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Abstract 16 

Failures in rail fasteners can lead to misalignments of the rails and even cause a train derail-17 

ment. Current inspection and maintenance regimes for rail fasteners, however, do not adequately 18 

address the credible failure modes found in the field. In response to these improvement opportu-19 

nities, a risk-based maintenance philosophy, driven by a risk management framework, is pro-20 

posed for rail fasteners. The framework is primarily developed from ISO 31000 with underlying 21 

principles inferred from other applicable international standards. Reliability tools were then in-22 

corporated, allowing practitioners to arrive at an appropriate combination of reliability tools 23 

based on the circumstances under which the assessment is to be conducted. Monte Carlo simula-24 

tions were undertaken on the imbedded anchors of rail fasteners to demonstrate how the resultant 25 

framework can be innovatively adopted in practice. The general findings highlight that accurate 26 

risk depiction is vital for track components (e.g. imbedded anchors, the failure modes of which 27 

are dependent on time), thereby, the timeframes at which risk for the component transits to dif-28 

ferent risk categories should be obtained. Note that the finding is unique to the example; thus, the 29 

proposed risk framework should be treated carefully before it is applied for other failure modes. 30 

Keywords: rail fastener; rail failure; risk management; reliability analysis; inspection. 31 
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 32 

Introduction 32 

Located at the interface between the rail and the sleeper (as depicted in Fig.1), the rail fasten-33 

er maintains the vertical, lateral and longitudinal position of the rails relative to the sleepers. It 34 

also provides resilience to the rail-sleeper configuration so as to reduce the dynamic forces trans-35 

ferred from rails to the sleepers. For electrified railways, the rail fastener performs the additional 36 

function of providing electrical isolation between the rail and the sleepers. 37 

Most fasteners today are elastic fasteners which typically embody an imbedded anchor, a clip 38 

or spring, an insulator, and a pad. Degradation in these components can ultimately lead to the 39 

inability of the fastener to execute the functions cited above. Proactively, a visual inspection is 40 

regularly performed which takes various types of patrols; routine walking patrols, detailed walk-41 

ing examination and detailed sleeper examinations (RailCorp Network 2013). However, the de-42 

fects that the patrollers look out for in rail fasteners do not adequately address the generic failure 43 

modes. For instance, failure modes such as abrasion and high hydraulic pressures, which can 44 

lead to rail seat deterioration, are unable to be detected through visual inspection. The detection 45 

of rail seat deterioration would require the lifting of rail and removal of rail pad (Kernes et al. 46 

2014). 47 

As rail fasteners are intrinsically linked to the rest of the track system, having an inspection 48 

regime which does not identify defects at the failure modes brings the organization closer to se-49 

rious incidents. In the case of rail seat deterioration, this means that the problem may only sur-50 

face when there is a loss of rail cant or when there is gauge-widening. For records, rail fasteners 51 

have failed prematurely or deteriorated drastically within a short timeframe. A diode-grounded 52 
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transit system which was designed to last for 35 years had to be replaced within seven years due 53 

to stray current corrosion (Barlo and Zdunek 1995) . Also, a rail corrosion defect in Sydney had 54 

deteriorated to five consecutive rail fasteners failures within a short span of three and a half years 55 

(The Office of Transport Safety Investigations 2014). Note that, elastic rail pads generally have a 56 

design life of 10 years. Without appropriate renewal of pads, those fastenings can be damaged 57 

faster. Nonetheless, unless a detailed investigation is triggered, the underlying failure modes may 58 

remain hidden until a serious incident presents itself. By then, the cost and resources required to 59 

address the failure mode may have become significantly higher. 60 

In terms of resource allocation, inspection frequencies and mitigation priorities are currently 61 

determined by the expected and actual conditions of the rail fasteners. One would be to allow the 62 

frequency of inspection to depend on how aggressively the service has damaged the track. While 63 

reduction of inspection frequency is allowed, this is done ad hoc and is only permitted to a max-64 

imum of half (Network Rail 2009). Another would be to allow frequency of inspection and ur-65 

gency of repair to depend, not only on how likely a serious incident can occur, but also on how 66 

serious that incident would be. For instance, though both may fall into the same track category, a 67 

line which runs high volumes of passenger service should be inspected and maintained more rig-68 

orously than a line which predominantly runs freight service because of the former's higher safe-69 

ty implications. Such optimization directs resources in accordance to risk criticality and not 70 

merely by the likelihood of risk. 71 

In addressing abovementioned opportunities, a risk based maintenance approach is proposed 72 

for rail fasteners. Intuitively, each inspection or maintenance activity is treated as a risk control 73 

process intended to address a failure mode. This study concerns itself with the establishment of a 74 

risk management framework to ensure that risks remain relevant and accurate throughout the 75 
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system lifecycle. In this regard, relevant international standards and reliability tools are embod-76 

ied in a risk management framework. Overall, the proposed framework has features such as im-77 

proves proactiveness of the inspection and maintenance regime for rail fasteners, further opti-78 

mise resources allocation within the regime and improve the comprehensiveness of this regime. 79 

Background study 82 

Inspection on rail fastening system 83 

In the UK, defects associated to rail fasteners are identified via foot patrols. The patrollers look 84 

out for the following defects in rail fasteners (Network Rail 2009): 85 

i. Loose, missing, falling out and broken rail fasteners, 86 

ii. Missing/displaced, expired and incorrectly fitted pads , and 87 

iii. Broken/cracked and galled baseplates. 88 

Frequency of foot patrols are determined by predefined track category, which is in turn deter-89 

mined by the speed of rail traffic and the equivalent tonnage of the line. Track categories range 90 

from Cat 1A, where speeds are high and equivalent tonnage are high, to Cat 6, where the con-91 

verse is true. Frequency of basic visual inspection on plain line continuous welded rail, for in-92 

stance, is weekly for Cat 1A track and once every four weeks for Cat 6 track, see Table 1for in-93 

spection frequencies for other track categories (Network Rail 2009, 2017). 94 

Track inspection frequency is typically fixed but a review can be triggered by the engineer 95 

when there is a clear history of reliability issues such as poor track geometry, rolling contact fa-96 

tigue or evidence of track bed failure. The extent to which frequency is increased predominantly 97 

lies on the engineer's judgement. On the other hand, when track condition has been found to be 98 

satisfactory, the engineer is able to reduce inspection frequency, but to a maximum of half. This 99 
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review is normally driven by the need to optimize the patrolling regime or by difficulties in com-100 

plying with the existing frequency. When a defect is found, response to rectify is not necessarily 101 

immediate. The urgency of response depends on how likely the defect can translate to an unde-102 

sired event. For example, four missing or ineffective fastenings in a 60ft length of a Cat 1A track 103 

has a priority of M3 while the same phenomenon in a 60ft length of a Cat 6 track has a priority 104 

of M24 (Network Rail 2009, 2017). The former needs to be addressed within thirteen weeks 105 

while the latter has two years for resolution. This disparity is because the likelihood of an unde-106 

sired consequence occurring is higher for the former than the latter. 107 

In Australia, patrollers look out for similar rail fastening defects as that in the UK (RailCorp 108 

Network 2013); 109 

i. Missing/corroded/over sprung/ineffective fastenings, 110 

ii. Worn, incorrectly inserted or squeezed out insulators, and 111 

iii. Severely worn pads which can be checked visually or with reference to gauge read-112 

ings. 113 

Inspection of rail fasteners is covered by various types of patrols. These are namely standard 114 

track patrols, detailed walking examination and detailed sleeper examinations. There is however 115 

very little variance in the frequencies. Standard track patrols and detailed walking examinations 116 

are fixed at twice a week and once in three months respectively for practically all track catego-117 

ries in the suburban mixed-traffic networks. Detailed sleeper examinations, on the other hand, 118 

are either annual or biennial depending on the sleeper type (RailCorp Network 2016). 119 

Reliability tools 92 

Failure mode, effects and criticality analysis 93 
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Failure mode, effects and criticality analysis (FMECA) is a systematic process to identify credi-94 

ble failure modes. According to (Quality—One International 2017), there are seven steps in de-95 

veloping an FMECA; 96 

Step 1: FMECA pre-work and assemble the FMECA team  97 

Step 2: Path 1 development (requirements through severity ranking)  98 

Step 3: Path 2 development (potential causes and prevention controls through occurrence rank-99 

ing)  100 

Step 4: Path 3 development (testing and detection controls through detection ranking)  101 

Step 5: Action priority & assignment  102 

Step 6: Actions taken / design review  103 

Step 7: Re-ranking risk criticality & closure 104 

In Step 1, key documents, such as design, inspection and maintenance documents, are con-105 

solidated and an experienced multi-disciplinary team is formed to facilitate the analysis. In Path 106 

1 development, the failure modes by which functions can fail and the associated effects of fail-107 

ures are identified. Each effect is assigned a severity ranking. After which, in Path 2 develop-108 

ment, the causes associated with each failure mode are identified and the mitigation actions for 109 

each failure mode are formulated. Each cause is assigned an occurrence ranking. Path 3 devel-110 

opment then adds detection controls such as real-time condition monitoring. Step 5 identifies the 111 

risk criticality for each failure mode based on its assigned occurrence and severity ranking and 112 

accordingly determines the priority of action for risk treatment. FMECA should be an evergreen 113 

process where risks and actions are regularly reviewed. Step 6 and 7 depicts this requirement. 114 

Fault tree analysis 115 
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A fault tree analysis (FTA) is a top down failure analysis which analyses the failure of a system 116 

in terms of its contributory causes. In a fault tree diagram, the relationships between the causes 117 

and system failure are represented in terms of Boolean logic. The two main Boolean operators 118 

used are the OR and the AND gates. The OR gate is used under the situation that the output is 119 

TRUE when any one of the inputs is TRUE. The AND gate, on the other hand, is used under the 120 

situation that the output is only TRUE when all inputs are TRUE. If the probability values for all 121 

inputs are known, it would also be possible to calculate the probability of overall system failure 122 

using the Fault Tree Diagram. 123 

Fuzzy probability analysis 124 

When quantitative historical or comparative failure data are not available, risk analysis can be 125 

qualitatively conducted based on expert opinions. However, experts can diverge in opinions. In 126 

this regard, fuzzy probability analysis can be used to reduce the amount of subjectivity and un-127 

certainty introduced from consolidating these opinions (Arunraj et al. 2013). As there are no 128 

standard rules that define how these can be selected, this makes fuzzy probability analysis inher-129 

ently subjective. Nevertheless, if this tool is universally applied across all expert-based risk anal-130 

yses in an organization, this consistent application reduces the overall subjectivity in such anal-131 

yses. 132 

The steps for conducting a fuzzy probability include expert weightages, membership func-133 

tions, aggregation techniques and defuzzification. Initially, weighting factor, w is determined for 134 

each expert that will be involved in the risk analysis. This can be derived using criteria such as 135 

their years of experience and their job designations. The weighting factors for all experts in-136 

volved should add up to 1. Following this, probability of a primary event at question is judged 137 

and expressed by the experts in linguistic terms which correspond to probability categories in the 138 
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risk matrix. An example of how probability categories can be defined linguistically is as follows: 139 

0.1 to 1 for 'A', 0.01 to 0.1 for 'B', 0.001 to 0.01 for 'C', 0.0001 to 0.001 for 'D' and <0.0001 for 140 

'E'. 141 

Step 3 presents numerous fuzzy membership functions can be used to represent the linguistic 142 

expressions, and the uncertainties and inaccuracies associated to these judgements. Out of which, 143 

trapezoidal fuzzy membership functions have been found to be one of the most practical (Duan 144 

et al. 2016). For the probability categories defined in Step 2, the corresponding trapezoidal 145 

membership functions can be as illustrated in Fig. 2 (Ahn and Chang 2016). Lastly, the aggregat-146 

ed fuzzy set Z is defuzzified into a fuzzy probability score, FPS. Techniques that can be used for 147 

defuzzification include centre of gravity, bisector of area, mean of maxima, leftmost maximum 148 

and rightmost maximum (Shi et al. 2014). The centre of gravity technique, for instance, uses the 149 

expression below to obtain the probability score. 150 

Development of the framework 184 

The following criteria have been defined for the development of the risk management frame-185 

work. Firstly, the framework should be in compliant to relevant international standards. This is 186 

important as failure to do so may lead to incongruence with other frameworks that have been de-187 

veloped or will be developed. Secondly, the framework should provide guidance on what relia-188 

bility tools can be adopted at each stage. In this section, standards and reliability tools have been 189 

analysed and incorporated to form the framework.  190 
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Standards 191 

PAS 55:2008 – Asset management 192 

The Publicly Available Specification for Asset Management 55-1:2008 and 55-2:2008 was first 193 

released in 2004. Under this specification, asset management has been defined as the systematic 194 

and coordinated activities and practices through which an organization optimally and sustainably 195 

manages its assets and asset systems, their associated performance, risks and expenditures over 196 

their life cycles for the purpose of achieving its organizational strategic plan (The Institute of 197 

Asset Management 2008). This definition contains concepts that depart distinctly from the tradi-198 

tional approach towards inspection and maintenance. 199 

Firstly, asset management should not concern itself with just the management of assets but 200 

also the management of asset systems. In light of complex interactions between assets today, the 201 

macro perspective of assets is as important as the traditional minuscule approach. Failure of an 202 

asset may have far-reaching effects on the reliability of other assets. Conversely, these effects 203 

can be insignificant if the asset is redundant within the asset system. 204 

Secondly, the standard advises that interventions should be planned based on their costs and 205 

the asset system's performance and risks. In this regard, preventive and even predictive mainte-206 

nance, which advises the next course of action based on asset's condition and not risk, fall short 207 

on this requirement. 208 

Lastly, the standard states that performance, risks and costs ought to be evaluated over the 209 

asset's or the asset system's life cycle, i.e. from acquisition/creation, utilization, maintenance to 210 

ultimate renewal/disposal. As these aspects vary at various stages of the life cycle, elements of 211 

performance evaluation and improvement are necessary in the asset management structure and, 212 
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similarly, in the risk management framework to affirm the relevance and accuracies of their por-213 

trayals. 214 

The overview of an asset management system, as depicted by PAS 55:2008, can be found in 215 

Fig. 3. Within which, the use of terminologies such as asset systems and criticalities reverberate 216 

the key concepts that have been highlighted above. 217 

ISO 31000-Risk management 218 

ISO 31000 (International Organization for Standardization 2009) offers its interpretation of a risk 219 

management framework. It dictates that there should be four main stages, namely, establishing 220 

the context, risk assessment, risk treatment, and monitoring and review. Before assessing any 221 

risks, the context under which the assessment is to be executed should be defined. One important 222 

aspect is the risk criteria, which are essential as they are used for evaluation of risk significance. 223 

Depending on factors such as the views of stakeholders and the nature of the industry, risk crite-224 

ria can vary from organization to organization. One way by which risk criteria can be defined is 225 

via risk matrices, which will be touched on later in a subsequent subsection. 226 

The risk assessment stage consists of three sub stages, namely risk identification, risk analy-227 

sis and risk evaluation. The risk identification sub stage generates a comprehensive list of failure 228 

modes that are capable of jeopardising the functionality or performance of the asset or asset sys-229 

tem. All credible failure modes should be identified here, otherwise it will be left out from the 230 

assessment totally. The risk analysis sub stage develops an understanding of the risk associated 231 

with each failure mode by determining its likelihood and consequences. Lastly, the risk evalua-232 

tion sub stage identifies risks which need treatment and the priority by which treatment should be 233 

implemented. 234 
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Information sources such as historical data, experience, stakeholder feedback, observations, 235 

forecasts and expert judgement can be used for risk analysis. However, ISO 31000 explains that, 236 

in order for risk management to be effective, it should be based on the best available information 237 

which can be facilitated via a feedback loop of monitoring and review. This stage enables the 238 

organization to correct risks which have been inaccurately assessed and, in so doing, reduce dis-239 

crepancies as soon as more accurate data presents itself. This stage coincides well with PAS 240 

55:2008 which mandates the element of performance and condition monitoring in asset man-241 

agement systems. 242 

ISO 15288:2008-System life cycle process 243 

ISO 15288:2008 identifies seven phases in a system life cycle. These are namely the exploratory 244 

phase, concept phase, development phase, production phase, utilization phase, support phase and 245 

retirement phase. During the exploratory phase, research studies are undertaken to generate new 246 

concepts or capabilities which can ultimately lead to the initiation of new projects. In the concept 247 

phase, these concepts or capabilities are further specified with guidance from the risk manage-248 

ment process which commences from this phase. Stakeholders' needs are identified, clarified and 249 

documented as system requirements (International Organization for Standardization 2008). From 250 

the system requirements, evaluation on risks and opportunities are then executed to arrive at the 251 

appropriate design specifications (International Organization for Standardization 2008). 252 

Subsequently, the system is developed in the development phase while the system compo-253 

nents are produced and integrated in the production phase. Verification and validation activities 254 

are executed throughout these phases to ensure continued compliance to system requirements 255 

(International Council on Systems Engineering 2015). Once the system is commissioned, the uti-256 

lization and support phases run in parallel. The former ensures operational effectiveness while 257 
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the latter supports system operation with logistics, maintenance and support services 258 

(International Council on Systems Engineering 2015).  Finally, the system and its associated ser-259 

vices are removed in the retirement phase. In any of these phases, risks can be introduced or al-260 

tered. During the utilization phase, for instance, the operating environment of the system can 261 

change unexpectedly and lead to significant alteration in risk behaviour. Thus, in line with ISO 262 

31000, the iterative process of risk assessment, risk treatment, and monitoring and review should 263 

perpetuate throughout the system's life cycle and can only end at the retirement phase. 264 

In Fig. 4, the risk management process as defined by ISO 31000 has been incorporated into 265 

the system life cycle as defined by ISO 15288 to illustrate where each stage of the risk manage-266 

ment process is applicable in a system life cycle. This systems representation of the risk man-267 

agement framework underlines the message that risk management ought to be a continuous feed-268 

back loop which stretches throughout the system life cycle. 269 

EN 50126-Railway applications: Specification and demonstration of RAMS 270 

In Europe, EN 50126 provides railway industry guidance on how reliability, availability, main-271 

tainability and safety ("RAMS") can be managed. It elaborates that, in order for safety and avail-272 

ability targets to be achieved, reliability and maintainability requirements need to be met, and 273 

maintenance and operational activities need to be controlled. The correlations between the ele-274 

ments of RAMS are portrayed in Fig. 5. In the jurisdiction of risk management, it corroborates 275 

with PAS 55:2008 that risk analysis shall be performed at various phases of the system life cycle. 276 

The system lifecycle, applicable to the rail context, has been suggested by EN 50126 to be as de-277 

picted in Fig. 6. This model follows quite closely with the generic lifecycle model proposed by 278 

ISO 15288: Phases 1 to 5 correspond with the exploratory and concept phases, 6 to 10 to the de-279 

velopment and production phases, 11 to the utilization and support phases and, lastly, 14 to the 280 
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retirement phase of the generic lifecycle model. However, this system lifecycle seems to suggest 281 

at face value that risk analysis is just a one-time activity when, in fact, EN 50126 acknowledges 282 

that risk management ought to be an on-going process that perpetuates throughout the system 283 

lifecycle. 284 

EN 50126 also recommends that risk analysis at each stage be performed by the authority re-285 

sponsible for that phase. This may not be judicious as such clear segregation of responsibilities 286 

can lead to future risks being overlooked and the loss of opportunities to nip risks in the bud be-287 

fore they manifest. In Europe, heavy fragmentation of rail industry could aggravate the risks. 288 

This problem is averted with the guidance from PAS 55:2008 that risk should be evaluated for 289 

the entire system life cycle at any point in time. 290 

EN 50126 agrees that three main stages, namely, specification, risk analysis and risk evalua-291 

tion, should form part of the risk management process. Specifically, the usage of a risk matrix is 292 

recommended for risk evaluation. The risk matrix is a risk management tool rationalised across 293 

an organization which prescribes the significance of risks. The tool first requires the likelihood 294 

and severity of the risk to be categorized based on defined categories. Based on the likelihood 295 

category and the severity category which the risk falls into, the risk category, also known as risk 296 

criticality, can then be read off from the risk matrix. However, pertaining to the categorization 297 

and risk matrix that EN 50126 has proposed, there are two main concerns. Firstly, risks are eval-298 

uated based on their frequencies of occurrence. Risk is in fact a function of likelihood and not a 299 

function of frequency. The use of frequency categories can lead to risks of failure patterns which 300 

are time dependent to be erroneously misrepresented. This can be a significant problem as Fig. 7 301 

shows that, according to the concept of six RCM failure patterns, only one has a fixed rate of 302 

failure throughout the asset's life. 303 
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Besides this, critical, marginal and insignificant severity has been defined as the loss of major 304 

system, severe system damage and minor system damage respectively. This is another area for 305 

concern because it is ambiguous on what defines a major system and what warrants severe sys-306 

tem damage. To reduce subjectivity in the risk evaluation, this ambiguity can be removed by 307 

simply quantifying as far as possible the definition of severity and likelihood categories.  308 

The specification of categories and risk matrix depends on the organization's values, objec-309 

tives and resources, and should take into consideration any relevant legal and regulatory re-310 

quirements (International Organization for Standardization 2009). Thus, these will not be speci-311 

fied in the paper. Nevertheless, for the example later, a hypothetical risk matrix will be adapted 312 

from EN50126 with the two areas of concern highlighted above addressed. 313 

Integration of reliability tools 314 

Reliability tools presented in Section 2 are incorporated into the model in Fig. 4 to form a pre-315 

liminary risk assessment framework as shown in Fig. 8. FMEA triggers the practitioner to identi-316 

fy credible failure modes (risk identification), assess the risks for these failure modes (risk analy-317 

sis), rank the risks in terms of criticality and identify the most appropriate action for each risk 318 

(risk evaluation). Accordingly, step 1 in FMECA establishes the context prior to risk analysis. 319 

Path 1 to Path 3 development stages are equivalent to the risk identification and risk analysis 320 

stages. Step 5 corresponds with the risk evaluation stage. Last of all, Steps 6 and 7 represent the 321 

monitoring and review stage. 322 

Note that, if FMECA were to be used independently for risk identification, not all credible 323 

failure modes may be captured. This is undesirable as any failure modes left out in the risk iden-324 

tification sub stage will be left out from the analysis altogether. However, when FMECA is com-325 

plemented with FTA, the modelling approach of the latter is able to ensure that identification of 326 
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credible failure modes is comprehensive and holistic. In particular, FTA can be deployed on the 327 

identification of failure modes and the causes behind each failure mode in Path 1 and Path 2 de-328 

velopment steps of FMECA. This is a combination of FMECA and FTA. 329 

In theory, the proposed framework integrates the element of monitoring and assessment for 330 

enforcing a proactive inspection and maintenance regime for rail fasteners. This aim would be 331 

achieved through the use of risk matrix for risk evaluation which addresses the need for optimiz-332 

ing resource allocation. Apart from that, the embedment of FTA with FMECA within the inte-333 

grated framework assures that the regime is comprehensive. 334 

Application 347 

An example has been constructed to demonstrate how the risk management framework can be 348 

applied in practice. This example shall focus on the imbedded anchor, indicated as the plate 349 

screw in Fig. 1. 350 

Stage 1: Establishing the context 351 

Amendments have been made to the risk matrix in EN 50126. Firstly, the correct portrayal of 352 

failure behaviours has been promoted by classifying occurrence in terms of probability instead of 353 

frequency. Secondly, ambiguity is reduced by providing, wherever possible, numerical values for 354 

likelihood and severity categorization. The resultant risk matrix is similar to that suggested in 355 

academia (Duan et al. 2016; Dumbrava and Iacob 2013) and implemented in industries (Sutton 356 

2010). The adopted risk criteria will be that risks must be resolved before they migrate into the 357 

intolerable risk category. 358 
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Stage 2: Risk assessment 359 

Fault Tree Analysis for risk identification 360 

A fault tree analysis was executed to identify the failure modes which are applicable for imbed-361 

ded anchors. The fault tree diagram, as shown in Fig. 9 will form the basis for the ensuing 362 

FMECA. 363 

Risk analysis 364 

i. FMECA 365 

By identifying credible failure modes, the FTA conducted in the previous section sets the stage 366 

for FMECA. FMECA then analyses each failure mode individually for the likelihood of its oc-367 

currence and the severity of its associated consequence. In the subsequent demonstration, only 368 

one of the time-dependent failure modes will be put through FMECA. This failure mode has 369 

been chosen to be the reduction in component strength due to corrosion. 370 

Considerations will now be made on whether Monte Carlo simulation is applicable. A Feder-371 

al Railroad Administration research from 2011 had concluded that a minimum of three consecu-372 

tive rail fasteners failures is required for gauge widening to be a credible concern (Federal 373 

Railroad Administration 2011).  In addition, the Asset Standards Authority under Transport for 374 

North South Wales recommends that, for curves less than 1000m in radius, failure of three con-375 

secutive rail fasteners require a Priority 2 response. Beyond which, an emergency response 376 

would be warranted (RailCorp Network 2013). As multiple rail fasteners are required to fail in 377 

order for an undesired event to occur, risk should be evaluated from an asset system level, i.e. 378 

from a rail fastening system perspective. According to the risk management framework, Monte 379 

Carlo simulation should be considered for the example. 380 
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In Table 2, the failure effect has thus been identified as a potential derailment scenario (The 381 

Office of Transport Safety Investigations 2014) which arises when more than three consecutive 382 

rail fasteners fail. If this is a track with frequent passenger service, derailment can potentially 383 

lead to fatality with severe disruption of train service. As such, this failure effect has been ac-384 

corded in Table 2 a severity category 1 for both effect on people and financial damage. 385 

ii. Weibull analysis 386 

The relationship between the shape parameter of Weibull distribution and RCM failure be-387 

haviour is shown in Fig. 10. Corrosion increases in severity with time, thus Weibull distribution 388 

for imbedded anchor corrosion is expected to assume a slope parameter of more than 1. It has 389 

been specifically suggested by the Weibull handbook that, for corrosion and erosion related fail-390 

ure modes, the shape parameter can be predicted to be between 2 and 3.5 (Robert B Abernethy 391 

1996). The scale parameter, on the other hand, is defined as the timeframe at which there is a 392 

63.2% chance that the component will fail. This parameter is thus analogous to the average 393 

lifespan of the component. The average lifespan of rail fasteners can thus vary substantially and 394 

this variability needs to be reflected in the analysis of the framework. 395 

iii. Monte Carlo simulation 396 

The assumptions and corresponding bases made for the Monte Carlo simulations are as follow. 397 

These assumptions have also been illustrated in Fig 11. 398 

 System definition: A rail fastening system will be defined by the smallest unit possible, 399 

i.e. a rail section which is anchored by five consecutive rail fasteners, 400 

 Assumption: According to Network Rail standards for Inspection and Maintenance of 401 

Permanent Way, three consecutive missing or ineffective rail fastenings will warrant the 402 
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maximum priority level of M1*, i.e. rectify as soon as practicable (Network Rail, 2009). 403 

Thus, the system is said to be failed when more than 3 consecutive rail fasteners fail. 404 

 Assumption: When a sleeper is unable to support a train-induced load, the adjacent sleep-405 

ers will be required to carry loads which are higher than normal, reducing their remaining 406 

lives. The extent to which lives are reduced are as suggested above (Zhao et al. 2007). As 407 

rail fasteners are subjected by the same loads which are subjected to the sleepers, paral-408 

lels will be drawn between the remaining lives of sleepers and that of rail fasteners. Thus, 409 

when one rail fastener fails, the residual life of the adjacent fastener reduces by 50%. If a 410 

rail fastener is bounded by two failed fasteners, its residual life is reduced by 75%. 411 

Stage 3: Risk evaluation 412 

In Fig. 12, the availability of a single rail fastener has been plotted against that of a rail fastening 413 

system for the Weibull distribution of scale parameter 8000 and shape parameter 3. There are 414 

two main observations that can be made from Fig. 12. Between 0 to approximately 5670 days, 415 

the availability of the rail fastening system is higher than that of a singular rail fastener. Howev-416 

er, beyond this timeframe, the availability of the rail fastening system deteriorates faster than that 417 

of a singular rail fastener. 418 

The availability of the rail fastening system is linked to the availability of multiple rail fas-419 

teners. Thus, even if a rail fastener fails prematurely, the rail fastening system will remain sup-420 

ported by fasteners with longer useful lives and does not fail until three consecutive rail fasteners 421 

fail. This explains the first phenomenon. 422 

This dependency, however, often causes the availability of the rail fastening system to be de-423 

termined by the three shortest useful lives of its constituent fasteners. Besides, the failure of one 424 
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rail fastener reduces the residual lives of the subsequent fasteners. Thus, the second phenomenon 425 

results. 426 

The time required for probability to transit from E to D, to C, to B and then to A can be read 427 

from Fig. 13 using the definition of probability categories from Table 3. For the rail fastening 428 

system, probability transits to D after 1937 days, to C after 2438 days, to B after 3202 days, and 429 

finally to A after 4388 days. In fact, there is no difference in severity categories for effect on 430 

people and financial damage; the failure of a rail fastening system amounts to a severity level of 431 

I for both. Therefore, for both effect on people and financial damage, risk is tolerable for the first 432 

1937 days, then undesirable for the subsequent 501 days and, beyond which, intolerable. This 433 

analysis result has been updated in the Failure Mode, Effect and Criticality Analysis in Table 4. 434 

It can also be noted from Fig. 13 that the probability of failure for a singular rail fastener transits 435 

to C after 796 days. This means that, if risk is erroneously depicted at the component level in-436 

stead of the system level, the organisation could have been misguided in taking action at one-437 

third of the actual allowable timeframe, i.e. within 796 days instead of within 2438 days, leading 438 

to a less-than-optimal allocation of maintenance resources within the organisation. In the next 439 

sub-section, it shall be further demonstrated on how the evaluated risks can be used for the opti-440 

mization of maintenance resources in risk treatment. 441 

Stage 4: Risk treatment 442 

In the corrective approach, only rail fasteners which have failed are replaced. Currently, rail fas-443 

teners are inspected on a fixed frequency and the timeframe for action is determined by the con-444 

dition of the defect. In this sub-section, risk assessment is used to optimize this approach further 445 

by extending the intervention interval until risk migrates into intolerable category. The orange 446 

arrows in Fig. 14 shows how the availability of the rail fastening system would evolve under this 447 
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optimized corrective approach. Each black dot indicates the point in time where intervention is 448 

required prior to migration to intolerable risk. Table 6 shows that maximum intervention inter-449 

vals should be gradually reduced with time to prevent intolerable risk. As the current inspection 450 

and maintenance regime looks at the extent of deterioration and not the rate of deterioration, 451 

there may come a point in time when risk becomes intolerable if the priority of action is unable 452 

to catch up with the risk transition timeframe. 453 

In the proactive approach, all fasteners are inspected and those which have failed or are ex-454 

pected to fail within the next few years are proactively replaced. The replacement includes those 455 

that are expected to fail within a specified number of years from the point of intervention. Apart 456 

from that, only one point of intervention is considered and the blue lines correspond to various 457 

extents of proactiveness at that intervention. The extent of proactiveness is adjusted by varying 458 

the projected number of years from that point of intervention. The results can be seen from Table 459 

6 and Fig. 15. In general, proactively changing rail fasteners increases the availability of the rail 460 

fastening system more than if done by the optimized corrective approach. As shown in Table 7, 461 

if 21% of the worst rail fasteners are changed out proactively, fastening systems reach intolerable 462 

risk after 2651 days. Reactively changing 21% of the rail fasteners, on the other hand, averts in-463 

tolerable risk for 2481 days. 464 

However, from an execution perspective, proactive maintenance would require all imbedded 465 

anchors to be removed for inspection and subsequently reinstated post inspection.  This is not 466 

only time-consuming but also exposes the rail fastening system to additional infant mortality 467 

risks. In addition, making a judgement on whether a rail fastener will fail within the next few 468 

years can also be very subjective. Thus, while proactive maintenance is ideally a more effective 469 
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risk mitigation approach, the amount of resources and complexities associated to its execution 470 

does not make it a viable strategy. 471 

Another approach would be to renew the imbedded anchors of the rail fastening system, re-472 

gardless of their condition, and by doing so, eliminate the subjectivity that characterises the pro-473 

active approach. To optimize maintenance resources, renewal can be synchronised with the time 474 

at which risk migrates into intolerable risk category, i.e. after 2417 days in service. Upon com-475 

plete renewal, the risk at question resets fully and will only migrate into intolerable after another 476 

2417 days. This approach appears to be more effective than the optimized corrective approach as 477 

the timeframe at which risk migrates to intolerable risk is more than three times longer than that 478 

for the latter. This proposition, however, needs to be carefully evaluated against other factors. 479 

One such factor is the consideration that, like the proactive approach, this strategy involves all 480 

rail fasteners as any segments that remain un-renewed will continue to see risk propagate into the 481 

intolerable category. Thus, it may not be as effective as it seems as it requires more resources 482 

and introduces more infant mortality risks. 483 

There are a few factors that can define what is the most appropriate approach to adopt. These 484 

factors include the amount of additional risks introduced and the cost effectiveness associated 485 

with each approach. This sub-section will delve specifically into how cost effectiveness can be 486 

evaluated and compared between the optimized corrective approach and the renewal approach. 487 

Table 5 states that five corrective cycles are required to prevent migration of risk into the intoler-488 

able category for a duration of 4898 days. For the case of the renewal approach, only one cycle is 489 

required to achieve the same effect. With effectiveness of risk mitigation approximately equiva-490 

lent between five corrective cycles and one renewal cycle, the associated costs can be evaluated 491 

using Net Present Value analyses to compare the cost effectiveness for these approaches. In the 492 
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following NPV analysis for the optimized corrective approach, Year 0 is defined as the year in 493 

which the first corrective intervention is to be executed. Let the cost of renewing all fasteners at 494 

Year 0 be X, the discount factor be 5%, and the effect of inflation to be negated.  495 

In Year 0, 2.73% of the fasteners require replacement, thus the cost for the first corrective 496 

cycle is indicated as 0.0273X. Subsequently, 3.37%, 3.48%, 3.59% and 3.73% require replace-497 

ment in Years 2, 3, 4 and 5 respectively. The total cost for five corrective cycles in terms of net 498 

present value becomes approximately 0.15X. It can be concluded that, while one renewal cycle 499 

has a greater impact in terms of risk mitigation, the renewal approach is at least six times less 500 

cost effective when compared with the optimized corrective approach. 501 

Nevertheless, as the intervention intervals for the optimized correction approach becomes in-502 

creasingly shortened, there will come a stage where maintenance resources become strained or 503 

where the long-term cost of the optimized corrective approach outweighs that of the renewal ap-504 

proach, such that the latter becomes a more viable option. This conclusion has been updated into 505 

the Failure Mode, Effect and Criticality Analysis in Table 7. 506 

The example has demonstrated the effective use of FTA in conjunction with FMECA for risk 507 

identification. When executed methodically, this combination allows the comprehensive identifi-508 

cation of credible failure modes and the systematic risk analysis of each failure mode. This ex-509 

ample has also shed light on how risk can be assessed quantitatively and how it can subsequently 510 

be used for selecting the optimal risk treatment option. When diverse options are available for 511 

risk treatment, a life cycle cost analysis can be done for cost effectiveness comparison. 512 

Discussion 513 

Monte Carlo assumptions could have significant effects on the probability analysis and ultimate-514 

ly the appropriate risk treatment to adopt. These rules, if defined too conservatively, can lead to 515 
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lost opportunities in maintenance optimization. Conversely, if the failure mode is not well under-516 

stood or if over-optimistic rules have been set, undesired consequences may materialise before 517 

expected. In this regard, the second assumption has thus been modified such that, when a rail fas-518 

tener fails, the residual life of the fastener which is one position away reduces by 30% while that 519 

which is two positions away reduces by 20%. The simulation is then repeated to understand how 520 

this ultimately affects the risk analysis. The new set of assumptions is listed below and illustrated 521 

in Fig. 16. 522 

 No change in system definition: A rail fastening system will be defined by the smallest 523 

unit possible, i.e. a rail section which is anchored by five consecutive rail fasteners 524 

 No change in first assumption: Rail fastening system fails when three consecutive rail 525 

fasteners fail 526 

 Amendment in second assumption: When one rail fastener fails, the residual life of the 527 

adjacent fastener reduces by 30%. That of the subsequent fastener reduces by 20%. 528 

Table 8 and Fig. 17 illustrate the results from the amended simulation. The blue line indicates 529 

the availability curve of a singular rail fastener. The red solid line, on the other hand, indicates 530 

the availability curve from the case study simulation and the red dotted line indicates that of the 531 

amended simulation. It is observed that the change is mainly characterised by a parallel shift in 532 

the availability curve to the right. The change in the risk transitions has been found to be rather 533 

pronounced. Specifically, transition to intolerable risk has been shifted back by 8.5%, from Day 534 

2432 to Day 2641.The second aspect is the number of consecutive rail fasteners which consti-535 

tutes a rail fastening system failure. Based on Network Rail's track inspection standards, the case 536 

study has assumed this number to be three. The track inspection standard from Australia, howev-537 

er, advises that immediate corrective action is required if four consecutive rail fasteners have 538 
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been found to have failed (Asset Standards Authority, 2013). The higher tolerance in the latter 539 

means that there is a lower amount of safety margin. The Monte Carlo simulation has been modi-540 

fied in accordance to the latter guidance and repeated to understand how this affects the risk 541 

analysis. The new set of assumptions is listed below and illustrated in Fig. 18.  542 

 Change in system definition: A rail fastening system will be defined by the smallest unit 543 

possible, i.e. a rail section which is anchored by seven consecutive rail fasteners 544 

 Change in first assumption: Rail fastening system fails when four consecutive rail fasten-545 

ers fail 546 

 No change in second assumption: When one rail fastener fails, the residual life of the ad-547 

jacent fastener reduces by 50%. If a rail fastener is bounded by two failed fasteners, its 548 

residual life is reduced by 75%. 549 

Using similar line representations as Fig. 17, Fig. 19 illustrates the results from the amended 550 

Monte Carlo simulation. The availability curve has similarly shifted to the right. However, its 551 

gradient has steepened and the curve intercepts the original availability curve. It is also observed 552 

from Table 9 that transition into intolerable risk has been shifted back by a significant 19%, from 553 

Day 2437 to Day 2899. 554 

The above analysis underscores the importance of understanding how the failure mode re-555 

lates to the undesired consequence. Inadequate understanding or having too low a safety margin 556 

can spread the butter too thin, causing undesired consequences to transpire. On the other hand, 557 

having conservative safety margins can translate to suboptimal resource allocation.558 
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Conclusion 545 

The current inspection and maintenance regime for rail fasteners has been assessed and opportu-546 

nities have been found in terms of preventing undesired consequences and allocating resources. 547 

These opportunities are namely in increasing its comprehensive, proactiveness and resource op-548 

timization. As a result, this study proposes capitalizing these by shifting towards risk-based 549 

maintenance and puts forth a risk management framework to facilitate and reinforce this. A nov-550 

el framework for integrated risk-based maintenance planning has been developed in this study. 551 

The structure of the risk management framework is mainly extracted from ISO 31000 which ad-552 

vises that the main stages should include establishing the context, risk identification, risk analy-553 

sis, risk evaluation, risk treatment and, lastly, monitoring and review. PAS 55:2008 recommends 554 

that asset management activities ought to be executed across the asset life cycle. To inculcate this 555 

philosophy, a system lifecycle has been integrated into the framework to provide a systems per-556 

spective. For risk evaluation, EN 50126 advises that the appropriate reliability tool to use is the 557 

risk matrix. For other risk assessment stages, appropriate reliability tools have been studied and 558 

the circumstances under which each are applicable have been understood. 559 

An example is then prepared on the imbedded anchors on rail fasteners. Its intention is to 560 

highlight how the risk management framework can be innovatively adopted in practice and how 561 

it delivers on the improvement opportunities. In the example, the timeframes at which risk for 562 

corroded imbedded anchors transits to different risk categories were obtained. The overall out-563 

come of this exercise can be found in Table 7. The example has been demonstrated on how FTA 564 

can be used for the systematic identification of credible failure modes and how FMECA ensures 565 

that risk is evaluated for each failure mode identified. Life cycle analysis is then conducted to 566 
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demonstrate how the optimal risk treatment strategy can be sought for resource optimization. The 567 

Weibull analysis used is inherently a monitoring and review reliability tool. It should be noted 568 

that findings are unique to the example and should be treated carefully. Thus, before the novel 569 

framework can be applied onto other failure modes, it is imperative that the framework is simu-570 

lated and analysed for the identification of any unique considerations that may affect the frame-571 

work's effectiveness. 572 
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 637 

Fig.1. Schematic of anchor bolts on concrete sleeper 638 

 639 

Fig. 2. Trapezoidal membership functions 640 

 641 

Fig. 3. Overview of asset management system 642 

 643 

Fig. 4. Systems perspective of risk management framework 644 
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 645 

Fig. 5. Relationships between RAMS elements 646 

 647 

Fig. 6. System lifecycle model 648 
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 649 

Fig. 7. Six RCM failure pattern curves 650 

 651 

Fig. 8. Preliminary risk management framework 652 
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 653 

Fig. 9. Fault Tree Analysis for anchor bolt failure 654 

 655 

Fig. 10. Relationship between shape parameter and failure behaviour curves 656 
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 657 

Fig 11. Illustration of the Monte Carlo simulation assumptions 658 

 659 

Fig. 12. Cumulative distribution function plot of a single rail fastener (blue) and rail fastening 660 

system (red) 661 

 662 

Fig. 13. Timeframe at which probability transits from E to D, to C, to B, to A indicated on the 663 

respective cumulative distribution function plots 664 
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 665 

Fig. 14. Availability of rail fastening system after consecutive corrective cycles 666 

 667 

Fig. 15. Availability of rail fastening system with corrective maintenance (red line) and increas-668 

ing extent of proactive maintenance (blue lines) 669 

 670 

Fig. 16. Illustration of new assumptions, with the impact on adjacent fasteners changed 671 
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 672 

Fig. 17. Shift in availability curve after changes to impact on residual life 673 

 674 

Fig. 18. Illustration of new assumptions, with definition of system failure changed 675 

 676 

Fig. 19. Change in shape of availability curve after changes on system failure definition 677 

 678 
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Table 1 Minimum inspection frequency recommended in NR/L2/TRK/001/A01 679 

Inspection frequency Once per week Once per two weeks Once per four weeks 

Track category Cat 1A, Cat 1 & Cat 2 Cat 3 & Cat 4 Cat 5 & Cat 6 

680 
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Table 2 Failure Mode, Effect and Criticality Analysis after severity assignment 681 

Function  Failure and Cause of 

Failure 

Failure effect Severity 

Imbedded anchor - 

To maintain vertical, 

lateral and longitu-

dinal position of rail 

relative to sleepers 

Strength reduction due 

to corrosion 

Derailment due to fail-

ure of more than three 

consecutive rail fasten-

ers 

Effect on People: 

Severity I  
Financial Damage: 

Severity I 

 682 

683 
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Table 3 Risk matrix to be adopted for the example 684 

Likelihood 0.1-1 0.01-0.1 0.001-0.01 0.0001-0.001 0.00001-0.0001 

Severity 

I Intolerable Intolerable Intolerable Undesirable Tolerable 

II Intolerable Intolerable Undesirable Tolerable Negligible 

III Undesirable Undesirable Tolerable Negligible Negligible 

IV Tolerable Negligible Negligible Negligible Negligible 
 685 

686 
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Table 4 Failure Mode, Effect and Criticality Analysis after risk assignment 687 

Function  Failure and 

Cause of 

Failure 

Failure ef-

fect 

Severity Probability Risk criticality 

Imbedded 

anchor - To 

maintain 

vertical, 

lateral and 

longitudinal 

position of 

rail relative 

to sleepers 

Strength 

reduction 

due to cor-

rosion 

Derailment 

due to fail-

ure of 

more than 

three con-

secutive 

rail fasten-

ers 

Effect on 

People: 

Severity I  
Financial 

Damage: 

Severity I 

0 to 1937
th

 day: 

Probability E  

1937
th

 to 2438
th

  

day: Probability D  

2438
th

 to 3202
nd

  

day: Probability C  

3202
nd

 to 4388
th

  

day: Probability B  

4388
th

 day and be-

yond: Probability A 

0 to 1937
th

 day:   

Tolerable (E-I)  

1937
th

 to 2438
th

 

day:   

Undesirable (D-I)  

2438
th

 day and be-

yond:   

Intolerable (C-I and 

beyond)  

  

Financial Damage  

0 to 1937
th

 day:   

Tolerable (E-I)  

1937
th

 to 2438
th

 

day:   

Undesirable (D-I)  

2438
th

 day and be-

yond:   

Intolerable (C-I and 

beyond)  
 688 

689 
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Table 5 Change in optimized intervention interval with time 690 

Corrective 

Cycle 

Time of intervention 

(days) 

Elapsed time from previ-

ous corrective action 

(days) 

Cumulative percentage of 

fasteners replaced 

1 2417 2417 3% 

2 3183 766 6% 

3 3722 539 10% 

4 4160 438 13% 

5 4558 398 17% 

6 4898 340 21% 

7 5203 305 24% 

8 5488 285 n/a 
 691 

692 
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Table 6 Impact of risk mitigation with changing extent of proactive maintenance 693 

Fastener replacement criteria 

(number of years before fail-

ure) 

Estimated percentage of fas-

teners to be changed (%) 

Time at which risk next trans-

its into intolerable risk catego-

ry (Days) 

0 3 3180 

1 4 3410 

2 6 3693 

3 8 3978 

4 11 4272 

5 14 4564 

6 17 4818 

7 21 5068 

8 26 5196 

9 30 5231 

10 35 5330 

11 40 5343 

12 46 5352 
 694 

695 
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Table 7 Failure Mode, Effect and Criticality Analysis after risk evaluation 696 

Function  Failure 

and Cause 

of Failure 

Failure 

effect 

Severity Probability Risk critical-

ity 

Recommended 

action 

Imbed-

ded an-

chor - 

To 

maintain 

vertical, 

lateral 

and lon-

gitudinal 

position 

of rail 

relative 

to sleep-

ers 

Strength 

reduction 

due to cor-

rosion 

Derail-

ment due 

to failure 

of more 

than three 

consecu-

tive rail 

fasteners 

Effect on 

People: 

Severity I  
Financial 

Damage: 

Severity I 

0 to 1937
th

 

day: Proba-

bility E  

1937
th

 to 

2438
th

  day: 

Probability 

D  

2438
th

 to 

3202
nd

  day: 

Probability 

C  

3202
nd

 to 

4388
th

  day: 

Probability 

B  

4388
th

 day 

and beyond: 

Probability 

A 

0 to 1937
th

 

day:   

Tolerable 

(E-I)  

1937
th

 to 

2438
th

 day:   

Undesirable 

(D-I)  

2438
th

 day 

and beyond:   

Intolerable 

(C-I and be-

yond)  

  

Financial 

Damage  

0 to 1937
th

 

day:   

Tolerable 

(E-I)  

1937
th

 to 

2438
th

 day:   

Undesirable 

(D-I)  

2438
th

 day 

and beyond:   

Intolerable 

(C-I and be-

yond)  

Optimized 

Corrective ap-

proach  

Renewal ap-

proach can be 

expected in 

future – to be 

reviewed. 
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Table 8 Change in probability timeframe after changes to impact on residual life 698 

 Time (days) taken to migrate to 

 Probability D Probability C Probability B Probability A 

Case Study 1864 2432 3220 4391 

Amended 

Assumptions 
2085 (+221) 2641 (+209) 3481 (+261) 4727 (+336) 

699 
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Table 9 Change in probability timeframe after changes to impact on residual life 700 

 Time (days) taken to migrate to 

 Probability D Probability C Probability B Probability A 

Case Study 1864 2432 3220 4391 

Amended 

Assumptions 

2085 (+221) 2641 (+209) 3481 (+261) 4727 (+336) 

 701 
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