UNIVERSITYOF BIRMINGHAM # University of Birmingham Research at Birmingham ### Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation? Lam, Yuko P. Y.; Wootton, Christopher A.; Hands-portman, Ian J.; Wei, Juan; Chiu, Cookson K. C.; Romero-Canelón, Isolda; Lermyte, Frederik, Barrow, Mark P.; O'connor, Peter B. DOI: 10.1039/C8CC06675B License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Lam, YPY, Wootton, CA, Hands-portman, IJ, Wei, J, Chiu, CKC, Romero-Canelón, I, Lermyte, F, Barrow, MP & O'connor, PB 2018, 'Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation?', Chemical Communications, vol. 54, no. 98, pp. 13853-13856. https://doi.org/10.1039/C8CC06675B Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility 07/12/2018 This is a peer-reviewed version of an article published in Chemical Communications. Chem. Commun., 2018,54, 13853-13856 10.1039/C8CC06675B #### **General rights** Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. #### Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate. Download date: 17, Apr. 2024 Does Deamidation of Islet Amyloid Polypeptide Accelerate Amyloid Fibril Formation? Yuko P. Y. Lam,^a Christopher A. Wootton,^a Ian Hands-Portman,^b Juan Wei,^a Cookson K. C. Chiu,^a I. Romero-Canelon,^{ac} Frederik Lermyte,^a Mark P. Barrow,^a Peter B. O'Connor*^a #### Abstract Mass spectrometry has been applied to determine the deamidation sites and the aggregation region of the deamidated human islet amyloid polypeptide (hIAPP). Mutant hIAPP with iso-aspartic residue mutations at possible deamidation sites showed very different fibril formation behavior, which correlates with the observed deamidation-induced acceleration of hIAPP aggregation. Deamidation is a non-enzymatic post-translational modification (PTM) which contributes to protein ageing. Deamidation occurs spontaneously in solution at asparagine (Asn) and glutamine (Gln) residues, and results in formation of iso-aspartic acid/aspartic acid and γ -glutamic acid/glutamic acid (and their stereoisomers), respectively. The deamidation rate of Asn is faster than Gln due to the shorter distance between the main chain amido group (-NH-) and the side chain amide group (-NH₂-). With an additional methylene group (-CH₂-) into the backbone of iso-aspartic acid and γ -glutamic acid; the tertiary structure, stability, folding, and function of proteins can be dramatically altered by deamidation. Previous studies showed that deamidation can accelerate fibril formation in certain cases, including mutated amyloid- β (D7N and D23N) observed in Alzheimer's disease. Aggregation of β_2 -microglobulin from dialysis-associated amyloidosis disease, and α B-crystallin from human eye lens have also been shown to be affected by deamidation. Human islet amyloid polypeptide (hIAPP; also referred to as amylin) is a 37-residue hormone peptide co-secreted with insulin and involved in regulating blood glucose levels. The concentration of hIAPP is around 1-2% relative to the level of insulin in secretory granules. hIAPP contains an intramolecular disulfide bond between Cys-2 and Cys-7, as well as an amidated C-terminus, and is an intrinsically disordered protein with a low level of persistent helical structure between residues Asn-3 and Leu-27 in solution. hIAPP is an amyloid protein which contains six Asn and one Gln as potential deamidation sites. A previous study from Nilsson *et al.* used a variant of hIAPP segment, residues 20-29 (SNNFPAILSS) which is non-amyloidogenic and showed that addition of less than 5% of deamidated monomer could accelerate the amyloid fibril formation. Results from Dunkelberger *et al.* also showed that deamidation of hIAPP disrupted the β-sheet structure around Leu-27, resulting in a morphology change of hIAPP fibrils, along with accelerated fibril formation. The formation of hIAPP fibrils does not contribute to type II diabetes (T2D); however early oligomers of hIAPP lead to the decline of pancreatic β-cell mass and the failure of islet cell transplantation for T2D treatment. Thus, accelerating the formation of the early oligomers of hIAPP may reduce the graft survival rate. Deamidation has a significant impact on hIAPP fibril formation, the effects of the effects on the deamidation rate, the deamidation site(s), and the effects of isomeric deamidation products of hIAPP, however, have not yet been fully addressed. MS is a powerful tool for examining deamidation in proteins as the deamidation reaction produces products with a mass shift of +0.984 Da (-NH₂ to -OH) at the deamidated residue, which is readily detected by MS.²⁶⁻²⁸ Previous studies also suggested that deamidation can be directly quantified by measuring the peak area of the non-deamidated and deamidated peaks, thus the percentage of deamidation in the sample can be estimated.^{29, 30} Tandem MS/MS can further locate the deamidation site in proteins, and differentiate the isomeric deamidation products.^{2, 26-30} Collisionally activated dissociation (CAD) MS/MS can localise deamidation site via a mass shift (+0.984 Da) appears in b and y ion fragments containing the deamidated residue, while unmodified fragments are observed in the regions not containing deamidated residues.³⁰ Electron capture dissociation (ECD) MS/MS can be used to not only localises the deamidation site in protein, but also uses to differentiate the isomeric products of deamidation by the mass shift of +58 and -57 Da at the c and z ion fragments of iso- $/\gamma$ - deamidation products respectively. The peak intensity of iso-/γ- deamidation products can also compare with the peak intensity of aspartic acid/glutamic acid in order to determine the ratio of the isomeric products.²⁹ In order to localise the deamidation site(s) in the incubated hIAPP solution, CAD MS/MS with a 12 Tesla (T) Fourier transform ion cyclotron mass spectrometer (FTICR MS) was applied. The y₅ fragment clearly showed a deamidated peak in the incubated sample (Fig. 1B), indicating deamidation occurs at Asn-35 residue in hIAPP. For the b fragments, no deamidated peaks were observed for the first 20 amino acid residues (Fig. 1C); however, a deamidated peak was present corresponding to the b₂₁ fragment (Fig. 1D), suggesting deamidation only occurs at Asn-21 but not at Asn-3, Gln-10, and Asn-14 residues. Furthermore, another deamidated peak was detected corresponding to the b₂₂ fragment ion in the incubated solution (Fig. 1E), indicating Asn-22 also deamidates within four weeks at 37°C. **Figure 1.** (A) The amino acid sequence of hIAPP. The potential deamidation sites are coloured in red. Key CAD MS/MS fragments of hIAPP revealing deamidation at amino acid residues after 4 weeks incubation at 37° C are shown (B) y_5 , (C) b_{20} , (D) b_{21} , and (E) b_{22} . The blue/red circles indicate the isotopic peaks of singly/doubly deamidated fragments, respectively. Subsequently, MS was applied to determine the deamidation rates of each individual deamidated site in the incubated solutions and resulting fibrils by calculating the percentage ratio between the non-deamidated and the deamidated fragment ion peak areas for each sample. In the incubated solution, the earliest deamidation instance was observed on day 5, and was identified within the y_5 fragment ion (Fig. 2A), indicating the Asn-35 is the first amino acid residue in hIAPP to undergo deamidation, which requires 5-day of incubation at 37° C. Deamidation at the b₂₁ and b₂₂ fragment ions was observed on day 8, suggesting Asn-21 and Asn-22 residues are the next amino acid residue to deamidate in hIAPP and require a longer incubation time for deamidation compared to Asn-35 residue. Though the extent of deamidation increased with the incubation time; a similar percentage and rate of deamidation were found in the y₅, b₂₁, and b₂₂ fragment ions at the various time points for the incubated solutions. After 28 days incubation, each deamidated fragment ion (y₅, b₂₁, and b₂₂) of the soluble hIAPP showed ~18% deamidation, indicating even though the initial deamidation time between Asn-21, Asn-22, and Asn-35 residues are different, the extent as well as the rate of deamidation of these residues are similar across and at the end of the incubation time. The insoluble protein pellets formed over the course of the incubation were re-solubilised and showed a greater extent of deamidation than the soluble hIAPP species. Deamidation was observed in the day-7, day-14, day-21, and day-28 samples (Fig. 2B). On day-7, ~7.5% of the y₅ fragment ion was deamidated while no deamidation was observed for the b21 and b22 fragment ions in the pellet. On day-14, the extent of deamidation for the y₅ fragment ion increased sharply to 16% and the b21 and b22 showed ~7.5% deamidation. After 28 days incubation, the extent of deamidation of the y₅, b₂₁, and b₂₂ fragment ions were at 39%, 30%, and 29% respectively, distinctly larger than for the soluble hIAPP species above, suggesting the fibrils of hIAPP contains a higher extent of deamidation at Asn-35 compared to Asn-21 and Asn-22 residues. Asn-35 was the earliest deamidation site observed in the incubated solutions and contained the highest extent of deamidation in the fibril pellets, which agrees with the findings in previous deamidation studies, 3, 31 suggesting that the primary sequence of Ser-35 Asn-Thr in hIAPP had the shortest deamidation time among all the other segments studied. The higher extent of deamidation observed in the fibrils of hIAPP compared to the incubated solutions also indicates that deamidated hIAPP tends to aggregate and form insoluble fibrils more rapidly than the wild-type hIAPP. Figure 2. The extent of deamidation observed in CAD MS/MS fragments; the y5 (black), b21 (red), and b₂₂ (blue) for 10 μM aqueous hIAPP (A) solutions and (B) dissolved fibril solutions. In order to ascertain the effects of deamidated isomeric products on the aggregation process, pure mutant hIAPP peptides were synthesised with aspartic acid ((D)₃hIAPP) or iso-aspartic acid ((isoD)₃hIAPP) replacement at the detected deamidation site from above, i.e. residues 21, 22, and 35 (Fig. S1, ESI†). The 7+ charge state dimers of ((D)₃hIAPP) and ((isoD)₃hIAPP) were fragmented by ECD MS/MS in order to determine the non-covalent interaction region between the mutant hIAPP units (Fig. S2 – S3, ESI†). The aggregation regions of ((D)₃hIAPP) and ((isoD)₃hIAPP) were found between Asn-31 and Thr-36 residues, which is similar to the proposed aggregation region of 7+ charge state dimer of wild-type hIAPP in the previous studies, suggesting there is no difference between the wild-type and the two mutant hIAPPs regarding the aggregation sites for the formation of early oligomers.³² MS can quantify soluble amyloid proteins in solution.³² The ionisation of aqueous protein solutions to gas phase ions, however, is limited to soluble components only, so that the insoluble fibrils are difficult to quantify using MS. Thus, the relative concentration of amyloid fibrils formed in the incubated solutions were determined by using Thioflavin T (ThT) fluorescence emission analysis at the wavelength of 490 nm and the overall structures of fibrils were observed using transmission electron microscopy (TEM). The relative fluorescence emission of the 10 μM solutions of wild-type hIAPP, ((D)₃hIAPP), and ((isoD)₃hIAPP) were measured and the lag phases of the formation of mature fibrils in wild-type hIAPP solution was 42 hours while in ((D)₃hIAPP) and ((isoD)₃hIAPP) solutions were ~ 30 hours (Fig. 3A - 3C), indicating mutant hIAPPs with deamidated residues replacement at Asn-21, Asn-22, and Asn-35 accelerate the rate of mature fibrils formation which supports the hypothesis that deamidated hIAPPs accelerate the aggregation rate of non-deamidated hIAPP. TEM images of the wild-type hIAPP, ((D)₃hIAPP), and ((isoD)₃hIAPP) solutions incubated at 37°C for one week were also obtained (Fig. 3E - 3G). Branched and elongated fibrils were observed in the wild-type hIAPP as well as ((D)₃hIAPP) incubated solutions; while densely packed fibrils were found in ((isoD)3hIAPP) solution. The fibril structures observed in ((isoD)₃hIAPP) solution were distinctly different from the fibrils found in wild-type hIAPP and ((D)₃hIAPP), suggesting the morphology of fibrils formed in ((isoD)₃hIAPP) is different from wild-type hIAPP as well as ((D)₃hIAPP). **Figure 3.** The relative fluorescence activity of the incubated 10 μ M (A) ThT solution (control; black), 10 μ M wild-type hIAPP (blue), (B) 10 μ M mutant ((D)₃hIAPP) (green), and (C) 10 μ M mutant ((isoD)₃hIAPP) (red) solutions measured at emission 490 nm. The TEM images of the (D) fresh and (E) 1-week incubated 10 μ M wild-type hIAPP solutions. The TEM images of 10 μ M (F) ((D)₃hIAPP) and (G) ((isoD)₃hIAPP) solutions after 1 week incubation at 37°C. The scale bars for each TEM image are inset. In order to study the effects of the isomeric deamidation products on the wild-type hIAPP aggregation, ((D)₃hIAPP) and ((isoD)₃hIAPP) solutions were individually spiked into wild-type hIAPP solution at 5%, 10%, 25%, and 50% amounts. After one week incubation, the percentage of remaining soluble monomeric hIAPP in the seeded solutions was consistently less in the spiked solutions than the control hIAPP incubated solution, and less soluble hIAPP was found in the mutant ((isoD)₃hIAPP) spiked solutions compared to the ((D)₃hIAPP) spiked solutions (Fig. 4A). The p-values of seeding 5% and 10% mutant ((D)₃hIAPP) into the solution were higher than 0.05, which indicated the differences between the seeded solutions and the control sample were not significant. The p-values of the remaining seeded solutions were less than 0.05, which showed significant differences between the control and the seeded solutions. The normalised percentage of soluble hIAPP with 5% spiking of ((D)₃hIAPP) or ((isoD)₃hIAPP) was 4% and 9% less than the soluble hIAPP found in the control incubated solutions respectively. The normalised percentage of soluble hIAPP consistently decreased with increased amounts of ((D)₃hIAPP) or ((isoD)₃hIAPP) in the incubated solutions. For the solutions with 50% spiking of ((D)₃hIAPP) or ((isoD)₃hIAPP), the normalised percentage of soluble hIAPP was 28% and 46% less than the soluble hIAPP found in the control solutions respectively. These results indicate the effects of mutant hIAPPs in accelerating wild-type hIAPP are concentration-dependent. **Figure 4.** (A) A plot showing the normalised percentage of soluble hIAPP in the 10 μM solutions with spiking different percentage of mutant $((D)_3hIAPP)$ or $((isoD)_3hIAPP)$ to wild-type hIAPP (control) measured using MS after 1 week incubation. * indicates the p-value of the sample percentages are less than 0.05 compared to the control percentage in a paired t-test. (D) The relative fluorescence activity of 10 μM hIAPP, 9.5 μM hIAPP plus 0.5 μM (5%) $((D)_3hIAPP)$, and 9.5 μM hIAPP plus 0.5 μM (5%) $((S)_3hIAPP)$ measured at emission 490 nm. The fibrils formed during the incubation experiments were measured using ThT fluorescence spectroscopy. The measured percentage change of fluorescence emission in 5% mutant hIAPP seeded solutions further indicated that the amount of amyloid fibrils formed in the seeded solutions were consistently higher than the wild-type hIAPP incubated solution and the overall percentage of amyloid fibrils formed in ((D)₃hIAPP) and ((isoD)₃hIAPP) seeded solutions was 27% and 48% higher than the wild-type hIAPP incubated solution respectively (Fig. 4B). The fluorescence emission measurement and MS quantification showed the effect of seeding ((isoD)₃hIAPP) is twice that of seeding the same amount of ((D)₃hIAPP) into non-deamidated hIAPP solutions. The difference between the TEM images of incubated ((D)₃hIAPP) and ((isoD)₃hIAPP) solutions also agrees the greater effect of $((iso D)_3hIAPP)$ compared to $((D)_3hIAPP)$ (Fig. 3E - 3G). The observed morphology of fibrils was different in ((isoD)₃hIAPP) compared to ((D)₃hIAPP), indicating differences in the aggregation behaviour and rate of non-deamidated hIAPP, as observed in the MS and fluorescence. In order to examine the effects of mutant ((D)₃hIAPP) and ((isoD)₃hIAPP) in incubated solutions and fibrillary pellets, MS spectra of mixed wild-type hIAPP with various spiking percentage of mutant ((D)₃hIAPP) and ((isoD)₃hIAPP) were acquired (Fig. S4, ESI†). The peak intensity of mutant ((D)₃hIAPP) and ((isoD)₃hIAPP) were consistently higher in the fibrillary pellets compared to the incubated and the fresh solutions, suggesting the important role of ((D)₃hIAPP) or ((isoD)₃hIAPP) in enhancing fibril formation. The experimental results herein demonstrate the importance as well as the effects of hIAPP deamidation on hIAPP aggregation rate. Deamidation of hIAPP is shown to occur at Asn-21, Asn-22, as well as Asn-35 residues of the incubation and a higher percentage of deamidated hIAPP was observed in fibrillary pellet, suggesting that deamidated hIAPP can accelerate the rate of hIAPP fibril formation. The experimental results of the mutant hIAPP, ((D)₃hIAPP) and ((isoD)₃hIAPP), not only agree with the hypothesis of deamidated hIAPP can increase fibril formation, but also suggest the effect of seeding ((isoD)₃hIAPP) is twice than that of ((D)₃hIAPP) seeding into non-deamidated hIAPP solutions as the morphology of ((isoD)₃hIAPP) fibrils are distinctly different from the fibrils formed in ((D)₃hIAPP) solutions. These results provide qualitative and quantitative evaluation of deamidated hIAPP on the rate of aggregation which could help inform further studies of the effects of deamidation on accelerating amyloid fibril formation. #### **Conflicts of interest** There are no conflicts to declare. #### Acknowledgements This research was supported by the funding from University of Warwick Research Development Fund (RD16003), Engineering and Physical Sciences Research Council (EP/F034210/1, EP/J000302/1, EP/N021630/1), Funds for Women Graduates, and Great Britain China Centre. #### References - 1. E. R. Stadtman, J. Gerontol., 1988, 43, B112-B120. - 2. J. J. Cournoyer, J. L. Pittman, V. B. Ivleva, E. Fallows, L. Waskell, C. E. Costello and P. B. O'Connor, *Protein Sci.*, 2005, **14**, 452-463. - 3. N. E. Robinson and A. B. Robinson, *Proc. Natl. Acad. Sci. USA*, 2001, **98**, 944-949. - 4. A. B. Robinson and C. J. Rudd, *Curr. Top. Cell. Regul.*, 1974, **8**, 247-295. - 5. H. T. Wright, Crit. Rev. Biochem. Mol. Biol., 1990, 26, 1-52. - 6. H. A. Doyle and M. J. Mamula, *Trends Immunol.*, 2001, **22**, 443-449. - 7. N. E. Robinson and A. Robinson, *Molecular clocks: deamidation of asparaginyl and glutaminyl residues in peptides and proteins*, Althouse press, Oregon, 2004. - 8. N. P. Sargaeva, C. Lin and P. B. O'Connor, *Anal. Chem.*, 2011, **83**, 6675-6682. - 9. T. Shimizu, H. Fukuda, S. Murayama, N. Izumiyama and T. Shirasawa, *J. Neurosci. Res.*, 2002, **70**, 451-461. - 10. N. M. Kad, N. H. Thomson, D. P. Smith, D. A. Smith and S. E. Radford, *J. Mol. Biol.*, 2001, **313**, 559-571. - 11. A. J. Soulby, J. W. Heal, M. P. Barrow, R. A. Roemer and P. B. O'Connor, *Protein Sci.*, 2015, **24**, 850-860. - 12. R. Gupta and O. P. Srivastava, *Invest. Ophthalmol. Vis. Sci.*, 2004, **45**, 206-214. - 13. T. Takata, J. T. Oxford, B. Demeler and K. J. Lampi, *Protein Sci.*, 2008, **17**, 1565-1575. - 14. G. J. S. Cooper, A. J. Day, A. C. Willis, A. N. Roberts, K. B. M. Reid and B. Leighton, *Biochim. Biophys. Acta*, 1989, **1014**, 247-258. - 15. E. Jaikaran, M. R. Nilsson and A. Clark, *Biochem. J*, 2004, **377**, 709-716. - 16. S. Luca, W. M. Yau, R. Leapman and R. Tycko, *J. Biochem.*, 2007, **46**, 13505-13522. - 17. G. T. Westermark, P. Westermark, C. Berne, O. Korsgren and T. Nordic Network Clin Islet, *New Engl. J. Med.*, 2008, **359**, 977-979. - 18. M. R. Nilsson, M. Driscoll and D. P. Raleigh, *Protein Sci.*, 2002, **11**, 342-349. - 19. E. B. Dunkelberger, L. E. Buchanan, P. Marek, P. Cao, D. P. Raleigh and M. T. Zanni, *J. Am. Chem. Soc.*, 2012, **134**, 12658-12667. - 20. L. Haataja, T. Gurlo, C. J. Huang and P. C. Butler, *Endocr. Rev.*, 2008, **29**, 303-316. - 21. A. Clark, C. Wells, I. Buley, J. Cruickshank, R. Vanhegan, D. Matthews, G. Cooper, R. Holman and R. Turner, *Diabetes research (Edinburgh, Scotland)*, 1988, **9**, 151-159. - 22. A. Lorenzo, B. Razzaboni, G. C. Weir and B. A. Yankner, *Nature*, 1994, **368**, 756-760. - 23. K. Potter, A. Abedini, P. Marek, A. Klimek, S. Butterworth, M. Driscoll, R. Baker, M. Nilsson, G. Warnock and J. Oberholzer, *Proc. Natl. Acad. Sci. USA*, 2010, **107**, 4305-4310. - 24. P. T. Nguyen, X. Zottig, M. Sebastiao and S. Bourgault, *J. Biochem.*, 2017, **56**, 3808-3817. - 25. R. Akter, P. Cao, H. Noor, Z. Ridgway, L. H. Tu, H. Wang, A. G. Wong, X. X. - Zhang, A. Abedini, A. M. Schmidt and D. P. Raleigh, *J. Diabetes Res.*, 2016, DOI: 10.1155/2016/2798269, 18. - 26. W. Y. K. Chan, T. D. Chan and P. B. O'Connor, *J. Am. Soc. Mass. Spectrom.*, 2010, **21**, 1012-1015. - 27. P. P. Hurtado and P. B. O'Connor, *Anal. Chem.*, 2012, **84**, 3017-3025. - 28. X. Li, X. Yu, C. E. Costello, C. Lin and P. B. O'Connor, *Anal. Chem.*, 2012, **84**, 6150-6157. - 29. J. J. Cournoyer, C. Lin, M. J. Bowman and P. B. O'Connor, *J. Am. Soc. Mass. Spectrom.*, 2007, **18**, 48-56. - 30. H. Yang and R. A. Zubarev, *Electrophoresis*, 2010, **31**, 1764-1772. - 31. N. E. Robinson and A. B. Robinson, *Proc. Natl. Acad. Sci. U. S. A.*, 2001, **98**, 4367-4372. - 32. Y. P. Y. Lam, C. A. Wootton, I. Hands-Portman, J. Wei, C. K. C. Chiu, I. Romero-Canelon, F. Lermyte, M. P. Barrow and P. B. O'Connor, *Anal. Chem.*, 2018, **Submitted**. - 33. P. Caravatti and M. Allemann, *Org. Mass Spectrom.*, 1991, **26**, 514-518. - 34. F. T. S. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson and C. F. Kaminski, *Analyst*, 2013, **138**, 2156-2162. - 35. T. Yang, X. H. Wang, C. L. Zhang, X. Ma, K. Wang, Y. Q. Wang, J. Luo, L. Yang, C. Yao and X. Y. Wang, *Chem. Commun.*, 2016, **52**, 2245-2248. ### **Graphic Abstracts:** Deamidation sites of hIAPP were determined and the amount of fibril formed in mutant hIAPPs were higher than wild-type hIAPP. ## **Electronic Supplementary Information Experimental Procedure** Sample preparation for deamidated hIAPP and fibrils. Wild-type hIAPP lyophilized powder (Sigma Aldrich Company Ltd, Dorset, England) was dissolved in Milli-Q (Direct-Q® 3 UV System, Millipore Corporation, US) H_2O (~pH 7.5) at a concentration of 500 μ M and further diluted into 10 uM solution. The 10 μ M hIAPP aqueous solution was incubated for 28 days (4 weeks). The incubated solution was then centrifuged at 14,000 rpm for one hour to separate the soluble hIAPP (supernatant) from the insoluble hIAPP fibril (fibrillary pellet). The supernatant solution containing soluble hIAPP was then diluted 20-fold with 49.5:49.5:1 water/acetonitrile/formic acid prior to MS analysis. hIAPP fibrillary pellets from 7-, 14-, 21-, and 28-day solutions were rinsed with 100 μ L Milli-Q H_2O three times and then re-dissolved with 20 μ L of 47.5:47.5:5 water/acetonitrile/formic acid, and sonicated in water bath at 37 °C for one hour. Re-dissolved samples were further diluted with 80 μ L of 50:50 water/acetonitrile. The final concentration of formic acid in solutions was 1% (mol/mol). Sample preparation for seeding mutant peptides. Wild-type hIAPP lyophilized powder and synthetic mutant hIAPPs (Pepscan Company Ltd, The Netherlands) were dissolved in Milli-Q H₂O to a concentration of 500 μ M. The seeding experiments were performed by mixing wild-type hIAPP stock solution with 5%, 10%, 25%, or 50% mutant ((D)₃hIAPP) or ((isoD)₃hIAPP) solutions. Samples were then diluted to a final concentration of 10 μ M wild-type hIAPP plus mutant ((D)₃hIAPP) or ((isoD)₃hIAPP), which were incubated for 1 week at 37°C. The supernatants and fibrillary pellets were separated and prepared as mentioned above. FTICR MS analysis. Mass spectra were acquired on a 12 tesla solariX FTICR MS (Bruker Daltonik GmbH, Bremen, Germany). All samples were analyzed in positive ionization mode. For the detection of deamidated hIAPP and dissociated fibrils, an Apollo II electrospray ionization (ESI) source (Bruker Daltonik GmbH, Bremen, Germany) was used with a capillary voltage of 4-4.5 kV. The ESI flow rate was optimized to 100-150 μL/h and the source temperature was set to 200°C. Ions were externally accumulated in a hexapole collision cell before transferred to an infinity cell (ICR cell) for excitation and detection.³³ Data obtained from FTICR-MS were analyzed using Bruker DataAnalysis 4.2 software (Bruker Daltonics, Bremen, Germany). For the CAD experiments, precursor ions were first isolated using the quadrupole mass filter, then collided with argon gas and accumulated in the collision cell. The collision energy was optimized to 2-18 V and the ion accumulation time to 1-3 seconds. Fragments were then transferred to the infinity cell for detection. The most intense isotopic peak from each fragment with signal-to-noise ratio (S/N) over 5 was manually matched with the theoretical m/z. All of the fragments were internally calibrated and then assigned with an uncertainty less than 1 part-per-million (ppm). #### Quantification of deamidated/ mutant hIAPP in solutions and fibrillary pellets. The monoisotopic peak area of non-deamidated and deamidated/mutant hIAPP peaks were measured using Bruker DataAnalysis 4.2 software. The percentage of deamidated hIAPP (%) was calculated as follows: ``` \label{eq:Deamidated} \mbox{Deamidated (\%)} = \frac{\mbox{\it Peak area of deamidated hIAPP}}{\mbox{\it Sum of Peak area of deamidated hIAPP and nondeamidated hIAPP}} \ x \ 100\% ``` The same calculation method was applied to obtain the percentage of mutant hIAPP against wild-type hIAPP. **Transmission electron microscopy** (**TEM**). The TEM images of the incubated solutions, including 10 μ M wild-type hIAPP, 10 μ M mutant ((D)₃hIAPP), and 10 μ M mutant ((isoD)₃hIAPP) solution were acquired on a Jeol 2010F TEM operated at 200 kV. 10 μ L of incubated solution was transferred onto a carbon-coated grid and settled for one minute, followed by removing the excess solution using filter paper. A 2% (w/v) uranyl acetate solution was used for the negative stain. Multiple images with magnification from x10,000 to x40,000 were acquired. Thioflavin T (ThT) fluorescence reactivity. The fluorescence reactivity of the 10 μ M hIAPP, mutant ((D)₃hIAPP), mutant ((isoD)₃hIAPP), and hIAPP seeding solutions were measured using a GloMax®-Multi Detection System (Promega; Wisconsin, USA). All samples were placed in a black 96 well-plate and mixed with 10 μ M ThT aqueous solution. Fluorescence spectra of the samples were acquired every 45 minutes with excitation at 405 nm and emission measurement at 490 nm, in a similar fashion to Chan *et al.*^{34, 35} The intensities obtained from the fluorescence spectrometer were normalized to the signal intensity of the most mature fibril. Deamidated (D)₃hIAPP: KCNTATCATQ RLANFLVHSS DDFGAILSST NVGSDTY-NH₂ Deamidated (isoD)₃hIAPP: KCNTATCATQ RLANFLVHSS (isoD)(isoD)FGAILSST NVGS(isoD)TY-NH₂ **Figure S1.** Sequences of synthetic mutant hIAPPs. As residues at position 21, 22, and 35 are replaced with aspartic acid – deamidated ((D)₃hIAPP) or iso-aspartic acid – deamidated ((isoD)₃hIAPP) in order to act as deamidation mimics. #### A) ECD Fragmentation of the 7+ (D)₃hIAPP Dimer **Figure S2.** (A) Summary of a-, c-, y-, and z-ion fragments observed in the (B) ECD MS/MS spectrum of the 7+ charge state ((D)₃hIAPP) dimer. Highlighted sequence represents the proposed non-covalent interaction region. The side chain losses were not labeled for clarity. The assigned fragments are listed in the ESI Table S1. # Assignment Table of the ECD MS/MS of 7+ charge state ((D)₃hIAPP) dimer | | | | | | | ' 3 | | | | |----------------|----------------|----------------------------|----------------------------|------------------|----------------|----------|----------------------------|----------------------------|-----------------| | lon | charge | Theoretical m/z | Experimental m/z | Error (ppm) | lon | charge | Theoretical m/z | Experimental m/z | Error (ppm) | | MH | 4+ | 977.462474 | 977.461786 | -0.704 | M+c32 | 4+ | 1822.618557 | 1822.618598 | 0.022 | | MH | 3+ | 1302.279143 | 1302.279165 | 0.017 | M+c33 | 5+ | 1469.700594 | 1469.701214 | 0.422 | | MH | 2+ | 1952.915077 | 1952.915991 | 0.468 | M+c33 | 4+ | 1837.376472 | 1837.376990 | 0.282 | | 2[MH] | 7+ | 1116.383162 | 1116.383047 | -0.103 | M+c34 | 5+ | 1487.107000 | 1487.107008 | 0.005 | | 2[MH]
2[MH] | 6+
5+ | 1303.115465
1563.738667 | 1303.115560
1563.738999 | 0.073
0.212 | M+c34
M+c35 | 4+
6+ | 1858.883887
1258.761936 | 1858.885137
1258.761197 | 0.672
-0.587 | | 2[MH] | 4+ | 1954.673471 | 1954.674185 | 0.365 | M+c35 | 5+ | 1510.312868 | 1510.313214 | 0.229 | | 2[MH] | 3+ | 2605.897413 | 2605.897274 | -0.053 | M+c35 | 4+ | 1887.891222 | 1887.892061 | 0.444 | | a14 | 2+ | 724.354565 | 724.354485 | -0.110 | M+c36 | 6+ | 1275.603219 | 1275.603240 | 0.016 | | a15 | 2+ | 797.888772 | 797.888565 | -0.259 | M+c36 | 5+ | 1530.924420 | 1530.924741 | 0.210 | | a17 | 2+ | 903.965011 | 903.965096 | 0.094 | M+z3 | 3+ | 1429.328685 | 1429.329245 | 0.392 | | a18 | 2+ | 972.494467 | 972.494518 | 0.052 | M+z4 | 3+ | 1458.339361 | 1458.339476 | 0.079 | | a22 | 2+ | 1174.553438 | 1174.553758 | 0.272 | M+z5 | 3+ | 1477.346514 | 1477.347034 | 0.352 | | a23 | 2+ | 1248.087645 | 1248.088012 | 0.294 | M+z6 | 3+ | 1510.369320 | 1510.368816 | -0.334 | | a25 | 2+ | 1312.116934 | 1312.116940 | 0.005 | M+z7 | 3+ | 1548.049351 | 1548.049768 | 0.269 | | c3 | 1+ | 362.173076 | 362.173008 | -0.188 | M+z7 | 2+ | 2323.077144 | 2323.078314 | 0.504 | | c5 | 1+ | 534.257869 | 534.257735 | -0.251 | M+z8 | 3+ | 1582.400354 | 1582.401276 | 0.583 | | c6 | 1+ | 636.313372 | 636.313252 | -0.189 | M+z9 | 3+ | 1611.746974 | 1611.746129 | -0.524 | | c7 | 1+ | 737.306908 | 737.306867 | -0.056 | M+z10 | 3+ | 1639.753258 | 1639.752527 | -0.446 | | с8 | 1+ | 808.344022 | 808.344002 | -0.025 | M+z11 | 4+ | 1258.839125 | 1258.839009 | -0.092 | | с9 | 1+ | 909.391701 | 909.391767 | 0.073 | M+z11 | 3+ | 1677.447952 | 1677.448418 | 0.278 | | c10 | 1+ | 1037.450279 | 1037.450336 | 0.055 | M+z12 | 4+ | 1287.110147 | 1287.110616 | 0.364 | | c11 | 2+ | 597.279333 | 597.279236 | -0.162 | M+z12 | 3+ | 1715.811104 | 1715.812415 | 0.764 | | c11 | 1+
2+ | 1193.551390
653.821365 | 1193.551711
653.821279 | 0.269
-0.132 | M+z13
M+z13 | 4+
3+ | 1304.869427
1738.821678 | 1304.869520
1738.820724 | 0.071
-0.549 | | | 2+ | | | | | | | | | | c13 | 1+ | 689.339922
1377.672568 | 689.339851
1377.673273 | -0.103
0.512 | M+z14
M+z14 | 4+
3+ | 1318.623443
1757.828832 | 1318.623618
1757.829443 | 0.133
0.348 | | c14 | 2+ | 746.361386 | 746.361348 | -0.051 | M+z14 | 2+ | 2637.748852 | 2637.749391 | 0.204 | | c15 | 2+ | 819.895593 | 819.895538 | -0.067 | M+z15 | 4+ | 1355.390547 | 1355.390850 | 0.224 | | c16 | 2+ | 876.437625 | 876.437608 | -0.019 | M+z15 | 3+ | 1807.856058 | 1807.856916 | 0.475 | | c17 | 2+ | 925.971832 | 925.971879 | 0.051 | M+z16 | 4+ | 1384.147283 | 1384.147298 | 0.011 | | c18 | 2+ | 994.501288 | 994.501285 | -0.003 | M+z16 | 3+ | 1846.532522 | 1846.533255 | 0.397 | | c19 | 2+ | 1038.017303 | 1038.017350 | 0.045 | M+z16 | 2+ | 2769.799453 | 2769.799567 | 0.041 | | c20 | 2+ | 1081.533317 | 1081.533397 | 0.074 | M+z17 | 4+ | 1412.904019 | 1412.904502 | 0.342 | | c21 | 2+ | 1139.046789 | 1139.046866 | 0.068 | M+z17 | 3+ | 1884.874843 | 1884.874962 | 0.063 | | c22 | 2+ | 1196.560261 | 1196.560497 | 0.197 | M+z18 | 4+ | 1434.912737 | 1434.913034 | 0.207 | | c23 | 3+ | 847.065404 | 847.065401 | -0.004 | M+z18 | 3+ | 1913.885523 | 1913.885817 | 0.154 | | c23 | 2+ | 1270.094468 | 1270.094648 | 0.142 | M+z19 | 4+ | 1456.420033 | 1456.420138 | 0.072 | | c24 | 3+ | 866.072559 | 866.072757 | 0.229 | M+z19 | 3+ | 1942.896202 | 1942.895513 | -0.355 | | c25 | 3+ | 889.751597 | 889.751369 | -0.256 | M+z19 | 2+ | 2914.846456 | 2914.846774 | 0.109 | | c25 | 2+ | 1334.123849 | 1334.123808 | -0.031 | M+z20 | 4+ | 1491.186124 | 1491.186700 | 0.386 | | c26 | 3+ | 927.446285 | 927.446297 | 0.013 | M+z20 | 3+ | 1988.582507 | 1988.583390 | 0.444 | | c26 | 2+ | 1390.665789 | 1390.665948 | 0.114 | M+z21 | 4+ | 1515.953231 | 1515.953433 | 0.133 | | c27 | 3+ | 965.140973 | 965.141253 | 0.290 | M+z21 | 3+ | 2021.605320 | 2021.606146 | 0.409 | | c27 | 2+ | 1447.709221 | 1447.709709 | 0.337 | M+z22 | 4+ | 1544.224252 | 1544.224820 | 0.368 | | c28 | 3+ | 994.151649 | 994.151665 | 0.016 | M+z22 | 3+ | 2059.300020 | 2059.301231 | 0.588 | | c29 | 3+
2+ | 1023.162325 | 1023.162402 | 0.075 | M+z23 | 4+
3+ | 1580.489984 | 1580.490360 | 0.238 | | c29 | 3+ | 1535.242655 | 1535.243476 | 0.535
0.042 | M+z23 | 4+ | 2108.322843 | 2108.323867 | 0.486
0.222 | | c30 | 2+ | 1056.844885
1584.763690 | 1056.844929
1584.764560 | 0.549 | M+z24
M+z24 | 3+ | 1609.000716
2146.337153 | 1609.001073
2146.338370 | 0.567 | | c31 | 3+ | 1094.859194 | 1094.859257 | 0.058 | M+z25 | 4+ | 1627.512008 | 1627.512728 | 0.442 | | c31 | 2+ | 1642.286550 | 1642.287622 | 0.653 | M+z25 | 3+ | 2170.350335 | 2170.351553 | 0.561 | | c32 | 3+ | 1127.881999 | 1127.882005 | 0.005 | M+z26 | 5+ | 1324.827880 | 1324.828098 | 0.165 | | c32 | 2+ | 1692.823617 | 1692.824904 | 0.760 | M+z26 | 4+ | 1655.783031 | 1655.783641 | 0.368 | | c33 | 3+ | 1146.889154 | 1146.889155 | 0.001 | M+z26 | 3+ | 2208.046833 | 2208.046628 | -0.093 | | c34 | 3+ | 1175.899830 | 1175.899842 | 0.010 | M+z27 | 5+ | 1356.048099 | 1356.048275 | 0.130 | | c34 | 2+ | 1763.346107 | 1763.347520 | 0.801 | M+z27 | 4+ | 1695.060261 | 1695.060689 | 0.252 | | c35 | 3+ | 1214.576411 | 1214.576892 | 0.396 | M+z27 | 3+ | 2260.080530 | 2260.081089 | 0.247 | | c35 | 2+ | 1820.859579 | 1820.859860 | 0.154 | M+z28 | 5+ | 1381.659815 | 1381.660080 | 0.192 | | c36 | 3+ | 1247.924704 | 1247.924446 | -0.207 | M+z28 | 4+ | 1726.824267 | 1726.824613 | 0.200 | | у3 | 1+ | 397.171777 | 397.171687 | -0.227 | M+z29 | 5+ | 1402.069844 | 1402.070205 | 0.257 | | y4 | 1+ | 484.203806 | 484.203654 | -0.314 | M+z29 | 4+ | 1752.086188 | 1752.086770 | 0.332 | | y5 | 1+ | 541.225270 | 541.225155 | -0.212 | M+z30 | 5+ | 1416.076777 | 1416.077014 | 0.167 | | у6 | 1+ | 640.293684 | 640.293629 | -0.086 | M+z30 | 4+ | 1770.096109 | 1770.096483 | 0.211 | | у7 | 1+ | 754.336612 | 754.336600 | -0.016 | M+z30 | 3+ | 2359.792401 | 2359.792212 | -0.080 | | y8 | 1+ | 855.384291 | 855.384408 | 0.137 | M+z34 | 5+ | 1491.103517 | 1491.103695 | 0.119 | | y9 | 1+ | 942.416320 | 942.416439 | 0.126 | M+z34 | 4+ | 1864.130123 | 1864.130663 | 0.290 | | y10 | 1+ | 1029.448349 | 1029.448387 | 0.037 | M+z34 | 3+ | 2485.507093 | 2485.507949 | 0.344 | | y13 | 1+ | 1326.653591 | 1326.653604 | 0.010 | M+z35 | 5+ | 1513.912103 | 1513.912030 | -0.048 | | z2 | 1+ | 266.126109 | 266.126109 | 0.000 | M+z36 | 5+ | 1534.713228 | 1534.713352 | 0.081 | | z3 | 1+ | 382.160877 | 382.160842 | -0.092 | M+z36 | 4+ | 1918.141132 | 1918.141936 | 0.419 | | | 1+ | 467.177255
526.214369 | 467.177105
526.214234 | -0.321
-0.257 | | | | Average Error: | 0.124 | | z4 | | | | | | | | | 0.236 | | z5 | 1+ | | | | | | | Absolute Average Error: | | | | 1+
2+
5+ | 1435.701402
1438.883524 | 1435.700996
1438.884166 | -0.283
0.446 | | | | Standard Deviation: | 0.278 | **Table S1.** List of the assigned fragments from the ECD MS/MS spectrum of the 7+ charge state ((D)₃hIAPP) dimer ion. M represents one ((D)₃hIAPP) unit. #### A) ECD Fragmentation of the 7+ (isoD)₃hIAPP Dimer **Figure S3.** (A) Summary of a-, c-, y-, and z-ion fragments observed in the (B) ECD MS/MS spectrum of the 7+ charge state ((isoD)₃hIAPP) dimer. Highlighted sequence represents the proposed non-covalent interaction region. The side chain losses were not labeled for clarity. The assigned fragments are listed in the ESI Table S2. # Assignment Table of the ECD MS/MS of 7+ charge state ((isoD)₃hIAPP) dimer | | | | | | | | • | • | | | | |----------------|----------------|----------|----------------------------|----------------------------|-----------------|------------|----------|----------|----------------------------|----------------------------|-----------------| | Type | lon | charge | Theoretical m/z | Experimental m/z | Error (ppm) | Type | lon | charge | Theoretical m/z | Experimental m/z | Error (ppm) | | МН | MH | 4+
3+ | 977.211884 | 977.211677 | -0.212 | M+c | 34 | 5+ | 1487.105911 | 1487.106523 | 0.412 | | МН | MH | | 1302.279143 | 1302.279080 | -0.048 | M+c | 34 | 4+ | 1858.883887 | 1858.883845 | -0.023 | | MH | MH | 2+
7+ | 1952.915077 | 1952.915655 | 0.296
0.050 | M+c | 35 | 6+ | 1258.761936 | 1258.761954 | 0.014 | | 2[MH] | 2[MH] | 6+ | 1116.383162 | 1116.383218 | | M+c | 35 | 5+ | 1510.312868 | 1510.312981 | 0.075 | | 2[MH] | 2[MH]
2[MH] | 5+ | 1303.115465
1563.738667 | 1303.115597
1563.738713 | 0.101
0.029 | M+c | 35 | 4+
6+ | 1887.891222 | 1887.891506 | 0.150 | | 2[MH]
2[MH] | 2[MH] | 4+ | 1954.673471 | 1954.672757 | -0.365 | M+c
M+c | 36
36 | 5+ | 1275.603219 | 1275.603316 | 0.076
-0.142 | | | 23 | 2+ | 1248.087645 | 1248.087793 | 0.119 | | | 5+ | 1530.924420
1498.707009 | 1530.924203
1498.707619 | 0.407 | | а | 24 | 2+ | | 1277.099889 | 0.092 | M+c | 34i | | | | | | а | | 2+ | 1277.099772
1312.116934 | 1312.117109 | | M+c | 34i | 4+
3+ | 1873.131943 | 1873.132905 | 0.514 | | a | 25 | 1+ | | | 0.133
-0.119 | M+z | 2 | | 1391.654617 | 1391.655808 | 0.856 | | С | 3 | 1+ | 362.173076 | 362.173033 | | M+z | 3 | 3+ | 1429.328685 | 1429.329444 | 0.531 | | С | 6 | | 636.313372 | 636.313275 | -0.152 | M+z | 4 | 3+ | 1458.339361 | 1458.340006 | 0.442 | | C | 7 | 1+ | 737.306908 | 737.306876 | -0.043 | M+z | 5 | 3+ | 1477.680667 | 1477.680895 | 0.154 | | С | 8 | 1+ | 808.344022 | 808.343966 | -0.069 | M+z | 6 | 3+ | 1510.369320 | 1510.368775 | -0.361 | | С | 9 | 1+ | 909.391701 | 909.391605 | -0.106 | M+z | 7 | 3+ | 1548.049351 | 1548.049654 | 0.196 | | С | 10 | 1+ | 1037.450279 | 1037.450277 | -0.002 | M+z | 7 | 2+ | 2323.578098 | 2323.578660 | 0.242 | | С | 11 | 2+ | 597.279333 | 597.279315 | -0.030 | M+z | 8 | 3+ | 1582.400354 | 1582.401094 | 0.468 | | С | 11 | 1+ | 1193.551390 | 1193.551247 | -0.120 | M+z | 9 | 3+ | 1611.746974 | 1611.746700 | -0.170 | | С | 12 | 2+ | 653.821365 | 653.821303 | -0.095 | M+z | 10 | 4+ | 1230.568102 | 1230.567991 | -0.090 | | С | 13 | 2+ | 689.339922 | 689.339931 | 0.013 | M+z | 10 | 3+ | 1639.753258 | 1639.753036 | -0.135 | | С | 14 | 2+ | 746.361386 | 746.361372 | -0.019 | M+z | 11 | 4+ | 1258.839125 | 1258.839593 | 0.372 | | C | 15 | 2+ | 819.895593 | 819.895597 | 0.005 | M+z | 11 | 3+ | 1677.447952 | 1677.447828 | -0.074 | | С | 16 | 2+ | 876.437625 | 876.437697 | 0.082 | M+z | 12 | 4+ | 1287.110147 | 1287.110909 | 0.592 | | С | 17 | 2+ | 925.971832 | 925.971846 | 0.015 | M+z | 12 | 3+ | 1715.811104 | 1715.811618 | 0.300 | | С | 18 | 2+ | 994.501288 | 994.501292 | 0.004 | M+z | 13 | 4+ | 1304.869427 | 1304.869611 | 0.141 | | С | 19 | 2+ | 1038.017303 | 1038.017376 | 0.070 | M+z | 13 | 3+ | 1738.821678 | 1738.821082 | -0.343 | | С | 20 | 2+ | 1081.533317 | 1081.533351 | 0.031 | M+z | 14 | 4+ | 1318.623443 | 1318.623189 | -0.193 | | C | 21 | 3+ | 759.700285 | 759.700251 | -0.045 | M+z | 14 | 3+ | 1757.828832 | 1757.829081 | 0.142 | | C | 21 | 2+ | 1139.046789 | 1139.046820 | 0.027 | M+z | 14 | 2+ | 2638.247419 | 2638.246892 | -0.200 | | C | 22 | 3+ | 798.042599 | 798.042537 | -0.078 | M+z | 15 | 4+ | 1355.390547 | 1355.390795 | 0.183 | | C | 22 | 2+ | 1196.560261 | 1196.560293 | 0.027 | M+z | 15 | 3+ | 1807.856058 | 1807.856380 | 0.178 | | C | 23 | 3+ | 847.065404 | 847.065386 | -0.021 | M+z | 16 | 4+ | 1384.147283 | 1384.147411 | 0.092 | | С | 23 | 2+ | 1270.094468 | 1270.094418 | -0.039 | M+z | 16 | 3+ | 1846.532522 | 1846.532903 | 0.206 | | С | 24 | 3+ | 866.072559 | 866.072652 | 0.107 | M+z | 16 | 2+ | 2769.295145 | 2769.294672 | -0.171 | | С | 25 | 3+ | 889.751597 | 889.751696 | 0.111 | M+z | 17 | 4+ | 1412.904019 | 1412.903882 | -0.097 | | С | 25 | 2+ | 1334.123849 | 1334.123757 | -0.069 | M+z | 17 | 3+ | 1884.874843 | 1884.874708 | -0.072 | | С | 26 | 3+ | 927.446285 | 927.446286 | 0.001 | M+z | 18 | 4+ | 1434.912737 | 1434.912984 | 0.172 | | С | 26 | 2+ | 1390.665789 | 1390.666501 | 0.512 | M+z | 18 | 3+ | 1913.885523 | 1913.885178 | -0.180 | | C | 27 | 3+ | 965.140973 | 965.140963 | -0.010 | M+z | 19 | 4+ | 1456.420033 | 1456.420238 | 0.141 | | C | 27 | 2+ | 1447.709221 | 1447.709778 | 0.385 | M+z | 19 | 3+ | 1942.896202 | 1942.895988 | -0.110 | | С | 29 | 3+ | 1023.162325 | 1023.162215 | -0.108 | M+z | 20 | 4+ | 1491.186124 | 1491.186435 | 0.209 | | С | 29 | 2+ | 1534.239850 | 1534.239965 | 0.075 | M+z | 20 | 3+ | 1988.582507 | 1988.582942 | 0.219 | | С | 30 | 3+ | 1056.844885 | 1056.844848 | -0.035 | M+z | 21 | 4+ | 1515.953231 | 1515.953379 | 0.098 | | C | 30 | 2+ | 1584.763690 | 1584.763724 | 0.021 | M+z | 21 | 3+ | 2021.605320 | 2021.605553 | 0.115 | | C | 31 | 3+ | 1094.859194 | 1094.859270 | 0.069 | M+z | 22 | 4+ | 1544.224252 | 1544.224504 | 0.163 | | C | 31 | 2+ | 1642.787956 | 1642.788594 | 0.388 | M+z | 22 | 3+ | 2059.300020 | 2059.300910 | 0.432 | | C | 32 | 3+ | 1127.881999 | 1127.881584 | -0.368 | | | 4+ | | | | | C | 32 | 2+ | 1691.319356 | 1691.320699 | 0.794 | M+z | 23 | 3+ | 1580.489984 | 1580.489808 | -0.111 | | C | 33 | 3+ | 1146.889154 | 1146.888901 | -0.221 | M+z | 23 | | 2108.322843 | 2108.323448 | 0.287 | | C | 33 | 2+ | 1720.331490 | 1720.332143 | 0.380 | M+z | 24 | 4+
3+ | 1609.000716 | 1609.000938 | 0.138 | | C | 34 | 3+ | 1175,899830 | 1175.899636 | -0.165 | M+z | 24 | | 2146.337153 | 2146.337709 | 0.259 | | c | 34 | 2+ | 1763.346107 | 1763.346490 | 0.217 | M+z | 25 | 4+ | 1627.512008 | 1627.512645 | 0.391 | | C | 35 | 3+ | 1214.576411 | 1214.576568 | 0.129 | M+z | 25 | 3+ | 2170.350335 | 2170.351009 | 0.311 | | C | 35 | 2+ | 1820.859579 | 1820.860110 | 0.292 | M+z | 26 | 5+ | 1324.827880 | 1324.827646 | -0.177 | | C | 36 | 3+ | 1247.924704 | 1247.924462 | -0.194 | M+z | 26 | 4+ | 1655.783031 | 1655.783415 | 0.232 | | C | 20i | 2+ | 1110.032142 | 1110.032427 | 0.256 | M+z | 26 | 3+ | 2208.046833 | 2208.046104 | -0.330 | | C | 21i | 2+ | 1167.545613 | 1167.545686 | 0.063 | M+z | 27 | 5+ | 1356.048099 | 1356.048495 | 0.292 | | C | 34i | 3+ | 1195.233316 | 1195.233951 | 0.531 | M+z | 27 | 4+ | 1695.060261 | 1695.060550 | 0.170 | | | 3 | 1+ | | | 0.126 | M+z | 27 | 3+ | 2260.080530 | 2260.081289 | 0.336 | | У | 4 | 1+ | 397.171777
484.203806 | 397.171827
484.203771 | -0.072 | M+z | 28 | 5+ | 1381.659815 | 1381.660250 | 0.315 | | У | 5 | 1+ | | 541.225281 | 0.020 | M+z | 28 | 4+ | 1726.824267 | 1726.823766 | -0.290 | | У | 6 | 1+ | 541.225270
640.293684 | 640.293709 | 0.020 | M+z | 29 | 5+ | 1402.069844 | 1402.069738 | -0.076 | | У | | | | | | M+z | 29 | 4+ | 1752.086188 | 1752.086786 | 0.341 | | у | 7
9 | 1+ | 754.336612
942.416320 | 754.336563
942.416353 | -0.065
0.035 | M+z | 30 | 5+ | 1416.076777 | 1416.076531 | -0.174 | | У | | 1+ | 1029.448349 | 1029.448645 | 0.035 | M+z | 30 | 4+ | 1769.844153 | 1769.844536 | 0.216 | | У | 10 | | | | | M+z | 34 | 5+ | 1491.103517 | 1491.103470 | -0.032 | | Z | 2 | 1+ | 266.126109 | 266.126109 | 0.000 | M+z | 34 | 4+ | 1864.130123 | 1864.130353 | 0.123 | | Z | 3 | 1+ | 382.160877 | 382.160841 | -0.094 | M+z | 36 | 5+ | 1534.713228 | 1534.713224 | -0.003 | | Z | 4 | 1+ | 469.192905 | 469.192914 | 0.019 | M+z | 36 | 4+ | 1918.141132 | 1918.141912 | 0.407 | | Z | 5 | 1+ | 526.214369 | 526.214338 | -0.059 | M+z | 16-i | 4+ | 1370.399228 | 1370.399399 | 0.125 | | Z | 6 | 1+ | 625.282783 | 625.282678 | -0.168 | M+z | 16-i | 3+ | 1827.199153 | 1827.199447 | 0.161 | | z | 27 | 2+ | 1435.197489 | 1435.196299 | -0.829 | M+z | 17-i | 4+ | 1399.406577 | 1399.406737 | 0.114 | | M+c | 31 | 5+ | 1438.482615 | 1438.482645 | 0.021 | M+z | 17-i | 3+ | 1865.875642 | 1865.875456 | -0.100 | | M+c | 32 | 5+ | 1458.496774 | 1458.496042 | -0.502 | | | | | Average Error: | 0.068 | | M+c | 32 | 4+ | 1822.618557 | 1822.618534 | -0.013 | | | | | Absolute Average Error: | 0.187 | | M+c | 33 | 5+ | 1469.700594 | 1469.699673 | -0.627 | | | | | Standard Deviation: | 0.167 | | M+c | 33 | 4+ | 1837.375068 | 1837.375877 | 0.440 | | | | | | | **Table S2.** List of the assigned fragments from the ECD MS/MS spectrum of the 7+ charge state ((isoD)₃hIAPP) dimer ion. M represents one ((isoD)₃hIAPP) unit. **Figure S4.** The nESI-MS spectra showing the fresh, the incubated solutions, and the incubated fibrillary pellets of hIAPP mixed with 5%, 10%, 25%, or 50% of mutant $((D)_3hIAPP)$ or $((isoD)_3hIAPP)$.