nL−2k+r

))
> 1− exp

(
−Ω(n`−r+β)

)
> 1− exp

(
−Ω(nβ)

)
.

So we may take a union bound over all R and S to find that with probability 1 −
exp

(
−Ω(nβ)

)
we have

|Φ′R,S| 6 qnL−k+β (7)

for every R ∈
(
V
r

)
and S ∈

(
V
k−r

)
.

We now return to the general case (i.e. we no longer assume that t > 2 and x ∈ e1∩et),
where we have two possibilities: either x /∈

⋂
e∈Frand

e, in which case by relabelling the

the electronic journal of combinatorics 25(4) (2018), #P4.36 17



edges ei if necessary we may assume x /∈ et, or x ∈
⋂
e∈Frand

e, in which case we certainly
have x ∈ e1 ∩ et. By a similar argument to that used for the first statement of the
lemma, we prove by induction on i that for each 0 6 i 6 t with probability at least
1− exp

(
−Ω(nβ)

)
we have

qinL−1

2i+1
6 |Πi ∩ Πx

v | 6 2iqinL−1. (8)

Again the statement holds with certainty for i = 0, whilst establishing the case i = t will
complete the proof. So suppose that inequality (8) holds for some i < t with probability at
least 1−exp

(
−Ω(nβ)

)
. For each S ∈ S let BS count the number of injections π ∈ Πi∩Πx

v

with π(ei+1) = S, so
∑

S∈S BS = |Πi ∩ Πx
v |. Define M := maxS∈S BS, so in all cases we

have M 6 k!nL−k. Then Proposition 13 and an essentially identical calculation to (6)
yield that (8) holds for i+ 1 with probability p∗, where

p∗ > 1− 2 exp

(
−E(B)

8M

)
> 1− exp

(
−Ω

(
qi+1nL−1

M

))
.

Recall that t(k − `) 6 k − 1, so k − 1 − (t − 1)(k − `) > k − ` > 1. For i 6 t − 2, using
this and the fact that M 6 k!nL−k and qn < 1, we then obtain

p∗ > 1− exp
(
−Ω(qt−1nk−1)

)
> 1− exp

(
−Ω(nk−1−(t−1)(k−`)−tc)

)
> 1− exp

(
−Ω(n2β)

)
.

This leaves only the case when i = t − 1. Suppose first that t = 1, in which case using
the fact that M 6 k!nL−k and our assumption that ` > 2 we obtain

p∗ > 1− exp
(
−Ω(qnk−1)

)
> 1− exp

(
−Ω(nk−1−(k−`)−c)

)
> 1− exp

(
−Ω(n2β)

)
.

Next suppose that x /∈ et then we must have M 6 k!nL−k−1, since in counting BS the
image of x is fixed, as well as that of et. We therefore again have

p∗ > 1− exp
(
−Ω(qtnk)

)
> 1− exp

(
−Ω(n2β)

)
,

where the second inequality holds by the same calculation as for the first statement of
the lemma. Finally suppose that x ∈ e1 ∩ et, in which case (7) yields |M | 6 θ(qnL−k+β),
giving

p∗ > 1− exp
(
−Ω(qt−1nk−1−β)

)
> 1− exp

(
−Ω(nβ)

)
.

So in all cases it follows that (8) holds for i + 1 with probability 1 − exp
(
−Ω(nβ)

)
,

completing the induction for (8), and so completing the proof of the lemma.

We are now ready to prove Lemma 8.

Proof of Lemma 8. Fix integers 2 6 ` < k, define t :=
⌈

k
k−`

⌉
− 1 and fix c < 1/t and

β = 1−ct, so β > 0. Introduce constants with ξ � ζ � γ � η � α, 1/k and suppose that
n is sufficiently large. Let L, F , Frand, Freg and FA be as in Definition 15, arbitrarily label
the edges of Frand as e1, . . . , et, and let H be a k-graph on n vertices with δk−`(H) > αn`.
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Let G be the set of all ordered (k−`)-tuples of distinct vertices of H which are (γ, Freg)-

extensible in H. Also define B ⊆
(
V (H)
k−`

)
to consist of all (k − `)-sets B for which some

ordering of B is not in G. Since by Lemma 17 at most η3nk−` ordered (k − `)-tuple of
vertices of H are not members of G, we then have |B| 6 η3nk−`.

Now fix a probability p > n−(k−`)−c, define q := p/t and let H1, . . . , Ht be indepen-

dently drawn from H
(k)
n,q . Recall that H+

p = H ∪ H ′, where H ′ is drawn from H
(k)
n,p, so

we may assume that Hi ⊆ H ′ ⊆ H+
p for each i ∈ [t]. Let Π be the set of all injective

functions π : [L] → V (H), let Π∗ ⊆ Π be the set of all π ∈ Π for which π(ei) ∈ Hi for
every i ∈ [t], and for each x ∈ [L] and each v ∈ V (H) let Πx

v be the set of all π ∈ Π
with π(x) = v. By Lemma 18 we then have qtnL/2t+1 6 |Π∗| 6 2tqtnL with probability
1− exp(−Ω(n2β)), and for every x ∈ [L] and v ∈ V (H) we have |Π∗∩Πx

v | 6 2tqtnL−1 with
probability 1− exp(−Ω(nβ)).

For every A = (a1, . . . , ak−`) ∈ G the fact that A is (γ, Freg)-extensible means that
there are at least γnL injective maps π : [L+ (k− `)]→ V (H) for which π(L+ i) = ai for
each i ∈ [k − `] and π(e) ∈ H for every e ∈ Freg. For each such π let π′ be the restriction
of π to [L], and let ΠA denote the set of all maps π′ formed in this way. Since the images
of the vertices L + 1, . . . , L + (k − `) were fixed in π each such π′ is distinct, so we have
|ΠA| > γnL. We may therefore apply Lemma 18 to find that for each A ∈ G we have
|Π∗ ∩ ΠA| > γqtnL/2t with probability at least 1− exp(−Ω(n2β)).

Since there are at most nL pairs (v, x) with v ∈ V (H) and x ∈ [L], and |G| 6 nk−`,
we may take a union bound to find that with high probability we have

(i) qtnL/2t+1 6 |Π∗| 6 2tqtnL,
(ii) |Π∗ ∩ Πx

v | 6 2tqtnL−1 for every v ∈ V (H) and x ∈ L, and
(iii) |Π∗ ∩ ΠA| > γqtnL/2t for every A ∈ G.

It therefore suffices to show that that if (i), (ii) and (iii) all hold then we can find a
set P as in the statement of the lemma. To do this, choose a random subset Φ ⊆ Π∗

by including each π ∈ Π∗ in Φ with probability ζn/|Π∗|, independently of all other
choices. Then we have E(|Φ|) = ζn, and using (i) and (iii) we find that for every A ∈ G
we have E(|ΠA ∩ Φ|) = ζn|ΠA ∩ Π∗|/|Π∗| > ζγn/4t. Applying a Chernoff bound (e.g.
Proposition 13) we find that with probability 1− o(1) we have

|Φ| 6 2ζn and |ΠA ∩ Φ| > ζγn

4t+1
for every A ∈ G. (9)

Let I denote the set of ordered pairs (π, π′) with π, π′ ∈ Π∗ and π 6= π′ for which
the images of π and π′ intersect. Then for any π ∈ Π∗, the number of maps π′ ∈ Π∗

with (π, π′) ∈ I is at most
∑

x,y∈[L] |Π∗ ∩ Πx
π(y)| (we do not have equality as maps which

intersect π in more than one vertex are overcounted). Using (i) and (ii) it follows that
|I| 6 |Π∗| · L2 · 2tqtnL−1 6 22t+1L2|Π∗|2/n. So, defining Z to be the number of pairs
(π, π′) ∈ I with π, π′ ∈ Φ, we have

E(Z) =
22t+1L2|Π∗|2

n
·
(
ζn

|Π∗|

)2

= 22t+1L2ζ2n
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and so by Markov’s inequality the event Z 6 4t+1L2ζ2n has probability at least 1/2.
We may therefore fix a subset Φ ⊆ Π∗ for which Z 6 4t+1L2ζ2n and such that (9)

holds. Having done this, we form a subset Φ′ ⊆ Φ as follows. First, for every (π, π′) ∈ I
with π, π′ ∈ Φ we remove both π and π′ from Φ; this results in at most Z elements of Φ
being removed. Second, remove any π ∈ Φ which is not in

⋃
A∈G ΠA. Using (9) we then

have for every A ∈ A that

|ΠA ∩ Φ′| > |ΠA ∩ Φ| − Z >
ζγn

4t+1
− 4t+1L2ζ2n > ξn. (10)

Recall that F contains an `-path P (F ) with vertex set V (F ) \ FA and ends F beg and
F end. Note that since Φ′ ⊆ Φ ⊆ Π∗, every π ∈ Φ′ embeds Frand in H+

p . Furthermore, our
choice of Φ′ implies that for every π ∈ Φ′ we have π ∈ ΠA for some A = (a1, . . . , ak−`) ∈ G.
This means that the extension of π to [L + k − `] obtained by setting π(L + i) = ai for
each i ∈ [k − `] is an embedding of Freg in H, and also an embedding of F in H+

p (the
latter due to our previous observation that π embeds Frand in H+

p ). In particular, since
P (F ) ⊆ Freg \ FA, the image of P (F ) under π is an `-path in H[π([L])], which we denote
by Pπ. Define P := {Pπ : π ∈ Φ′}, so |P| 6 |Φ| 6 2ζn by (9). Observe also that the paths
in P are vertex-disjoint by our choice of Φ′, and that assertion (a) of Lemma 8 holds since
each path in P has L 6 3k2 vertices. Since F also contains an `-path Q(F ) with vertex
set V (F ) and ends F beg and F end, it follows that for every A ∈ G and every π ∈ ΠA ∩ Φ′

the path Pπ can absorb A in H+
p . So (10) ensures that assertion (c) of Lemma 8 holds

also.
It remains to verify assertion (b) of Lemma 8. Recall for this that |B| 6 η3nk−`. Let B

be the set of of all vertices v ∈ V (H) which are contained in more than ηnk−`−1 members
of |B|, so |B| 6 ηn/2. Greedily choose for each v ∈ B an edge e(v) of H which does
not intersect V (P) :=

⋃
P∈P V (P ) or any edge e(u) chosen for some previous u ∈ B.

To see that this is possible, note that V (P) and the previously-chosen edges cover at
most L|P|+ k|B| 6 L2ζn + kηn/2 6 kηn vertices, and so at most kηnk−1 edges contain
v and a vertex of either V (P) or a previously-chosen e(u). On the other hand, since
δk−`(H) > αnk−`, at least α

(
n−1
k−1

)
> kηnk−1 edges of H contain v, so there is at least one

feasible choice for e(v). We add the edges e(v) for each v ∈ B to P ; after doing this P
is a collection of at most 2ζn + ηn/2 6 ηn vertex-disjoint `-paths in H (since each edge
e(v) is an `-path of length one in H), and the addition of these edges does not affect the
validity of assertions (a) or (c). However, since we now have v ∈ V (P) for every v ∈ B,
assertion (b) holds also, completing the proof.

4 The connecting lemma

In this section we prove our connecting lemma, Lemma 9. We begin by describing the
connecting structures we will use. Fix 2 6 ` < k, and define

t :=

⌈
k

k − `

⌉
− 1 and b := 3(k − `)t+ k.
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Let P be an `-path of length 3t+ 1 with vertex set [b], with vertices labelled in a natural
order, that is, so that the edges of P are ei := {(k − `)i + 1, . . . , (k − `)i + k} for each
0 6 i 6 3t. For each 0 6 i 6 t define Fi to be the k-graph with vertex set [b] and edge set

E(Fi) = {e0, e1, . . . , et} ∪ {e2t+1−i, . . . , e2t} ∪ {e2t+1, . . . , e3t}.

In particular F0 consists of two vertex-disjoint `-paths, one of length t and one of length
t + 1. To see this observe that each edge contains k − ` vertices not in the previous
edge, so the first vertex of e2t+1 is (t + 1)(k − `) > k vertices subsequent to the first
vertex of et. We note for future reference that the number of isolated vertices in F0 is
b − (2t + 1)(k − `) − 2` = t(k − `) − `. Observe also that Ft is precisely the path P ,
whilst for each i ∈ [t] we form Fi from Fi−1 by adding the edge e2t+1−i. Define ordered
`-tuples F beg := (1, . . . , `) and F end := (b− `+ 1, . . . , b); we refer to these as the ends of
each Fi (note that this coincides with the definition of ends of P ). Similarly we define
F int := {`+ 1, . . . , b− `}, and refer to the vertices of F int as interior vertices of each Fi.

In our proof of Lemma 9 we will iteratively connect paths together until only a constant
number of paths remain. The main difficulty is then to connect this constant number of
paths to form a cycle. We achieve this by the following lemma, which essentially states
that Lemma 9 holds for a large constant number of paths (by taking the ends of these
paths as the input `-tuples). Similarly as in the previous section, to prove this lemma it
is notationally convenient to count injective functions from V (P ) to V (H) rather than
copies of P in H. Also, we say that two `-paths P and Q are internally vertex-disjoint if
P int ∩Qint = ∅, that is, P and Q have no common interior vertices.

Lemma 19. Fix integers 2 6 ` < k, define t :=
⌈

k
k−`

⌉
−1 and b := 3(k−`)t+k, and fix a

constant c < 1/t. Suppose that β � α, 1/k. Let H be a k-graph on n vertices and for some
s 6 1/β let a1, . . . , as and b1, . . . , bs be 2s ordered `-tuples of vertices of H such that ar
and br are disjoint for each r ∈ [s]. Suppose that, for some set X ⊆ V (H)\

⋃
r∈[s](ar∪br),

every set S ∈
(
V (H)
`

)
satisfies degH(S,X) > αnk−`. If p > n−(k−`)−c, then with high

probability there exist pairwise internally vertex-disjoint `-paths Q1, . . . , Qs in H+
p with

|
⋃
r∈[s] V (Qr)| 6 bs and so that for each r ∈ [s] the path Qr has Qint

r ⊆ X and ends

Qbeg
r = ar and Qend

r = br.

Proof. We begin with the following claim, which shows that for each r ∈ [s] there are
many copies of F0 in H with ends ar and br whose interior vertices lie in X.

Claim 20. For every r ∈ [s] there are at least 1
2
(αn)b−2` injective functions π : [b]→ V (H)

for which π is an embedding of F0 in H with π(F beg) = ar, π(F end) = br and π(F int) ⊆ X.

To prove Claim 20, we consider the possible ways to form a (not necessarily injective)
function π : [b]→ V (H) with π(F beg) = ar, π(F end) = br and π(F int) ⊆ X and such that
π(e) ∈ H for every e ∈ F0. First, for each i ∈ [`] we set π(i) to be the ith vertex of ar, so
π(F beg) = ar as required. Now observe that there are k− ` vertices in e0 which are not in
F beg. Since degH(ar, X) > αnk−` by assumption, there are at least αnk−` possible ways
to choose π(e0 \F beg) in X so that π(e0) is an edge of H. In exactly the same way we find
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that for each 1 6 i 6 t, having fixed π(e0∪· · ·∪ei−1), since degH(π(ei−1∩ei), X) > αnk−`,
there are at least αnk−` ways to choose π(ei \ ei−1) in X so that π(ei) is an edge of H.
Overall this gives us at least (αnk−`)t+1 ways to choose the images of the vertices covered
by e0, . . . , et.

Next, for each i ∈ [`] we set π(b − ` + i) to be the ith vertex of br, so π(F end) = br,
as required. Similarly as before there are then at least αnk−` possible ways to choose
π(e3t \F end) in X so that π(e3t) is an edge of H, and for each 2t+ 1 6 i 6 3t− 1, having
fixed π(e3t ∪ · · · ∪ ei+1), there are at least αnk−` ways to choose π(ei \ ei+1) in X so that
π(ei) is an edge of H. Overall this gives us at least (αnk−`)t ways to choose the images
of the vertices covered by e2t+1, . . . , e3t.

Finally there are t(k − `)− ` isolated vertices in F0, and for each such vertex v there
are at least αn possibilities for π(v) in X (the fact that |X| > αn follows from our degree
assumption). We conclude that in total the number of functions π : [b] → V (H) with
π(F beg) = ar, π(F end) = br and π(F int) ⊆ X such that π(e) ∈ H for every e ∈ F0 is at
least

(αn)(t+1)(k−`)+t(k−`)+(t(k−`)−`) = (αn)3t(k−`)+k−2` = (αn)b−2`.

Every such function π which is injective is an embedding of F0 in H with the properties
described in the statement of the claim. Since the number of non-injective functions
π : [b] → V (H) with π(F beg) = ar and π(F end) = br is at most

(
b
2

)
nb−2`−1 6 1

2
(αn)b−2`,

the claim follows.

Our next claim uses an inductive argument to show that with high probability we can
find a copy of P in H+

p with prescribed ends and avoiding a given set of vertices. The
proof of this claim is broadly similar to that of Lemma 18, but here we have 2` fixed
vertices of the embedding (the ends of P ).

Claim 21. Given r ∈ [s] and a set Z ⊆ X of size |Z| 6 bs, with probability 1 −
exp(−Ω(n1−tc)) there is a copy of P in H+

p with ends ar and br whose interior vertices all
lie in X \ Z.

To prove Claim 21 we use a multiple exposure argument with t rounds. So let q := p/t

and for each i ∈ [t] let Hi be drawn independently from H
(k)
n,q . We may then assume that

H ∪
⋃
i∈[t]Hi ⊆ H+

p .

For each 0 6 i 6 t define Πi to be the set of injective functions π : [b] → V (H) for
which π is an embedding of Fi in H ∪

⋃
j∈[i]Hj such that π(F beg) = ar, π(F end) = br, and

π(F int) ⊆ X \Z. We prove by induction on i that, for each 0 6 i 6 t, with probability at
least 1− exp (−Ω(n1−tc)) we have

|Πi| >
(αn)b−2`qi

4 · 2i
(11)

Our base case i = 0 follows immediately from Claim 20. Indeed, every injective
function π as in the statement of Claim 20 is an element of Π0 unless the image of π
contains a vertex in Z. However, since |Z| 6 bs, there are at most b2snb−2`−1 6 1

4
(αn)b−2`
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functions π : [b] → V (H) with π(F beg) = ar and π(F end) = br which include a vertex of
Z in their image; this gives the desired inequality (with certainty).

Suppose therefore that for some i < t inequality (11) holds with probability at least
1 − exp (−Ω(n1−tc)), and observe that for any injection π ∈ Πi with π(e2t−i) ∈ Hi+1 we
have π ∈ Πi+1. Write S :=

(
V (H)
k

)
, and for each S ∈ S let NS denote the number of

injections π ∈ Πi with π(e2t−i) = S. Then
∑

S∈S NS = |Πi|, and NS 6 k!nb−2`−k for each
S ∈ S since the images of the vertices in e2t−i ∪ F beg ∪ F end are fixed up to permutations
of e2t−i. Exposing the edges of Hi+1, let N be the number of injections π ∈ Πi with
π(e2t−i) ∈ Hi+1. Then by Proposition 13 and using our inductive hypothesis for the final
inequality, we have

N >
E(N)

2
=
q
∑

S∈S NS

2
=
q|Πi|

2
>

(αn)b−2`qi+1

4 · 2i+1

with probability

1− exp

(
−1

8
· 1

k!nb−2`−k
· 2(αn)b−2`qi+1

4 · 2i+1

)
> 1− exp

(
−Ω(ptnk)

)
.

Observe that t(k − `) =
(⌈

k
k−`

⌉
− 1
)

(k − `) 6 k − 1, so ptnk > nk−t(k−`)−tc > n1−tc.
It follows that (11) holds for i + 1 with probability 1 − exp (−Ω(n1−tc)), completing the
induction argument.

In particular, the case i = t of (11) shows that with probability 1−exp (−Ω(n1−tc)) we
have |Πt| > 0. Since each π ∈ Πt is an embedding of Ft = P in H ∪

⋃
j∈[t]Hj ⊆ H+

p such

that π(F beg) = ar, π(F end) = br, and π(F int) ⊆ X \ Z, this demonstrates the existence
of a copy of P in H+

p as in the statement of Claim 21, and so completes the proof of the
claim.

Returning to the proof of the lemma, say that H+
p is well-connected if for every r ∈ [s]

and every set Z ⊆ X of size |Z| 6 sb there exists a copy of P in H+
p with ends ar and br

whose interior vertices all lie in X \ Z. Taking a union bound over every such r and Z,
by Claim 21 and our assumption that c < 1/t we find that the probability that H+

p is
well-connected at least

1− s · nsb · exp
(
−Ω(n1−tc)

)
> 1− o(1).

In other words, H+
p is well-connected with high probability.

Finally, observe that if H+
p is well-connected then we can greedily choose vertex-

disjoint `-paths Qr for r ∈ [s] as desired. Indeed, for each r ∈ [s] in turn we choose a copy
Qr of P in H+

p as follows. Let Z consist of all vertices covered by the previously-chosen
paths Q1, Q2, . . . , Qr−1, and choose a copy Qr of P in H+

p with ends ar and br in which
all interior vertices lie in X \ Z. Since Z consists of at most b vertices from each of at
most s previously-chosen copies of P , we have |Z| 6 bs, and so we may choose Qr in this
way since H+

p is well-connected. Do this for every r ∈ [s] and observe that the paths Qr

are then pairwise internally vertex-disjoint, and moreover that since each path Qr has b
vertices we have |

⋃
r∈[s] V (Qr)| = bs, as required.
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To prove Lemma 9, where we now have a linear number of paths to connect, we cannot
simply mimic the proof of Lemma 19 since the union bound in the penultimate paragraph
is no longer valid. Indeed, with |P| = θn paths the set Z defined there would now have
size |Z| > θn and so the number of possibilities for Z is at least

(
n
θn

)
, that is, exponential

in n, so a failure probability of exp(−Ω(n1−tc)) will no longer suffice. To overcome this
difficulty, we will show that if the size of P is sufficiently large then we can choose ends
b1 and b2 of paths in P such that b1 and b2 extend to many copies of F1 in H. This
statement should be compared to Claim 20, which shows that any pair of ends extend
to many copies of F0 in H. Having found two such ends b1 and b2 we can then proceed
similarly as in Claim 21 to show that for any small set Z we can find a path in H+

p with
ends b1 and b2 whose interior vertices all lie outside Z. Crucially, the fact that we begin
this argument with a copy of F1 instead of a copy of F0 means that we need to obtain
one fewer random edge; this reduces the probability of failure from exp(−Ω(n1−tc)) to
exp(−Ω(n2−tc)), and this stronger bound is sufficient for us to take a union bound over
all sets Z of small linear size. The argument outlined above is formalised as Claim 22.
Having proved this, we can then connect together all of the paths in P into a single cycle,
using Claim 22 to find connections until only a small number of paths remain, following
which we use Lemma 19 to find the remaining connections.

To describe how we connect paths we use the following notation. Given an ordered

`-tuple S = (x1, . . . , x`), we define
←−
S = (x`, . . . , x1), so

←−
S is the ordered `-tuple formed

by reversing the order of S. This definition is motivated by the following observation.
Suppose that Q1, Q2 and Q3 are `-paths such that Qi has ends ai := Qbeg

i and bi := Qend
i

for each i ∈ [3]. Observe that if b1 = a2 and b2 =
←−
b3 , and the vertices of Q1, Q2 and Q3

are otherwise distinct, then Q1Q2Q3 (the k-graph with vertex set
⋃
i∈[3] V (Qi) and edge

set
⋃
i∈[3] V (Qi)) is an `-path with ends a1 and←−a3 (think of traversing Q1 and Q2 from a1

via a2 = b1 to b2 =
←−
b3 , then traversing Q3 ‘in reverse’ from

←−
b3 to ←−a3).

Proof of Lemma 9. Fix integers 2 6 ` < k, define t :=
⌈

k
k−`

⌉
− 1 and b := 3(k − `)t + k

and introduce a new constant β with ϑ� β � α, 1/k. Let H be a k-graph on n vertices
and let P be a collection of at most ϑn vertex-disjoint `-paths in H such that, writing
X := V (H) \

⋃
P∈P V (P ), for every set S ∈

(
V (H)
`

)
we have degH(S,X) > αnk−`. Also fix

c < 1/t and p > n−(k−`)−c. We begin with the following claim (described above).

Claim 22. Let E be a set of pairs (x, y) for which both x and y are ordered `-tuples of
vertices of H, and suppose that the sets x ∪ y for (x, y) ∈ E are pairwise vertex-disjoint.
If |E| > 1/β then there must exist distinct pairs (a1, b1), (a2, b2) ∈ E for which there are
at least 1

2
β4nb−2` injective functions π : [b]→ V (H) such that π is an embedding of F1 in

H with π(F beg) = b1, π(F end) =
←−
b2 and π(F int) ⊆ X. Moreover, for each set Z ⊆ X of

size |Z| 6 bϑn, with probability 1− exp(−Ω(n2−tc)) there is a copy of P in H+
p with ends

b1 and
←−
b2 whose interior vertices all lie in X \ Z.

To prove Claim 22, consider any ordered `-tuple y of vertices of H, and observe that
by the same argument as in the proof of Claim 20 there are at least (αn)(t+1)(k−`) maps
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φ : e0 ∪ · · · ∪ et → y ∪X such that φ(F beg) = y and φ(ei) ∈ H for every 0 6 i 6 t. Define
r := |et ∩ e2t|. For each ordered r-tuple S of vertices of V let Φ(y, S) denote the set of all
such maps φ with φ(et ∩ e2t) = S, and let W(y) denote the set of ordered r-tuples S for
which |Φ(y, S)| > βn(t+1)(k−`)−r. We then have

(αn)(t+1)(k−`) 6
∑
S

Φ(y, S) 6 |W(y)| · n(t+1)(k−`)−r + nr · βn(t+1)(k−`)−r,

and so certainly we have |W(y)| > 3βnr. If |E| > 1/β then by inclusion-exclusion we
can choose distinct (a1, b1), (a2, b2) ∈ E for which |W(b1)∩W(b2)| > β2nr. Then for each
S ∈ W(b1) ∩ W(b2), each φ ∈ Φ(b1, S) and each φ′ ∈ Φ(b2, S) we may define a map
π : [b]→ V (H) by

π(x) =

{
φ(x) if x ∈ e0 ∪ · · · ∪ et,
φ′(b+ 1− x) otherwise.

Since no edge of F1 intersects et ∩ e2t other than et and e2t we then have π(e) ∈ H for

every e ∈ F1. Moreover π(F beg) = b1, π(F end) =
←−
b2 and π(F int) ⊆ X. In this way we

obtain ∑
S∈W(b1)∩W(b2)

|Φ(b1, S)| · |Φ(b2, S)| > β2nr · (βn(t+1)(k−`)−r)2 = β4nb−2`

such maps π, since r = k − t(k − `) and b = 3t(k − `) + k. Since there are at most(
b
2

)
nb−2`−1 6 1

2
β4nb−2` maps π : [b] → V (H) such that π(F beg) = b1 and π(F end) =

←−
b2

which are not injective, this completes the proof of the first statement of the claim.
Now fix Z ⊆ X of size |Z| 6 bϑn. Set H1 := H and let H2, . . . , Ht be independently

drawn from H
(k)
n,q , where q = p/t. We may then assume that

⋃
i∈[t]Hi ⊆ H+

p . For each

i ∈ [t] define Πi to be the set of injective functions π : [b] → V (H) for which π is an

embedding of Fi in
⋃
j∈[i]Hj such that π(F beg) = b1, π(F end) =

←−
b2 , and π(F int) ⊆ X \ Z.

Arguing by induction on i then shows that for each i ∈ [t], with probability at least
1− exp (−Ω(n2−tc)) we have

|Πi| >
β4nb−2`qi−1

2i
(12)

Indeed, the argument is almost identical to that for Claim 21, with the exception that the
base case is now the case i = 1, for which (12) holds with certainty by the first part of this
claim. The crucial point is that |Πi| is larger by a factor of Θ(q−1) in (12) compared to
(11), and so for each i ∈ [t] we find that (12) holds with probability 1− exp(−Ω(pt−1nk))
instead of 1− exp(−Ω(ptnk)) as before. Since pt−1nk > n2−tc, this completes the proof of
the claim.

We now proceed iteratively through |P| steps to identify how we shall connect the
paths in P into our desired `-cycle. Indeed, we shall track a set Ei which indicates the
pairs of ends of paths after the ith connecting step, and a set Fi which indicates the
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pairs of ends which we have connected after the ith connecting step. Initially we have not
connected any paths in P , so we set E0 := {(P beg, P end) : P ∈ P} and F0 := ∅. At each
step i > 1, if |Ei−1| > 1/β, we choose distinct pairs (a1, b1), (a2, b2) ∈ Ei−1 as in Claim 22,
and set

Ei = (Ei−1 ∪ {(a1,←−a2)}) \ {(a1, b1), (a2, b2)} and Fi = Fi−1 ∪ {(b1,
←−
b2 )}.

Note that this corresponds to finding a connecting path from b1 to
←−
b2 . On the other

hand, if instead we have 2 6 |Ei−1| 6 1/β then we arbitrarily choose distinct pairs
(a1, b1), (a2, b2) ∈ Ei−1 and set

Ei = (Ei−1 ∪ {(a1, b2)}) \ {(a1, b1), (a2, b2)} and Fi = Fi−1 ∪ {(b1, a2)}.

Note that this corresponds to finding a connecting path from b1 to a2. Finally, if |Ei−1| = 1
then let (a1, b1) be the unique element of Ei−1 and set Ei = ∅ and Fi = Fi−1 ∪ {(b1, a1)};
this corresponds to a connecting path from b1 to a1. Since |E0| = |P| and |Ei| = |Ei−1| − 1
for each 1 6 i 6 |P| we find that E|P| is empty, and we terminate the iteration at the end
of this step.

Define s := |P| and z := max(s − b1/βc, 0). Then the connecting process described
above has s steps in total, and we applied Claim 22 to choose pairs in each of the first
z steps before choosing pairs arbitrarily in each of the final s − z steps. Taking a union
bound over all the z 6 s 6 θn pairs (x,←−y ) ∈ Fz and all sets Z ⊆ X of size at most bθn,
we find with probability

1− θn ·
(
n

bθn

)
· exp

(
−Ω(n2−tc)

)
> 1− o(1)

that for every pair (x,←−y ) ∈ Fz and every set Z ⊆ X of size at most bθn there exists a copy
Q(x,←−y ) of P in H+

p with ends Qbeg
(x,←−y )

= x and Qend
(x,←−y )

=←−y whose interior vertices all lie in

X \Z. Furthermore, Lemma 19 tells us that with high probability there exists a collection
Q of s− z pairwise vertex-disjoint `-paths Q(x,y) in H+

p for each pair (x, y) ∈ Fs \Fz such

that Q(x,y) has ends Qbeg
(x,y) = x and Qend

(x,y) = y and so that Qint
(x,y) ⊆ X \ Z, and moreover

that the paths in Q cover at most b(s − z) vertices. Fix an outcome of our random
formation of H+

p for which both these events occur. Having done this, we choose a copy

Q(x,←−y ) of P in H+
p for each pair (x,←−y ) ∈ Fz with ends Qbeg

(x,←−y )
= x and Qend

(x,←−y )
= ←−y and

with Qint
(x,←−y )

= X \ Z so that the chosen copies are pairwise vertex-disjoint and do not
intersect any path in Q. Indeed, we can make these choices greedily, at each step taking
the set Z ⊆ X to consist of all vertices in X which are contained in a member of Q or a
previously-chosen Q(x,←−y ), and we then have |Z| 6 sb 6 bθn. Having done so, we add all
of these chosen copies to Q.

We are now ready to form our desired cycle. For this we initially take P0 = P , and
repeat each step of the iterative process above in turn. At each step i ∈ [z] we chose some

(a1, b1) and (a2, b2) in Ei−1 and added the pair (b1,
←−
b2 ) to Fi−1 to form Fi, and we now let

P1, P2 ∈ Pi−1 be the paths in Pi−1 with ends a1 and b1 and ends a2 and b2 respectively,
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so since (b1,
←−
b2 ) ∈ F there is a path Q ∈ Q with ends b1 and

←−
b2 . Similarly, at each step

i ∈ [s] \ [z] we chose some (a1, b1) and (a2, b2) in Ei−1 and added the pair (b1, a2) to Fi−1
to form Fi, and we now let P1, P2 ∈ Pi−1 be the paths in Pi−1 with ends a1 and b1 and
ends a2 and b2 respectively, so since (b1, a2) ∈ F there is a path Q ∈ Q with ends b1 and
a2. In either case we form Pi from Pi−1 by removing P1 and P2 and adding P1QP2, which
has ends a1 and ←−a2 in the former case and ends a1 and b2 in the latter case. By induction
on i it follows that for each 0 6 i 6 s− 1 the set Pi is a collection of s− i vertex-disjoint
`-paths in H+

p for which the elements of Ei are precisely the pairs of ends of members of
Pi and such that every path in P is a path segment of some path in Pi (the case i = 0
is provided by our choice of E0 and P0 = P). The case i = s − 1 then yields that Ps−1
consists of a single `-path P ∗ in H+

p which contains every path in P as a path segment and
whose ends are a∗ and b∗, where (a∗, b∗) is the unique element of Es−1. Since (a∗, b∗) must
then have been added to Fs in the final step, it follows that there is an `-path Q∗ ∈ Q
with ends b∗ and a∗, and C = P ∗Q∗ is then an `-cycle in H+

p which contains every path
in P as a path segment. We also have |V (C) ∩X| 6 bθn 6 4kθn since the only vertices
used from X are the at most b vertices of X contained in each of the at most θn paths
in Q.

5 Concluding remarks

Our proof of Theorem 6 used an absorbing argument in which both the connecting and
absorbing structures were ‘composite’ structures formed partly of non-random edges in
the k-graph H and partly of random edges added to form H+

p . We are not aware of any
previous uses of this approach, but we believe it may prove useful for a range of related
problems.

It is not too difficult to modify the proof of Theorem 6 to give an alternative proof
of Theorem 5. Indeed, given integers k and m, for p = O(n−(k−1)) it is straightforward

to show that the random k-graph H
(k)
n,p admits an almost-spanning collection of vertex-

disjoint 1-paths of length m. Moreover, it is not too difficult to adapt the proofs of
Lemmas 8 and 9 to show that each of these statements holds for 1-paths also in this
probability regime. Finally slight changes are needed to the proof of Theorem 6 to reflect
that the path-tiling is almost-spanning rather than spanning, but this presents no great
difficulty.

While we were finalising this paper, two further advances on large structures in
randomly-perturbed graphs were publicised: Balogh, Treglown and Wagner [2] proved
an analogue of Theorem 4 for perfect H-tilings, whilst Böttcher, Montgomery, Parczyk
and Person [7] gave a similar result for any spanning graph of bounded maximum degree.

In the original manuscript of this paper we asked whether Theorems 5 and 6 remain
valid if we replace the minimum `′-degree condition by a weaker type of minimum degree
condition, and more specifically whether analogous results hold if we instead assume the
minimum vertex degree condition δ1(H) > αnk−1? While this paper was under review,
this question was answered in a strong form by Han and Zhao [22]. Indeed, they showed
for every k > 3, every 1 6 ` 6 k − 1 and every α > 0 there exist C, ε > 0 such that
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if H is a k-graph on n vertices with δ1(H) > αnk−1, where n is sufficiently large and
divisible by k − `, then for every p > n−(k−`)−ε (if ` > 2) or p > Cn−(k−1) (if ` = 1)
the perturbed k-graph H+

p contains a Hamilton `-cycle with high probability. Related
results on powers of Hamilton cycles in randomly-perturbed hypergraphs were established
by Bedenknecht, Han, Kohayakawa and Mota [8] and by Dudek, Reiher, Ruciński and
Schacht [16], whilst further advances regarding embeddings in randomly-perturbed graphs
were made by Böttcher, Han, Kohayakawa, Montgomery, Parczyk and Person [6] and by
Joos and Kim [25].
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[1] P. Allen, J. Böttcher, O. Cooley and R. Mycroft, Tight cycles and regular slices in
dense hypergraphs, Journal of Combinatorial Theory, Series A 149 (2017), 30–100.

[2] J. Balogh, A. Treglown and A. Wagner, Tilings in randomly perturbed
dense graphs, Combinatorics, Probability and Computing, to appear,
doi:10.1017/S0963548318000366.

[3] J.O. Bastos, G.O. Mota, M. Schacht, J. Schnitzer and F. Schulenburg, Loose Hamil-
tonian cycles forced by large (k− 2)-degree – approximate version, SIAM Journal on
Discrete Mathematics 31 (2017), 2328–2347.

[4] T. Bohman, A. Frieze and R. Martin, How many random edges make a dense graph
hamiltonian?, Random Structures & Algorithms 22 (2003), 33–42.

[5] B. Bollobás, The evolution of sparse graphs, Graph Theory and Combinatorics, Pro-
ceedings of Cambridge Combinatorial Conference in honour of Paul Erdős, Academic
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[30] D. Kühn and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high
minimum degree, Journal of Combinatorial Theory, Series B 96 (2006), 767–821.

[31] , Hamilton cycles in graphs and hypergraphs: an extremal perspective, Pro-
ceedings of the International Congress of Mathematicians 2014, Seoul, Korea, vol. 4,
2014, pp. 381–406.
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