UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the qq (')bb final state in pp collisions at $\mathrm{s}=13 \mathrm{TeV}$ with the ATLAS detector ATLAS Collaboration

DOI:
10.1016/j.physletb.2017.09.066

License:
Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
ATLAS Collaboration 2017, 'Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the $\mathrm{qq}^{-}\left(^{(}\right) \mathrm{bb} b^{-}$final state in pp collisions at $\mathrm{s}=13 \mathrm{TeV}$ with the ATLAS detector', Physical Review Letters, vol. 774, pp. 494-515. https://doi.org/10.1016/j.physletb.2017.09.066

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Checked for eligibility 06/12/2018
https://doi.org/10.1016/j.physletb.2017.09.066

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

> -Users may freely distribute the URL that is used to identify this publication.
> -Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
> -User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
> -Users may not further distribute the material nor use it for the purposes of commercial gain.
> Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
> When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the $q \bar{q}^{(\prime)} b \bar{b}$ final state in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector

The ATLAS Collaboration ${ }^{\star}$

ARTICLE INFO

Article history:

Received 21 July 2017
Received in revised form 13 September 2017
Accepted 22 September 2017
Available online 28 September 2017
Editor: W.-D. Schlatter

Abstract

A search for heavy resonances decaying to a W or Z boson and a Higgs boson in the $q \bar{q}^{(\prime)} b \bar{b}$ final state is described. The search uses $36.1 \mathrm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13 \mathrm{TeV}$ collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) σ. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a $W(Z)$ boson and a Higgs boson, itself decaying to $b \bar{b}$, in the mass range between 1.1 and 3.8 TeV at 95% confidence level; the limits range between 83 and 1.6 fb (77 and $1.1 \mathrm{fb})$ at 95% confidence level. © 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

 (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of the Higgs boson [1,2] confirms the validity of the Standard Model (SM) in the description of particle interactions at energies up to a few hundred GeV . However, radiative corrections to the Higgs boson mass drive its value to the model's validity limit, indicating either extreme fine-tuning or the presence of new physics at an energy scale not far above the Higgs boson mass. It is natural to expect such new physics to manifest itself through significant coupling to the Higgs boson, for example in decays of new particles to a Higgs boson and other SM particles. This Letter presents a search for resonances produced in $36.1 \mathrm{fb}^{-1}$ of proton-proton $(p p)$ collision data at $\sqrt{s}=13 \mathrm{TeV}$ which decay to a W or Z boson and a Higgs boson. Such resonances are predicted in multiple models of physics beyond the SM, e.g. composite Higgs [3,4] or Little Higgs [5] models, or models with extra dimensions [6,7].

This search is conducted in the channel where the W or Z and Higgs bosons decay to quarks. The high mass region, with resonance masses $m_{V H}>1 \mathrm{TeV}(V=W, Z)$, where the V and H bosons are highly Lorentz boosted, is considered. The V and H boson candidates are each reconstructed in a single jet, using jet substructure techniques and b-tagging to suppress the dominant background from multijet events and to enhance the sensitivity to

[^0]the dominant $H \rightarrow b \bar{b}$ decay mode. The reconstructed dijet mass distribution is used to search for a signal and, in its absence, to set bounds on the production cross-section times branching ratio for new bosons which decay to a W or Z boson and a Higgs boson.

The results are expressed as limits in a simplified model which incorporates a heavy vector triplet (HVT) [8,9] of bosons; this choice allows the results to be interpreted in a large class of models. The new heavy vector bosons couple to the Higgs boson and SM gauge bosons with coupling strength $c_{H} g_{V}$ and to the SM fermions with coupling strength $\left(g^{2} / g_{V}\right) c_{F}$, where g is the $\mathrm{SM} \operatorname{SU}(2)_{\mathrm{L}}$ coupling constant. The parameter g_{V} characterizes the interactions of the new vector bosons, while the dimensionless coefficients c_{H} and c_{F} parameterize departures of this typical strength for interactions with the Higgs and SM gauge bosons and with fermions, respectively, and are expected to be of order unity in most models. Two benchmark models are used: in the first, referred to as Model A, the branching ratios of the new heavy vector boson to known fermions and gauge bosons are comparable, as in some extensions of the SM gauge group [10]. In Model B, fermionic couplings to the new heavy vector boson are suppressed, as for example in a composite Higgs model [11]. The regions of HVT parameter space studied correspond to the production of resonances with an intrinsic width that is narrow relative to the experimental resolution. The latter is roughly 8% of the resonance mass. The sensitivity of the analysis to wider resonances is not tested. In addition, while the production rates of the new heavy charged and neutral states are related within the HVT model, the search pre-
sented here assumes the production of only a charged or neutral resonance and not both simultaneously.

Searches for $V H$ resonances, V^{\prime}, have recently been performed by the ATLAS and CMS collaborations. The ATLAS searches (using leptonic V decays) based on data collected at $\sqrt{s}=8 \mathrm{TeV}$ set a lower limit at the 95% confidence level (CL) on the $W^{\prime}\left(Z^{\prime}\right)$ mass at 1.47 (1.36) TeV in HVT benchmark Model A with $g_{V}=1$ [12]. Using the same decay modes, a search based on $3.2 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=13 \mathrm{TeV}$ set a 95% CL lower limit on the $W^{\prime}\left(Z^{\prime}\right)$ mass at 1.75 (1.49) TeV [13] in the HVT benchmark Model A. For Model B the corresponding limits are $2.22(1.58) \mathrm{TeV}$. Searches by the CMS Collaboration at $\sqrt{s}=8 \mathrm{TeV}$ in hadronic channels, based on HVT benchmark Model B with $g_{V}=3$, exclude heavy resonance masses below 1.6 TeV $\left(W^{\prime} \rightarrow W H\right)$, below 1.1 TeV and between 1.3 TeV and $1.5 \mathrm{TeV}\left(Z^{\prime} \rightarrow Z H\right)$, and below 1.7 TeV (combined $\left.V^{\prime} \rightarrow V H\right)$ [14] at the $95 \% \mathrm{CL}$. Using the $W^{\prime} \rightarrow W H \rightarrow \ell \nu b \bar{b}$ channel, CMS excludes new heavy vector bosons with masses up to 1.5 TeV in the same context [15]. The CMS Collaboration also carried out a search for a narrow resonance decaying to ZH in the $q \bar{q} \tau^{+} \tau^{-}$final state, setting limits on the Z^{\prime} production crosssection [16]. Searches for heavy resonances in HVT models have also been carried out in the hadronic $W W / W Z \mid Z Z$ channels by the ATLAS experiment at $\sqrt{s}=13 \mathrm{TeV}$ with $3.2 \mathrm{fb}^{-1}$ of data [17]. For Model B, a new gauge boson with mass below 2.6 TeV is excluded at the 95% CL. The CMS Collaboration combined [18] diboson resonance searches at $\sqrt{s}=8$ and 13 TeV [18], setting lower limits for W^{\prime} and Z^{\prime} singlets at 2.3 TeV and for a triplet at 2.4 TeV . As this Letter was being finalized, the CMS Collaboration released [19] a search in the same final state as studied in this Letter, using $36 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s}=13 \mathrm{TeV}$. For Model B, a W^{\prime} boson with mass below 2.45 TeV and between 2.78 TeV and 3.15 TeV is excluded at the $95 \% \mathrm{CL}$. For a Z^{\prime} boson, masses below 1.19 TeV and between 1.21 TeV and 2.26 TeV are excluded at the 95\% CL.

2. ATLAS detector

The ATLAS detector [20] is a general-purpose particle detector used to investigate a broad range of physics processes. It includes inner tracking devices surrounded by a 2.3 m diameter superconducting solenoid, electromagnetic and hadronic calorimeters and a muon spectrometer with a toroidal magnetic field. The inner detector consists of a high-granularity silicon pixel detector, including the insertable B-layer [21] installed after Run 1 of the LHC, a silicon strip detector, and a straw-tube tracker. It is immersed in a 2 T axial magnetic field and provides precision tracking of charged particles with pseudorapidity $|\eta|<2.5 .{ }^{1}$ The calorimeter system consists of finely segmented sampling calorimeters using lead/liquidargon for the detection of electromagnetic (EM) showers up to $|\eta|<3.2$, and copper or tungsten/liquid-argon for electromagnetic and hadronic showers for $1.5<|\eta|<4.9$. In the central region ($|\eta|<1.7$), a steel/scintillator hadronic calorimeter is used. Outside the calorimeters, the muon system incorporates multiple layers of trigger and tracking chambers within a magnetic field produced by a system of superconducting toroids, enabling an independent precise measurement of muon track momenta for $|\eta|<2.7$. A dedicated trigger system is used to select events [22]. The first-level

[^1]trigger is implemented in hardware and uses the calorimeter and muon detectors to reduce the accepted rate to 100 kHz . This is followed by a software-based high-level trigger, which reduces the accepted event rate to 1 kHz on average.

3. Data and simulation samples

This analysis uses $36.1 \mathrm{fb}^{-1}$ of LHC $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ collected in 2015 and 2016. The data were collected during stable beam conditions with all relevant detector systems functional. Events were selected using a trigger that requires a single anti- k_{t} jet [23] with radius parameter $R=1.0$ (large- R jet) with a transverse energy (E_{T}) threshold of 360 (420) GeV in 2015 (2016). The trigger requirement is $>99 \%$ efficient for events passing the offline selection of a large- R jet with transverse momentum $\left(p_{\mathrm{T}}\right)$ $>450 \mathrm{GeV}$.

Signal processes, as well as backgrounds from $t \bar{t}$ and $W / Z+$ jets production, are modelled with Monte Carlo (MC) simulation. While multijet MC events are used as a cross-check, the primary multijet background estimation is performed using data as described in Section 6. The signal is modelled using benchmark Model A with $g_{V}=1$. Results derived from this model can be directly applied to benchmark Model B by rescaling the relevant branching ratios. The signal was generated with Madgraph5_aMC@NLO 2.2.2 [24] interfaced to PYthia 8.186 [25] for parton shower and hadronization, with the NNPDF2.3 next-toleading order (NLO) parton distribution function (PDF) set [26] and a set of tuned parameters called the ATLAS A14 tune [27] for the underlying event. The Higgs boson mass was set to 125.5 GeV , and Higgs boson decays to both $b \bar{b}$ and $c \bar{c}$, assuming SM branching ratios, were included in the simulation. The $V^{\prime} \rightarrow V H \rightarrow$ $q \bar{q}^{(\prime)}(b \bar{b}+c \bar{c})$ signal cross-section in Model B ranges from 110 fb (203 fb) for neutral (charged) resonances with a mass of 1 TeV , down to $0.09 \mathrm{fb}(0.19 \mathrm{fb})$ for neutral (charged) resonances with a mass of 3.8 TeV . Samples were generated in steps of 100 GeV or 200 GeV up to 4 TeV .

The $t \bar{t}$ background samples were generated with PowhegBox v2 [28] with the CT10 PDF set [29], interfaced with Pythia 6.428 [30] and the Perugia 2012 tune for the parton shower [31] using the CTEQ6L1 PDF set [32]. The cross-section of the $t \bar{t}$ process is normalized to the result of a quantum chromodynamics (QCD) calculation at next-to-next-to-leading order and \log (NNLO+NNLL), as implemented in Top++ 2.0 [33]. The Powheg hdamp parameter [34] was set to the top quark mass, taken to be $m_{t}=172.5 \mathrm{GeV}$. The $W+$ jets and $Z+$ jets background samples were generated with Sherpa 2.1.1 [35] interfaced with the CT10 PDF set. Matrix elements of up to four extra partons were calculated at leading order in QCD. Only the hadronic decays of the W and Z bosons were included. For studies with simulated multijet events, the MC samples were generated with Pythia 8.186 [25], with the NNPDF2.3 NLO PDF and the ATLAS A14 tune. The background from SM diboson and $V H$ production is negligible and therefore not considered.

For all simulated events, except those produced using Sherpa, EvtGen v1.2.0 [36] was used to model the properties of bottom and charm hadron decays. The detector response was simulated with Geant $4[37,38]$ and the events were processed with the same reconstruction software as that used for data. All simulated samples include the effects due to multiple $p p$ interactions per bunch-crossing (pile-up).

4. Event reconstruction

Collision vertices are reconstructed requiring a minimum of two tracks each with transverse momentum $p_{\mathrm{T}}>0.4 \mathrm{GeV}$. The primary
vertex is chosen to be the vertex with the largest $\sum p_{\mathrm{T}}^{2}$, where the sum extends over all tracks associated with the vertex.

The identification and reconstruction of hadronically decaying gauge boson and Higgs boson candidates is performed with the anti- k_{t} jet clustering algorithm with R parameter equal to 1.0 . These large- R jets [39] are reconstructed from locally calibrated topological clusters [40] of calorimeter energy deposits. To mitigate the effects of pile-up and soft radiation, the large- R jets are trimmed [41]: the jet constituents are reclustered into subjets using the k_{t} algorithm [42] with $R=0.2$, removing those with $p_{\mathrm{T}}^{\text {subjet }} / p_{\mathrm{T}}^{\text {jet }}<0.05$, where $p_{\mathrm{T}}^{\text {subjet }}$ is the transverse momentum of the subjet and $p_{\mathrm{T}}^{\text {jet }}$ is the transverse momentum of the original large- R jet. In order to improve on the limited angular resolution of the calorimeter, the combined mass of a large- R jet is computed using a combination of calorimeter and tracking information [43]. The combined mass is defined as:
$m_{J} \equiv w_{\text {calo }} \times m_{J}^{\text {calo }}+w_{\text {track }} \times\left(m_{J}^{\text {track }} \frac{p_{\mathrm{T}}^{\text {calo }}}{p_{\mathrm{T}}^{\text {track }}}\right)$,
where $m_{J}^{\text {calo }}\left(p_{\mathrm{T}}^{\text {calo }}\right)$ is the calorimeter-only estimate of the jet mass $\left(p_{\mathrm{T}}\right)$, and $m_{J}^{\text {track }}\left(p_{\mathrm{T}}^{\text {track }}\right)$ is the jet mass $\left(p_{\mathrm{T}}\right)$ estimated via tracks with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$ associated with the large- R jet using ghost association ${ }^{2}$ [44]. To correct for the missing neutral component in the track-based measurement, $m_{J}^{\text {track }}$ is scaled by the ratio of calorimeter to track p_{T} estimates. The weighting factors $w_{\text {calo }}$ and $w_{\text {track }}$ are $p_{\mathrm{T}}^{\text {calo }}$-dependent functions of the calorimeter- and trackbased jet mass resolutions used to optimize the combined mass resolution.

Track jets clustered using the anti- k_{t} algorithm with $R=0.2$ are used to aid the identification of b-hadron candidates from the Higgs boson decay [45]. Track jets are built from charged particle tracks with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$ and $|\eta|<2.5$ that satisfy a set of hit and impact parameter criteria to minimize the impact of tracks from pile-up interactions, and are required to have track jet $p_{\mathrm{T}}>10 \mathrm{GeV},|\eta|<2.5$, and at least two tracks clustered in the track jet. Track jets are matched with large- R jets using ghost association. The identification of b-hadrons relies on a multivariate tagging algorithm [46] which combines information from several vertexing and impact parameter tagging algorithms applied to a set of tracks in a region of interest around each track jet axis. The b-tagging requirements result in an efficiency of 77% for track jets containing b-hadrons, and a misidentification rate of $\sim 2 \% ~(\sim 24 \%$) for light-flavour (charm) jets, as determined in a sample of simulated $t \bar{t}$ events. For MC samples the tagging efficiencies are corrected to match those measured in data [47].

Muons are reconstructed by combining tracks in the inner detector and the muon system, and are required to satisfy "Tight" muon identification criteria [48]. The four-momentum of the closest muon candidate with $p_{\mathrm{T}}>4 \mathrm{GeV}$ and $|\eta|<2.5$ that is within $\Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}=0.2$ of a track jet is added to the calorimeter jet four-momentum to partially account for the energy carried by muons from semileptonic b-hadron decays. This muon correction results in a $\sim 5 \%$ resolution improvement for Higgs boson candidate jets (defined in Section 5) [49]. Electrons are reconstructed from inner detector and calorimeter information, and are required to satisfy the "Loose" likelihood selection [50].

Leptons (electrons and muons, ℓ) are also used in a "veto" to ensure the orthogonality of the analysis selection with respect to

[^2]other heavy $V H$ resonance searches in non-fully hadronic final states. The considered leptons have $p_{\mathrm{T}}>7 \mathrm{GeV},|\eta|<2.5$ (2.47) for muons (electrons), and their associated tracks must have $\left|d_{0}\right| / \sigma_{d_{0}}<3$ (5) and $\left|z_{0} \sin \theta\right|<0.5 \mathrm{~mm}$, where d_{0} is the transverse impact parameter with respect to the beam line, $\sigma_{d_{0}}$ is the uncertainty on d_{0}, and z_{0} is the distance between the longitudinal position of the track along the beam line at the point where d_{0} is measured and the longitudinal position of the primary vertex. Leptons are also required to satisfy an isolation criterion, whereby the ratio of the p_{T} sum of all tracks with $p_{\mathrm{T}}>1 \mathrm{GeV}$ (excluding the lepton's) within a cone around the lepton (with radius dependent on the lepton p_{T}) to the lepton momentum must be less than a p_{T} - and $|\eta|$-dependent threshold I_{0}. The value of I_{0} is chosen such that a constant efficiency of 99% as a function of p_{T} and $|\eta|$ is obtained for leptons in events with identified $Z \rightarrow \ell \ell$ candidates.

The missing transverse momentum ($\vec{E}_{\mathrm{T}}^{\text {miss }}$) is calculated as the negative vectorial sum of the transverse momenta of all the muons, electrons, calorimeter jets with $R=0.4$, and any innerdetector tracks from the primary vertex not matched to any of these objects [51]. The magnitude of the $\vec{E}_{\mathrm{T}}^{\text {miss }}$ is denoted by $E_{\mathrm{T}}^{\text {miss }}$.

5. Event selection

Events selected for this analysis must contain at least two large- R jets with $|\eta|<2.0$ and invariant mass $m_{J}>50 \mathrm{GeV}$, and cannot have any lepton candidate passing the veto for leptons. The leading and subleading p_{T} large- R jets must have $p_{\text {T }}$ greater than 450 GeV and 250 GeV , respectively. The two leading p_{T} large- R jets are assigned to be the Higgs and vector boson candidates, and the invariant mass of the individual jets is used to determine the boson type; the large- R jet with the larger invariant mass is assigned to be the Higgs boson candidate jet (H-jet), while the smaller invariant mass large- R jet is assigned as the vector boson candidate jet (V-jet). In signal MC simulation, this procedure results in 99% correct assignment after the full signal region selections described below. Furthermore, the absolute value of the rapidity difference, $\left|\Delta y_{12}\right|$, between the two leading p_{T} large- R jets must be less than 1.6 , exploiting the more central production of the signal compared to the multijet background. To ensure orthogonality with the $Z H$ resonance search in which the Z boson decays to neutrinos, events are rejected if they have $E_{\mathrm{T}}^{\text {miss }}>150 \mathrm{GeV}$ and $\Delta \phi\left(\vec{E}_{\mathrm{T}}^{\text {miss }}, H\right.$-jet $)>120$ degrees.

The H-jet is further required to satisfy mass and b-tagging criteria_consistent with expectations from a Higgs boson decaying to $b \bar{b}$ [45]. The H-jet mass, $m_{J, H}$, must satisfy $75 \mathrm{GeV}<m_{J, H}<$ 145 GeV , which is $\sim 90 \%$ efficient for Higgs boson jets. The number of ghost associated b-tagged track jets is then used to categorize events. The H-jets with either one or two b-tagged track jets, amongst the two leading p_{T} associated track jets, are used in this analysis. The H-jets with one associated b-tagged track jet are not required to have two associated track jets. The Higgs boson tagging efficiency, defined with respect to jets that are within $\Delta R=1.0$ of a truth Higgs boson and its decay b-hadrons, for doubly- (singly-) b-tagged H-jets is $\sim 40 \%(\sim 75 \%)$ for H-jets with $p_{\mathrm{T}} \approx 500 \mathrm{GeV}$ and $\sim 25 \%(\sim 65 \%)$ for H-jets with $p_{\mathrm{T}} \approx 900 \mathrm{GeV}$ [49]. The rejection factor for jets from multijet production is $\sim 600(\sim 50)$ for double (single) tags.

The V-jet must satisfy mass and substructure criteria consistent with a W - or Z-jet using a 50% efficiency working point, similar to the "Medium" working point in Ref. [52]. To be considered a $W(Z)$ candidate, the V-jet must have a mass $m_{J, V}$ within a p_{T}-dependent mass window which varies between $m_{J, V} \in[67,95]([75,107]) \mathrm{GeV}$ for jets with $p_{\mathrm{T}} \approx 250 \mathrm{GeV}$, and $m_{J, V} \in[60,100]([70,110]) \mathrm{GeV}$ for jets with $p_{\mathrm{T}} \approx 2500 \mathrm{GeV}$. The jet must also satisfy a p_{T}-dependent $D_{2}[53,54]$ selection (with

Table 1
Summary of event selection criteria. The selection efficiency for HVT benchmark Model B is shown for W H resonances. It is very similar for $Z H$ resonances.

Selection	Description	$m=2 \mathrm{TeV}$ WH signal efficiency [\%]
Large- R jet selection	$p_{\mathrm{T}}^{\text {lead }}>450 \mathrm{GeV}, p_{\mathrm{T}}{ }^{\text {sublead }}>250 \mathrm{GeV},\|\eta\|<2.0, m_{J}>50 \mathrm{GeV}$	83.8
Lepton veto	Remove events with leptons	83.0
Rapidity difference	$\left\|\Delta y_{12}\right\|<1.6$	73.3
$E_{\mathrm{T}}^{\text {miss }}$ veto	Remove events with $E_{\mathrm{T}}^{\text {miss }}>150 \mathrm{GeV}$ and $\Delta \phi\left(\vec{E}_{\mathrm{T}}^{\text {miss }}, H\right.$-jet $)>120$ degrees	68.3
V / H assignment	Larger mass jet is H-jet, smaller mass jet is V-jet	68.3
W / Z-tagging	Mass window $+D_{2}$ selection	36.3
Dijet mass	$m_{J J}>1 \mathrm{TeV}$	36.3
Signal region	$W H$ 1-tag	15.0
Signal region	$W H$ 2-tag	12.5

$\beta=1$) which depends on whether the candidate is a W or a Z boson, as described in Ref. [52]. The variable D_{2} exploits twoand three-point energy correlation functions to tag boosted objects with two-body decay structures. The V-jet tagging efficiency is $\sim 50 \%$ and constant in V-jet p_{T}, with a misidentification rate for jets from multijet production of $\sim 2 \%$.

Four signal regions (SRs) are used in this analysis. They differ by the number of b-tagged track jets associated to the H-jet and by whether the V-jet passes a Z-tag or W-tag selection. The "1-tag" and "2-tag" SRs require exactly one and two b-tagged track jets associated to the H-jet, respectively. The 2-tag signal regions provide better sensitivity for resonances with masses below $\sim 2.5 \mathrm{TeV}$. Above 2.5 TeV the 1-tag regions provide higher sensitivity because the Lorentz boost of the Higgs boson is large enough to merge the fragmentation products of both b-quarks into a single track jet. Events in which the V-jet passes a Z-tag constitute the $Z H$ signal regions, while events in which the V-jet passes a W-tag constitute the $W H$ signal regions. While the 1-tag and 2-tag signal regions are orthogonal regardless of the V-jet tag, the $W H$ and $Z H$ selections are not orthogonal within a given b-tag category. The overlap between the $W H$ and $Z H$ selections in the signal regions is approximately 60%.

The final event requirement is that the mass of the candidate resonance built from the sum of the V-jet and H-jet candidate four-momenta, $m_{J J}$, must be larger than 1 TeV . This requirement ensures full efficiency for the trigger and jet p_{T} requirements for events passing the full selection. The full event selection can be found in Table 1. The expected selection efficiency for both WH and $Z H$ resonances decaying to $q \bar{q}^{(\prime)}(b \bar{b}+c \bar{c})$ with a mass of 2 (3) TeV in the HVT benchmark Model B is $\sim 30 \%(\sim 20 \%)$.

6. Background estimation

After the selection of 1-tag and 2-tag events, $\sim 90 \%$ of the background in the signal regions originates from multijet events. The remaining $\sim 10 \%$ is predominantly $t \bar{t}$ with a small contribution from $V+$ jets ($\lesssim 1 \%$). The multijet background is modelled directly from data, while other backgrounds are estimated from MC simulation.

Multijet modelling starts from the same trigger and event selection as described above, but the H -jet is required to have zero associated b-tagged track jets. This 0 -tag sample, which consists of multijet events at the $\sim 99 \%$ level, is used to model the kinematics of the multijet background in the 1-tag and 2-tag SRs. To keep the 0 -tag region kinematics close to the 1 - and 2-tag regions, H-jets in 0 -tag events must contain at least one (two) associated track jets when modelling the $1(2)$-tag signal region.

The 0 -tag sample is normalized to the 1-tag and 2-tag samples and corrected for kinematic differences with respect to the signal regions, as described below. These kinematic differences arise from the b-tagging efficiency variations as a function of p_{T} and $|\eta|$ and

Fig. 1. Illustration of the sideband and validation regions, showing orthogonal slices through the space defined by the masses of the two boson candidates and the number of b-tags.
because different multijet processes, in terms of quark, gluon, and heavy-flavour content, contribute different fractions to the $0-1$-, and $2-$ tag samples.

The 0 -tag sample is normalized to the 1 - and 2 -tag samples, separately, using a signal-free high mass sideband of the H-jet defined by $145 \mathrm{GeV}<m_{J, H}<200 \mathrm{GeV}$. This sideband (SB), illustrated in Fig. 1, is orthogonal to the signal region and has similar expected event yield to the signal region. The normalization of the multijet events is set by scaling the number of events in each region of the 0 -tag sample by
$\mu_{\text {Multijet }}^{1(2)-\operatorname{tag}}=\frac{N_{\text {Multijet }}^{1(2)-t a g}}{N_{\text {Multijet }}^{0-\mathrm{tag}}}=\frac{N_{\text {data }}^{1(2)-\operatorname{tag}}-N_{t \bar{t}}^{1(2)-\mathrm{tag}}-N_{V+\mathrm{jets}}^{1(2)-\mathrm{tag}}}{N_{\text {data }}^{0-\operatorname{tag}}-N_{t \bar{t}}^{0-\mathrm{tag}}-N_{V+\mathrm{jets}}^{0-\mathrm{tag}}}$,
where $N_{\text {data }}^{0 / 1 / 2-\operatorname{tag}}, N_{t \bar{t}}^{0 / 1 / 2-\operatorname{tag}}$ and $N_{V+\text { jets }}^{0 / 1 / 2-\operatorname{tag}}$ are the numbers of events observed in data, and predicted from $t \bar{t}$ and $V+$ jets MC simulation in the $0-$, $1-$, or 2 -tag SB samples, respectively. As the selection of track jets for H -jets in 0 -tag events differs when modelling the 1-tag and 2-tag regions (as stated above), $N_{\text {Multijet }}^{0 \text {-tag }}$ differs between estimates of the $\mu_{\text {Multijet }}^{1-\text { tag }}$ and $\mu_{\text {Multijet. }}^{2-\operatorname{tag}}$.

Kinematic corrections to the multijet background template are applied by reweighting events from the 0 -tag sample. This is performed only for the 2-tag sample, as the modelling of the multijet background in the 1-tag SB and validation regions (described below and depicted in Fig. 1) without reweighting is observed to be adequate. The weights are derived in the $S B$ region, from third-order polynomial fits to the ratio of the total background model to data in two distributions that are sensitive to kinematic and b-tagging efficiency differences between the 0 -tag and 2-tag samples. The variables are the track jet p_{T} ratio, defined as $p_{\mathrm{T}}^{\text {lead }} /\left(p_{\mathrm{T}}^{\text {lead }}+p_{\mathrm{T}}^{\text {sublead }}\right)$, and $p_{\mathrm{T}}^{\text {sublead }}$, both using the p_{T} distributions of the leading two p_{T} track jets associated to the H-jet. The reweighting is performed using one-dimensional distributions but is iterated so that correlations between the two variables are taken into account. After each reweighting iteration, the value of $\mu_{\text {Multijet }}^{1(2)-\mathrm{tag}}$

Table 2
The number of events in data and predicted background events in the sideband and validation regions. In the sideband, the data and the total background prediction agree by construction. The uncertainties are statistical only. Due to rounding the totals can differ from the sums of components.

2-tag sample	Sideband region	Validation region (Signal-region-like)		Validation region (Sideband-region-like)	
		No D_{2}	With D_{2}	No D_{2}	With D_{2}
Multijet	1410 ± 10	13700 ± 20	875 ± 5	7150 ± 10	455 ± 5
$t \bar{t}$	220 ± 10	115 ± 10	12 ± 3	250 ± 15	26 ± 4
$V+$ jets	35 ± 15	250 ± 30	14 ± 6	30 ± 10	3 ± 3
Total	1670 ± 20	14050 ± 35	900 ± 8	7430 ± 20	485 ± 6
Data	1667	15013	934	7200	426
1-tag sample	Sideband region	Validation region (Signal-region-like)		Validation region (Sideband-region-like)	
		No D_{2}	With D_{2}	No D_{2}	With D_{2}
Multijet	12350 ± 50	138500 ± 160	8820 ± 40	62600 ± 100	3970 ± 30
$t \bar{t}$	2200 ± 30	1030 ± 30	115 ± 7	1700 ± 35	210 ± 10
$V+$ jets	300 ± 40	1480 ± 90	120 ± 25	420 ± 50	35 ± 13
Total	15000 ± 75	140900 ± 190	9050 ± 50	64700 ± 120	4200 ± 30
Data	14973	135131	8685	66896	4418

Fig. 2. The $m_{J J}$ distribution in the signal-region-like validation region in the (left) 2-tag (right) 1-tag samples, compared to the predicted background. The uncertainty band corresponds to the statistical uncertainty on the multijet model.
is recomputed to ensure that the normalization is kept fixed. No explicit uncertainties are associated with this reweighting as these are determined from comparison with validation regions, as described below.

Due to the small number of events in the background template in the high $m_{J J}$ tail, the backgrounds are modelled by fitting between 1.2 and 4 TeV with power-law and exponential functions. The multijet background in $m_{J J}$ is modelled using the functional form
$f_{\text {Multijet }}(x)=p_{a}(1-x)^{p_{b}}(1+x)^{p_{c} x}$,
while the merged $t \bar{t}$ and $V+$ jets backgrounds are modelled using the functional forms

$$
\begin{align*}
f_{\text {Other }}^{1-\operatorname{tag}}(x)= & p_{d}(1-x)^{p_{e}} x^{p_{f}}, \text { and } \tag{3}\\
& f_{\text {Other }}^{2-\operatorname{tag}}(x)=p_{g} \mathrm{e}^{-p_{h} x} \tag{4}
\end{align*}
$$

for the 1-tag and 2-tag samples respectively. In these functional forms, $x=m_{J J} / \sqrt{s}$, and p_{a} through p_{h} are parameters determined by the fit. These functional forms are used as they can model changes in the power-law behaviour of the respective backgrounds
between high and low masses. The exponential function is used for the 2 -tag $t \bar{t}$ and $V+$ jets samples because it was found to model the tail of the distribution well and because a fit to the small statistics of the sample could not constrain a function with more parameters. Fits are performed separately for the 1 -tag and 2 -tag background estimates, and separately for each background.

The background model is validated in the two regions denoted by VR-SR and VR-SB in Fig. 1, each also with two subregions. In all of these, the V-jet is required to have mass $50 \mathrm{GeV}<m_{J, V}<$ 70 GeV but the D_{2} selection is only applied in one of the subregions. For the signal-region-like validation regions (VR-SR) the H -jet selection is unchanged, and for the sideband-like validation regions (VR-SB) the H-jet is required to have mass $145 \mathrm{GeV}<$ $m_{J, H}<200 \mathrm{GeV}$. Both validation regions are kinematically similar to the signal regions but orthogonal to them (and to each other).

Table 2 compares the observed data yields in the validation regions with the corresponding background estimates. The differences are used as estimators of the background normalization uncertainties, as described in Section 7. The modelling of the $m_{J J}$ distribution in the signal-region-like validation region is shown in Fig. 2 for the 1 -tag and 2-tag samples. The data are well described

Table 3
Summary of the main post-fit systematic uncertainties (expressed as a percentage of the yield) in the background and signal event yields in the 1 -tag and 2 -tag signal regions. The values for the jet energy scale and b-tagging efficiency uncertainties represent the sum in quadrature of the values from the dominant components. The jet energy scale, jet mass resolution, b-tagging efficiency and luminosity do not apply to the multijet contribution, which is determined from data. Uncertainties are provided for a resonance mass of 2 TeV in the context of the HVT Model B, for both $V^{\prime} \rightarrow Z H$ and $V^{\prime} \rightarrow W H$ resonances.

Source	ZH 2-tag yield variation [\%]		ZH 1-tag yield variation [\%]	
	Background	HVT Model B Z^{\prime} (2 TeV)	Background	HVT Model B Z^{\prime} (2 TeV)
Luminosity	0.2	3.2	0.3	3.2
Jet energy scale	2.2	7.0	1.2	7.4
Jet mass resolution	0.6	9.5	0.4	8.5
b-tagging	1.6	10	0.5	15
$t \bar{t}$ normalization	1.8	-	2.5	-
Multijet normalization	4.7	-	2.8	-
Source	WH 2-tag yield variation [\%]		WH 1-tag yield variation [\%]	
	Background	HVT Model B W ${ }^{\prime}$ (2 TeV)	Background	HVT Model B W ${ }^{\prime}$ (2 TeV)
Luminosity	0.2	3.2	0.3	3.2
Jet energy scale	2.4	5.7	0.8	5.6
Jet mass resolution	1.2	11	0.3	10
b-tagging	1.6	10	0.4	15
$t \bar{t}$ normalization	1.9	-	2.5	-
Multijet normalization	4.3	-	2.8	-

by the background model. Other kinematic variables are generally well described.

7. Systematic uncertainties

The preliminary uncertainty on the combined 2015 and 2016 integrated luminosity is 3.2%. It is derived, following a methodology similar to that detailed in Ref. [55], from a preliminary calibration of the luminosity scale using $x-y$ beam-separation scans performed in 2015 and 2016.

Experimental systematic uncertainties affect the signal as well as the $t \bar{t}$ and $V+$ jets backgrounds estimated from MC simulation. The systematic uncertainties related to the scales of the large- R jet $p_{\text {T }}$, mass and D_{2} are of the order of $2 \%, 5 \%$ and 3%, respectively. They are derived following the technique described in Ref. [39]. The impacts of the uncertainties on the resolutions of each of these large- R jet observables are evaluated by smearing the jet observable according to the systematic uncertainties of the resolution measurement [39,52]. A 2% absolute uncertainty is assigned to the large- R jet p_{T}, and to the mass and D_{2} resolutions relative 20% and 15% uncertainties are assigned, respectively. The uncertainty in the b-tagging efficiency for track jets is based on the uncertainty in the measured tagging efficiency for b-jets in data following the methodology used in Ref. [47]. This is measured as a function of b-jet p_{T} and ranges between 2% and 8% for track jets with $p_{\mathrm{T}}<250 \mathrm{GeV}$. For track jets with $p_{\mathrm{T}}>250 \mathrm{GeV}$ the uncertainty in the tagging efficiencies is extrapolated using MC simulation [47] and is approximately 9% for track jets with $p_{\mathrm{T}}>400 \mathrm{GeV}$. A 30% normalization uncertainty is applied to the $t t$ background based on the ATLAS $t \bar{t}$ differential cross-section measurement [56]. Due to the small contribution of the $V+$ jets background, no corresponding uncertainty is considered.

Systematic uncertainties in the normalization and shape of the data-based multijet background model are assessed from the validation regions. The background normalization predictions in the validation regions agree with the observed data to within $\pm 5 \%$ in the 1 -tag sample and $\pm 13 \%$ in the 2 -tag sample. These differences are taken as the uncertainties in the predicted multijet yield. The shape uncertainty is derived by taking the ratio of the predicted background to the observed data after fitting both to a power law. This is done separately for the 1-tag and 2-tag samples. The larger of the observed shape differences in the VR-SR and VRSB is taken as the shape uncertainty. Separate shape uncertainties
are estimated for $m_{J J}$ above and below 2 TeV in order to allow for independent shape variations in the bulk and tail of the $m_{J J}$ distribution in the final statistical analysis.

An additional uncertainty in the shape of the multijet background prediction is assigned by fitting a variety of empirical functions designed to model power-law behaviour to the 0 -tag $m_{J J}$ distribution, as described in Ref. [57]. The largest difference between the nominal and alternative fit functions is taken as a systematic uncertainty. Similarly, the fit range of the nominal powerlaw function is varied, and the largest difference between the nominal and alternative fit ranges is taken as a systematic uncertainty.

The impact of the main systematic uncertainties on event yields is summarized in Table 3.

8. Results

The results are interpreted using the statistical procedure described in Ref. [1] and references therein. A test statistic based on the profile likelihood ratio [58] is used to test hypothesized values of μ, the global signal strength factor, separately for each model considered. The statistical analysis described below is performed using the $m_{J J}$ distribution of the data observed in the signal regions. The systematic uncertainties are modelled with Gaussian or log-normal constraint terms (nuisance parameters) in the definition of the likelihood function. The data distributions from the 1 -tag and 2 -tag signal regions are used in the fit simultaneously, treating systematic uncertainties on the luminosity, jet energy scale, jet energy resolution, jet mass resolution and b-tagging as fully correlated between the two signal regions. Both the multijet normalization and shape uncertainties are treated as independent between the two signal regions. In addition, the multijet shape uncertainties for $m_{J J}$ above and below 2 TeV are treated as independent. When performing the fit, the nuisance parameters are allowed to vary within their constraints to maximize the likelihood. As a result of the fit, the multijet shape uncertainties are significantly reduced. With the jet mass resolution, jet energy scale and multijet normalization, they have the largest impact on the search sensitivity. Fits in the $W H$ and $Z H$ signal regions are performed separately. The pre- and post-fit $m_{J J}$ distributions in the signal regions are shown in Fig. 3.

The number of background events in the 1-tag and 2-tag $Z H$ and $W H$ signal regions after the fit, the number of events ob-

Fig. 3. The $m_{J J}$ distributions in the $V H$ signal regions for data (points) and background estimate (histograms) after the likelihood fit for events in the (left) 2-tag and (right) 1 -tag categories. The pre-fit background expectation is given by the blue dashed line. The expected signal distributions (multiplied by 50) for a HVT benchmark Model $B V^{\prime}$ boson with 2 TeV mass are also shown. In the data/prediction ratio plots, arrows indicate off-scale points.

Table 4
The number of predicted background events in the $V H$ 1-tag and 2-tag signal regions after the fit, compared to the data. The "Other backgrounds" entries include both $t \bar{t}$ and $V+$ jets. Uncertainties correspond to the total uncertainties in the predicted event yields, and are smaller for the total than for the individual contributions because the latter are anti-correlated. The yields for $m=2 \mathrm{TeV} V^{\prime}$ bosons decaying to $V H$ in Model B are also given. Due to rounding the totals can differ from the sums of components.

	ZH 2-tag	ZH 1-tag
Multijet	1440 ± 60	13770 ± 310
Other backgrounds	135 ± 45	1350 ± 270
Total backgrounds	1575 ± 40	15120 ± 130
Data	1574	15112
Model B, $m=2 \mathrm{TeV}$	25 ± 7	29 ± 10
	WH 2-tag	WH 1-tag
Multijet	1525 ± 65	13900 ± 290
Other backgrounds	110 ± 45	1310 ± 260
Total backgrounds	1635 ± 40	15220 ± 120
Data	1646	15212
Model $B, m=2 \mathrm{TeV}$	51 ± 10	62 ± 16

served in the data, and the predicted yield for a potential signal are reported in Table 4. The total data and background yields in each region are constrained to agree by the fit. There is a $\sim 60 \%$ overlap of data between the $W H$ and $Z H$ selections for both the 2-tag and 1-tag signal regions, and this fraction is approximately constant as a function of $m_{I J}$. This overlap is similar when examining the signal MC simulation, for instance for the $2 \mathrm{TeV} Z^{\prime}$ signal

MC approximately $\sim 60 \%$ of events pass both the $W H$ and $Z H$ selections.

8.1. Statistical analysis

To determine if there are any statistically significant local excesses in the data, a test of the background-only hypothesis ($\mu=0$) is performed at each signal mass point. The significance of an excess is quantified using the local p_{0} value, the probability that the background could produce a fluctuation greater than or equal to the excess observed in data. A global p_{0} is also calculated for the most significant discrepancy, using background-only pseudo-experiments to derive a correction for the look-elsewhere effect across the mass range tested [59]. The most significant deviation from the background-only hypothesis is in the $Z H$ signal region, occurring at $m_{J J} \approx 3.0 \mathrm{TeV}$ with a local significance of 3.3σ. The global significance of this excess is 2.1σ, which is computed considering the full range of Z^{\prime} masses examined for potential signals from 1.1 TeV to 3.8 TeV.

The data are used to set upper limits on the cross-sections for the different benchmark signal processes. Exclusion limits are computed using the CL_{s} method [60], with a value of μ regarded as excluded at the $95 \% \mathrm{CL}$ when CL_{s} is less than 5%.

Fig. 4 shows the 95% CL cross-section upper limits on HVT resonances for both Model A and Model B in the WH and ZH signal regions for masses between 1.1 and 3.8 TeV . Limits on $\sigma\left(p p \rightarrow V^{\prime} \rightarrow V H\right) \times B(H \rightarrow(b \bar{b}+c \bar{c}))^{3}$ are set in the range of

[^3]

Fig. 4. The observed and expected cross-section upper limits at the 95% confidence level for $\sigma\left(p p \rightarrow V^{\prime} \rightarrow V H\right) \times \mathrm{B}(H \rightarrow(b \bar{b}+c \bar{c}))$, assuming SM branching ratios, in Model A and Model B in the (left) ZH and (right) WH signal regions. The red and magenta curves show the predicted cross-sections as a function of resonance mass for the models considered. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Limits in the $g^{2} c_{F} / g_{V}$ vs. $g_{V} c_{H}$ plane for several resonance masses for the (left) $Z H$ and (right) $W H$ channels. Areas outside the curves are excluded. The benchmark model points are also shown. Coupling values for which the resonance width $\Gamma / m>5 \%$ are shown in grey, as these regions may not be well described by the narrow width approximation.

83 fb to 1.6 fb and 77 fb to 1.1 fb in the $W H$ and $Z H$ signal regions, respectively. These cross-section limits are translated into excluded Model B signal mass ranges of $1.10-2.50 \mathrm{TeV}$ for $W H$ resonances and $1.10-2.60 \mathrm{TeV}$ for $Z H$ resonances. The corresponding excluded mass ranges for Model A are $1.10-2.40 \mathrm{TeV}$ for $W H$ resonances, and $1.10-1.48 \mathrm{TeV}$ and $1.70-2.35 \mathrm{TeV}$ for $Z H$ resonances.

Fig. 5 shows the 95% CL limits in the $g^{2} c_{F} / g_{V}$ vs. $g_{V} c_{H}$ plane for several resonance masses for both the $W H$ and $Z H$ channels. These limits are derived by rescaling the signal cross-sections to the values predicted for each point in the ($g^{2} c_{F} / g_{V}, g_{V} c_{H}$) plane and comparing with the observed cross-section upper limit. As the resonance width is not altered in this rescaling, areas for which the resonance width $\Gamma / m>5 \%$ are shown in grey. These may not be well described by the narrow width approximation assumed in the rescaling.

9. Summary

A search for resonances decaying to a W or Z boson and a Higgs boson has been carried out in the $q \bar{q}^{(1)} b \bar{b}$ channel with $36.1 \mathrm{fb}^{-1}$ of $p p$ collision data collected by ATLAS during the 2015 and 2016 runs of the LHC at $\sqrt{s}=13 \mathrm{TeV}$. Both the vector boson and Higgs boson candidates are reconstructed using large-radius
jets, and jet mass and substructure observables are used to tag W, Z and Higgs boson candidates and suppress the dominant multijet background. In addition, small-radius b-tagged track jets ghost-associated to the large- R jets are exploited to select the Higgs boson candidate jet. The data are in agreement with the Standard Model expectations, with the largest excess observed at $m_{J J} \approx 3.0 \mathrm{TeV}$ in the $Z H$ channel with a local significance of 3.3σ. The global significance of this excess is 2.1σ. Upper limits on the production cross-section times the Higgs boson branching ratio to the $b \bar{b}$ final state are set for resonance masses in the range between 1.1 and 3.8 TeV with values ranging from 83 fb to 1.6 fb and 77 fb to 1.1 fb (at $95 \% \mathrm{CL}$) for $W H$ and $Z H$ resonances, respectively. The corresponding excluded heavy vector triplet Model B signal mass ranges are $1.1-2.5 \mathrm{TeV}$ for $W H$ resonances, and 1.1-2.6 TeV for $Z H$ resonances.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbai-
jan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [61].

References

[1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214 [hep-ex].
[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235 [hep-ex].
[3] M.J. Dugan, H. Georgi, D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299.
[4] K. Agashe, R. Contino, A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165, arXiv:hep-ph/0412089.
[5] M. Schmaltz, D. Tucker-Smith, Little Higgs review, Annu. Rev. Nucl. Part. Sci. 55 (2005) 229, arXiv:hep-ph/0502182.
[6] K. Agashe, et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015, arXiv:0709.0007 [hep-ph].
[7] K. Agashe, et al., LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007, arXiv:0810.1497 [hep-ph].
[8] D. Pappadopulo, et al., Heavy vector triplets: bridging theory and data, J. High Energy Phys. 09 (2014) 060, arXiv:1402.4431 [hep-ph].
[9] J. de Blas, J.M. Lizana, M. Perez-Victoria, Combining searches of Z^{\prime} and W^{\prime} bosons, J. High Energy Phys. 01 (2013) 166, arXiv:1211.2229 [hep-ph].
[10] V.D. Barger, W.-Y. Keung, E. Ma, A gauge model with light W and Z bosons, Phys. Rev. D 22 (1980) 727.
[11] R. Contino, et al., On the effect of resonances in composite Higgs phenomenology, J. High Energy Phys. 10 (2011) 081, arXiv:1109.1570 [hep-ph].
[12] ATLAS Collaboration, Search for a new resonance decaying to a W or Z boson and a Higgs boson in the $\ell \ell / \ell \nu / \nu \nu+b \bar{b}$ final states with the ATLAS detector, Eur. Phys. J. C 75 (2015) 263, arXiv:1503.08089 [hep-ex].
[13] ATLAS Collaboration, Search for new resonances decaying to a W or Z boson and a Higgs boson in the $\ell^{+} \ell^{-} b b, \ell \nu b b$, and $\nu \bar{\nu} b b$ channels with $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Lett. B 765 (2017) 32, arXiv:1607.05621 [hep-ex].
[14] CMS Collaboration, Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at $\sqrt{s}=$ 8 TeV, J. High Energy Phys. 02 (2016) 145, arXiv:1506.01443 [hep-ex].
[15] CMS Collaboration, Search for massive WH resonances decaying into the $\ell \nu \mathrm{b} \overline{\mathrm{b}}$ final state at $\sqrt{s}=8 \mathrm{TeV}$, Eur. Phys. J. C 76 (2016) 237, arXiv:1601.06431 [hepex].
[16] CMS Collaboration, Search for narrow high-mass resonances in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$ decaying to a Z and a Higgs boson, Phys. Lett. B 748 (2015) 255, arXiv:1502.04994 [hep-ex].
[17] ATLAS Collaboration, Searches for heavy diboson resonances in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, J. High Energy Phys. 09 (2016) 173, arXiv:1606.04833 [hep-ex].
[18] CMS Collaboration, Combination of searches for heavy resonances decaying to WW, WZ, ZZ, WH, and ZH boson pairs in proton-proton collisions at $\sqrt{s}=8$ and 13 TeV , arXiv:1705.09171 [hep-ex], 2017.
[19] CMS Collaboration, Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\sqrt{s}=13 \mathrm{TeV}$, arXiv:1707.01303 [hep-ex], 2017.
[20] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum. 3 (2008) S08003.
[21] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report (ATLAS-TDR-19), https://cds.cern.ch/record/1291633, ATLAS Insertable B-Layer Technical Design Report Addendum (ATLAS-TDR-19-ADD-1), https://cds.cern.ch/ record/1451888.
[22] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur Phys. J. C 77 (2017) 317, arXiv:1611.09661 [hep-ex].
[23] M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm, J. High Energy Phys. 04 (2008) 063, arXiv:0802.1189 [hep-ph].
[24] J. Alwall, et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079, arXiv:1405.0301 [hep-ph].
[25] T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PythiA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820 [hep-ph].
[26] R.D. Ball, et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, arXiv:1207.1303 [hep-ph]
[27] ATLAS Collaboration, ATLAS Run 1 PYthia 8 tunes, ATL-PHYS-PUB-2014-021, https://cds.cern.ch/record/1966419, 2014.
[28] S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations, J. High Energy Phys. 06 (2002) 029, arXiv:hep-ph/0204244.
[29] H.-L. Lai, et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241.
[30] T. Sjöstrand, S. Mrenna, P.Z. Skands, Pythia 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026, arXiv:hep-ph/0603175.
[31] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018, arXiv:1005.3457 [hep-ph].
[32] J. Pumplin, et al., New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 07 (2002) 012, arXiv:hepph/0201195.
[33] M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 arXiv: 1112.5675 [hep-ph].
[34] ATLAS Collaboration, Comparison of Monte Carlo generator predictions for gap fraction and jet multiplicity observables in $t \bar{t}$ events, ATL-PHYS-PUB-2014-005, https://cds.cern.ch/record/1703034, 2014.
[35] T. Gleisberg, et al., Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007, arXiv:0811.4622 [hep-ph].
[36] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods A 462 (2001) 152.
[37] S. Agostinelli, et al., GEANT4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250.
[38] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [hep-ph].
[39] ATLAS Collaboration, Performance of jet substructure techniques for large- R jets in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ using the ATLAS detector, J. High Energy Phys. 09 (2013) 076, arXiv:1306.4945 [hep-ex].
[40] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, arXiv:1603.02934 [hep-ex], 2016.
[41] D. Krohn, J. Thaler, L.-T. Wang, Jet trimming, J. High Energy Phys. 02 (2010) 084, arXiv:0912.1342 [hep-ph].
[42] S. Catani, et al., Longitudinally invariant k_{\perp} clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187.
[43] ATLAS Collaboration, Jet mass reconstruction with the ATLAS detector in early Run 2 data, ATLAS-CONF-2016-035, https://cds.cern.ch/record/2200211, 2016.
[44] M. Cacciari, G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119, arXiv:0707.1378 [hep-ph].
[45] ATLAS Collaboration, Expected performance of boosted Higgs ($\rightarrow b \bar{b}$) boson identification with the ATLAS detector at $\sqrt{s}=13 \mathrm{TeV}$, ATL-PHYS-PUB-2015-035, https://cds.cern.ch/record/2042155, 2015.
[46] ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run, ATL-PHYS-PUB-2016-012, https://cds.cern.ch/record/2160731, 2016.
[47] ATLAS Collaboration, Performance of b-jet identification in the ATLAS experiment, J. Instrum. 11 (2016) P04008, arXiv:1512.01094 [hep-ph].
[48] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 76 (2016) 292, arXiv:1603.05598 [hep-ex]
[49] ATLAS Collaboration, Boosted Higgs $(\rightarrow b b)$ boson identification with the ATLAS detector at $\sqrt{s}=13 \mathrm{TeV}$, ATLAS-CONF-2016-039 https://cds.cern.ch/ record/2206038, 2016.
[50] ATLAS Collaboration, Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) 2941, arXiv: 1404.2240 [hep-ex].
[51] ATLAS Collaboration, Expected performance of missing transverse momentum reconstruction for the ATLAS detector at $\sqrt{s}=13 \mathrm{TeV}$, ATL-PHYS-PUB-2015-023, https://cds.cern.ch/record/2037700, 2015.
[52] ATLAS Collaboration, Identification of boosted, hadronically-decaying W and Z bosons in $\sqrt{s}=13 \mathrm{TeV}$ Monte Carlo simulations for ATLAS, ATL-PHYS-PUB-2015-033, https://cds.cern.ch/record/2041461, 2015.
[53] A.J. Larkoski, I. Moult, D. Neill, Power counting to better jet observables, J. High Energy Phys. 12 (2014) 009, arXiv:1409.6298 [hep-ph].
[54] A.J. Larkoski, I. Moult, D. Neill, Analytic boosted boson discrimination, J. High Energy Phys. 05 (2016) 117, arXiv:1507.03018 [hep-ph].
[55] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$ using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653, arXiv:1608. 03953 [hep-ph].
[56] ATLAS Collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}=8 \mathrm{TeV}$ proton-proton collisions using the ATLAS detector, Phys. Rev. D 93 (2016) 032009, arXiv:1510.03818 [hep-ex]
[57] ATLAS Collaboration, Search for strong gravity in multijet final states produced in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ using the ATLAS detector at the LHC, J. High Energy Phys. 03 (2016) 026, arXiv:1512.02586 [hep-ph].
[58] G. Cowan, et al., Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501.
[59] E. Gross, O. Vitells, Trial factors or the look elsewhere effect in high energy physics, Eur. Phys. J. C 70 (2010) 525, arXiv:1005.1891 [hep-ph].
[60] A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693.
[61] ATLAS Collaboration, ATLAS computing acknowledgements 2016-2017, ATL-GEN-PUB-2016-002, https://cds.cern.ch/record/2202407, 2016.

The ATLAS Collaboration

M. Aaboud ${ }^{137 \mathrm{~d}}$, G. Aad ${ }^{88}$, B. Abbott ${ }^{115}$, O. Abdinov ${ }^{12, *}$, B. Abeloos ${ }^{119}$, S.H. Abidi ${ }^{161}$, O.S. AbouZeid ${ }^{139}$, N.L. Abraham ${ }^{151}$, H. Abramowicz ${ }^{155}$, H. Abreu ${ }^{154}$, R. Abreu ${ }^{118}$, Y. Abulaiti ${ }^{148 \text { a }}$, 148b , B.S. Acharya ${ }^{167 a, 167 \mathrm{~b}, a}$, S. Adachi ${ }^{157}$, L. Adamczyk ${ }^{41 \mathrm{a}}$, J. Adelman ${ }^{110}$, M. Adersberger ${ }^{102}$, T. Adye ${ }^{133}$, A.A. Affolder ${ }^{139}$, T. Agatonovic-Jovin ${ }^{14}$, C. Agheorghiesei ${ }^{28 \text { c }}$, J.A. Aguilar-Saavedra ${ }^{128 a, 128 f}$, S.P. Ahlen ${ }^{24}$, F. Ahmadov ${ }^{68, b}$, G. Aielli ${ }^{135 a, 135 b}$, S. Akatsuka ${ }^{71}$, H. Akerstedt ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, T.P.A. Åkesson ${ }^{84}$, E. Akilli ${ }^{52}$, A.V. Akimov ${ }^{98}$, G.L. Alberghi ${ }^{22 a, 22 b}$, J. Albert ${ }^{172}$, P. Albicocco ${ }^{50}$, M.J. Alconada Verzini ${ }^{74}$, S.C. Alderweireldt ${ }^{108}$, M. Aleksa ${ }^{32}$, I.N. Aleksandrov ${ }^{68}$, C. Alexa ${ }^{28 \mathrm{~b}}$, G. Alexander ${ }^{155}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{115}$, B. Ali ${ }^{130}$, M. Aliev ${ }^{76 a, 76 b}$, G. Alimonti ${ }^{944 \mathrm{a}}$, J. Alison ${ }^{33}$, S.P. Alkire ${ }^{38}$, B.M.M. Allbrooke ${ }^{151^{\prime}}$, B.W. Allen ${ }^{118}$, P.P. Allport ${ }^{19}$, A. Aloisio ${ }^{106 a, 106 \mathrm{~b}}$, A. Alonso ${ }^{39}$, F. Alonso ${ }^{74}$, C. Alpigiani ${ }^{140}$, A.A. Alshehri ${ }^{56}$, M.I. Alstaty ${ }^{88}$, B. Alvarez Gonzalez ${ }^{32}$, D. Álvarez Piqueras ${ }^{170}$, M.G. Alviggi ${ }^{106 a, 106 b}$, B.T. Amadio ${ }^{16}$, Y. Amaral Coutinho ${ }^{26 a}$, C. Amelung ${ }^{25}$, D. Amidei ${ }^{92}$, S.P. Amor Dos Santos ${ }^{128 a, 128 c}$, A. Amorim ${ }^{128 a, 128 b}$, S. Amoroso ${ }^{32}$, G. Amundsen ${ }^{25}$, C. Anastopoulos ${ }^{141}$, L.S. Ancu ${ }^{52}$, N. Andari ${ }^{19}$, T. Andeen ${ }^{11}$, C.F. Anders ${ }^{60 \mathrm{~b}}$, J.K. Anders ${ }^{77}$, K.J. Anderson ${ }^{33}$, A. Andreazza ${ }^{94 a, 94 \mathrm{~b}}$, V. Andrei ${ }^{60 \mathrm{a}}$, S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{109}$, A. Angerami ${ }^{38}$, A.V. Anisenkov ${ }^{111, c}$, N. Anjos ${ }^{13}$, A. Annovi ${ }^{126 a}, 126 \mathrm{~b}$, C. Antel ${ }^{60 \mathrm{a}}$, M. Antonelli ${ }^{50}$, A. Antonov ${ }^{100, *}$, D.J. Antrim ${ }^{166}$, F. Anulli ${ }^{134 a}$, M. Aoki ${ }^{69}$, L. Aperio Bella ${ }^{32}$, G. Arabidze ${ }^{93}$, Y. Arai ${ }^{69}$, J.P. Araque ${ }^{128 a}$, V. Araujo Ferraz ${ }^{26 a}$, A.T.H. Arce ${ }^{48}$, R.E. Ardell ${ }^{80}$, F.A. Arduh ${ }^{74}$, J-F. Arguin ${ }^{97}$, S. Argyropoulos ${ }^{66}$, M. Arik ${ }^{20 a}$, A.J. Armbruster ${ }^{32}$, L.J. Armitage ${ }^{79}$, O. Arnaez ${ }^{161}$, H. Arnold ${ }^{51}$, M. Arratia ${ }^{30}$, O. Arslan ${ }^{23}$, A. Artamonov ${ }^{99}$, G. Artoni ${ }^{122}$, S. Artz ${ }^{86}$, S. Asai ${ }^{157}$, N. Asbah ${ }^{45}$, A. Ashkenazi ${ }^{155}$, L. Asquith ${ }^{151}$, K. Assamagan ${ }^{27}$, R. Astalos ${ }^{146 a}$, M. Atkinson ${ }^{169}$, N.B. Atlay ${ }^{143}$, K. Augsten ${ }^{130}$, G. Avolio ${ }^{32}$, B. Axen ${ }^{16}$, M.K. Ayoub ${ }^{119}$, G. Azuelos ${ }^{97, d}$, A.E. Baas ${ }^{60 a}$, M.J. Baca ${ }^{19}$, H. Bachacou ${ }^{138}$, K. Bachas ${ }^{76 a, 76 b}$, M. Backes ${ }^{122}$, M. Backhaus ${ }^{32}$, P. Bagnaia ${ }^{134 a, 134 b}$, M. Bahmani ${ }^{42}$, H. Bahrasemani ${ }^{144}$, J.T. Baines ${ }^{133}$, M. Bajic ${ }^{39}$, O.K. Baker ${ }^{179}$, E.M. Baldin ${ }^{111, c}$, P. Balek ${ }^{175}$, F. Balli ${ }^{138}$, W.K. Balunas ${ }^{124}$, E. Banas ${ }^{42}$, A. Bandyopadhyay ${ }^{23}$, Sw. Banerjee ${ }^{176, e}$, A.A.E. Bannoura ${ }^{178}$, L. Barak ${ }^{32}$, E.L. Barberio ${ }^{91}$, D. Barberis ${ }^{53 \mathrm{a}, 53 \mathrm{~b}}$, M. Barbero ${ }^{88}$, T. Barillari ${ }^{103}$, M-S Barisits ${ }^{32}$, J.T. Barkeloo ${ }^{118}$, T. Barklow ${ }^{145}$, N. Barlow ${ }^{30}$, S.L. Barnes ${ }^{36 c}$, B.M. Barnett ${ }^{133}$, R.M. Barnett ${ }^{16}$, Z. Barnovska-Blenessy ${ }^{36 a}$, A. Baroncelli ${ }^{136 a}$, G. Barone ${ }^{25}$, A.J. Barr ${ }^{122}$, L. Barranco Navarro ${ }^{170}$, F. Barreiro ${ }^{85}$, J. Barreiro Guimarães da Costa ${ }^{35 a}$, R. Bartoldus ${ }^{145}$, A.E. Barton ${ }^{75}$, P. Bartos ${ }^{146 a}$, A. Basalaev ${ }^{125}$, A. Bassalat ${ }^{119, f}$, R.L. Bates ${ }^{56}$, S.J. Batista ${ }^{161}$, J.R. Batley ${ }^{30}$, M. Battaglia ${ }^{139}$, M. Bauce ${ }^{134 a, 134 b}$, F. Bauer ${ }^{138}$, H.S. Bawa ${ }^{145, g}$, J.B. Beacham ${ }^{113}$, M.D. Beattie ${ }^{75}$, T. Beau ${ }^{83}$, P.H. Beauchemin ${ }^{165}$, P. Bechtle ${ }^{23}$, H.P. Beck ${ }^{18, h}$, H.C. Beck ${ }^{57}$, K. Becker ${ }^{122}$, M. Becker ${ }^{86}$, M. Beckingham ${ }^{173}$, C. Becot ${ }^{112}$, A.J. Beddall ${ }^{20 e}$, A. Beddall ${ }^{20 b}$, V.A. Bednyakov ${ }^{68}$, M. Bedognetti ${ }^{109}$, C.P. Bee ${ }^{150}$, T.A. Beermann ${ }^{32}$, M. Begalli ${ }^{26 a}$, M. Begel ${ }^{27}$, J.K. Behr ${ }^{45}$, A.S. Bell 81 , G. Bella ${ }^{155}$, L. Bellagamba ${ }^{22 a}$, A. Bellerive ${ }^{31}$, M. Bellomo ${ }^{154}$, K. Belotskiy ${ }^{100}$, O. Beltramello ${ }^{32}$, N.L. Belyaev ${ }^{100}$, O. Benary ${ }^{155, *}$, D. Benchekroun ${ }^{137 a}$, M. Bender ${ }^{102}$, K. Bendtz ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{155}$, E. Benhar Noccioli ${ }^{179}$, J. Benitez ${ }^{66}$, D.P. Benjamin ${ }^{48}$, M. Benoit ${ }^{52}$, J.R. Bensinger ${ }^{25}$, S. Bentvelsen ${ }^{109}$, L. Beresford ${ }^{122}$, M. Beretta ${ }^{50}$, D. Berge ${ }^{109}$, E. Bergeaas Kuutmann ${ }^{168}$, N. Berger ${ }^{5}$, J. Beringer ${ }^{16}$, S. Berlendis ${ }^{58}$, N.R. Bernard ${ }^{89}$,
G. Bernardi ${ }^{83}$, C. Bernius ${ }^{145}$, F.U. Bernlochner ${ }^{23}$, T. Berry ${ }^{80}$, P. Berta ${ }^{131}$, C. Bertella ${ }^{35 a}$, G. Bertoli ${ }^{148 a, 148 b}$, F. Bertolucci ${ }^{126 a, 126 b}$, I.A. Bertram ${ }^{75}$, C. Bertsche ${ }^{45}$, D. Bertsche ${ }^{115}$, G.J. Besjes ${ }^{39}$, O. Bessidskaia Bylund ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, M. Bessner ${ }^{45}$, N. Besson ${ }^{138}$, C. Betancourt ${ }^{51}$, A. Bethani ${ }^{87}$, S. Bethke ${ }^{103}$, A.J. Bevan ${ }^{79}$, J. Beyer ${ }^{103}$, R.M. Bianchi ${ }^{127}$, O. Biebel ${ }^{102}$, D. Biedermann ${ }^{17}$, R. Bielski ${ }^{87}$, K. Bierwagen ${ }^{86}$, N.V. Biesuz ${ }^{126 a, 126 b}$, M. Biglietti ${ }^{136 \mathrm{a}}$, T.R.V. Billoud ${ }^{97}$, H. Bilokon ${ }^{50}$, M. Bindi ${ }^{57}$, A. Bingul ${ }^{20 \mathrm{~b}}$,
C. Bini ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, S. Biondi ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, T. Bisanz ${ }^{57}$, C. Bittrich ${ }^{47}$, D.M. Bjergaard ${ }^{48}$, C.W. Black ${ }^{152}$, J.E. Black ${ }^{145}$, K.M. Black ${ }^{24}$, R.E. Blair ${ }^{6}$, T. Blazek ${ }^{146 a}$, I. Bloch ${ }^{45}$, C. Blocker ${ }^{25}$, A. Blue ${ }^{56}$, W. Blum ${ }^{86, *}$,
U. Blumenschein ${ }^{79}$, S. Blunier ${ }^{34 a}$, G.J. Bobbink ${ }^{109}$, V.S. Bobrovnikov ${ }^{111, c}$, S.S. Bocchetta ${ }^{84}$, A. Bocci ${ }^{48}$, C. Bock ${ }^{102}$, M. Boehler ${ }^{51}$, D. Boerner ${ }^{178}$, D. Bogavac ${ }^{102}$, A.G. Bogdanchikov ${ }^{111}$, C. Bohm ${ }^{148 \mathrm{a}}$, V. Boisvert ${ }^{80}$, P. Bokan ${ }^{168, i}$, T. Bold ${ }^{41 a}$, A.S. Boldyrev ${ }^{101}$, A.E. Bolz ${ }^{60 \mathrm{~b}}$, M. Bomben ${ }^{83}$, M. Bona ${ }^{79}$, M. Boonekamp ${ }^{138}$, A. Borisov ${ }^{132}$, G. Borissov ${ }^{75}$, J. Bortfeldt ${ }^{32}$, D. Bortoletto ${ }^{122}$, V. Bortolotto ${ }^{62 a}{ }^{\text {a }}$, ${ }^{2}$ b, 62c , D. Boscherini ${ }^{22 a}$, M. Bosman ${ }^{13}$, J.D. Bossio Sola ${ }^{29}$, J. Boudreau ${ }^{127}$, J. Bouffard ${ }^{2}$, E.V. Bouhova-Thacker ${ }^{75}$, D. Boumediene ${ }^{37}$, C. Bourdarios ${ }^{119}$, S.K. Boutle ${ }^{56}$, A. Boveia ${ }^{113}$, J. Boyd ${ }^{32}$, I.R. Boyko ${ }^{68}$, J. Bracinik ${ }^{19}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{57}$, O. Brandt ${ }^{60 a}$, U. Bratzler ${ }^{158}$, B. Brau ${ }^{89}$, J.E. Brau ${ }^{118}$, W.D. Breaden Madden ${ }^{56}$, K. Brendlinger ${ }^{45}$, A.J. Brennan ${ }^{91}$, L. Brenner ${ }^{109}$, R. Brenner ${ }^{168}$, S. Bressler ${ }^{175}$, D.L. Briglin ${ }^{19}$, T.M. Bristow ${ }^{49}$, D. Britton ${ }^{56}$, D. Britzger ${ }^{45}$, F.M. Brochu ${ }^{30}$, I. Brock ${ }^{23}$, R. Brock ${ }^{93}$, G. Brooijmans ${ }^{38}$, T. Brooks ${ }^{80}$, W.K. Brooks ${ }^{34 b}$, J. Brosamer ${ }^{16}$, E. Brost ${ }^{110}$, J.H. Broughton ${ }^{19}$, P.A. Bruckman de Renstrom ${ }^{42}$, D. Bruncko ${ }^{146 b}$, A. Bruni ${ }^{22 a}$, G. Bruni ${ }^{22 a}$, L.S. Bruni ${ }^{109}$, B.H. Brunt ${ }^{30}$, M. Bruschi ${ }^{22 a}$, N. Bruscino ${ }^{23}$, P. Bryant ${ }^{33}$, L. Bryngemark ${ }^{45}$, T. Buanes ${ }^{15}$, Q. Buat ${ }^{144}$, P. Buchholz ${ }^{143}$, A.G. Buckley ${ }^{56}$, I.A. Budagov ${ }^{68}$, F. Buehrer ${ }^{51}$, M.K. Bugge ${ }^{121}$, O. Bulekov ${ }^{100}$, D. Bullock ${ }^{8}$, T.J. Burch ${ }^{110}$, S. Burdin ${ }^{77}$, C.D. Burgard ${ }^{51}$, A.M. Burger ${ }^{5}$, B. Burghgrave ${ }^{110}$, K. Burka ${ }^{42}$, S. Burke ${ }^{133}$, I. Burmeister ${ }^{46}$, J.T.P. Burr ${ }^{522}$, E. Busato ${ }^{37}$, D. Büscher ${ }^{51}$, V. Büscher ${ }^{86}$, P. Bussey ${ }^{56}$, J.M. Butler ${ }^{24}$, C.M. Buttar ${ }^{56}$, J.M. Butterworth ${ }^{81}$, P. Butti ${ }^{32}$, W. Buttinger ${ }^{27}$, A. Buzatu ${ }^{35 \mathrm{c} \text { c }}$, A.R. Buzykaev ${ }^{111, c}$, S. Cabrera Urbán ${ }^{170}$, D. Caforio ${ }^{130}$, V.M. Cairo ${ }^{40 a,}{ }^{40 \mathrm{~b}}$, O. Cakir ${ }^{4 \mathrm{a}}$, N. Calace ${ }^{52}$, P. Calafiura ${ }^{16}$, A. Calandri ${ }^{88}$, G. Calderini ${ }^{83}$, P. Calfayan ${ }^{64}$, G. Callea ${ }^{30 \mathrm{a}, 40 \mathrm{~b}}$, L.P. Caloba ${ }^{26 a}$, S. Calvente Lopez ${ }^{85}$, D. Calvet ${ }^{37}$, S. Calvet ${ }^{37}$, T.P. Calvet ${ }^{88}$, R. Camacho Toro ${ }^{33}$, S. Camarda ${ }^{32}$, P. Camarri ${ }^{135 a, 135 b}$, D. Cameron ${ }^{121}$, R. Caminal Armadans ${ }^{169}$, C. Camincher ${ }^{58}$, S. Campana ${ }^{32}$, M. Campanelli ${ }^{81}$, A. Camplani ${ }^{94 a, 94 \mathrm{~b}}$, A. Campoverde ${ }^{143}$, V. Canale ${ }^{106 \mathrm{a}, 106 \mathrm{~b}}$, M. Cano Bret ${ }^{36 \mathrm{c}}$, J. Cantero ${ }^{116}$, T. Cao ${ }^{155}$, M.D.M. Capeans Garrido ${ }^{32}$, I. Caprini ${ }^{28 \mathrm{~b}}$, M. Caprini ${ }^{28 \mathrm{~b}}{ }^{\text {, }}$ M. Capua ${ }^{40 a, 40 b}$, R.M. Carbone ${ }^{38}$, R. Cardarelli ${ }^{135 a}$, F. Cardillo ${ }^{51}$, I. Carli ${ }^{131}$, T. Carli ${ }^{32}$, G. Carlino ${ }^{106 a}$, B.T. Carlson ${ }^{127}$, L. Carminati ${ }^{94 a, 94 b}$, R.M.D. Carney ${ }^{148 a, 148 \mathrm{~b}}$, S. Caron ${ }^{108}$, E. Carquin ${ }^{34 b^{\prime}}$, S. Carrá ${ }^{94 a, 94 b}$, G.D. Carrillo-Montoya ${ }^{32}$, J. Carvalho ${ }^{128 a, 128 c}$, D. Casadei ${ }^{19}$, M.P. Casado ${ }^{\text {13.j }}$, M. Casolino ${ }^{133}$, D.W. Casper ${ }^{166}$, R. Castelijn ${ }^{109}$, V. Castillo Gimenez ${ }^{170}$, N.F. Castro ${ }^{128 a, k}$, A. Catinaccio ${ }^{32}$, J.R. Catmore ${ }^{121}$, A. Cattai ${ }^{32}$, J. Caudron ${ }^{23}$, V. Cavaliere ${ }^{169}$, E. Cavallaro ${ }^{13}$, D. Cavalli ${ }^{94 a}$, M. Cavalli-Sforza ${ }^{13}$, V. Cavasinni ${ }^{126 a, 126 b}$, E. Celebi ${ }^{20 d}$, F. Ceradini ${ }^{136 a, 1366 b}$, L. Cerda Alberich ${ }^{170}$, A.S. Cerqueira ${ }^{26 \mathrm{~b}}$, A. Cerri ${ }^{151}$, L. Cerrito ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, F. Cerutti ${ }^{16}$, A. Cervelli ${ }^{18}$, S.A. Cetin ${ }^{20 \mathrm{~d}}$, A. Chafaq ${ }^{\text {137a }}$, D. Chakraborty ${ }^{110}$, S.K. Chan ${ }^{59}$, W.S. Chan ${ }^{109}$, Y.L. Chan ${ }^{62 \mathrm{a}}$, P. Chang ${ }^{169}$, J.D. Chapman ${ }^{30}$, D.G. Charlton ${ }^{19}$, C.C. Chau ${ }^{161}$, C.A. Chavez Barajas ${ }^{151}$, S. Che ${ }^{113}$, S. Cheatham ${ }^{167 a, 167 \mathrm{C}}$, A. Chegwidden ${ }^{93}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{163 a}$, G.A. Chelkov ${ }^{68, l}$, M.A. Chelstowska ${ }^{32}$, C. Chen ${ }^{67}$, H. Chen ${ }^{27}$, J. Chen ${ }^{36 a}$, S. Chen ${ }^{35 \mathrm{~b}}$, S. Chen ${ }^{157}$, X. Chen ${ }^{35 \mathrm{c}, m}$, Y. Chen ${ }^{70}$, H.C. Cheng ${ }^{92}$, H.J. Cheng ${ }^{35 \mathrm{a}}$, A. Cheplakov ${ }^{68}$, E. Cheremushkina ${ }^{132}$, R. Cherkaoui El Moursli ${ }^{137 e}$, E. Cheu ${ }^{7}$, K. Cheung ${ }^{63}$, L. Chevalier ${ }^{138}$, V. Chiarella ${ }^{50}$, G. Chiarelli ${ }^{126 a, 126 b}$, G. Chiodini ${ }^{76 a}$, A.S. Chisholm ${ }^{32}$, A. Chitan ${ }^{28 b}$, Y.H. Chiu ${ }^{172}$, M.V. Chizhov ${ }^{68}$, K. Choi ${ }^{64}$, A.R. Chomont ${ }^{37}$, S. Chouridou ${ }^{156}$, V. Christodoulou ${ }^{81}$, D. Chromek-Burckhart ${ }^{32}$, M.C. Chu ${ }^{62 a}$, J. Chudoba ${ }^{129}$, A.J. Chuinard ${ }^{90}$, J.J. Chwastowski ${ }^{42}$, L. Chytka ${ }^{117}$, A.K. Ciftci ${ }^{4 \mathrm{a}}$, D. Cinca ${ }^{46}$, V. Cindro ${ }^{78}$, I.A. Cioara ${ }^{23}$, C. Ciocca ${ }^{22 a, 22 b}$, A. Ciocio ${ }^{16}$, F. Cirotto ${ }^{106 a, 106 b}$, Z.H. Citron ${ }^{175}$, M. Citterio ${ }^{94 a}$, M. Ciubancan ${ }^{28 \mathrm{~b}}$, A. Clark ${ }^{52}$, B.L. Clark ${ }^{59}$, M.R. Clark ${ }^{38}$, P.J. Clark ${ }^{49}$, R.N. Clarke ${ }^{16}$, C. Clement ${ }^{148 \text { a, } 148 \mathrm{~b}}$, Y. Coadou ${ }^{88}$, M. Cobal ${ }^{167 \mathrm{a}, 167 \mathrm{c}}$, A. Coccaro ${ }^{52}$, J. Cochran ${ }^{67}$, L. Colasurdo ${ }^{108}$, B. Cole ${ }^{38}$, A.P. Colijn ${ }^{109}$, J. Collot ${ }^{58}$, T. Colombo ${ }^{166}$, P. Conde Muiño ${ }^{128 a, 128 b}$, E. Coniavitis ${ }^{51}$, S.H. Connell ${ }^{147 \mathrm{~b}}$, I.A. Connelly ${ }^{87}$, S. Constantinescu ${ }^{\text {2 } 88 \mathrm{~b}}$, G. Conti ${ }^{32}$, F. Conventi ${ }^{106 a, n}$, M. Cooke ${ }^{16}$, A.M. Cooper-Sarkar ${ }^{122}$, F. Cormier ${ }^{171}$, K.J.R. Cormier ${ }^{161}$, M. Corradi ${ }^{1344 a, 134 b}$, F. Corriveau ${ }^{90,0}$, A. Cortes-Gonzalez ${ }^{32}$, G. Cortiana ${ }^{103}$, G. Costa ${ }^{94 a}$, M.J. Costa ${ }^{170}$, D. Costanzo ${ }^{141}$, G. Cottin ${ }^{30}$, G. Cowan ${ }^{80}$, B.E. Cox ${ }^{87}$, K. Cranmer ${ }^{112}$, S.J. Crawley ${ }^{56}$, R.A. Creager ${ }^{124}$, G. Cree ${ }^{31}$, S. Crépé-Renaudin ${ }^{58}$, F. Crescioli ${ }^{83}$, W.A. Cribbs ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, M. Cristinziani ${ }^{23}$, V. Croft ${ }^{108}$, G. Crosetti ${ }^{40 \mathrm{a}, 40 \mathrm{~b}}$,
A. Cueto ${ }^{85}$, T. Cuhadar Donszelmann ${ }^{141}$, A.R. Cukierman ${ }^{145}$, J. Cummings ${ }^{179}$, M. Curatolo ${ }^{50}$, J. Cúth ${ }^{86}$, P. Czodrowski ${ }^{32}$, G. D'amen ${ }^{22 a, 22 b}$, S. D'Auria ${ }^{56}$, L. D'eramo ${ }^{83}$, M. D'Onofrio ${ }^{77}$, M.J. Da Cunha Sargedas De Sousa ${ }^{128 a, 128 b}$, C. Da Via ${ }^{87}$, W. Dabrowski ${ }^{41 a}$, T. Dado ${ }^{146 a}$, T. Dai ${ }^{92}$, O. Dale ${ }^{15}$, F. Dallaire ${ }^{97}$, C. Dallapiccola ${ }^{89}$, M. Dam ${ }^{39}$, J.R. Dandoy ${ }^{124}$, M.F. Daneri ${ }^{29}$, N.P. Dang ${ }^{176}$, A.C. Daniells ${ }^{19}$, N.S. Dann ${ }^{87}$, M. Danninger ${ }^{171}$, M. Dano Hoffmann ${ }^{138}$, V. Dao ${ }^{150}$, G. Darbo ${ }^{53 \mathrm{a}}$, S. Darmora ${ }^{8}$, J. Dassoulas ${ }^{3}$, A. Dattagupta ${ }^{118}$, T. Daubney ${ }^{45}$, W. Davey ${ }^{23}$, C. David ${ }^{45}$, T. Davidek ${ }^{131}$, D.R. Davis ${ }^{48}$, P. Davison ${ }^{81}$, E. Dawe ${ }^{91}$, I. Dawson ${ }^{141}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{106 a}$, A. De Benedetti ${ }^{115}$, S. De Castro ${ }^{22 a, 22 b}$, S. De Cecco ${ }^{83}$, N. De Groot ${ }^{108}$, P. de Jong ${ }^{109}$, H. De la Torre ${ }^{93}$, F. De Lorenzi ${ }^{67}$, A. De Maria ${ }^{57}$, D. De Pedis ${ }^{134 a}$, A. De Salvo ${ }^{134 a}$, U. De Sanctis ${ }^{135 a}$, 135 b , A. De Santo ${ }^{151}$, K. De Vasconcelos Corga ${ }^{88}$, J.B. De Vivie De Regie ${ }^{119}$, W.J. Dearnaley ${ }^{75}$, R. Debbe ${ }^{27}$, C. Debenedetti ${ }^{139}$, D.V. Dedovich ${ }^{68}$, N. Dehghanian ${ }^{3}$, I. Deigaard ${ }^{109}$, M. Del Gaudio ${ }^{40 \mathrm{a}, 40 \mathrm{~b}}$, J. Del Peso ${ }^{85}$, D. Delgove ${ }^{119}$, F. Deliot ${ }^{138}$, C.M. Delitzsch ${ }^{52}$, A. Dell'Acqua ${ }^{32}$, L. Dell'Asta ${ }^{24}$, M. Dell'Orso ${ }^{126 a, 126 b}$, M. Della Pietra ${ }^{106 a, 106 b}$, D. della Volpe ${ }^{52}$, M. Delmastro ${ }^{5}$, C. Delporte ${ }^{119}$, P.A. Delsart ${ }^{58}$, D.A. DeMarco ${ }^{161}$, S. Demers ${ }^{179}$, M. Demichev ${ }^{68}$, A. Demilly ${ }^{83}$, S.P. Denisov ${ }^{132}$, D. Denysiuk ${ }^{138}$, D. Derendarz ${ }^{42}$, J.E. Derkaoui ${ }^{137 \mathrm{~d}}$, F. Derue ${ }^{83}$, P. Dervan ${ }^{77}$, K. Desch ${ }^{23}$, C. Deterre ${ }^{45}$, K. Dette ${ }^{46}$, M.R. Devesa ${ }^{29}$, P.O. Deviveiros ${ }^{32}$, A. Dewhurst ${ }^{133}$, S. Dhaliwal ${ }^{25}$, F.A. Di Bello ${ }^{52}$, A. Di Ciaccio ${ }^{135 a}{ }^{3}$ 135b , L. Di Ciaccio ${ }^{5}$, W.K. Di Clemente ${ }^{124}$, C. Di Donato ${ }^{106 a, 106 b}$, A. Di Girolamo ${ }^{32}$, B. Di Girolamo ${ }^{32}$, B. Di Micco ${ }^{136 a, 136 b}$, R. Di Nardo ${ }^{32}$, K.F. Di Petrillo ${ }^{59}$, A. Di Simone ${ }^{51}$, R. Di Sipio ${ }^{161}$, D. Di Valentino ${ }^{31}$, C. Diaconu ${ }^{88}$, M. Diamond ${ }^{161}$, F.A. Dias ${ }^{39}$, M.A. Diaz ${ }^{34 a}$, E.B. Diehl ${ }^{92}$, J. Dietrich ${ }^{17}$, S. Díez Cornell ${ }^{45}$, A. Dimitrievska ${ }^{14}$, J. Dingfelder ${ }^{23}$, P. Dita ${ }^{28 b}$, S. Dita ${ }^{28 b}$, F. Dittus ${ }^{32}$, F. Djama ${ }^{88}$, T. Djobava ${ }^{54 b}$, J.I. Djuvsland ${ }^{60 a}$, M.A.B. do Vale ${ }^{26 \subset}$, D. Dobos ${ }^{32}$, M. Dobre ${ }^{28 \mathrm{~b}}$, C. Doglioni ${ }^{84}$, J. Dolejsi ${ }^{131}$, Z. Dolezal ${ }^{131}$, M. Donadelli ${ }^{26 d}$, S. Donati ${ }^{126 a, 126 b}$, P. Dondero ${ }^{\text {123a, } 123 b}$, J. Donini ${ }^{37}$, J. Dopke ${ }^{133}$, A. Doria ${ }^{106 a}$, M.T. Dova ${ }^{74}$, A.T. Doyle ${ }^{56}$, E. Drechsler ${ }^{57}$, M. Dris ${ }^{10}$, Y. Du ${ }^{36 \mathrm{~b}}$, J. Duarte-Campderros ${ }^{155}$, A. Dubreuil ${ }^{52}$, E. Duchovni ${ }^{175}$, G. Duckeck ${ }^{102}$, A. Ducourthial ${ }^{83}$, O.A. Ducu ${ }^{97, p}$, D. Duda ${ }^{109}$, A. Dudarev ${ }^{32}$, A. Chr. Dudder ${ }^{86}$, E.M. Duffield ${ }^{16}$, L. Duflot ${ }^{119}$, M. Dührssen ${ }^{32}$, M. Dumancic ${ }^{175}$, A.E. Dumitriu ${ }^{28 \mathrm{~b}}$, A.K. Duncan ${ }^{56}$, M. Dunford ${ }^{60 a}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{55}$, A. Durglishvili ${ }^{54 b}$, D. Duschinger ${ }^{47}$, B. Dutta ${ }^{45}$, D. Duvnjak ${ }^{1}$, M. Dyndal ${ }^{45}$, B.S. Dziedzic ${ }^{42}$, C. Eckardt ${ }^{45}$, K.M. Ecker ${ }^{103}$, R.C. Edgar ${ }^{92}$, T. Eifert ${ }^{32}$, G. Eigen ${ }^{15}$, K. Einsweiler ${ }^{16}$, T. Ekelof ${ }^{168}$, M. El Kacimi ${ }^{137 c}$, R. El Kosseifi ${ }^{88}$, V. Ellajosyula ${ }^{88}$, M. Ellert ${ }^{168}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{178}$, A.A. Elliot ${ }^{172}$, N. Ellis ${ }^{32}$, J. Elmsheuser ${ }^{27}$, M. Elsing ${ }^{32}$, D. Emeliyanov ${ }^{133}$, Y. Enari ${ }^{157}$, O.C. Endner ${ }^{86}$, J.S. Ennis ${ }^{173}$, J. Erdmann ${ }^{46}$, A. Ereditato ${ }^{18}$, M. Ernst ${ }^{27}$, S. Errede ${ }^{169}$, M. Escalier ${ }^{119}$, C. Escobar ${ }^{170}$, B. Esposito ${ }^{50}$, O. Estrada Pastor ${ }^{170}$, A.I. Etienvre ${ }^{138}$, E. Etzion ${ }^{155}$, H. Evans ${ }^{64}$, A. Ezhilov ${ }^{125}$, M. Ezzi ${ }^{137 e}$, F. Fabbri ${ }^{22 a, 22 b}$, L. Fabbri ${ }^{22 a, 22 b}$, V. Fabiani ${ }^{108}$, G. Facini ${ }^{81}$, R.M. Fakhrutdinov ${ }^{132}$, S. Falciano ${ }^{134 a}$, R.J. Falla ${ }^{81}$, J. Faltova ${ }^{32}$, Y. Fang ${ }^{35 \mathrm{a}}$, M. Fanti ${ }^{94 a, 94 \mathrm{~b}}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{136 a}$, C. Farina ${ }^{127}$, E.M. Farina ${ }^{123 a, 123 b}$, T. Farooque ${ }^{93}$, S. Farrell ${ }^{16}$, S.M. Farrington ${ }^{173}$, P. Farthouat ${ }^{32}$, F. Fassi ${ }^{137 e}$, P. Fassnacht ${ }^{32}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{80}$, A. Favareto ${ }^{53 a, 53 b}$, W.J. Fawcett ${ }^{122}$, L. Fayard ${ }^{119}$, O.L. Fedin ${ }^{125, q}$, W. Fedorko ${ }^{171}$, S. Feigl ${ }^{121}$, L. Feligioni ${ }^{88}$, C. Feng ${ }^{36 \mathrm{~b}}$, E.J. Feng ${ }^{32}$, H. Feng ${ }^{92}$, M.J. Fenton ${ }^{56}$, A.B. Fenyuk ${ }^{132}$, L. Feremenga ${ }^{8}$, P. Fernandez Martinez ${ }^{170}$, S. Fernandez Perez ${ }^{13}$, J. Ferrando ${ }^{45}$, A. Ferrari ${ }^{168}$, P. Ferrari ${ }^{109}$, R. Ferrari ${ }^{123 a}$, D.E. Ferreira de Lima ${ }^{60 b}$, A. Ferrer ${ }^{170}$, D. Ferrere ${ }^{52}$, C. Ferretti ${ }^{92}$, F. Fiedler ${ }^{86}$, A. Filipčič ${ }^{78}$, M. Filipuzzi ${ }^{45}$, F. Filthaut ${ }^{108}$, M. Fincke-Keeler ${ }^{172}$, K.D. Finelli ${ }^{152}$, M.C.N. Fiolhais ${ }^{128 a}$, 128c, r, L. Fiorini ${ }^{170}$, A. Fischer ${ }^{2}$, C. Fischer ${ }^{13}$, J. Fischer ${ }^{178}$, W.C. Fisher ${ }^{93}$, N. Flaschel ${ }^{45}$, I. Fleck ${ }^{143}$, P. Fleischmann ${ }^{92}$, R.R.M. Fletcher ${ }^{124}$, T. Flick ${ }^{178}$, B.M. Flierl ${ }^{102}$, L.R. Flores Castillo ${ }^{62 a}$, M.J. Flowerdew ${ }^{103}$, G.T. Forcolin ${ }^{87}$, A. Formica ${ }^{138}$, F.A. Förster ${ }^{13}$, A. Forti ${ }^{87}$, A.G. Foster ${ }^{19}$, D. Fournier ${ }^{119}$, H. Fox ${ }^{75}$, S. Fracchia ${ }^{141}$, P. Francavilla ${ }^{83}$, M. Franchini ${ }^{22 a, 22 b}$, S. Franchino ${ }^{60 a}$, D. Francis ${ }^{32}$, L. Franconi ${ }^{121}$, M. Franklin ${ }^{59}$, M. Frate ${ }^{166}$, M. Fraternali ${ }^{123 a, 123 b}$, D. Freeborn ${ }^{81}$, S.M. Fressard-Batraneanu ${ }^{32}$, B. Freund ${ }^{97}$, D. Froidevaux ${ }^{32}$, J.A. Frost ${ }^{122}$, C. Fukunaga ${ }^{158}$, T. Fusayasu ${ }^{104}$, J. Fuster ${ }^{170}$, C. Gabaldon ${ }^{58}$, O. Gabizon ${ }^{154}$, A. Gabrielli ${ }^{22 a, 22 b}$, A. Gabrielli ${ }^{16}$, G.P. Gach ${ }^{41 a}$, S. Gadatsch ${ }^{32}$, S. Gadomski ${ }^{80}$, G. Gagliardi ${ }^{53 \mathrm{a}, 53 \mathrm{~b}}$, L.G. Gagnon ${ }^{9 \prime}$, C. Galea ${ }^{108}$, B. Galhardo ${ }^{128 \mathrm{Ba}, 128 \mathrm{C}}$, E.J. Gallas ${ }^{122}$, B.J. Gallop ${ }^{133}$ P. Gallus ${ }^{130}$, G. Galster ${ }^{39}$, K.K. Gan ${ }^{113}$, S. Ganguly ${ }^{37}$, Y. Gao ${ }^{77}$, Y.S. Gao ${ }^{145, g}$, F.M. Garay Walls ${ }^{49}$, C. García ${ }^{170}$, J.E. García Navarro ${ }^{170}$, J.A. García Pascual ${ }^{35 a}$, M. Garcia-Sciveres ${ }^{16}$, R.W. Gardner ${ }^{33}$, N. Garelli ${ }^{145}$, V. Garonne ${ }^{121}$, A. Gascon Bravo ${ }^{45}$, K. Gasnikova ${ }^{45}$, C. Gatti ${ }^{50}$, A. Gaudiello ${ }^{53 a, 53 b}$, G. Gaudio ${ }^{123 a}$, I.L. Gavrilenko ${ }^{98}$, C. Gay ${ }^{171}$, G. Gaycken ${ }^{23}$, E.N. Gazis ${ }^{10}$, C.N.P. Gee ${ }^{133}$, J. Geisen ${ }^{57}$,
M. Geisen ${ }^{86}$, M.P. Geisler ${ }^{60 a}$, K. Gellerstedt ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, C. Gemme ${ }^{53 \mathrm{a}}$, M.H. Genest ${ }^{58}$, C. Geng ${ }^{92}$, S. Gentile ${ }^{134 a, 134 b}$, C. Gentsos ${ }^{156}$, S. George ${ }^{80}$, D. Gerbaudo ${ }^{13}$, A. Gershon ${ }^{155}$, G. Geßner ${ }^{46}$, S. Ghasemi ${ }^{143}$, M. Ghneimat ${ }^{23}$, B. Giacobbe ${ }^{22 a}$, S. Giagu ${ }^{134 a, 134 b}$, N. Giangiacomi ${ }^{22 a}, 22 \mathrm{~b}$, P. Giannetti ${ }^{126 a, 126 b}$, S.M. Gibson ${ }^{80}$, M. Gignac ${ }^{171}$, M. Gilchriese ${ }^{16}$, D. Gillberg ${ }^{31}$, G. Gilles ${ }^{178}$, D.M. Gingrich ${ }^{3, d}$, N. Giokaris ${ }^{9, *}$, M.P. Giordani ${ }^{167 a}{ }^{\text {, } 167 \mathrm{c}}$, F.M. Giorgi ${ }^{22 a}$, P.F. Giraud ${ }^{138}$, P. Giromini ${ }^{59}$, D. Giugni ${ }^{94 a}$, F. Giuli ${ }^{122}$, C. Giuliani ${ }^{103}$, M. Giulini ${ }^{60 b}$, B.K. Gjelsten ${ }^{121}$, S. Gkaitatzis ${ }^{156}$, I. Gkialas ${ }^{9, s}$, E.L. Gkougkousis ${ }^{139}$, P. Gkountoumis ${ }^{10}$, L.K. Gladilin ${ }^{101}$, C. Glasman ${ }^{85}$, J. Glatzer ${ }^{13}$, P.C.F. Glaysher ${ }^{45}$, A. Glazov ${ }^{45}$, M. Goblirsch-Kolb ${ }^{25}$, J. Godlewski ${ }^{42}$, S. Goldfarb ${ }^{91}$, T. Golling ${ }^{52}$, D. Golubkov ${ }^{132}$, A. Gomes ${ }^{128 \mathrm{Ba}, 128 \mathrm{~b}, 128 \mathrm{~d}}$, R. Gonçalo ${ }^{128 \mathrm{a}}$, R. Goncalves Gama ${ }^{26 a}$, J. Goncalves Pinto Firmino Da Costa ${ }^{138}$, G. Gonella ${ }^{51}$, L. Gonella ${ }^{19}$, A. Gongadze ${ }^{68}$, S. González de la Hoz^{170}, S. Gonzalez-Sevilla ${ }^{52}$, L. Goossens ${ }^{32}$, P.A. Gorbounov ${ }^{99}$, H.A. Gordon ${ }^{27}$, I. Gorelov ${ }^{107}$, B. Gorini ${ }^{32}$, E. Gorini ${ }^{76 a, 76 b}$, A. Gorišek ${ }^{78}$, A.T. Goshaw ${ }^{48}$, C. Gössling ${ }^{46}$, M.I. Gostkin ${ }^{68}$, C.A. Gottardo ${ }^{23}$, C.R. Goudet ${ }^{119}$, D. Goujdami ${ }^{137 \mathrm{c}}$, A.G. Goussiou ${ }^{140}$, N. Govender ${ }^{147 \mathrm{~b}, \mathrm{t}}$, E. Gozani ${ }^{154}$, L. Graber ${ }^{57}$, I. Grabowska-Bold ${ }^{41 \mathrm{a}}$, P.O.J. Gradin ${ }^{168}$, J. Gramling ${ }^{166}$, E. Gramstad ${ }^{121}$, S. Grancagnolo ${ }^{17}$, V. Gratchev ${ }^{125}$, P.M. Gravila ${ }^{28 f}$, C. Gray ${ }^{56}$, H.M. Gray ${ }^{16}$, Z.D. Greenwood ${ }^{82, u}$, C. Grefe ${ }^{23}$, K. Gregersen ${ }^{81}$, I.M. Gregor ${ }^{45}$, P. Grenier ${ }^{145}$, K. Grevtsov ${ }^{5}$, J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{139}$, K. Grimm ${ }^{75}$, S. Grinstein ${ }^{13, v}$, Ph. Gris ${ }^{37}$, J.-F. Grivaz ${ }^{119}$, S. Groh ${ }^{86}$, E. Gross ${ }^{175}$, J. Grosse-Knetter ${ }^{57}$, G.C. Grossi ${ }^{82}$, Z.J. Grout ${ }^{81}$, A. Grummer ${ }^{107}$, L. Guan ${ }^{92}$, W. Guan ${ }^{176}$, J. Guenther ${ }^{65}$, F. Guescini ${ }^{163 a}$, D. Guest ${ }^{166}$, O. Gueta ${ }^{155}$, B. Gui ${ }^{113}$, E. Guido ${ }^{53 a, 53 b}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{2}$, U. Gul ${ }^{56}$, C. Gumpert ${ }^{32}$, J. Guo ${ }^{36 \mathrm{c}}$, W. Guo ${ }^{92}$, Y. Guo ${ }^{36 a}$, R. Gupta ${ }^{43}$, S. Gupta ${ }^{122}$, G. Gustavino ${ }^{1344 \mathrm{a}, 134 \mathrm{~b}}$, P. Gutierrez ${ }^{115}$, N.G. Gutierrez Ortiz ${ }^{81}$, C. Gutschow. ${ }^{81}$, C. Guyot ${ }^{138}$, M.P. Guzik ${ }^{41 a}$, C. Gwenlan ${ }^{122}$, C.B. Gwilliam ${ }^{77}$, A. Haas ${ }^{112}$, C. Haber ${ }^{16}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{137 \mathrm{e}}$, A. Hadef ${ }^{88}$, S. Hageböck ${ }^{23}$, M. Hagihara ${ }^{164}$, H. Hakobyan ${ }^{180, *}$, M. Haleem ${ }^{45}$, J. Haley ${ }^{116}$, G. Halladjian ${ }^{93}$, G.D. Hallewell ${ }^{88}$, K. Hamacher ${ }^{178}$, P. Hamal ${ }^{117}$, K. Hamano ${ }^{172}$, A. Hamilton ${ }^{147 a}$, G.N. Hamity ${ }^{141}$, P.G. Hamnett ${ }^{45}$, L. Han ${ }^{36 a}$, S. Han ${ }^{35 a}$, K. Hanagaki ${ }^{69, w}$, K. Hanawa ${ }^{157}$, M. Hance ${ }^{139}$, B. Haney ${ }^{124}$, P. Hanke ${ }^{60 a}$, J.B. Hansen ${ }^{39}$, J.D. Hansen ${ }^{39}$, M.C. Hansen ${ }^{23}$, P.H. Hansen ${ }^{39}$, K. Hara ${ }^{164}$, A.S. Hard ${ }^{176}$, T. Harenberg ${ }^{178}$, F. Hariri ${ }^{119}$, S. Harkusha ${ }^{95}$, R.D. Harrington ${ }^{49}$, P.F. Harrison ${ }^{173}$, N.M. Hartmann ${ }^{102}$, M. Hasegawa ${ }^{70}$, Y. Hasegawa ${ }^{142}$, A. Hasib ${ }^{49}$, S. Hassani ${ }^{138}$, S. Haug ${ }^{18}$, R. Hauser ${ }^{93}$, L. Hauswald ${ }^{47}$, L.B. Havener ${ }^{38}$, M. Havranek ${ }^{130}$, C.M. Hawkes ${ }^{19}$, R.J. Hawkings ${ }^{32}$, D. Hayakawa ${ }^{159}$, D. Hayden ${ }^{93}$, C.P. Hays ${ }^{122}$, J.M. Hays ${ }^{79}$, H.S. Hayward ${ }^{77}$, S.J. Haywood ${ }^{133}$, S.J. Head ${ }^{19}$, T. Heck ${ }^{86}$, V. Hedberg ${ }^{84}$, L. Heelan ${ }^{8}$, S. Heer ${ }^{23}$, K.K. Heidegger ${ }^{51}$, S. Heim ${ }^{45}$, T. Heim ${ }^{16}$, B. Heinemann ${ }^{45, x}$, J.J. Heinrich ${ }^{102}$, L. Heinrich ${ }^{112}$, C. Heinz ${ }^{55}$, J. Hejbal ${ }^{129}$, L. Helary ${ }^{32}$, A. Held ${ }^{171}$, S. Hellman ${ }^{\text {148a, }}{ }^{148 b}$, C. Helsens ${ }^{32}$, R.C.W. Henderson ${ }^{75}$, Y. Heng ${ }^{176}$, S. Henkelmann ${ }^{171}$, A.M. Henriques Correia ${ }^{32}$, S. Henrot-Versille ${ }^{119}$, G.H. Herbert ${ }^{17}$, H. Herde ${ }^{25}$, V. Herget ${ }^{177}$, Y. Hernández Jiménez ${ }^{147 \mathrm{c}}$, H. Herr ${ }^{86}$, G. Herten ${ }^{51}$, R. Hertenberger ${ }^{102}$, L. Hervas ${ }^{32}$, T.C. Herwig ${ }^{124}$, G.G. Hesketh ${ }^{81}$, N.P. Hessey ${ }^{163 a}$, J.W. Hetherly ${ }^{43}$, S. Higashino ${ }^{69}$, E. Higón-Rodriguez ${ }^{170}$, K. Hildebrand ${ }^{33}$, E. Hill ${ }^{172}$, J.C. Hill ${ }^{30}$, K.H. Hiller ${ }^{45}$, S.J. Hillier ${ }^{19}$, M. Hils ${ }^{47}$, I. Hinchliffe ${ }^{16}$, M. Hirose ${ }^{51}$, D. Hirschbuehl ${ }^{178}$, B. Hiti ${ }^{78}$, O. Hladik ${ }^{129}$, X. Hoad ${ }^{49}$, J. Hobbs ${ }^{150}$, N. Hod ${ }^{163 a}$, M.C. Hodgkinson ${ }^{141}$, P. Hodgson ${ }^{141}$, A. Hoecker ${ }^{32}$, M.R. Hoeferkamp ${ }^{107}$, F. Hoenig ${ }^{102}$, D. Hohn ${ }^{23}$, T.R. Holmes ${ }^{33}$, M. Homann ${ }^{46}$, S. Honda ${ }^{164}$, T. Honda ${ }^{69}$, T.M. Hong ${ }^{127}$, B.H. Hooberman ${ }^{169}$, W.H. Hopkins ${ }^{118}$, Y. Horii ${ }^{105}$, A.J. Horton ${ }^{144}$, J-Y. Hostachy ${ }^{58}$, S. Hou ${ }^{153}$, A. Hoummada ${ }^{137 \mathrm{a}}$, J. Howarth ${ }^{87}$, J. Hoya ${ }^{74}$, M. Hrabovsky ${ }^{117}$, J. Hrdinka ${ }^{32}$, I. Hristova ${ }^{17}$, J. Hrivnac ${ }^{119}$, T. Hryn'ova ${ }^{5}$, A. Hrynevich ${ }^{96}$, P.J. Hsu ${ }^{63}$, S. - C. Hsu ${ }^{140}$, Q. Hu ${ }^{36 a}$, S. Hu ${ }^{366 c}$, Y. Huang ${ }^{35{ }^{35}}$, Z. Hubacek ${ }^{130}$, F. Hubaut ${ }^{88}$, F. Huegging ${ }^{23}$, T.B. Huffman ${ }^{122}$, E.W. Hughes ${ }^{38}$, G. Hughes ${ }^{75}$, M. Huhtinen ${ }^{32}$, P. Huo ${ }^{150}$, N. Huseynov ${ }^{68, \text { b }}$, J. Huston ${ }^{93}$, J. Huth ${ }^{59}$, G. Iacobucci ${ }^{52}$, G. Iakovidis ${ }^{27}$, I. Ibragimov ${ }^{143}$, L. Iconomidou-Fayard ${ }^{119}$, Z. Idrissi ${ }^{137 e}$, P. Iengo ${ }^{32}$, O. Igonkina ${ }^{109}$, ${ }^{\prime}$, T. Iizawa ${ }^{174}$, Y. Ikegami ${ }^{69}$, M. Ikeno ${ }^{69}$, Y. Ilchenko ${ }^{11, z}$, D. Iliadis ${ }^{156}$, N. Ilic ${ }^{145}$, G. Introzzi ${ }^{123 a, 123 b}$, P. Ioannou ${ }^{9}{ }^{9} *$, M. Iodice ${ }^{136 a}$, K. Iordanidou ${ }^{38}$, V. Ippolito ${ }^{59}$, M.F. Isacson ${ }^{168}$, N. Ishijima ${ }^{120}$, M. Ishino ${ }^{157}$, M. Ishitsuka ${ }^{159}$, C. Issever ${ }^{122}$, S. Istin ${ }^{20 a}$, F. Ito ${ }^{164}$, J.M. Iturbe Ponce ${ }^{62 a}$, R. Iuppa ${ }^{162 a, 162 b}$, H. Iwasaki ${ }^{69}$, J.M. Izen ${ }^{44}$, V. Izzo ${ }^{106 a}$, S. Jabbar ${ }^{3}$, P. Jackson ${ }^{1}$, R.M. Jacobs ${ }^{23}$, V. Jain ${ }^{2}$, K.B. Jakobi ${ }^{86}$, K. Jakobs ${ }^{51}$, S. Jakobsen ${ }^{65}$, T. Jakoubek ${ }^{129}$, D.O. Jamin ${ }^{116}$, D.K. Jana ${ }^{82}$, R. Jansky ${ }^{52}$, J. Janssen ${ }^{23}$, M. Janus ${ }^{57}$, P.A. Janus ${ }^{41 a}$, G. Jarlskog ${ }^{84}$, N. Javadov ${ }^{68, b}$, T. Javùrek ${ }^{51}$, M. Javurkova ${ }^{51}$, F. Jeanneau ${ }^{138}$, L. Jeanty ${ }^{16}$, J. Jejelava ${ }^{54 a, a a}$, A. Jelinskas ${ }^{173}$, P. Jenni ${ }^{51, a b}$, C. Jeske ${ }^{173}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{176}$, J. Jia ${ }^{150}$, H. Jiang ${ }^{67}$, Y. Jiang ${ }^{36 a}$, Z. Jiang ${ }^{145}$, S. Jiggins ${ }^{81}$, J. Jimenez Pena ${ }^{170}$, S. Jin ${ }^{35 a}$, A. Jinaru ${ }^{28 b}$, O. Jinnouchi ${ }^{159}$,
H. Jivan ${ }^{147 c}$, P. Johansson ${ }^{141}$, K.A. Johns ${ }^{7}$, C.A. Johnson ${ }^{64}$, W.J. Johnson ${ }^{140}$, K. Jon-And ${ }^{148 a, 148 b}$, R.W.L. Jones ${ }^{75}$, S.D. Jones ${ }^{151}$, S. Jones ${ }^{7}$, T.J. Jones ${ }^{77}$, J. Jongmanns ${ }^{60 a}$, P.M. Jorge ${ }^{128 a, 128 b}$, J. Jovicevic ${ }^{163 a}$, X. Ju ${ }^{176}$, A. Juste Rozas ${ }^{13, v}$, M.K. Köhler ${ }^{175}$, A. Kaczmarska ${ }^{42}$, M. Kado ${ }^{119}$, H. Kagan ${ }^{113}$, M. Kagan ${ }^{145}$, S.J. Kahn ${ }^{88}$, T. Kaji ${ }^{174}$, E. Kajomovitz ${ }^{48}$, C.W. Kalderon ${ }^{84}$, A. Kaluza ${ }^{86}$, S. Kama ${ }^{43}$, A. Kamenshchikov ${ }^{132}$, N. Kanaya ${ }^{157}$, L. Kanjir ${ }^{78}$, V.A. Kantserov ${ }^{100}$, J. Kanzaki ${ }^{69}$, B. Kaplan ${ }^{112}$, L.S. Kaplan ${ }^{176}$, D. Kar ${ }^{147 c}$, K. Karakostas ${ }^{10}$, N. Karastathis ${ }^{10}$, M.J. Kareem ${ }^{57}$, E. Karentzos ${ }^{10}$, S.N. Karpov ${ }^{68}$, Z.M. Karpova ${ }^{68}$, K. Karthik ${ }^{112}$, V. Kartvelishvili ${ }^{75}$, A.N. Karyukhin ${ }^{132}$, K. Kasahara ${ }^{164}$, L. Kashif ${ }^{176}$, R.D. Kass ${ }^{113}$, A. Kastanas ${ }^{149}$, Y. Kataoka ${ }^{157}$, C. Kato ${ }^{157}$, A. Katre ${ }^{52}$, J. Katzy ${ }^{45}$, K. Kawade ${ }^{70}$, K. Kawagoe ${ }^{73}$, T. Kawamoto ${ }^{157}$, G. Kawamura ${ }^{57}$, E.F. Kay ${ }^{77}$, V.F. Kazanin ${ }^{111, c}$, R. Keeler ${ }^{172}$, R. Kehoe ${ }^{43}$, J.S. Keller ${ }^{31}$, J.J. Kempster ${ }^{80}$, J. Kendrick ${ }^{19}$, H. Keoshkerian ${ }^{161}$, O. Kepka ${ }^{129}$, B.P. Kerševan ${ }^{78}$, S. Kersten ${ }^{178}$, R.A. Keyes ${ }^{90}$, M. Khader ${ }^{169}$, F. Khalil-zada ${ }^{12}$, A. Khanov ${ }^{116}$, A.G. Kharlamov ${ }^{111, c}$, T. Kharlamova ${ }^{111, c}$, A. Khodinov ${ }^{160}$, T.J. Khoo ${ }^{52}$, V. Khovanskiy ${ }^{99, *}$, E. Khramov ${ }^{68}$, J. Khubua ${ }^{54 b}$, ac , S. Kido ${ }^{70}$, C.R. Kilby ${ }^{80}$, H.Y. Kim ${ }^{8}$, S.H. Kim ${ }^{164}$, Y.K. Kim ${ }^{33}$, N. Kimura ${ }^{156}$, O.M. Kind ${ }^{17}$, B.T. King ${ }^{77}$, D. Kirchmeier ${ }^{47}$, J. Kirk ${ }^{133}$, A.E. Kiryunin ${ }^{103}$, T. Kishimoto ${ }^{157}$, D. Kisielewska ${ }^{41 a}$, V. Kitali ${ }^{45}$, K. Kiuchi ${ }^{164}$, O. Kivernyk ${ }^{5}$, E. Kladiva ${ }^{146 \mathrm{~b}}$, T. Klapdor-Kleingrothaus ${ }^{51}$, M.H. Klein ${ }^{38}$, M. Klein ${ }^{77}$, U. Klein ${ }^{77}$, K. Kleinknecht ${ }^{86}$, P. Klimek ${ }^{110}$, A. Klimentov ${ }^{27}$, R. Klingenberg ${ }^{46}$, T. Klingl ${ }^{23}$, T. Klioutchnikova ${ }^{32}$, E.-E. Kluge ${ }^{60 a}$, P. Kluit ${ }^{109}$, S. Kluth ${ }^{103}$, E. Kneringer ${ }^{65}$, E.B.F.G. Knoops ${ }^{88}$, A. Knue ${ }^{103}$, A. Kobayashi ${ }^{157}$, D. Kobayashi ${ }^{159}$, T. Kobayashi ${ }^{157}$, M. Kobel ${ }^{47}$, M. Kocian ${ }^{145}$, P. Kodys ${ }^{131}$, T. Koffas ${ }^{31}$, E. Koffeman ${ }^{109}$, N.M. Köhler ${ }^{103}$, T. Koi ${ }^{145}$, M. Kolb ${ }^{60 b}$, I. Koletsou ${ }^{5}$, A.A. Komar ${ }^{98, *}$, Y. Komori ${ }^{157}$, T. Kondo ${ }^{69}$, N. Kondrashova ${ }^{36 \mathrm{c}}$, K. Köneke ${ }^{51}$, A.C. König ${ }^{108}$, T. Kono ${ }^{69, a d}$, R. Konoplich ${ }^{112, a e}$, N. Konstantinidis ${ }^{81}$, R. Kopeliansky ${ }^{64}$, S. Koperny ${ }^{41 \text { a }}$, A.K. Kopp ${ }^{51}$, K. Korcyl ${ }^{42}$, K. Kordas ${ }^{156}$, A. Korn ${ }^{81}$, A.A. Korol ${ }^{111, c}$, I. Korolkov ${ }^{13}$, E.V. Korolkova ${ }^{141}$, O. Kortner ${ }^{103}$, S. Kortner ${ }^{103}$, T. Kosek ${ }^{131}$, V.V. Kostyukhin ${ }^{23}$, A. Kotwal ${ }^{48}$, A. Koulouris ${ }^{10}$, A. Kourkoumeli-Charalampidi ${ }^{123 a, 123 b}$, C. Kourkoumelis ${ }^{9}$, E. Kourlitis ${ }^{141}$, V. Kouskoura ${ }^{27}$, A.B. Kowalewska ${ }^{42}$, R. Kowalewski ${ }^{172}$, T.Z. Kowalski ${ }^{41 a}$, C. Kozakai ${ }^{157}$, W. Kozanecki ${ }^{138}$, A.S. Kozhin ${ }^{132}$, V.A. Kramarenko ${ }^{101}$, G. Kramberger ${ }^{78}$, D. Krasnopevtsev ${ }^{100}$, M.W. Krasny ${ }^{83}$, A. Krasznahorkay ${ }^{32}$, D. Krauss ${ }^{103}$, J.A. Kremer ${ }^{41 a}$, J. Kretzschmar ${ }^{77}$, K. Kreutzfeldt ${ }^{55}$, P. Krieger ${ }^{161}$, K. Krizka ${ }^{33}$, K. Kroeninger ${ }^{46}$, H. Kroha ${ }^{103}$, J. Kroll ${ }^{129}$, J. Kroll ${ }^{124}$, J. Kroseberg ${ }^{23}$, J. Krstic ${ }^{14}$, U. Kruchonak ${ }^{68}$, H. Krüger ${ }^{23}$, N. Krumnack ${ }^{67}$, M.C. Kruse ${ }^{48}$, T. Kubota ${ }^{91}$, H. Kucuk ${ }^{81}$, S. Kuday ${ }^{4 b}$, J.T. Kuechler ${ }^{178}$, S. Kuehn ${ }^{32}$, A. Kugel ${ }^{60 a}$, F. Kuger ${ }^{177}$, T. Kuhl ${ }^{45}$, V. Kukhtin ${ }^{68}$, R. Kukla ${ }^{88}$, Y. Kulchitsky ${ }^{95}$, S. Kuleshov ${ }^{34 \mathrm{~b}}$, Y.P. Kulinich ${ }^{169}$, M. Kuna ${ }^{134 a, 134 \mathrm{~b}}$, T. Kunigo ${ }^{71}$, A. Kupco ${ }^{129}$, T. Kupfer ${ }^{46}$, O. Kuprash ${ }^{155}$, H. Kurashige ${ }^{70}$, L.L. Kurchaninov ${ }^{163 a}$, Y.A. Kurochkin ${ }^{95}$, M.G. Kurth ${ }^{35 a}$, V. Kus ${ }^{129}$, E.S. Kuwertz ${ }^{172}$, M. Kuze ${ }^{159}$, J. Kvita ${ }^{117}$, T. Kwan ${ }^{172}$, D. Kyriazopoulos ${ }^{141}$, A. La Rosa ${ }^{103}$, J.L. La Rosa Navarro ${ }^{26 d}$, L. La Rotonda ${ }^{40 \mathrm{a}, 40 \mathrm{~b}}$, F. La Ruffa ${ }^{40 \mathrm{a}, 40 \mathrm{~b}}$, C. Lacasta ${ }^{170}$, F. Lacava ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, J. Lacey ${ }^{45}$, H. Lacker ${ }^{17}$, D. Lacour ${ }^{83}$, E. Ladygin ${ }^{68}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{83}$, T. Lagouri ${ }^{179}$, S. Lai ${ }^{57}$, S. Lammers ${ }^{64}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{27}$, U. Landgraf ${ }^{51}$, M.P.J. Landon ${ }^{79}$, M.C. Lanfermann ${ }^{52}$, V.S. Lang ${ }^{60 a}$, J.C. Lange ${ }^{13}$, R.J. Langenberg ${ }^{32}$, A.J. Lankford ${ }^{166}$, F. Lanni ${ }^{27}$, K. Lantzsch ${ }^{23}$, A. Lanza ${ }^{123 a}$, A. Lapertosa ${ }^{53 a}{ }^{533}$, S. Laplace ${ }^{83}$, J.F. Laporte ${ }^{138}$, T. Lari ${ }^{94 \mathrm{a}}$, F. Lasagni Manghi ${ }^{22 a, 22 b}$, M. Lassnig ${ }^{32}$, P. Laurelli ${ }^{50}$, W. Lavrijsen ${ }^{16}$, A.T. Law ${ }^{139}$, P. Laycock ${ }^{77}$, T. Lazovich ${ }^{59}$, M. Lazzaroni ${ }^{94 a, 94 \mathrm{~b}}$, B. Le ${ }^{91}$, O. Le Dortz ${ }^{83}$, E. Le Guirriec ${ }^{88}$, E.P. Le Quilleuc ${ }^{138}$, M. LeBlanc ${ }^{172}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{58}$, C.A. Lee ${ }^{27}$, G.R. Lee ${ }^{133, a f}$, S.C. Lee ${ }^{153}$, L. Lee ${ }^{59}$, B. Lefebvre ${ }^{90}$, G. Lefebvre ${ }^{83}$, M. Lefebvre ${ }^{172}$, F. Legger ${ }^{102}$, C. Leggett ${ }^{16}$, G. Lehmann Miotto ${ }^{32}$, X. Lei ${ }^{7}$, W.A. Leight ${ }^{45}$, M.A.L. Leite ${ }^{26 d}$, R. Leitner ${ }^{131}$, D. Lellouch ${ }^{175}$, B. Lemmer ${ }^{57}$, K.J.C. Leney ${ }^{81}$, T. Lenz ${ }^{23}$, B. Lenzi ${ }^{32}$, R. Leone ${ }^{7}$, S. Leone ${ }^{126 a, 126 \mathrm{~b}}$, C. Leonidopoulos ${ }^{49}$, G. Lerner ${ }^{151}$, C. Leroy ${ }^{97}$, A.A.J. Lesage ${ }^{138}$, C.G. Lester ${ }^{30}$, M. Levchenko ${ }^{125}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{92}$, L.J. Levinson ${ }^{175}$, M. Levy ${ }^{19}$, D. Lewis ${ }^{79}$, B. Li $^{36 a, a g}$, Changqiao Li $^{36 a}$, H. Li ${ }^{150}$, L. Li ${ }^{36 c}$, Q. Li ${ }^{35 a}$, S. Li ${ }^{48}$, X. Li ${ }^{36 c}$, Y. Li 143, Z. Liang ${ }^{35 \mathrm{a}}$, B. Liberti ${ }^{135 \mathrm{a}}$, A. Liblong ${ }^{161}$, K. Lie ${ }^{62 \mathrm{c}}$, J. Liebal ${ }^{23}$, W. Liebig ${ }^{15}$, A. Limosani ${ }^{152}$, S.C. Lin ${ }^{182}$, T.H. Lin ${ }^{86}$, R.A. Linck ${ }^{64}$, B.E. Lindquist ${ }^{150}$, A.E. Lionti ${ }^{52}$, E. Lipeles ${ }^{124}$, A. Lipniacka ${ }^{15}$, M. Lisovyi ${ }^{60 \mathrm{~b}}$, T.M. Liss ${ }^{169, a h}$, A. Lister ${ }^{171}$, A.M. Litke ${ }^{139}$, B. Liu ${ }^{153, a i}$, H. Liu ${ }^{92}$, H. Liu ${ }^{27}$, J.K.K. Liu ${ }^{122}$, J. Liu ${ }^{36 b}$, J.B. Liu ${ }^{36 a}$, K. Liu ${ }^{88}$, L. Liu ${ }^{169}$, M. Liu ${ }^{36 a}$, Y.L. Liu ${ }^{36 a}$, Y. Liu ${ }^{36 a}$, M. Livan ${ }^{123 a, 123 b}$, A. Lleres ${ }^{58}$, J. Llorente Merino ${ }^{35 a}$, S.L. Lloyd ${ }^{79}$, C.Y. Lo ${ }^{62 \mathrm{~b}}$, F. Lo Sterzo ${ }^{153}$, E.M. Lobodzinska ${ }^{45}$, P. Loch ${ }^{7}$, F.K. Loebinger ${ }^{87}$, A. Loesle ${ }^{51}$, K.M. Loew ${ }^{25}$, A. Loginov ${ }^{179, *}$, T. Lohse ${ }^{17}$, K. Lohwasser ${ }^{141}$, M. Lokajicek ${ }^{129}$, B.A. Long ${ }^{24}$, J.D. Long ${ }^{169}$, R.E. Long ${ }^{75}$, L. Longo ${ }^{76 a, 76 \mathrm{~b}}$, K.A. Looper ${ }^{113}$, J.A. Lopez ${ }^{34 \mathrm{~b}}$, D. Lopez Mateos ${ }^{59}$, I. Lopez Paz ${ }^{13}$, A. Lopez Solis ${ }^{83}$, J. Lorenz ${ }^{102}$, N. Lorenzo Martinez ${ }^{5}$, M. Losada ${ }^{21}$,
P.J. Lösel ${ }^{102}$, X. Lou ${ }^{35 a}$, A. Lounis ${ }^{119}$, J. Love ${ }^{6}$, P.A. Love ${ }^{75}$, H. Lu ${ }^{62 \mathrm{a}}$, N. Lu ${ }^{92}$, Y.J. Lu ${ }^{63}$, H.J. Lubatti ${ }^{140}$, C. Luci ${ }^{134 a, 134 b}$, A. Lucotte ${ }^{58}$, C. Luedtke ${ }^{51}$, F. Luehring ${ }^{64}$, W. Lukas ${ }^{65}$, L. Luminari ${ }^{134 a}$, O. Lundberg ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, B. Lund-Jensen ${ }^{149}$, M.S. Lutz ${ }^{89}$, P.M. Luzi ${ }^{83}$, D. Lynn ${ }^{27}$, R. Lysak ${ }^{129}$, E. Lytken ${ }^{84}$, F. Lyu ${ }^{35 \mathrm{a}}$, V. Lyubushkin ${ }^{68}$, H. Ma ${ }^{27}$, L.L. $\mathrm{Ma}^{36 \mathrm{~b}}$, Y. Ma ${ }^{36 \mathrm{~b}}$, G. Maccarrone ${ }^{50}$, A. Macchiolo ${ }^{103}$, C.M. Macdonald ${ }^{141}$, B. Maček ${ }^{78}$, J. Machado Miguens ${ }^{124,128 \mathrm{~b}}$, D. Madaffari ${ }^{170}$, R. Madar ${ }^{37}$, W.F. Mader ${ }^{47}$, A. Madsen ${ }^{45}$, J. Maeda ${ }^{70}$, S. Maeland ${ }^{15}$, T. Maeno ${ }^{27}$, A.S. Maevskiy ${ }^{101}$, V. Magerl ${ }^{51}$, J. Mahlstedt ${ }^{109}$, C. Maiani ${ }^{119}$, C. Maidantchik ${ }^{26 a}$, A.A. Maier ${ }^{103}$, T. Maier ${ }^{102}$, A. Maio ${ }^{128 a, 128 b, 128 d}$, O. Majersky ${ }^{146 a}$, S. Majewski ${ }^{118}$, Y. Makida ${ }^{69}$, N. Makovec ${ }^{119}$, B. Malaescu ${ }^{83}$, Pa. Malecki ${ }^{42}$, V.P. Maleev ${ }^{125}$, F. Malek ${ }^{58}$, U. Mallik ${ }^{66}$, D. Malon ${ }^{6}$, C. Malone ${ }^{30}$, S. Maltezos ${ }^{10}$, S. Malyukov ${ }^{32}$, J. Mamuzic ${ }^{170}$, G. Mancini ${ }^{50}$, I. Mandić ${ }^{78}$, J. Maneira ${ }^{128 a, 128 b}$, L. Manhaes de Andrade Filho ${ }^{26 b}$, J. Manjarres Ramos ${ }^{47}$, K.H. Mankinen ${ }^{84}$, A. Mann ${ }^{102}$, A. Manousos ${ }^{32}$, B. Mansoulie ${ }^{138}$, J.D. Mansour ${ }^{35 a}$, R. Mantifel ${ }^{90}$, M. Mantoani ${ }^{57}$, S. Manzoni ${ }^{94 a, 94 b}$, L. Mapelli ${ }^{32}$, G. Marceca ${ }^{29}$, L. March ${ }^{52}$, L. Marchese ${ }^{122}$, G. Marchiori ${ }^{83}$, M. Marcisovsky ${ }^{129}$, M. Marjanovic ${ }^{37}$, D.E. Marley ${ }^{92}$, F. Marroquim ${ }^{26 a}$, S.P. Marsden ${ }^{87}$, Z. Marshall ${ }^{16}$, M.U.F. Martensson ${ }^{168}$, S. Marti-Garcia ${ }^{170}$, C.B. Martin ${ }^{113}$, T.A. Martin ${ }^{173}$, V.J. Martin ${ }^{49}$, B. Martin dit Latour ${ }^{15}$, M. Martinez ${ }^{13, v}$, V.I. Martinez Outschoorn ${ }^{169}$, S. Martin-Haugh ${ }^{133}$, V.S. Martoiu ${ }^{28 b}$, A.C. Martyniuk ${ }^{81}$, A. Marzin ${ }^{32}$, L. Masetti ${ }^{86}$, T. Mashimo ${ }^{157}$, R. Mashinistov ${ }^{98}$, J. Masik ${ }^{87}$, A.L. Maslennikov ${ }^{111, c}$, L. Massa ${ }^{135 a, 135 b}$, P. Mastrandrea ${ }^{5}$, A. Mastroberardino ${ }^{40 a, 40 b}$, T. Masubuchi ${ }^{157}$, P. Mättig ${ }^{178}$, J. Maurer ${ }^{28 \mathrm{~b}}$, S.J. Maxfield ${ }^{77}$, D.A. Maximov ${ }^{111, c}$, R. Mazini ${ }^{153}$, I. Maznas ${ }^{156}$, S.M. Mazza ${ }^{94 a, 94 b}$, N.C. Mc Fadden ${ }^{107}$, G. Mc Goldrick ${ }^{161}$, S.P. Mc Kee ${ }^{92}$, A. McCarn ${ }^{92}$, R.L. McCarthy ${ }^{150}$, T.G. McCarthy ${ }^{103}$, L.I. McClymont ${ }^{81}$, E.F. McDonald ${ }^{91}$, J.A. Mcfayden ${ }^{81}$, G. Mchedlidze ${ }^{57}$, S.J. McMahon ${ }^{133}$, P.C. McNamara ${ }^{91}$, R.A. McPherson ${ }^{172,0}$, S. Meehan ${ }^{140}$, T.J. Megy ${ }^{51}$, S. Mehlhase ${ }^{102}$, A. Mehta ${ }^{77}$, T. Meideck ${ }^{58}$, K. Meier ${ }^{60 a}$, B. Meirose ${ }^{44}$, D. Melini ${ }^{170, a j}$, B.R. Mellado Garcia ${ }^{147 \mathrm{C}}$, J.D. Mellenthin ${ }^{57}$, M. Melo ${ }^{146 \mathrm{a}}$, F. Meloni ${ }^{18}$, A. Melzer ${ }^{23}$, S.B. Menary ${ }^{87}$, L. Meng ${ }^{77}$, X.T. Meng ${ }^{92}$, A. Mengarelli ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, S. Menke ${ }^{103}$, E. Meoni ${ }^{40 \mathrm{a}, 40 \mathrm{~b}}$, S. Mergelmeyer ${ }^{17}$ P. Mermod ${ }^{52}$, L. Merola ${ }^{106 a, 106 b}$, C. Meroni ${ }^{94 a}$, F.S. Merritt ${ }^{33}$, A. Messina ${ }^{134 a, 134 b}$, J. Metcalfe ${ }^{6}$, A.S. Mete ${ }^{166}$, C. Meyer ${ }^{124}$, J-P. Meyer ${ }^{138}$, J. Meyer ${ }^{109}$, H. Meyer Zu Theenhausen ${ }^{60}{ }^{60}$, F. Miano ${ }^{151}$, R.P. Middleton ${ }^{133}$, S. Miglioranzi ${ }^{53 a, 53 b}$, L. Mijovićc ${ }^{49}$, G. Mikenberg ${ }^{175}$, M. Mikestikova ${ }^{129}$, M. Mikuž ${ }^{78}$, M. Milesi ${ }^{91}$, A. Milic ${ }^{161}$, D.W. Miller ${ }^{33}$, C. Mills ${ }^{49}$, A. Milov ${ }^{175}$, D.A. Milstead ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, A.A. Minaenko ${ }^{132}$, Y. Minami ${ }^{157}$, I.A. Minashvili ${ }^{68}$, A.I. Mincer ${ }^{112}$, B. Mindur ${ }^{41 \mathrm{a}}$, M. Mineev ${ }^{68}$, Y. Minegishi ${ }^{157}$, Y. Ming ${ }^{176}$, L.M. Mir ${ }^{13}$, K.P. Mistry ${ }^{124}$, T. Mitani ${ }^{174}$, J. Mitrevski ${ }^{102}$, V.A. Mitsou ${ }^{170}$, A. Miucci ${ }^{18}$, P.S. Miyagawa ${ }^{141}$, A. Mizukami ${ }^{69}$, J.U. Mjörnmark ${ }^{84}$, T. Mkrtchyan ${ }^{180}$, M. Mlynarikova ${ }^{131}$, T. Moa ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, K. Mochizuki ${ }^{97}$, P. Mogg ${ }^{51}$, S. Mohapatra ${ }^{38}$, S. Molander ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, R. Moles-Valls ${ }^{23}$, R. Monden ${ }^{71}$, M.C. Mondragon ${ }^{93}$, K. Mönig ${ }^{45}$, J. Monk ${ }^{39}$, E. Monnier ${ }^{88}$, A. Montalbano ${ }^{150}$, J. Montejo Berlingen ${ }^{32}$, F. Monticelli ${ }^{74}$, S. Monzani ${ }^{94 a, 94 b}$, R.W. Moore ${ }^{3}$, N. Morange ${ }^{119}$, D. Moreno ${ }^{21}$, M. Moreno Llácer ${ }^{32}$, P. Morettini ${ }^{53 a}$, S. Morgenstern ${ }^{32}$, D. Mori ${ }^{144}$, T. Mori ${ }^{157}$, M. Morii ${ }^{59}$, M. Morinaga ${ }^{157}$, V. Morisbak ${ }^{121}$, A.K. Morley ${ }^{32}$, G. Mornacchi ${ }^{32}$, J.D. Morris ${ }^{79}$, L. Morvaj ${ }^{150}$, P. Moschovakos ${ }^{10}$, M. Mosidze ${ }^{54 \mathrm{~b}}$, H.J. Moss ${ }^{141}$, J. Moss ${ }^{145, a k}$, K. Motohashi ${ }^{159}$, R. Mount ${ }^{145}$, E. Mountricha ${ }^{27}$, E.J.W. Moyse ${ }^{89}$, S. Muanza ${ }^{88}$, F. Mueller ${ }^{103}$, J. Mueller ${ }^{127}$, R.S.P. Mueller ${ }^{102}$, D. Muenstermann ${ }^{75}$, P. Mullen ${ }^{56}$, G.A. Mullier ${ }^{18}$, F.J. Munoz Sanchez ${ }^{87}$, W.J. Murray ${ }^{173,133}$, H. Musheghyan ${ }^{32}$, M. Muškinja ${ }^{78}$, A.G. Myagkov ${ }^{132, a l}$, M. Myska ${ }^{130}$, B.P. Nachman ${ }^{16}$, O. Nackenhorst ${ }^{52}$, K. Nagai ${ }^{122}$, R. Nagai ${ }^{69, a d}$, K. Nagano ${ }^{69}$, Y. Nagasaka ${ }^{61}$, K. Nagata ${ }^{164}$, M. Nagel ${ }^{51}$, E. Nagy ${ }^{88}$, A.M. Nairz ${ }^{32}$, Y. Nakahama ${ }^{105}$, K. Nakamura ${ }^{69}$, T. Nakamura ${ }^{157}$, I. Nakano ${ }^{114}$, R.F. Naranjo Garcia ${ }^{45}$, R. Narayan ${ }^{11}$, D.I. Narrias Villar ${ }^{60}$, I. Naryshkin ${ }^{125}$, T. Naumann ${ }^{45}$, G. Navarro ${ }^{21}$, R. Nayyar ${ }^{7}$, H.A. Neal ${ }^{92}$, P.Yu. Nechaeva ${ }^{98}$, T.J. Neep ${ }^{138}$, A. Negri ${ }^{123 a, 123 b}$, M. Negrini ${ }^{22 a}$, S. Nektarijevic ${ }^{108}$, C. Nellist ${ }^{119}$, A. Nelson ${ }^{166}$, M.E. Nelson ${ }^{122}$, S. Nemecek ${ }^{129}$, P. Nemethy ${ }^{112}$, M. Nessi ${ }^{32, a m}$, M.S. Neubauer ${ }^{169}$, M. Neumann ${ }^{178}$, P.R. Newman ${ }^{19}$, T.Y. $\mathrm{Ng}^{62 \mathrm{C}}$, T. Nguyen Manh ${ }^{97}$, R.B. Nickerson ${ }^{122}$, R. Nicolaidou ${ }^{138}$, J. Nielsen ${ }^{139}$, V. Nikolaenko ${ }^{132, a l}$, I. Nikolic-Audit ${ }^{83}$, K. Nikolopoulos ${ }^{19}$, J.K. Nilsen ${ }^{121}$, P. Nilsson ${ }^{27}$, Y. Ninomiya ${ }^{157}$, A. Nisati ${ }^{134 a}$, N. Nishu ${ }^{35 c}$, R. Nisius ${ }^{103}$, I. Nitsche ${ }^{46}$, T. Nitta ${ }^{174}$, T. Nobe ${ }^{157}$, Y. Noguchi ${ }^{71}$, M. Nomachi ${ }^{120}$, I. Nomidis ${ }^{31}$, M.A. Nomura ${ }^{27}$, T. Nooney ${ }^{79}$, M. Nordberg ${ }^{32}$, N. Norjoharuddeen ${ }^{122}$, O. Novgorodova ${ }^{47}$, S. Nowak ${ }^{103}$, M. Nozaki ${ }^{69}$, L. Nozka ${ }^{117}$, K. Ntekas ${ }^{166}$, E. Nurse ${ }^{81}$, F. Nuti ${ }^{91}$, K. O'connor ${ }^{25}$, D.C. O'Neil ${ }^{144}$, A.A. O'Rourke ${ }^{45}$, V. O'Shea ${ }^{56}$, F.G. Oakham ${ }^{31, d}$, H. Oberlack ${ }^{103}$, T. Obermann ${ }^{23}$, J. Ocariz ${ }^{83}$, A. Ochi ${ }^{70}$, I. Ochoa ${ }^{38}$, J.P. Ochoa-Ricoux ${ }^{34 a}$, S. Oda ${ }^{73}$,
S. Odaka ${ }^{69}$, A. Oh 87, S.H. Oh ${ }^{48}$, C.C. Ohm ${ }^{16}$, H. Ohman ${ }^{168}$, H. Oide ${ }^{53 a, 53 b}$, H. Okawa ${ }^{164}$, Y. Okumura ${ }^{157}$, T. Okuyama ${ }^{69}$, A. Olariu ${ }^{28 \mathrm{~b}}$, L.F. Oleiro Seabra ${ }^{128 a}$, S.A. Olivares Pino ${ }^{49}$, D. Oliveira Damazio ${ }^{27}$, A. Olszewski ${ }^{42}$, J. Olszowska ${ }^{42}$, A. Onofre ${ }^{128 a, 128 e}$, K. Onogi ${ }^{105}$, P.U.E. Onyisi ${ }^{11, z}$, H. Oppen ${ }^{121}$, M.J. Oreglia ${ }^{33}$, Y. Oren ${ }^{155}$, D. Orestano ${ }^{136 a, 136 b}$, N. Orlando ${ }^{62 b}$, R.S. Orr ${ }^{161}$, B. Osculati ${ }^{53 a, 53 b, *}$, R. Ospanov ${ }^{36 a}$, G. Otero y Garzon ${ }^{29}$, H. Otono ${ }^{73}$, M. Ouchrif ${ }^{137 \mathrm{da}}$, F. Ould-Saada ${ }^{121}$, A. Ouraou ${ }^{138}$, K.P. Oussoren ${ }^{109}$, Q. Ouyang ${ }^{35 a}$, M. Owen ${ }^{56}$, R.E. Owen ${ }^{19}$, V.E. Ozcan ${ }^{20 a}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{144}$, A. Pacheco Pages ${ }^{13}$, L. Pacheco Rodriguez ${ }^{138}$, C. Padilla Aranda ${ }^{13}$, S. Pagan Griso ${ }^{16}$, M. Paganini ${ }^{179}$, F. Paige ${ }^{27}$, G. Palacino ${ }^{64}$, S. Palazzo ${ }^{40 \mathrm{a}, 40 \mathrm{~b}}$, S. Palestini ${ }^{32}$, M. Palka ${ }^{41 \mathrm{~b}}$, D. Pallin ${ }^{37}$, E. St. Panagiotopoulou ${ }^{10}$, I. Panagoulias ${ }^{10}$, C.E. Pandini ${ }^{83}$, J.G. Panduro Vazquez ${ }^{80}$, P. Pani ${ }^{32}$, S. Panitkin ${ }^{27}$, D. Pantea ${ }^{28 \mathrm{~b}}$, L. Paolozzi ${ }^{52}$, Th.D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{9, s}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{179}$, A.J. Parker ${ }^{75}$, M.A. Parker ${ }^{30}$, K.A. Parker ${ }^{45}$, F. Parodi ${ }^{53 a, 53 b}$, J.A. Parsons ${ }^{38}$, U. Parzefall ${ }^{51}$, V.R. Pascuzzi ${ }^{161}$, J.M. Pasner ${ }^{139}$, E. Pasqualucci ${ }^{134 a}$, S. Passaggio ${ }^{53 a}$, Fr. Pastore ${ }^{80}$, S. Pataraia ${ }^{86}$, J.R. Pater ${ }^{87}$, T. Pauly ${ }^{32}$, B. Pearson ${ }^{103}$, S. Pedraza Lopez ${ }^{170}$, R. Pedro ${ }^{128 a, 128 b}$, S.V. Peleganchuk ${ }^{111, c}$, O. Penc ${ }^{129}$, C. Peng ${ }^{35 a}$, H. Peng ${ }^{36 a}$, J. Penwell ${ }^{64}$, B.S. Peralva ${ }^{26 b}$, M.M. Perego ${ }^{138}$, D.V. Perepelitsa ${ }^{27}$, F. Peri ${ }^{17}$, L. Perini ${ }^{94 a, 94 b}$, H. Pernegger ${ }^{32}$, S. Perrella ${ }^{106 a, 106 b}$, R. Peschke ${ }^{45}$, V.D. Peshekhonov ${ }^{68, *}$, K. Peters ${ }^{45}$, R.F.Y. Peters ${ }^{87}$, B.A. Petersen ${ }^{32}$, T.C. Petersen ${ }^{39}$, E. Petit ${ }^{58}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{156}$, P. Petroff ${ }^{119}$, E. Petrolo ${ }^{134 a}$, M. Petrov ${ }^{122}$, F. Petrucci ${ }^{136 a, 136 b}$, N.E. Pettersson ${ }^{89}$, A. Peyaud ${ }^{138}$, R. Pezoa ${ }^{34 b}$, F.H. Phillips ${ }^{93}$, P.W. Phillips ${ }^{133}$, G. Piacquadio ${ }^{150}$, E. Pianori ${ }^{173}$, A. Picazio ${ }^{89}$, E. Piccaro ${ }^{79}$, M.A. Pickering ${ }^{122}$, R. Piegaia ${ }^{29}$, J.E. Pilcher ${ }^{33}$, A.D. Pilkington ${ }^{87}$, A.W.J. Pin ${ }^{87}$, M. Pinamonti ${ }^{135 a, 135 b}$, J.L. Pinfold ${ }^{3}$, H. Pirumov ${ }^{45}$, M. Pitt ${ }^{175}$, L. Plazak ${ }^{146 a}$, M.-A. Pleier ${ }^{27}$, V. Pleskot ${ }^{86}$, E. Plotnikova ${ }^{68}$, D. Pluth ${ }^{67}$, P. Podberezko ${ }^{1111}$, R. Poettgen ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, R. Poggi ${ }^{123 \mathrm{a}, 123 \mathrm{~b}}$, L. Poggioli ${ }^{119}$, D. Pohl ${ }^{23}$, G. Polesello ${ }^{123 a}$, A. Poley ${ }^{45}$, A. Policicchio ${ }^{40 a, 40 b}$, R. Polifka ${ }^{32}$, A. Polini ${ }^{22 a}$, C.S. Pollard ${ }^{56}$, V. Polychronakos ${ }^{27}$, K. Pommès ${ }^{32}$, D. Ponomarenko ${ }^{100}$, L. Pontecorvo ${ }^{134 \mathrm{a}}$, G.A. Popeneciu ${ }^{28 \mathrm{~d}}$, A. Poppleton ${ }^{32}$, S. Pospisil ${ }^{130}$, K. Potamianos ${ }^{16}$, I.N. Potrap ${ }^{68}$, C.J. Potter ${ }^{30}$, G. Poulard ${ }^{32}$, T. Poulsen ${ }^{84}$, J. Poveda ${ }^{32}$, M.E. Pozo Astigarraga ${ }^{32}$, P. Pralavorio ${ }^{88}$, A. Pranko ${ }^{16}$, S. Prell ${ }^{67}$, D. Price ${ }^{87}$, M. Primavera ${ }^{76 a}$, S. Prince ${ }^{90}$, N. Proklova ${ }^{100}$, K. Prokofiev ${ }^{62 c}$, F. Prokoshin ${ }^{34 b}$, S. Protopopescu ${ }^{27}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{41 \text { a }}$, A. Puri ${ }^{169}$, P. Puzo ${ }^{119}$, J. Qian ${ }^{92}$, G. Qin ${ }^{56}$, Y. Qin ${ }^{87}$, A. Quadt ${ }^{57}$, M. Queitsch-Maitland ${ }^{45}$, D. Quilty ${ }^{56}$, S. Raddum ${ }^{121}$, V. Radeka ${ }^{27}$, V. Radescu ${ }^{122}$, S.K. Radhakrishnan ${ }^{150}$, P. Radloff ${ }^{118}$, P. Rados ${ }^{91}$, F. Ragusa ${ }^{94 a}, 94$ b , G. Rahal ${ }^{181}$, J.A. Raine ${ }^{87}$, S. Rajagopalan ${ }^{27}$, C. Rangel-Smith ${ }^{168}$, T. Rashid ${ }^{119}$, S. Raspopov ${ }^{5}$, M.G. Ratti ${ }^{94 a}{ }^{9}, 94 \mathrm{~b}$, D.M. Rauch ${ }^{45}$, F. Rauscher ${ }^{102}$, S. Rave ${ }^{86}$, I. Ravinovich ${ }^{175}$, J.H. Rawling ${ }^{87}$, M. Raymond ${ }^{32}$, A.L. Read ${ }^{121}$, N.P. Readioff ${ }^{58}$, M. Reale ${ }^{76 a, 76 b}$, D.M. Rebuzzi ${ }^{123 a, 123 b}$, A. Redelbach ${ }^{177}$, G. Redlinger ${ }^{27}$, R. Reece ${ }^{139}$, R.G. Reed ${ }^{147 c}$, K. Reeves ${ }^{44}$, L. Rehnisch ${ }^{17}$, J. Reichert ${ }^{124}$, A. Reiss ${ }^{86}$, C. Rembser ${ }^{32}$, H. Ren ${ }^{35 a}$, M. Rescigno ${ }^{134 a}$, S. Resconi ${ }^{94 a}$, E.D. Resseguie ${ }^{124}$, S. Rettie ${ }^{171}$, E. Reynolds ${ }^{19}$, O.L. Rezanova ${ }^{111, c}$, P. Reznicek ${ }^{131}$, R. Rezvani ${ }^{97}$, R. Richter ${ }^{103}$, S. Richter ${ }^{81}$, E. Richter-Was ${ }^{41 \mathrm{~b}}$, O. Ricken ${ }^{23}$, M. Ridel ${ }^{83}$, P. Rieck ${ }^{103}$, C.J. Riegel ${ }^{178}$, J. Rieger ${ }^{57}$, O. Rifki ${ }^{115}$, M. Rijssenbeek ${ }^{150}$, A. Rimoldi ${ }^{123 \mathrm{a}, 123 \mathrm{~b}}$, M. Rimoldi ${ }^{18}$, L. Rinaldi ${ }^{22 \mathrm{a}}$, G. Ripellino ${ }^{149}$, B. Ristic ${ }^{32}$, E. Ritsch ${ }^{32}$, I. Riu ${ }^{13}$, F. Rizatdinova ${ }^{116}$, E. Rizvi ${ }^{79}$, C. Rizzi ${ }^{13}$, R.T. Roberts ${ }^{87}$, S.H. Robertson ${ }^{90,0}$, A. Robichaud-Veronneau ${ }^{90}$, D. Robinson ${ }^{30}$, J.E.M. Robinson ${ }^{45}$, A. Robson ${ }^{56}$, E. Rocco ${ }^{86}$, C. Roda ${ }^{126 a, 126 b}$, Y. Rodina ${ }^{88, a n}$, S. Rodriguez Bosca ${ }^{170}$, A. Rodriguez Perez ${ }^{13}$, D. Rodriguez Rodriguez ${ }^{170}$, S. Roe ${ }^{32}$, C.S. Rogan ${ }^{59}$, O. Røhne ${ }^{121}$, J. Roloff ${ }^{59}$, A. Romaniouk ${ }^{100}$, M. Romano ${ }^{22 a, 22 b}$, S.M. Romano Saez ${ }^{37}$, E. Romero Adam ${ }^{170}$, N. Rompotis ${ }^{\text {i7 }}$, M. Ronzani ${ }^{51}$, L. Roos ${ }^{83}$, S. Rosati ${ }^{134 a}$, K. Rosbach ${ }^{51}$, P. Rose ${ }^{139}$, N.-A. Rosien ${ }^{57}$, E. Rossi ${ }^{106 a, 106 b}$, L.P. Rossi ${ }^{53 a}$, J.H.N. Rosten ${ }^{30}$, R. Rosten ${ }^{140}$, M. Rotaru ${ }^{28 b}$, J. Rothberg ${ }^{140}$, D. Rousseau ${ }^{119}$, A. Rozanov ${ }^{88}$, Y. Rozen ${ }^{154}$, X. Ruan ${ }^{147 \mathrm{c}}$, F. Rubbo ${ }^{145}$, F. Rühr ${ }^{51}$, A. Ruiz-Martinez ${ }^{31}$, Z. Rurikova ${ }^{51}$, N.A. Rusakovich ${ }^{68}$, H.L. Russell ${ }^{90}$, J.P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{32}$, Y.F. Ryabov ${ }^{125}$, M. Rybar ${ }^{169}$, G. Rybkin ${ }^{119}$, S. Ryu ${ }^{6}$, A. Ryzhov ${ }^{132}$, G.F. Rzehorz ${ }^{57}$, A.F. Saavedra ${ }^{152}$, G. Sabato ${ }^{109}$, S. Sacerdoti ${ }^{29}$, H.F.-W. Sadrozinski ${ }^{139}$, R. Sadykov ${ }^{68}$, F. Safai Tehrani ${ }^{134 a}$, P. Saha ${ }^{110}$, M. Sahinsoy ${ }^{60 a}$, M. Saimpert ${ }^{45}$, M. Saito ${ }^{157}$, T. Saito ${ }^{157}$, H. Sakamoto ${ }^{157}$, Y. Sakurai ${ }^{174}$, G. Salamanna ${ }^{136 a, 136 b}$, J.E. Salazar Loyola ${ }^{34 b}$, D. Salek ${ }^{109}$, P.H. Sales De Bruin ${ }^{168}$, D. Salihagic ${ }^{103}$, A. Salnikov ${ }^{145}$, J. Salt ${ }^{170}$, D. Salvatore ${ }^{40 a, 40 b}$, F. Salvatore ${ }^{151}$, A. Salvucci ${ }^{62 a}$, 62b, 62 c , A. Salzburger ${ }^{32}$, D. Sammel ${ }^{51}$, D. Sampsonidis ${ }^{156}$, D. Sampsonidou ${ }^{156}$, J. Sánchez ${ }^{170}$, V. Sanchez Martinez ${ }^{170}$, A. Sanchez Pineda ${ }^{167 a, 167 c}$, H. Sandaker ${ }^{121}$, R.L. Sandbach ${ }^{79}$, C.O. Sander ${ }^{45}$, M. Sandhoff ${ }^{178}$, C. Sandoval ${ }^{21}$, D.P.C. Sankey ${ }^{133}$, M. Sannino ${ }^{53 a, 53 b}$, Y. Sano ${ }^{105}$, A. Sansoni ${ }^{50}$,
C. Santoni ${ }^{37}$, H. Santos ${ }^{128 a}$, I. Santoyo Castillo ${ }^{151}$, A. Sapronov ${ }^{68}$, J.G. Saraiva ${ }^{128 a, 128 d}$, B. Sarrazin ${ }^{23}$, O. Sasaki ${ }^{69}$, K. Sato ${ }^{164}$, E. Sauvan ${ }^{5}$, G. Savage ${ }^{80}$, P. Savard ${ }^{161, d}$, N. Savic ${ }^{103}$, C. Sawyer ${ }^{133}$, L. Sawyer ${ }^{82, u}$, J. Saxon ${ }^{33}$, C. Sbarra ${ }^{22 a}$, A. Sbrizzi ${ }^{22 a, 22 b}$, T. Scanlon ${ }^{81}$, D.A. Scannicchio ${ }^{166}$, M. Scarcella ${ }^{152}$, J. Schaarschmidt ${ }^{140}$, P. Schacht ${ }^{103}$, B.M. Schachtner ${ }^{102}$, D. Schaefer ${ }^{32}$, L. Schaefer ${ }^{124}$, R. Schaefer ${ }^{45}$, J. Schaeffer ${ }^{86}$, S. Schaepe ${ }^{23}$, S. Schaetzel ${ }^{60 b}$, U. Schäfer ${ }^{86}$, A.C. Schaffer ${ }^{119}$, D. Schaile ${ }^{102}$ R.D. Schamberger ${ }^{150}$, V.A. Schegelsky ${ }^{125}$, D. Scheirich ${ }^{131}$, M. Schernau ${ }^{166}$, C. Schiavi ${ }^{53 a,}{ }^{\text {S }}$, ${ }^{\text {b }}$, S. Schier ${ }^{139}$, L.K. Schildgen ${ }^{23}$, C. Schillo ${ }^{51}$, M. Schioppa ${ }^{40 \mathrm{a}, 40 \mathrm{~b}}$, S. Schlenker ${ }^{32}$, K.R. Schmidt-Sommerfeld ${ }^{103}$, K. Schmieden ${ }^{32}$, C. Schmitt ${ }^{86}$, S. Schmitt ${ }^{45}$, S. Schmitz ${ }^{86}$, U. Schnoor ${ }^{51}$, L. Schoeffel ${ }^{138}$, A. Schoening ${ }^{600}$, B.D. Schoenrock ${ }^{93}$, E. Schopf ${ }^{23}$, M. Schott ${ }^{86}$, J.F.P. Schouwenberg ${ }^{108}$, J. Schovancova ${ }^{32}$, S. Schramm ${ }^{52}$, N. Schuh ${ }^{86}$, A. Schulte ${ }^{86}$, M.J. Schultens ${ }^{23}$, H.-C. Schultz-Coulon ${ }^{60 \mathrm{a}}$, H. Schulz ${ }^{17}$, M. Schumacher ${ }^{51}$, B.A. Schumm ${ }^{139}$, Ph. Schune ${ }^{138}$, A. Schwartzman ${ }^{145}$, T.A. Schwarz ${ }^{92}$, H. Schweiger ${ }^{87}$, Ph. Schwemling ${ }^{138}$, R. Schwienhorst ${ }^{93}$, J. Schwindling ${ }^{138}$, A. Sciandra ${ }^{23}$, G. Sciolla ${ }^{25}$, M. Scornajenghi ${ }^{40 a, 40 b}$, F. Scuri ${ }^{126 a,}{ }^{126 b}$, F. Scutti ${ }^{91}$, J. Searcy ${ }^{92}$, P. Seema ${ }^{23}$, S.C. Seidel ${ }^{107}$, A. Seiden ${ }^{139}$, J.M. Seixas ${ }^{26 a}$, G. Sekhniaidze ${ }^{106 a}$, K. Sekhon ${ }^{92}$, S.J. Sekula ${ }^{43}$, N. Semprini-Cesari ${ }^{22 a,}{ }^{22 b}$, S. Senkin ${ }^{37}$, C. Serfon ${ }^{121}$, L. Serin ${ }^{119}$, L. Serkin ${ }^{167 a, 167 b}$, M. Sessa ${ }^{136 a, 136 b}$, R. Seuster ${ }^{172}$, H. Severini ${ }^{115}$, T. Sfiligoj ${ }^{78}$, F. Sforza ${ }^{32}$, A. Sfyrla ${ }^{52}$, E. Shabalina ${ }^{57}$, N.W. Shaikh ${ }^{148 a, 148 b}$, L.Y. Shan ${ }^{35 a}$, R. Shang ${ }^{169}$, J.T. Shank ${ }^{24}$, M. Shapiro ${ }^{16}$, P.B. Shatalov ${ }^{99}$, K. Shaw ${ }^{167 a, 167 b}$, S.M. Shaw ${ }^{87}$, A. Shcherbakova ${ }^{148 a, 148 b}$, C.Y. Shehu ${ }^{151}$ Y. Shen ${ }^{115}$, N. Sherafati ${ }^{31}$, P. Sherwood ${ }^{81}$, L. Shi ${ }^{153, a o}$, S. Shimizu ${ }^{70}$, C.O. Shimmin ${ }^{179}$, M. Shimojima ${ }^{104}$, I.P.J. Shipsey ${ }^{122}$, S. Shirabe ${ }^{73}$, M. Shiyakova ${ }^{68, \text { ap }}$, J. Shlomi ${ }^{175}$, A. Shmeleva ${ }^{98}$, D. Shoaleh Saadi ${ }^{97}$, M.J. Shochet ${ }^{33}$, S. Shojaii ${ }^{94 a}$, D.R. Shope ${ }^{115}$, S. Shrestha ${ }^{113}$, E. Shulga ${ }^{100}$, M.A. Shupe ${ }^{7}$, P. Sicho ${ }^{129}$, A.M. Sickles ${ }^{169}$, P.E. Sidebo ${ }^{149}$, E. Sideras Haddad ${ }^{147 \mathrm{c}}$, O. Sidiropoulou ${ }^{177}$, A. Sidoti ${ }^{22 a, 22 b}$, F. Siegert ${ }^{47}$, Dj. Sijacki ${ }^{14}$, J. Silva ${ }^{128 a, 128 d}$, S.B. Silverstein ${ }^{148 a}$, V. Simak ${ }^{130}$, Lj. Simic ${ }^{14}$, S. Simion ${ }^{119}$, E. Simioni ${ }^{86}$, B. Simmons ${ }^{81}$, M. Simon ${ }^{86}$, P. Sinervo ${ }^{161}$, N.B. Sinev ${ }^{118}$, M. Sioli ${ }^{22 a}, 22 \mathrm{~b}$, G. Siragusa ${ }^{177}$, I. Siral ${ }^{92}$, S.Yu. Sivoklokov ${ }^{101}$, J. Sjölin ${ }^{148 a, 148 \mathrm{~b}}$, M.B. Skinner ${ }^{75}$, P. Skubic ${ }^{115}$, M. Slater ${ }^{19}$, T. Slavicek ${ }^{130}$, M. Slawinska ${ }^{42}$, K. Sliwa ${ }^{165}$, R. Slovak ${ }^{131}$, V. Smakhtin ${ }^{175}$, B.H. Smart ${ }^{5}$, J. Smiesko ${ }^{146 a}$, N. Smirnov ${ }^{100}$, S.Yu. Smirnov ${ }^{100}$, Y. Smirnov ${ }^{100}$, L.N. Smirnova ${ }^{101, a q}$, O. Smirnova ${ }^{84}$, J.W. Smith ${ }^{57}$, M.N.K. Smith ${ }^{38}$, R.W. Smith ${ }^{38}$, M. Smizanska ${ }^{75}$, K. Smolek ${ }^{130}$, A.A. Snesarev ${ }^{98}$, I.M. Snyder ${ }^{118}$, S. Snyder ${ }^{27}$, R. Sobie ${ }^{172,0}$, F. Socher ${ }^{47}$, A. Soffer ${ }^{155}$, A. Søgaard ${ }^{49}$, D.A. Soh ${ }^{153}$, G. Sokhrannyi ${ }^{78}$, C.A. Solans Sanchez ${ }^{32}$, M. Solar ${ }^{130}$, E.Yu. Soldatov 100 , U. Soldevila ${ }^{170}$, A.A. Solodkov ${ }^{132}$, A. Soloshenko ${ }^{68}$, O.V. Solovyanov ${ }^{132}$, V. Solovyev ${ }^{125}$, P. Sommer ${ }^{51}$, H. Son ${ }^{165}$, A. Sopczak ${ }^{130}$, D. Sosa ${ }^{60 b}$, C.L. Sotiropoulou ${ }^{126 a, 126 b}$, R. Soualah ${ }^{167 a, 167 c}$, A.M. Soukharev ${ }^{111, c}$, D. South ${ }^{45}$, B.C. Sowden ${ }^{80}$, S. Spagnolo ${ }^{76 a, 76 b}$, M. Spalla ${ }^{126 a, 126 b}$, M. Spangenberg ${ }^{173}$, F. Spanò ${ }^{80}$, D. Sperlich ${ }^{17}$, F. Spettel ${ }^{103}$, T.M. Spieker ${ }^{60 a}$, R. Spighi ${ }^{22 a}$, G. Spigo ${ }^{32}$, L.A. Spiller ${ }^{91}$, M. Spousta ${ }^{131}$, R.D. St. Denis ${ }^{56, *}$, A. Stabile ${ }^{94 a}$, R. Stamen ${ }^{60 a}$, S. Stamm ${ }^{17}$, E. Stanecka ${ }^{42}$, R.W. Stanek ${ }^{6}$, C. Stanescu ${ }^{136{ }^{\prime}}$, M.M. Stanitzki ${ }^{45}$, B.S. Stapf ${ }^{109}$, S. Stapnes ${ }^{121}$, E.A. Starchenko ${ }^{132}$, G.H. Stark ${ }^{33}$, J. Stark ${ }^{58}$, S.H. Stark ${ }^{39}$, P. Staroba ${ }^{129}$, P. Starovoitov ${ }^{60 a}$, S. Stärz ${ }^{32}$, R. Staszewski ${ }^{42}$, P. Steinberg ${ }^{27}$, B. Stelzer ${ }^{144}$, H.J. Stelzer ${ }^{32}$, O. Stelzer-Chilton ${ }^{163 a}$, H. Stenzel ${ }^{55}$, G.A. Stewart ${ }^{56}$, M.C. Stockton ${ }^{118}$, M. Stoebe ${ }^{90}$, G. Stoicea ${ }^{28 b}$, P. Stolte ${ }^{57}$, S. Stonjek ${ }^{103}$, A.R. Stradling ${ }^{8}$, A. Straessner ${ }^{47}$, M.E. Stramaglia ${ }^{18}$, J. Strandberg ${ }^{149}$, S. Strandberg ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, M. Strauss ${ }^{115}$, P. Strizenec ${ }^{146 \mathrm{~b}}$, R. Ströhmer ${ }^{177}$, D.M. Strom ${ }^{118}$, R. Stroynowski ${ }^{43}$, A. Strubig ${ }^{49}$, S.A. Stucci ${ }^{27}$, B. Stugu ${ }^{15}$, N.A. Styles ${ }^{45}$, D. Su ${ }^{145}$, J. Su ${ }^{127}$, S. Suchek ${ }^{60 a}$, Y. Sugaya ${ }^{120}$, M. Suk ${ }^{130}$, V.V. Sulin ${ }^{98}$, D.M.S. Sultan ${ }^{162 a, 162 b}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{71}$, S. Sun ${ }^{59}$, X. Sun ${ }^{3}$, K. Suruliz ${ }^{151}$, C.J.E. Suster ${ }^{152}$, M.R. Sutton ${ }^{151}$, S. Suzuki ${ }^{69}$, M. Svatos ${ }^{129}$, M. Swiatlowski ${ }^{33}$, S.P. Swift ${ }^{2}$, I. Sykora ${ }^{146 a}$, T. Sykora ${ }^{131}$, D. Ta ${ }^{51}$, K. Tackmann ${ }^{45}$, J. Taenzer ${ }^{155}$, A. Taffard ${ }^{166}$, R. Tafirout ${ }^{163 a}$, N. Taiblum ${ }^{155}$, H. Takai ${ }^{27}$, R. Takashima ${ }^{72}$, E.H. Takasugi ${ }^{103}$, T. Takeshita ${ }^{142}$, Y. Takubo ${ }^{69}$, M. Talby ${ }^{88}$, A.A. Talyshev ${ }^{111, c}$, J. Tanaka ${ }^{157}$, M. Tanaka ${ }^{159}$, R. Tanaka ${ }^{119}$, S. Tanaka ${ }^{69}$, R. Tanioka ${ }^{70}$, B.B. Tannenwald ${ }^{113}$, S. Tapia Araya ${ }^{34 b}$, S. Tapprogge ${ }^{86}$, S. Tarem ${ }^{154}$, G.F. Tartarelli ${ }^{94 a}$, P. Tas ${ }^{131}$, M. Tasevsky ${ }^{129}$, T. Tashiro ${ }^{71}$, E. Tassi ${ }^{40,40 \mathrm{~b}}$, A. Tavares Delgado ${ }^{128 a^{\prime}, 128 \mathrm{~b}}$, Y. Tayalati ${ }^{137 \mathrm{e}}$, A.C. Taylor ${ }^{107}$, G.N. Taylor ${ }^{91}$, P.T.E. Taylor ${ }^{91}$, W. Taylor ${ }^{163 b}$, P. Teixeira-Dias ${ }^{80}$, D. Temple ${ }^{144}$, H. Ten Kate ${ }^{32}$, P.K. Teng ${ }^{153}$, J.J. Teoh ${ }^{120}$, F. Tepel ${ }^{178}$, S. Terada ${ }^{69}$, K. Terashi ${ }^{157}$, J. Terron ${ }^{85}$, S. Terzo ${ }^{13}$, M. Testa ${ }^{50}$, R.J. Teuscher ${ }^{161,0}$, T. Theveneaux-Pelzer ${ }^{88}$, F. Thiele ${ }^{39}$, J.P. Thomas ${ }^{19}$, J. Thomas-Wilsker ${ }^{80}$, P.D. Thompson ${ }^{19}$, A.S. Thompson ${ }^{56}$, L.A. Thomsen ${ }^{179}$, E. Thomson ${ }^{124}$, M.J. Tibbetts ${ }^{16}$, R.E. Ticse Torres ${ }^{\text {88 }}$, V.O. Tikhomirov ${ }^{98, a r}$, Yu.A. Tikhonov ${ }^{111, c}$, S. Timoshenko ${ }^{100}$, P. Tipton ${ }^{179}$,
S. Tisserant ${ }^{88}$, K. Todome ${ }^{159}$, S. Todorova-Nova ${ }^{5}$, S. Todt ${ }^{47}$, J. Tojo ${ }^{73}$, S. Tokár ${ }^{146 a}$, K. Tokushuku ${ }^{69}$, E. Tolley ${ }^{59}$, L. Tomlinson ${ }^{87}$, M. Tomoto ${ }^{105}$, L. Tompkins ${ }^{145, a s}$, K. Toms ${ }^{107}$, B. Tong ${ }^{59}$, P. Tornambe ${ }^{51}$, E. Torrence ${ }^{118}$, H. Torres ${ }^{144}$, E. Torró Pastor ${ }^{140}$, J. Toth ${ }^{88, a t}$, F. Touchard ${ }^{88}$, D.R. Tovey ${ }^{141}$, C.J. Treado ${ }^{112}$, T. Trefzger ${ }^{177}$, F. Tresoldi ${ }^{151}$, A. Tricoli ${ }^{27}$, I.M. Trigger ${ }^{163 a}$, S. Trincaz-Duvoid ${ }^{83}$, M.F. Tripiana ${ }^{13}$, W. Trischuk ${ }^{161}$, B. Trocmé ${ }^{58}$, A. Trofymov ${ }^{45}$, C. Troncon ${ }^{94 a}$, M. Trottier-McDonald ${ }^{16}$, M. Trovatelli ${ }^{172}$, L. Truong ${ }^{147 \mathrm{~b}}$, M. Trzebinski ${ }^{42}$, A. Trzupek ${ }^{42}$, K.W. Tsang ${ }^{62 \mathrm{a}}$, J.C.-L. Tseng ${ }^{122}$, P.V. Tsiareshka ${ }^{95}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{13}$, V. Tsiskaridze ${ }^{51}$, E.G. Tskhadadze ${ }^{54 a}$, K.M. Tsui ${ }^{62 a}$, I.I. Tsukerman ${ }^{99}$, V. Tsulaia ${ }^{16}$, S. Tsuno ${ }^{69}$, D. Tsybychev ${ }^{150}$, Y. Tu ${ }^{62 \mathrm{~b}}$, A. Tudorache ${ }^{28 \text { b }}$, V. Tudorache ${ }^{28 \mathrm{~b}}$, T.T. Tulbure ${ }^{28 \mathrm{a}}$, A.N. Tuna ${ }^{59}$, S.A. Tupputi ${ }^{22 a, 22 \mathrm{~b}}$, S. Turchikhin ${ }^{68}$, D. Turgeman ${ }^{175}$, I. Turk Cakir ${ }^{4 \mathrm{~b}, a u}$, R. Turra ${ }^{94 a}$, P.M. Tuts ${ }^{38}$, G. Ucchielli ${ }^{22 a, 22 b}$, I. Ueda ${ }^{69}$, M. Ughetto ${ }^{148 a, 148 b}$, F. Ukegawa ${ }^{164}$, G. Unal ${ }^{32}$, A. Undrus ${ }^{27}$, G. Unel ${ }^{166}$, F.C. Ungaro ${ }^{91}$, Y. Unno ${ }^{69}$, C. Unverdorben ${ }^{102}$, J. Urban ${ }^{146 \mathrm{~b}}$, P. Urquijo ${ }^{91}$, P. Urrejola ${ }^{86}$, G. Usai ${ }^{8}$, J. Usui ${ }^{69}$, L. Vacavant ${ }^{88}$, V. Vacek ${ }^{130}$, B. Vachon ${ }^{90}$, K.O.H. Vadla ${ }^{121}$, A. Vaidya ${ }^{81}$, C. Valderanis ${ }^{102}$, E. Valdes Santurio ${ }^{148 a, 148 \mathrm{~b}}$, S. Valentinetti ${ }^{22 a, 22 b}$, A. Valero ${ }^{170}$, L. Valéry ${ }^{13}$, S. Valkar ${ }^{131}$, A. Vallier ${ }^{5}$, J.A. Valls Ferrer ${ }^{170}$, W. Van Den Wollenberg ${ }^{109}$, H. van der Graaf ${ }^{109}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{144}$, I. van Vulpen ${ }^{109}$, M.C. van Woerden ${ }^{109}$, M. Vanadia ${ }^{135 a}$, 135b , W. Vandelli ${ }^{32}$, A. Vaniachine ${ }^{160}$, P. Vankov ${ }^{109}$, G. Vardanyan ${ }^{180}$, R. Vari ${ }^{134 a}$, E.W. Varnes ${ }^{7}$, C. Varni ${ }^{53 a, 53 b}$, T. Varol ${ }^{43}$, D. Varouchas ${ }^{119}$, A. Vartapetian ${ }^{8}$, K.E. Varvell ${ }^{152}$, J.G. Vasquez ${ }^{179}$, G.A. Vasquez ${ }^{34 \mathrm{~b}}$, F. Vazeille ${ }^{37}$, T. Vazquez Schroeder ${ }^{90}$, J. Veatch ${ }^{57}$, V. Veeraraghavan ${ }^{7}$, L.M. Veloce ${ }^{161}$, F. Veloso ${ }^{128 a, 128 c}$, S. Veneziano ${ }^{134 a}$, A. Ventura ${ }^{76 a, 76 b}$, M. Venturi ${ }^{172}$, N. Venturi ${ }^{32}$, A. Venturini ${ }^{25}$, V. Vercesi ${ }^{123 a}$, M. Verducci ${ }^{136 a, 136 b}$, W. Verkerke ${ }^{109}$, A.T. Vermeulen ${ }^{109}$, J.C. Vermeulen ${ }^{109}$, M.C. Vetterli ${ }^{144, d}$, N. Viaux Maira ${ }^{34 b}$, O. Viazlo ${ }^{84}$, I. Vichou ${ }^{169, *}$, T. Vickey ${ }^{141}$, O.E. Vickey Boeriu ${ }^{141}$, G.H.A. Viehhauser ${ }^{122}$, S. Viel ${ }^{16}$, L. Vigani ${ }^{122}$, M. Villa ${ }^{22 a, 22 \mathrm{~b}}$, M. Villaplana Perez ${ }^{94 a, 94 \mathrm{~b}}$, E. Vilucchi ${ }^{50}$, M.G. Vincter ${ }^{31}$, V.B. Vinogradov ${ }^{68}$, A. Vishwakarma ${ }^{45}$, C. Vittori ${ }^{22 a, 22 b}$, I. Vivarelli ${ }^{151}$, S. Vlachos ${ }^{10}$, M. Vogel ${ }^{178}$, P. Vokac ${ }^{130}$, G. Volpi ${ }^{126 a, 126 b}$, H. von der Schmitt ${ }^{103}$, E. von Toerne ${ }^{23}$, V. Vorobel ${ }^{131}$, K. Vorobev ${ }^{100}$, M. Vos ${ }^{170}$, R. Voss 32, J.H. Vossebeld ${ }^{77}$, N. Vranjes ${ }^{14}$, M. Vranjes Milosavljevic ${ }^{14}$, V. Vrba ${ }^{130}$, M. Vreeswijk ${ }^{109}$, R. Vuillermet ${ }^{32}$, I. Vukotic ${ }^{33}$, P. Wagner ${ }^{23}$, W. Wagner ${ }^{178}$, J. Wagner-Kuhr ${ }^{102}$, H. Wahlberg ${ }^{74}$, S. Wahrmund ${ }^{47}$, J. Wakabayashi ${ }^{105}$, J. Walder ${ }^{75}$, R. Walker ${ }^{102}$, W. Walkowiak ${ }^{143}, ~ V$. Wallangen ${ }^{148 \mathrm{a}, 148 \mathrm{~b}}$, C. Wang ${ }^{35 \mathrm{~b}}$, C. Wang ${ }^{36 \mathrm{~b}, a v}$, F. Wang ${ }^{176}$, H. Wang ${ }^{16}$, H. Wang ${ }^{3}$, J. Wang ${ }^{45}$, J. Wang ${ }^{152}$, Q. Wang ${ }^{115}$, R. Wang ${ }^{6}$, S.M. Wang ${ }^{153}$, T. Wang ${ }^{38}$, W. Wang ${ }^{153, a w}$, W. Wang ${ }^{36 a}$, Z. Wang ${ }^{36 \mathrm{c}}$, C. Wanotayaroj ${ }^{118}$, A. Warburton ${ }^{90}$, C.P. Ward ${ }^{30}$, D.R. Wardrope ${ }^{81}$, A. Washbrook ${ }^{49}$, P.M. Watkins ${ }^{19}$, A.T. Watson ${ }^{19}$, M.F. Watson ${ }^{19}$, G. Watts ${ }^{140}$, S. Watts ${ }^{87}$, B.M. Waugh ${ }^{81}$, A.F. Webb ${ }^{11}$, S. Webb ${ }^{86}$, M.S. Weber ${ }^{18}$, S.W. Weber ${ }^{177}$, S.A. Weber ${ }^{31}$, J.S. Webster ${ }^{6}$, A.R. Weidberg ${ }^{122}$, B. Weinert ${ }^{64}$, J. Weingarten ${ }^{57}$, M. Weirich ${ }^{86}$, C. Weiser ${ }^{51}$, H. Weits ${ }^{109}$, P.S. Wells ${ }^{32}$, T. Wenaus ${ }^{27}$, T. Wengler ${ }^{32}$, S. Wenig ${ }^{32}$, N. Wermes ${ }^{23}$, M.D. Werner ${ }^{67}$, P. Werner ${ }^{32}$, M. Wessels ${ }^{60}{ }^{\text {Aa }}$, K. Whalen ${ }^{118}$, N.L. Whallon ${ }^{140}$, A.M. Wharton ${ }^{75}$, A.S. White ${ }^{92}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{34 \mathrm{~b}}$, D. Whiteson ${ }^{166}$, B.W. Whitmore ${ }^{75}$, F.J. Wickens ${ }^{133}$, W. Wiedenmann ${ }^{176}$, M. Wielers ${ }^{133}$, C. Wiglesworth ${ }^{39}$, L.A.M. Wiik-Fuchs ${ }^{51}$, A. Wildauer ${ }^{103}$, F. Wilk ${ }^{87}$, H.G. Wilkens ${ }^{32}$, H.H. Williams ${ }^{124}$, S. Williams ${ }^{109}$, C. Willis ${ }^{93}$, S. Willocq ${ }^{89}$, J.A. Wilson ${ }^{19}$, I. Wingerter-Seez ${ }^{5}$, E. Winkels ${ }^{151}$, F. Winklmeier ${ }^{118}$, O.J. Winston ${ }^{151}$, B.T. Winter ${ }^{23}$, M. Wittgen ${ }^{145}$, M. Wobisch ${ }^{82, u}$, T.M.H. Wolf ${ }^{109}$, R. Wolff ${ }^{88}$, M.W. Wolter ${ }^{42}$, H. Wolters ${ }^{128 a, 128 c}$, V.W.S. Wong ${ }^{171}$, S.D. Worm ${ }^{19}$, B.K. Wosiek ${ }^{42}$, J. Wotschack ${ }^{32}$, K.W. Wozniak ${ }^{42}$, M. Wu ${ }^{33}$, S.L. Wu ${ }^{176}$, X. Wu ${ }^{52}$, Y. Wu^{92}, T.R. Wyatt ${ }^{87}$, B.M. Wynne ${ }^{49}$, S. Xella ${ }^{39}$, Z. Xi ${ }^{92}$, L. Xia ${ }^{35 \mathrm{c}}$, D. Xu ${ }^{35 \mathrm{a}}$, L. Xu ${ }^{27}$, T. Xu ${ }^{138}$, B. Yabsley ${ }^{152}$, S. Yacoob ${ }^{147 a}$, D. Yamaguchi ${ }^{159}$, Y. Yamaguchi ${ }^{120}$, A. Yamamoto ${ }^{69}$, S. Yamamoto ${ }^{157}$, T. Yamanaka ${ }^{157}$, M. Yamatani ${ }^{157}$, K. Yamauchi ${ }^{105}$, Y. Yamazaki ${ }^{70}$, Z. Yan ${ }^{24}$, H. Yang ${ }^{36 \mathrm{c}}$, H. Yang ${ }^{16}$, Y. Yang ${ }^{153}$, Z. Yang ${ }^{15}$, W-M. Yao ${ }^{16}$, Y.C. Yap ${ }^{83}$, Y. Yasu ${ }^{69}$, E. Yatsenko ${ }^{5}$, K.H. Yau Wong ${ }^{23}$, J. Ye ${ }^{43}$, S. Ye ${ }^{27}$, I. Yeletskikh ${ }^{68}$, E. Yigitbasi ${ }^{24}$, E. Yildirim ${ }^{86}$, K. Yorita ${ }^{174}$, K. Yoshihara ${ }^{124}$, C. Young ${ }^{145}$, C.J.S. Young ${ }^{32}$, J. Yu ${ }^{8}$, J. Yu^{67}, S.P.Y. Yuen ${ }^{23}$, I. Yusuff ${ }^{30, a x}$, B. Zabinski ${ }^{42}$, G. Zacharis ${ }^{10}$, R. Zaidan ${ }^{13}$, A.M. Zaitsev ${ }^{132, a l}$, N. Zakharchuk ${ }^{45}$, J. Zalieckas ${ }^{15}$, A. Zaman ${ }^{150}$, S. Zambito ${ }^{59}$, D. Zanzi ${ }^{91}$, C. Zeitnitz ${ }^{178}$, G. Zemaityte ${ }^{122}$, A. Zemla ${ }^{41 a}$, J.C. Zeng ${ }^{169}$, Q. Zeng ${ }^{145}$, O. Zenin ${ }^{132}$, T. Ženiš ${ }^{146 a}$, D. Zerwas ${ }^{119}$, D. Zhang ${ }^{92}$, F. Zhang ${ }^{176}$, G. Zhang ${ }^{36 a, a y}$, H. Zhang ${ }^{35 b}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{51}$, L. Zhang ${ }^{36 a}$, M. Zhang ${ }^{169}$, P. Zhang ${ }^{35 b}$, R. Zhang ${ }^{23}$, R. Zhang ${ }^{36 a, a v}$, X. Zhang ${ }^{36 b}$, Y. Zhang ${ }^{35 a}$, Z. Zhang ${ }^{119}$, X. Zhao ${ }^{43}$, Y. Zhao ${ }^{36 b, a z}$, Z. Zhao ${ }^{36 a}$, A. Zhemchugov ${ }^{68}$, B. Zhou ${ }^{92}$, C. Zhou ${ }^{176}$, L. Zhou ${ }^{43}$, M. Zhou ${ }^{35 a}$, M. Zhou ${ }^{150}$, N. Zhou ${ }^{35 c}$, C.G. Zhu ${ }^{36 \mathrm{~b}}$, H. Zhu ${ }^{35 \mathrm{a}}$, J. Zhu ${ }^{92}$, Y. Zhu ${ }^{36 \mathrm{a}}$, X. Zhuang ${ }^{35 \mathrm{a}}$, K. Zhukov ${ }^{98}$, A. Zibell ${ }^{177}$, D. Zieminska ${ }^{64}$,

N.I. Zimine ${ }^{68}$, C. Zimmermann ${ }^{86}$, S. Zimmermann ${ }^{51}$, Z. Zinonos ${ }^{103}$, M. Zinser ${ }^{86}$, M. Ziolkowski ${ }^{143}$, L. Živković ${ }^{14}$, G. Zobernig ${ }^{176}$, A. Zoccoli ${ }^{22 a, 22 b}$, R. Zou ${ }^{33}$, M. zur Nedden ${ }^{17}$, L. Zwalinski ${ }^{32}$

${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany NY, United States
${ }^{3}$ Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Istanbul Aydin University, Istanbul; ${ }^{(c)}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
${ }^{7}$ Department of Physics, University of Arizona, Tucson AZ, United States
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington TX, United States
${ }^{9}$ Physics Department, National and Kapodistrian University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Department of Physics, The University of Texas at Austin, Austin TX, United States
${ }^{12}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{13}$ Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
${ }^{14}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{15}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{16}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
${ }^{17}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{18}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{19}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Department of Physics Engineering, Gaziantep University, Gaziantep; ${ }^{(d)}$ Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; ${ }^{(e)}$ Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
${ }^{21}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }^{23}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{24}$ Department of Physics, Boston University, Boston MA, United States
${ }^{25}$ Department of Physics, Brandeis University, Waltham MA, United States
$26{ }^{(a)}$ Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of
Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{27}$ Physics Department, Brookhaven National Laboratory, Upton NY, United States
28 (a) Transilvania University of Brasov, Brasov; ${ }^{(b)}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(c)}$ Department of Physics, Alexandru Ioan Cuza
University of Iasi, Iasi; ${ }^{(d)}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; ${ }^{(e)}$ University Politehnica Bucharest,
Bucharest; ${ }^{(f)}$ West University in Timisoara, Timisoara, Romania
${ }^{29}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{30}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{31}$ Department of Physics, Carleton University, Ottawa ON, Canada
${ }^{32}$ CERN, Geneva, Switzerland
${ }^{33}$ Enrico Fermi Institute, University of Chicago, Chicago IL, United States
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
$35{ }^{(a)}$ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Physics, Nanjing University, Jiangsu; ${ }^{\left({ }^{(c)} \text { Physics Department, Tsinghua University, Beijing }\right.}$ 100084, China
36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China; ${ }^{(b)}$ School of Physics, Shandong University, Shandong, China; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China ba
${ }^{37}$ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
${ }^{38}$ Nevis Laboratory, Columbia University, Irvington NY, United States
${ }^{39}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
${ }^{41}{ }^{(a)}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
${ }^{42}$ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
${ }^{43}$ Physics Department, Southern Methodist University, Dallas TX, United States
${ }^{44}$ Physics Department, University of Texas at Dallas, Richardson TX, United States
45 DESY, Hamburg and Zeuthen, Germany
${ }^{46}$ Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{47}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{48}$ Department of Physics, Duke University, Durham NC, United States
${ }^{49}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{50}$ INFN e Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{51}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }_{52}$ Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland
53 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
55 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{56}$ SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{57}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{58}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
${ }^{59}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States
${ }^{60}{ }^{(a)}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{61}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
$62{ }^{(a)}$ Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; ${ }^{(b)}$ Department of Physics, The University of Hong Kong, Hong Kong, China;
${ }^{(c)}$ Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
${ }^{63}$ Department of Physics, National Tsing Hua University, Taiwan, Taiwan
${ }^{64}$ Department of Physics, Indiana University, Bloomington IN, United States
${ }^{65}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{66}$ University of Iowa, Iowa City IA, United States
${ }^{67}$ Department of Physics and Astronomy, Iowa State University, Ames IA, United States
68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{69}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{70}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{71}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }_{72}$ Kyoto University of Education, Kyoto, Japan
${ }^{73}$ Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{74}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{75}$ Physics Department, Lancaster University, Lancaster, United Kingdom
$76{ }^{(a)}$ INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{78}$ Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
${ }^{79}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }^{80}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }^{81}$ Department of Physics and Astronomy, University College London, London, United Kingdom
82 Louisiana Tech University, Ruston LA, United States
${ }^{83}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{84}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{85}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{86}$ Institut für Physik, Universität Mainz, Mainz, Germany
87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{88}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{89}$ Department of Physics, University of Massachusetts, Amherst MA, United States
${ }^{90}$ Department of Physics, McGill University, Montreal QC, Canada
${ }^{91}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{92}$ Department of Physics, The University of Michigan, Ann Arbor MI, United States
${ }^{93}$ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States
94 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{95}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
${ }^{96}$ Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
${ }^{97}$ Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{98}$ P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
${ }^{99}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{100}$ National Research Nuclear University MEPhI, Moscow, Russia
101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
102 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{103}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{104}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
$106{ }^{(a)}$ INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States
108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
${ }^{109}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
110 Department of Physics, Northern Illinois University, DeKalb IL, United States
${ }^{111}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{112}$ Department of Physics, New York University, New York NY, United States
113 Ohio State University, Columbus OH, United States
114 Faculty of Science, Okayama University, Okayama, Japan
${ }^{115}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States
${ }^{116}$ Department of Physics, Oklahoma State University, Stillwater OK, United States
${ }_{117}^{117}$ Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{118}$ Center for High Energy Physics, University of Oregon, Eugene OR, United States
${ }^{119}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
120 Graduate School of Science, Osaka University, Osaka, Japan
${ }^{121}$ Department of Physics, University of Oslo, Oslo, Norway
122 Department of Physics, Oxford University, Oxford, United Kingdom
123 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States
${ }^{125}$ National Research Centre "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
$126{ }^{(a)}$ INFN Sezione di Pisa; ${ }^{\left({ }^{(b)}\right.}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{127}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States
128 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; ${ }^{(b)}$ Faculdade de Ciências, Universidade de Lisboa, Lisboa; ${ }^{(c)}$ Department of Physics, University of Coimbra, Coimbra; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; ${ }^{(e)}$ Departamento de Fisica, Universidade do Minho, Braga; ${ }^{(f)}$ Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada; ${ }^{(g)}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
${ }^{129}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{130}$ Czech Technical University in Prague, Praha, Czech Republic
${ }^{131}$ Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
${ }^{133}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
134 (a) INFN Sezione di Roma; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
$135{ }^{(a)}$ INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
136 (a) INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
137 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V, Rabat, Morocco
${ }^{138}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
${ }^{139}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States
140 Department of Physics, University of Washington, Seattle WA, United States

141 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
142 Department of Physics, Shinshu University, Nagano, Japan
143 Department Physik, Universität Siegen, Siegen, Germany
144 Department of Physics, Simon Fraser University, Burnaby BC, Canada
145 SLAC National Accelerator Laboratory, Stanford CA, United States
146 (a) Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of
Sciences, Kosice, Slovak Republic
147 (a) Department of Physics, University of Cape Town, Cape Town; ${ }^{(b)}$ Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the
Witwatersrand, Johannesburg, South Africa
148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
149 Physics Department, Royal Institute of Technology, Stockholm, Sweden
150 Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States
151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
152 School of Physics, University of Sydney, Sydney, Australia
153 Institute of Physics, Academia Sinica, Taipei, Taiwan
154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{155}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
160 Tomsk State University, Tomsk, Russia
${ }^{161}$ Department of Physics, University of Toronto, Toronto ON, Canada
162 (a) INFN-TIFPA; ${ }^{(b)}$ University of Trento, Trento, Italy
163 (a) TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON, Canada
${ }^{164}$ Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
165 Department of Physics and Astronomy, Tufts University, Medford MA, United States
166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States
167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
169 Department of Physics, University of Illinois, Urbana IL, United States
${ }^{170}$ Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain
171 Department of Physics, University of British Columbia, Vancouver BC, Canada
172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
173 Department of Physics, University of Warwick, Coventry, United Kingdom
174 Waseda University, Tokyo, Japan
175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
176 Department of Physics, University of Wisconsin, Madison WI, United States
${ }^{177}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
178 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
179 Department of Physics, Yale University, New Haven CT, United States
180 Yerevan Physics Institute, Yerevan, Armenia
181 Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
182 Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{a}$ Also at Department of Physics, King's College London, London, United Kingdom.
${ }^{b}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
${ }^{c}$ Also at Novosibirsk State University, Novosibirsk, Russia.
${ }^{d}$ Also at TRIUMF, Vancouver BC, Canada.
${ }^{e}$ Also at Department of Physics \& Astronomy, University of Louisville, Louisville, KY, United States of America.
${ }^{f}$ Also at Physics Department, An-Najah National University, Nablus, Palestine.
${ }^{g}$ Also at Department of Physics, California State University, Fresno CA, United States of America.
${ }^{h}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
${ }^{i}$ Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
${ }^{j}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
${ }^{k}$ Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
${ }^{l}$ Also at Tomsk State University, Tomsk, Russia.
${ }^{m}$ Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
${ }^{n}$ Also at Universita di Napoli Parthenope, Napoli, Italy.
${ }^{0}$ Also at Institute of Particle Physics (IPP), Canada.
p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
${ }^{q}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
r Also at Borough of Manhattan Community College, City University of New York, New York City, United States of America.
${ }^{s}$ Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
${ }^{t}$ Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
${ }^{u}$ Also at Louisiana Tech University, Ruston LA, United States of America.
${ }^{v}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
${ }^{w}$ Also at Graduate School of Science, Osaka University, Osaka, Japan.
${ }^{x}$ Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.
${ }^{y}$ Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
z Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America.
${ }^{a a}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
${ }^{a b}$ Also at CERN, Geneva, Switzerland
${ }^{\text {ac }}$ Also at Georgian Technical University (GTU), Tbilisi, Georgia.
${ }^{a d}$ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
${ }^{\text {ae }}$ Also at Manhattan College, New York NY, United States of America.
${ }^{a f}$ Also at Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile.
ag Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America.
${ }^{a h}$ Also at The City College of New York, New York NY, United States of America.
${ }^{a i}$ Also at School of Physics, Shandong University, Shandong, China.
${ }^{a j}$ Also at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal.
${ }^{a k}$ Also at Department of Physics, California State University, Sacramento CA, United States of America.
${ }^{\text {al }}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
am Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
an Also at Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.
${ }^{a o}$ Also at School of Physics, Sun Yat-sen University, Guangzhou, China.
${ }^{\text {ap }}$ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
${ }^{a q}$ Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
${ }^{\text {ar }}$ Also at National Research Nuclear University MEPhI, Moscow, Russia.
as Also at Department of Physics, Stanford University, Stanford CA, United States of America.
at Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
${ }^{a u}$ Also at Giresun University, Faculty of Engineering, Turkey.
${ }^{\text {av }}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
${ }^{a w}$ Also at Department of Physics, Nanjing University, Jiangsu, China.
${ }^{a x}$ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
ay Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
az Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
${ }^{b a}$ Also at PKU-CHEP.

* Deceased.

[^0]: * E-mail address: atlas.publications@cern.ch.

[^1]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. The rapidity is defined relative to the beam axis as $y=1 / 2 \ln \left(\left(E+p_{z}\right) /\left(E-p_{z}\right)\right)$.

[^2]: ${ }^{2}$ In this method, the large- R jet algorithm is rerun with both the four-momenta of tracks, modified to have infinitesimally small momentum (the "ghosts"), and all topological energy clusters in the event as potential constituents of jets. As a result, the presence of tracks does not alter the large- R jets already found and their association with specific large- R jets is determined by the jet algorithm.

[^3]: ${ }^{3}$ The signal samples contain Higgs boson decays to $b \bar{b}$ and $c \bar{c}$, but due to the branching ratios and b-tagging requirements the sensitivity is dominated by $H \rightarrow$ $b \bar{b}$.

