

University of Birmingham

Are 20% of files responsible for 80% of defects?
WALKINSHAW, N.; Minku, L.

DOI:
10.1145/3239235.3239244

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
WALKINSHAW, N & Minku, L 2018, Are 20% of files responsible for 80% of defects? in Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM '18).
ACM/IEEE, New York, NY, pp. 2.1-2.10, 12th International Symposium on Empirical Software Engineering and
Measurement, Oulu, Finland, 11/10/18. https://doi.org/10.1145/3239235.3239244

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 06/12/2018

© 2018 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ESEM '18 Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, http://dx.doi.org/10.1145/3239235.3239244.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1145/3239235.3239244
https://doi.org/10.1145/3239235.3239244
https://birmingham.elsevierpure.com/en/publications/76656fbe-7ef7-4137-9434-eac438cd5c14

Are 20% of Files Responsible for 80% of Defects?
Neil Walkinshaw

The University of Leicester
Leicester, UK

ndwalkinshaw@gmail.com

Leandro Minku
The University of Birmingham

Birmingham, UK
L.L.Minku@cs.bham.ac.uk

ABSTRACT
Background: Over the past two decades amixture of anecdote from
the industry and empirical studies from academia have suggested
that the 80:20 rule (otherwise known as the Pareto Principle) ap-
plies to the relationship between source code files and the number
of defects in the system: a small minority of files (roughly 20%) are
responsible for a majority of defects (roughly 80%).

Aims:This paper aims to establish howwidespread the phenom-
enon is by analysing 100 systems (previous studies have focussed
on between one and three systems), with the goal of whether and
underwhat circumstances this relationship does hold, andwhether
the key files can be readily identified from basic metrics.

Method: We devised a search criterion to identify defect fixes
from commit messages and used this to analyse 100 active Github
repositories, spanning a variety of languages and domains.We then
studied the relationship between files, basic metrics (churn and
LOC), and defect fixes.

Results: We found that the Pareto principle does hold, but only
if defects that incur fixes to multiple files count as multiple defects.
When we investigated multi-file fixes, we found that key files (be-
longing to the top 20%) are commonly fixed alongside other much
less frequently-fixed files. We found LOC to be poorly correlated
with defect proneness, Code Churn was a more reliable indicator,
but only for extremely high values of Churn.

Conclusions: It is difficult to reliably identify the “most fixed”
20% of files from basic metrics. However, even if they could be re-
liably predicted, focussing on them would probably be misguided.
Although fixes will naturally involve files that are often involved
in other fixes too, they also tend to include other less frequently-
fixed files.

CCS CONCEPTS
• Software and its engineering→ Software system structures;
Software defect analysis; Software version control;

KEYWORDS
Defect distribution, Pareto principle, Survey

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEM ’18, October 11–12, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5823-1/18/10…$15.00
https://doi.org/10.1145/3239235.3239244

ACM Reference Format:
Neil Walkinshaw and Leandro Minku. 2018. Are 20% of Files Responsible
for 80% of Defects?. In ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (ESEM ’18), October 11–12,
2018, Oulu, Finland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3239235.3239244

1 INTRODUCTION
Thedistribution of faults within software systems has been the sub-
ject of a considerable amount of research. Previous empirical stud-
ies indicate that software defects obey the Pareto Principle – that
a minority of modules or files (the top 20%) are responsible for a
majority of defects (around 80%) [3, 8, 11, 16, 23]. If such a ‘golden’
ratio exists, it raises the prospect of the more focussed application
of verification and validation techniques that might not scale to a
system-level, and could support the extraction of improved train-
ing sets for defect prediction models.

There are however some limitations to the aforementioned stud-
ies that place a question-mark over this ratio. They are based upon
small numbers (between one and three) of industrial closed source
systems, all of which revolve around the telecoms domain. They
are also based on the premise that every defect is fixed by editing
a single file; fixes that span multiple files (as is typically the case)
are in fact counted as multiple separate defects. This gives rise to
the question of the extent to which multi-file fixes are in fact con-
centrated on the most defect-prone files, or whether they are more
diffuse. Finally, if the Pareto relationship does exist, it is not clear
how to identify the critical 20% of defect-prone files.

This paper describes an empirical study that seeks to address
these weaknesses. To scale the experiment up to larger numbers of
systems we use an automated approach to estimate defect-fixing
changes by identifying the presence (and ensuring the absence) of
certain key-words in commit messages. We use this to automati-
cally analyse 100 GitHub repositories, selected to focus on popu-
lar, active software projects with the help of a database curated by
Munaiah et al.[19]. The goal is to answer the following high-level
research questions:
RQ1 If we replicate previous studies (assuming one fix per de-

fect), does the Pareto Principle apply?
RQ2 If so, can the most defect-prone files be easily identified by

established metrics?
RQ3 If we accept that a single defect can require fixes to multiple

files, are all of these fixes concentrated on the most defect-
prone files?

The rest of this paper is structured as follows. Section 2 moti-
vates this work, and introduces related work in defect prediction
and the analysis of Power Laws in software engineering. Section 3
presents the methodology used for this study. This is followed by
the results in Section 4, further discussion and analysis in Section

https://doi.org/10.1145/3239235.3239244
https://doi.org/10.1145/3239235.3239244
https://doi.org/10.1145/3239235.3239244

ESEM ’18, October 11–12, 2018, Oulu, Finland Neil Walkinshaw and Leandro Minku

●

●

●

●●●0

500

1000

1500

0 2 M 4 M 6 M 8 M

Population

co
un

t

●

●●●●●●
●
●●●●●

●
●
●●●●

●
●●●●

●

●
●●●●●●●●

●●
●
●
●
●●
●
●

●
●

●
●●
●●
●●

●

●
●
●●

●
●
●
●

●

●

●●●

●

●
●

●

●●
●

●

●
●
●●●

●●

●

●

●●

●

●
●
●●

●

●

●

●●

●

●

●

●

●●
●
●●●●

●
●

●

●
●●
●●●●●●●

●
●●●●

●
●●●●●●●

●
●●●●●●●●●●●●●●●●

●1

10

100

100000 10000000

Population

Figure 1: Histograms of U.S. city populations (for popula-
tions > 10, 000) from 2010 census (n=2998) - data obtained
from Spatial History Project [26].

5, and threats to validity in Section 6. Finally, in Section 7 we offer
some conclusions, along with our plans for future work.

2 BACKGROUND AND RELATED WORK
We start with a brief introduction to power laws and the Pareto
principle. This is followed by an overview of where these phenom-
ena have been observed within Software Engineering, and what
their implications are.

2.1 Power Laws and the Pareto Principle
In complex systems it is frequently observed that certain small
minorities of elements within a system are orders-of-magnitude
bigger or more influential than other elements. This relationship
between the number of elements and their size or influence can of-
ten be neatly characterisedmathematically as a Pareto distribution,
Zipf’s law, or a power law [9, 22].

In mathematical terms, a quantity obeys a power law if it is
drawn from the distribution y = x−α [9]. Smaller values of x have
a very high value of y, which rapidly decreases as x increases. In
intuitive terms, a power law can be explained with the help of a
popular example: the populations of cities in the US [12]. If plot-
ted in order of magnitude, the sizes follow a curve, as shown in
the left-hand plot in Figure 1; the vast majority of cities have rela-
tively small populations (and so any “average” of city size would
be unrepresentative).

One indicator that data is sampled from a power-law is to plot
the data-points on a log-log scale. If one takes the logs of both
sides of the power-law (loд(y) = loд(x−α) = αloд(x)), then on
a log-scale this amounts to Y = αX - a straight line. This is what
happens in the right hand plot in Figure 1 with the log-log plot of
city populations.

One particularly popular characterisation of the power law is
the Pareto principle – otherwise known as the 80:20 principle (the
Pareto principle can be analytically derived from the power law [2,
18]). For example the biggest 20% of US cities house approximately
80% of the population (79.5% according to the 2010 census). This
ratio was first suggested with respect to Italian land ownership by
Vilfredo Pareto [24], who observed that 80% of the land was owned
by 20% of the population.

2.2 Previous Results from Software
Engineering

The power law (and Pareto principle) have predominantly cropped
up in Software Engineering in two guises: in the dependencies that
link software units together, and the relationship between files and
defects. This subsection elaborates upon these two areas, and their
respective implications for change impact analysis and defect pre-
diction.

2.2.1 Dependencies between software units, and implications for
change impact analysis. The power law, and in particular the 80:20
expression thereof, occurs frequentlywithin Software Engineering.
A raft of research [6, 18, 29] has shown that software systems tend
to form “scale-free networks” [5]. If represented as a graph (where
edges represent calls between functions or dependencies between
classes or modules), the relationship between nodes and their in-
or out-degree tends to obey a power law.

One notable property that is often associated with such scale-
free networks is the fact that they obey ‘small-world’ character-
istics [28]. In such graphs, the distance (number of edges on the
shortest path) between any pair of nodes is remarkably small. This
has been observed empirically for software dependencies [27].

This interconnectedness is intuitive.The various interdependen-
cies that arise in software systems mean that the slightest change
to source code can have wide-ranging ramifications. A seemingly
innocuous change to a data-type or an interface can require adjust-
ments to any files in the system that use or interact with it, and
changes to these classes can propagate to other files in a similar
fashion.

The task of predicting how a change might propagate through
the code-base is known as Change Impact Analysis [17]. The prob-
lems posed by interdependencies (as mentioned above) is high-
lighted by size of the “change sets” computed by change impact
analysis tools. An intuition of the problem can be found in the
work by Acharya et al., whose work on slice-based change impact
analysis indicated that impact sets for an industrial system could
routinely range from hundreds to hundreds of thousands of LOC
[1].

2.2.2 Fault distributions and implications for defect prediction. The
Pareto principle has also repeatedly been invoked by sources in in-
dustry and academia to characterise the effects and distribution of
defects in software. In 2002 the Microsoft CEO at the time high-
lighted the fact that “about 20 percent of the bugs cause 80 percent
of the errors and– this is stunning to me – 1 percent of bugs caused
half of all errors.” [4]. Boehm and Basili [8] suggested that “about
90 percent of the downtime comes from, at most, 10 percent of the
defects.”. They also suggested that “about 80 percent of the defects
come from 20 percent of the modules”.

This latter suggestion that 20% of modules are responsible for
80% of defects has been corroborated by several studies. The distri-
bution of defects was studied in 2000 by Fenton and Ohlsson [11],
and was replicated in 2007 by Andersson and Runeson [3]. Both
found that there appeared to be a power law relation between files
and defects. This was further corrobrorated by Ostrand et al. [23],
Kuo et al. [16] and Concas et al. [10].

Are 20% of Files Responsible for 80% of Defects? ESEM ’18, October 11–12, 2018, Oulu, Finland

There are however limitations to the aforementioned studies
that could undermine this statistic. They have been restricted to
a small number of systems (between one [11, 23] and three [3]),
all of which are industrial systems that stem from the telecoms
domain. One reason for this relatively restricted set of subjects is
the effort required to manually collate the fault data from change
reports and to map them to relevant code files.

There has been a large body of closely related work on the de-
velopment of techniques to predict the “defect-proneness” of a file
from extrinsic properties of that file [13]. These involve the devel-
opment of models (often with the help of Machine Learners) that
combine file properties (e.g. metrics such as LOC [23, 30] and code
churn [20, 21]) to arrive at a prediction. One important factor, high-
lighted by Hall et al. in their systematic literature review [13], is
training set balance. Machine Learning techniques used often fare
poorly when the training set over-represents either faulty files or
non-faulty files, and can produce a biased model as a result.

2.3 Motivation
The suggestion that 20% of modules are responsible for 80% of de-
fects (or at least that there is a Pareto relationship of some sort
between files and defects) has potentially significan ramifications.
If it is possible to reliably identify those specific files that are re-
sponsible for 80% of defects in a system, defect-detection efforts
could be much more focussed. Expensive verification and valida-
tion techniques that might not typically be considered could be-
come feasible if they merely had to consider a fraction of the files.

However, the empirical results that support this finding sit un-
easily beside the results discussed in Section 2.2.1. These results
suggest that software systems tend to be strongly interconnected,
a finding that is underpinned by studies that have repeatedly illus-
trated how innocuous code changes can have wide-ranging, un-
intended consequences. The suggestion that bug fixes remain re-
stricted to a very specific subset of the order of 20% of the files in
a system appears to be incongruous.

3 EMPIRICAL STUDY
The overarching goal of this study is to shed some light on the
apparent contradictions discussed in Section 2.3 – whether the
vast majority of defect-fixes can be localised within a small frac-
tion of files despite the fact that individual changes can so eas-
ily have far-reaching side-effects. We obtain our data via an au-
tomated repository-analysis of a large set of active open-source
projects. We start by investigating whether we are able to repli-
cate existing fault distribution results:

RQ1 If we replicate previous studies (assuming one fix per de-
fect), does the Pareto Principle apply?

H1 Given the consensus of previous studies [3, 11, 23] we hy-
pothesise that the Pareto Principle does apply.

RQ2 If so, can the most defect-prone files be easily identified by
established metrics?

H2 Based on findings from the defect prediction literature we
hypothesise that there exists a correlation between fix-
frequency and LOC [23, 30] and between fix-frequency
and code-churn [20, 21].

We continue by examining themake-up of a bug fix. Specifically,
we seek to examine the spread of files to establish the extent to
which bug fixes really are localised to a specific group of files:

RQ3 If we accept that a single defect can require fixes to multiple
files, are all of these fixes concentrated on the most defect-
prone files?

H3 Following on from H1 (that the buggiest files are respon-
sible for most of the defects), we hypothesise that multi-
file bug fixes tend to be concentrated on the most defect-
prone files.

3.1 Subject Systems
Our goal is to base our analysis upon substantive, active projects
that span a range of languages. Github does not have a reliable met-
ric for this; Gitstars tend to include many non-software projects,
or projects which happen to be popular but are not particularly
substantive. As a result we start from Munaiah et al.’s database
of GitHub projects [19], which attributes several metrics to each
project, such as its maturity, the number of active developers, the
use of continuous integration, as well as Gitstars etc.

We used this database to select our list of 100 projects, with the
goal of focussing on those projects that were genuine, substantial,
active software projects. To do this, we first of all restricted the
database to those that satisfied all of the following criteria (see Mu-
naiah et al. [19] for more details about the various metrics):

• Munaiah et al.’s Random Forest classifier (which predicts
whether a project is or is not a genuine software project)
should evaluate to ‘1’ (it is predicted to be a software project.)

• The project should have at least one git star.
• The project should be classified as “TRUE” by Munaiah et

al.’s “organisation” and “utility” classifiers (which respec-
tively estimate whether the project is (1) similar to other
projects developed within popular software engineering or-
ganisations and (2) of value to a wide range of developers).

• The software should have a license.
• The unit test coefficient (a value between 0 and 1 indicating

the ratio of test lines of code to source lines of code) calcu-
lated in the database should be > 0.1.

• The “issues” and “community” metrics, indicating the level
of project management in the system and the extent of the
developer community should be > 10.

Having restricted our list to what ought to be genuine, substan-
tive, active software projects, we then ranked the projects in order
of (1) their git-star rating (as given in the database), (2) their com-
munity size and (3) their age, and selected the top 100.

Since the database was constructed in 2016, some of the projects
in that list have since migrated or have become inactive (e.g. be-
cause they were usurped by more successful projects). Whenever
we encountered a project that was migrated to a different (Git)
repository, we used the new repository. If a project was abandoned,
or was a ‘metapackage’ (a small project with instructions to aggre-
gate external components) we skipped it (there were three such
projects). The resulting set of projects is shown in Table 1.

ESEM ’18, October 11–12, 2018, Oulu, Finland Neil Walkinshaw and Leandro Minku

Table 1: Subject systems.

Name LOC Files Language Commits
active_merchant 200,951 701 Ruby 14,414
activeadmin 53,040 589 Ruby 19,890
apex-malhar 354,502 2,362 Java 105,289
azure-powershell 21,810,922 16,221 C# 1,631,205
beaker 31,666 320 Ruby 17,261
bosh 517,859 3,682 Ruby 140,199
boto3 47,915 190 Python 3,416
bourbon 4,787 154 Ruby 3,691
buck 1,156,554 11,009 Java 144,670
buildbot 275,229 1,413 Python 80,852
bundler 76,029 812 Ruby 28,679
cakephp 314,920 1,284 PHP 224,095
capybara 24,466 215 Ruby 8,756
catapult 2,841,262 8,389 Python 104,062
ceph 1,540,868 5,845 C++ 311,566
chapel 5,134,878 31,447 Chapel 882,499
chef-logstash 2,700 65 Ruby 2,533
cloud_controller_ng 337,752 2,597 Ruby 51,863
cocos2d-x 1,583,122 4,552 C++ 424,599
Codeception 105,038 892 PHP 38,392
coi-services 270,427 744 Python 51,184
corefx 4,090,629 18,499 C# 611,489
darktable 948,928 1,144 C 90,485
data-access 127,985 471 Java 10,879
django-allauth 54,294 518 Python 7,459
django-rest-framework 92,059 365 Python 28,281
django-tastypie 30,362 209 Python 3,834
doorkeeper 13,295 242 Ruby 6,718
draper 5,980 145 Ruby 3,422
dropwizard 88,777 1,154 Java 22,957
edx-platform 1,756,395 6,601 Python 504,692
errbit 18,142 340 Ruby 26,436
exercism.io 59,945 571 Ruby 27,414
floodlight 144,666 710 Java 22,471
fog 71,348 1,666 Ruby 178,237
fpm 28,305 126 Ruby 3,695
framework 177,552 1,263 PHP 9,242
FrameworkBenchmarks 222,580 3,748 Shell 387,197
gazebo_ros_pkgs 33,970 259 C++ 4,093
geoserver 1,520,184 11,335 Java 128,502
geotools 3,666,311 15,243 Java 85,119
grape 27,242 240 Ruby 7,592
infinispan 916,583 8,087 Java 101,775
jboss-eap-quickstarts 454,127 2,353 Java 43,691
jcabi-github 67,441 479 Java 23,742
jclouds 712,032 7,357 Java 217,635
jedis 40,847 181 Java 7,283
joomla-cms 1,136,698 5,945 PHP 485,818
jruby 1,167,419 10,183 Ruby 462,961
kc 2,841,966 16,775 Java 730,182

Name LOC Files Language Commits
kotlin 2,459,598 63,849 Kotlin 503,344
linguist 571,457 2,424 Ruby 43,616
logstash 131,068 1,605 Ruby 25,773
luigi 63,957 287 Python 10,141
mackup 5,442 426 Python 4,227
mail 88,534 329 Ruby 9,586
manageiq 456,865 2,546 Ruby 317,124
mantid 3,271,526 13,458 C++ 2,814,986
matplotlib 871,923 2,101 Python 133,395
monolog 22,563 193 PHP 4,181
mule 556,014 4,534 Java 358,989
Mvc 424,021 2,786 C# 53,399
Nancy 123,067 1,304 C# 33,625
neo4j 1,456,046 10,019 Java 753,798
octokit.net 170,951 1,091 C# 44,605
omniauth 2,832 27 Ruby 4,913
openproject 537,705 4,340 Ruby 279,837
opsworks-cookbooks 21,672 637 Ruby 3,275
pandas 501,678 968 Python 66,033
paperclip 17,026 166 Ruby 5,069
parquet-mr 133,878 808 Java 17,456
pelican 36,406 348 Python 11,967
phinx 36,188 187 PHP 5,560
phpbb 415,902 2,383 PHP 149,367
PHPoAuthLib 29,632 228 PHP 3,523
PiplMesh 19,242 120 Python 6,297
platform 1,638,444 15,743 PHP 1,954,608
Propel2 147,603 724 PHP 25,885
puppetlabs-apache 26,555 365 Ruby 10,048
puppetlabs-firewall 15,112 106 Ruby 3,868
rails_admin 51,961 544 Ruby 26,293
react-rails 75,580 452 Ruby 5,889
repose 270,218 3,138 Groovy 189,762
resque 9,570 88 Ruby 2,893
RestSharp 23,572 168 C# 7,764
retire 18,191 143 Ruby 2,112
rubinius 1,675,723 6,633 Ruby 301,510
salt 1,570,758 4,754 Python 531,987
scribejava 15,886 250 Java 5,423
shogun 509,899 2,846 C++ 118,117
sidekiq 19,278 203 Ruby 8,194
silverstripe-framework 224,678 1,670 PHP 143,831
simple_form 10,782 106 Ruby 5,218
Spout 151,722 1,186 Java 48,738
spree 128,004 2,002 Ruby 127,205
stringer 40,293 227 Ruby 3,287
swot 15,959 7,445 Ruby 46,824
Theano 328,964 673 Python 66,018
toxcore 58,045 176 C 12,020
ZfcUser 12,862 137 PHP 2,464

3.2 Methodology
We split our presentation of methodology into data collection and
data analysis. The data analysis split according to the three re-
search questions.

3.2.1 Data Collection. Thedata that was used, including the list of
Git URLs, commit and LOC data, has been made openly available1.

Project properties. For each project we determined the primary
programming language. This was determined by examining the
most prevalent file suffixes and skimming over the source code.
1 https://doi.org/10.5281/zenodo.1253262

https://doi.org/10.5281/zenodo.1253262

Are 20% of Files Responsible for 80% of Defects? ESEM ’18, October 11–12, 2018, Oulu, Finland

The languages were largely restricted to those considered by Mu-
naiah et al. [19]: Java, Python, C, C++, C#, PHP, and Ruby. In the
case where these languages had been used to implement a new lan-
guage (Kotlin and Chapel), the developed programming language
was counted as the dominant one. We also calculated the number
of files and the total LOC for each project.

File selection. For each of the projects in Table 1 the GitHub
repository was cloned (the hash for that version has been stored
to support replication). For each project, all non-binary files were
considered apart from those that would trivially change with each
build (such as ‘CHANGELOG’ or ‘NEWS’). This included source
code, documentation, make-files and other build-script configura-
tions (e.g. for Maven). This enabled us to accommodate fixes to
build configuration errors and documentation etc., whichwould be
missed by restricting to source code alone. Accordingly, the LOC
values in Table 1 can appear high (c.f. azure-powershell) because
the repository can include very large text files that are used for
testing purposes, etc.

File attributes. For each file the following attributes were com-
puted:

• Lines of code
• Code churn, measured as the number of changes made to

the file (specifically referred to as ‘churn count’ [20]).

Identifying “defect-fixing” commits. Commitmessageswere anal-
ysed to determine whether a commit was “defect-fixing” or not.
For this we searched for messages containing the terms ‘bug’ and
‘fix’. We excluded any commits that contained the terms ‘merge’,
‘conflict’ and ‘license’ or ‘licence‘ (to avoid large numbers of com-
mits that were fixing merge conflicts or changes to licence headers,
which would routinely encompass large numbers of files).

To mitigate the risk that the expression would include commits
that were not genuine bug fixes, we took a random sample of five
commits for each of the projects (i.e. we manually inspected 500 of
the commit messages identified by the approach). This indicated
that all of the extracted commits appear to correspond to genuine
bug fixes.

Nevertheless, relying on commit messages alone to identify de-
fect fixes does come with some significant limitations that are im-
portant to bear in mind [14]. Developers can fail to explicitly men-
tion fixes in commit messages, and single commits are not neces-
sarily atomised (a single commit might not just fix a single bug,
but might include sundry other changes). These will be discussed
in more detail when we discuss threats to validity in Section 6.

3.2.2 Data Analysis. We restrict our description of the data analy-
ses used specifically to answer the research questions. These have
been subsequently explored with more targetted, exploratory anal-
yses, which will be described in Section 4.

RQ1: Does the Pareto Principle apply to software defects? For this
question we carried out two analyses. The goal of the first analysis
was to determine whether or not the relationships between files
and defects followed a power law. Even if the power law does not
apply, it is still possible for the Pareto principle to apply - for a
small proportion of files to account for a majority of the defect

fixes. Thus, the second analysis aims to examine the distributions
of defect fixes for each quintile of files.

For the test we adopt a procedure suggested by Clauset et al.
[9]. We start by using a Monte Carlo simulation to estimate the
parameters (xmin and α) of a hypothetical power-law distribution
that should fit the given fault data2. For the test, the resulting dis-
tribution is then used to synthesise a large number of data points.
These are then compared against the empirical data points using
a Kolmogrov-Smirnoff test. We follow Clauset et al. in choosing a
relatively conservative p-value threshold of of < 0.1 to indicate
that the distribution does not follow a power-law. In other words,
to identify the proportion of projects for which the distribution of
fix-frequencies constitute a power-law, we count the number for
which p ≥ 0.1.

To explore the extent to which the Pareto principle applies, we
calculated, for each project, the proportion of files that belong to
the five quintiles (the top 20%, second 20%, etc.). These results were
then summarised as a box plot with five boxes, where each box rep-
resents one of the quintiles. Each box represents the distribution
of file-proportions for a given quintile. If the Pareto principle ap-
plies, we would expect the distribution of proportions in the top
quintile (the top 20%) to be particularly high (around 80%), with
other quintiles to be substantially lower.

RQ2: Can the most fixed files be easily identified by established
metrics? The answer to this question has two parts. Firstly, we es-
tablishwhether there is in principle a correlation between the num-
ber of fixes and LOC or churn. We then investigate whether the
correlation is strong enough, by establishing to what extent the
top 20% of files with the highest LOC or Churn overlap with the
top 20% of the most fixed files.

For this question we examine, for each project, the relationship
between the number of defect-fixing commits and the LOC (for RQ
2(a)), and the correlation between the number of defect-fixing com-
mits and the code churn (for RQ 2(b)). To accommodate the skew
in the distribution of defects we use the Spearman-Rank method
to compute the correlation, and do so on a project-by-project basis.
To summarise the correlations across all projects we apply Fisher’s
Z-transformation.

Having calculated the correlations on a file-by-file basis, we also
establish how successful Churn and LOC are specifically for iden-
tifying the top 20% of most fixed files. For this we look at the pro-
portion of files that belong to the top 20% of most fixed files that
also belong to the top 20% of files in terms of LOC and Churn re-
spectively. We compute this for each project and present the result
as a box-plot.

Given the inconclusiveness of prior research linking LOC to
number of fixes, we do not posit a hypothesis for the correlation
with LOC. We do however expect a reasonably strong correlation
(> 0.7) for code churn.

RQ3: Are multi-file fixes concentrated on the most defect-prone
files? For each project we identified every bug-fixing commit (iden-
tified as described above). To determine the ‘spread’ of a commit
we identified two measures: (1) the sizes (in terms of the numbers

2This was carried out using the PoweRlaw package in R: https://cran.r-project.org/
web/packages/poweRlaw/index.html

https://cran.r-project.org/web/packages/poweRlaw/index.html
https://cran.r-project.org/web/packages/poweRlaw/index.html

ESEM ’18, October 11–12, 2018, Oulu, Finland Neil Walkinshaw and Leandro Minku

●

●●

●●
●●
●●
●
●●●●

●●●
●

●

●

●●
●●
●

●
●
●0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Quintile (top 20% ... bottom 20%)

P
ro

po
rt

io
n

of
 fi

xe
s

Figure 2: Proportion of fixes involving files in each quintile
(where quintile 1 represents the top 20% of the files etc.).

of files) of defect-fixing commits, and (2) the extent to which multi-
file commits that involved files in the most defect-prone quintile
also involved files in other quintiles (i.e. less defect-prone files).

The fix-sizes were summarised as a box plot with one box for
each quintile. For each quintile, this will show the distribution of
the number of other files that comprise fixes, which include files
in that quintile.

The ‘spread’ of fixes involving files in the top quintile was also
summarised as a box-plot, where each box represented the extent
to which files within a given quintile were co-edited with files in
the top quintile.

Given that fixes might involve multiple files that do not belong
to the top quintile, we compute the ‘true’ spread of defect fixes that
involve files in the top quintile. For each project, and every bug fix
involving at least one file in the top quintile, we recorded all of
the files involved in those fixes. This would then give us the true
proportion of files that were involved in the 80% of defect fixes.

If the answer to RQ1 is yes (approximately 20% of the files are
responsible for 80% of the bugs), then we would expect the fixes to
be distributed in a similar manner - for bug fixes to be concentrated
overwhelmingly on the to 20%.We would expect the ‘true’ number
of files involved to be close to 20%.

4 RESULTS
In this section we present the results. These will be discussed more
fully in Section 5.

RQ1: Does the Pareto Principle apply to software
defects?
Clausetet al.’s power law tests produce a result of p ≥ 0.1 for
66% of the projects. For the law to have not applied in over 34%
of projects suggests that the law is far from universal.

To investigate the Pareto-principle, the box-plots for each quin-
tile of files are shown in Figure 2. These indicate that the Pareto
Principle does apply, in the sense that the top 20% of files tend to
be involved in approximately 80% of fixes of bugs (mean is 80.53 %,
median is 78.49%).

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

LOC

C
hu

rn

Figure 3: Churn and LOC correlations for each project.

●
●
●

●

●0

25

50

75

100

Churn LOC

Metric

To
p

20
%

 a
ls

o
in

to

p
20

%
 fo

r
de

fe
ct

s

Figure 4: Proportion of fixes belonging to top quintiles that
also belong to top quintile of defect-prone files.

RQ1: The relationship between files and bug-fixes does tend to
obey a Power Law (although this is far from universal). The Pareto
Principle does however apply strongly; on average the top 20% of

the most defect-prone files involved in 80% of defect fixes.

RQ2: Can the most frequently-fixed files be
easily identified by established metrics?
Figure 3 plots the Churn and LOC correlations across all of the
projects.The aggregate correlations computed through the Fisher’s
Z-transformation indicate that there is a weak correlation between
defect-proneness and LOC (0.4), and a moderate correlation with
code churn (0.6). As can be seen from the plot, however, there is a
significant variance between projects.

Figure 4 shows the proportion of the top 20% of Churn and LOC
files that also belong to the top 20% of files for defects. These in-
dicate that between 50% and 75% of the top 20% of files for Churn
and less than 50% of files for LOC tend to also belong to the top
20% of defect-prone files.
RQ2: The reliability of LOC or Churn to suggest defect-proneness
can vary substantially from one project to the next. In general,

Churn tends to be a more reliable indicator than LOC.

Are 20% of Files Responsible for 80% of Defects? ESEM ’18, October 11–12, 2018, Oulu, Finland

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●●

●

●

●

●●●

0

10

20

30

40

50

1 2 3 4 5

Quintile (top 20% ... bottom 20%)

N
um

be
r

of
 c

o−
ed

ite
d

fil
es

Figure 5: Fix-sizes for each quintile. A size is counted for a
quintile if one of the files involved belongs to that quintile.

●

●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●

●
●
●●

●●●

●

●●

●
●●●●●●
●

●
●

●

●
●

●●●●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●

●

●●

●

●

●

●

●●●●
●
●●●

●

●

●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●

●●

●●

●
●
●
●
●●

●
●
●●
●●
●
●
●●●●
●●
●●●●
●●
●
●
●
●

●

●

●

●●
●

●

●

●●
●
●

●

●

●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●●
●●●●●●
●●

●

●●

●●●
●
●●
●●●

●●

●

●●

●

●●

●●●

●

●

●
●●●●●●●●●
●

●●●●●

●●

●

●

●●●

●●●

●●●●

●

●

●

●

●
●

●●●●●

●
●●

●

●

●●

●

●
●●
●●
●●
●●
●
●

●●●●●●●●●

●●●

●

●●

●

●

●
●
●●●
●

●

●●●●●

●

●
●
●●●●●

●●

●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●

●

●

●
●
●

●

●●
●●
●
●●●●●●●●●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●●

●
●
● ●

●●●●●●●●

●

●●●●
●●●

●

●●●●●●●
●●●●●●●●●●●

●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●
●●●●●●

●●

●●●

●
●
●●●
●●●
●●●●
●
●●

●●●●●

●●●

●

●

●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●
●
●●

●●

●●●

●

●●●
●
●

●

●●●●

●●●●
●

●●

●

●

●●

●●

●
●
●

●●●

●

●

●●
●
●●
●

●●

●

●
●●●

●

●
●
●
●●

●
●

●●

●
●●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Quintile (top 20% ... bottom 20%)

S
pr

ea
d

of
 c

o−
ed

ite
d

fil
es

Figure 6: Spread of files co-edited with files in the top quin-
tile of defect-prone files.

RQ3: Are multi-file fixes concentrated on the
most defect-prone files?
The sizes of the fixes for each quintile are shown in Figure 5. Typ-
ically, fixes tend to be relatively small (fewer than 10 files). Fixes
that involve files in the top quintile tend to be significant smaller
than other fixes (with a median of 3.25).

Figure 6 shows the spread of files over the quintiles for all multi-
file fixes where at least one file belongs to the top (most fixed) 20%.
This shows that, typically, under half of the files involved belong
to the top 20%, and the others tend to belong to other quintiles. In
other words, files that are frequently fixed tend not to be edited
alongside other files that are as frequently fixed.

The complete set of files involved in fixes that involve files in
the top quintile varies widely from one project to the next. Across
all projects, the median proportion of files involved in 80% of bug
fixes was 32%, with a lower quartile of 20% and an upper quartile
of 47%.

RQ3: Most defect-fixing commits involve multiple files. For fixes
involving files in the top 20%, fewer than 50% of the other files

tend be in the top 20%.

5 DISCUSSION
In this section we discuss our findings and, where relevant, present
additional analyses. For all of the additional analyses carried out in
this section it is important to bear in mind that they are merely for
the sake of exploration and corroboration, and will in most cases
require more data to be conclusive.

5.1 The Role of Language and Paradigm
Our selection of projects includes software that has been written
in a multitude of languages. There were 11 different principal lan-
guages in total. Given that different languages tend to imply dif-
ferent design paradigms and conventions, it is plausible that this
could lead to different types of defects and correspondingly differ-
ent types of fixes. To investigate this, we re-ran our analyses to
separate out results on a per-language basis.

Although there was some variance between languages, the re-
sults did not suggest that language was a significant factor with
respect to our findings for RQ1 and RQ2. The Pareto principle ap-
plied to files and defects regardless or language. Churn and LOC
performed in a similar vein to all languages (it is perhaps worth
noting that both metrics performed particularly well on the two
systems written in C).

For RQ3 the results merit some discussion. Figure 7 shows how
multi-file defect fixes are spread across the quintiles; it is equiva-
lent to Figure 6, split up by language. Two languages to focus on
are C (left-most) and C++ (third from the left). For the C projects,
the co-edited files tended to be much more contained within the
top 20%. For C++, there was a remarkable spread, where approx-
imately the same proportion of files would be spread throughout
all five quintiles (there was virtually no increase in the proportion
of files contained in the top quintile).

Given that only two of the 100 projects were in C, and five were
in C++, these differences could come down to project-specific con-
ventions rather than language or paradigm-specific reasons. Never-
theless, this is something that we will investigate more thoroughly
in future work (see Section 7).

5.2 A Link to Connectedness?
Previous studies on power laws in software systems have focussed
on the interconnectivity of software elements (e.g. the dependen-
cies that arise between software modules [18]). These have repeat-
edly demonstrated that a power law does appear to exist – that
a small minority of the most connected modules are responsible
for a majority of dependencies. In other words, there tend to be a
small proportion of heavily connected “hub” modules, and a large
proportion of relatively disconnected “satellite” modules.

When carrying out a code-change (such as in our case a bug fix),
it is often necessary to adapt the surrounding software artefacts to
accommodate the change. For example, if a change is made to the
structure of a class in an Object-Oriented system, then any other
classes in the system that use that class may need to be adapted to
accommodate the new structure. The task of assessing this impact
(as carried out by Change Impact Analysis techniques [17]) often
involves tracing dependencies between files.

ESEM ’18, October 11–12, 2018, Oulu, Finland Neil Walkinshaw and Leandro Minku

●
●

●

●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●

●
●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●●
●●
●
●
●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●

●●

●

●●

●

●

●

●●

●

●
●●
●
●●
●

●

●

●

●

●●

●
●

●
●

●

●●●

●●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●●

●

●●●●●●●●●●●●●●
●

●●

●
●●
●
●
●
●●
●●
●
●●●●
●
●

●●●
●

●●●●●
●●●●●●●●●

●

●●●

●

●

●

●

●●●●
●●●

●

●
●●

●

●●●
●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●●●●●●●●

●
●
●
●●●●

●●

●

●

●
●●
●
●
●

●

●●●
●●●
●
●

●
●

●
●

●

●

●
●

●

●

●●

●
●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●●●●
●

●

●●
●●●

●●●●●●●●
●●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●●

●●

●

●

●
●●●●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●
●
●●

●

●●

●●

●●●●●●●●●●●●●●

●
●●

●

●●●●

●
●
●

●

●

●

●

●●

●●

●●●●●●●●
●

●
●●

●●●

●

●

●●●●●

●

●
●
●

●

●●●●●●

●

●

●
●

●

●
●
●

●

●●●●●

●

●

●
●
●

●
●●
●
●

●
●

●

●

●

●●●

●

●

●
●

●

●

●●
●

●

●

●●

●

●
●●
●

●

●
●
●
●

●●
●●●●●
●
●●●
●●●●
●
●
●●●●●●●●●●
●●●●●●●●●

●
●●

●

●
●
●●
●●

●
●

●
●

●

●
●
●●●

●

●
●●
●●
●●

●●
●

●

●

●

●

●●
●●●●●●

●
●

● ●

●●

●●

●
●
●
●
●●
●●
●

●●

●
●

●

●●●

●
●●●

●

●

●

●

●●●●●●●●●●
●

●

●

●

●●
●●
●
●
●●●●●

●

●

●

●

●

●●
●●

●●
●

●

●●●●●
●●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●●
●
●

●●

●
●

●

●
●

●●
●

●

●●

●
●

●

●

●
●
●●

●

●
●

●

●●●

●

●●

●

●

●

●

●●

●

●
●●

●●●●●●●●●●●●●●●●
●

●

●

●

●●
●
●
●
●

●

●●●
●
●
●
●

●
●
●●
●
●●

●●

●●
●

●
●

●

●●●●●●

●
●

●

●●

●●

●●

●●●●●

●
●

●

●●
●●
●●●●
●
●●

●●

●

●●●●●●
●
●

●

●●
●

●●

●●●

●●

●
●

●
●●
●●

●●

●

●

●

●●●

●
●

●

●●
●●
●
●●●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●
●●
●
●●

●●

●
●

●
●●

●

●●●●

●●

●

●

●

●
●
●

● ●●

●

●●

●

●

●

●
●●●

●●

●

●
●●●●●

●

●
●

●●

●●●

●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●

●

●
●

●

●●

●

●●
●
●
●
●●●
●●●●●●
●

●

●

●
●●●●●●
●

●

●●●●●●●●●●●●
●
●●

●●

●

●

●

●

●

●
●

●●●●
●
●
●●
●
●●●●
●
●
●●
●●●●●
●●
●

●●
●

●●●●●
●●●●●●●●●●●●●●
●

●●

●●●●
●●
●●●

●

●●●●●
●
●●●●

●

●

●

●

●

●●●
●
●
●
●
●●

●

●●●●
●
●●●

●
●●●●
●
●●●●●
●
●●

●

●●●

●●

●
●
●●

●
●
●
●●
●●

●
●●●
●●●
●
●
●
●●
●●●

●
●●●●
●
●●●●●●●●●●●●●

●

●

●
●
●

●
●●●●●●
●
●

●●●●

●
●

●●
●●●
●
●
●
●
●●
●
●
●
●
●●●●●●

●

●
●●
●
●
●●
●●●●
●●

●

●

●

●

●

●●

●●●●

●

●●●●●●●●●●●
●

●●●●

●

●
●

●●●●●
●●●
●
●●●●●●●
●●●
●
●

●●●●●●●●●●●●●●●●

●

●●

●●
●●
●

●●
●
●

●

●
●

●

●

●●

●●

●

●

●
●●●●●

●
●

●

●
●

●
●●●●●●●●
● ●●●●

●

●

●
●●●

●
●
●●●

●●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●

●●

●
●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●●●
●●

●

●

●

●●●●
●
●

●

●
●

●

●●
●●
●
●

●

●

●

●
●●●
●●
●

●
●

●

●●

●

●

●

●

●

●●●
●

●
●

●

●

●●●
●

●

●
●●
●●●●●●●●●●●●
●●●●●
●●●●●●●
●●

●

●●●●

●●

●

●

●●●

●●

●●●●
●●●

●

●

●
●
●
●
●●

●●

●●●●●●●
●●●●●●●●●●

●●

●

●

●

●●

●

●●●●●

●●●

●●
●

●●

●
●
●●
●

●●●●●●●●●

●

●●
●●

●●

●

●●

●●●●

●●●●●●
●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●●●●

●

●

●

●
●●●●

●
●

●

●

●●●●●

●●●●●

●

●
●●●
●●

●
●
●●

●
●

●●

●

●●

●

●

●

●
●●
●●●
●
●●
●

●●●●
●

●

●
●

●●●
●
●
●
●●
●●
●
●

●
●●

●

●●

●●
●●

●

●
●
●

●

●●

●●●

●●
●

●

●

●

●

●

●

●
●●
●

●

●

●●●

●●

●

●●●●●●●

●●

●
●

●

●

●

●
●●

●

●●
●
●●●●●●

●

●

●
●●●
●

●

●
●●●

●

●
●●
●
●●

●
●
●

●

●●

●

●●
●●
●

●
●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●●

●

●●●
●

●

●●
●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●●
●

●●●

●

●

●
●

●
●●●

●●●
●●

●

●
●●●
●●●
●●●●
●●●●●●●●●●
●●●●●
●

●●

●●●●●●●●●
●
●

●●
●●

●

●●●●

●●●●●●●
●
●

●●●
●

●●●

●

●
●

●

●●
●
●
●

●
●
●
●

●

●

●
●

●

●
●
●●

●

●
●

●●●●●●
●●●●●●●●●●●

●

●●
●

●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●
●
●●

●●

●●●

●

●●●
●
●

●

●●●●

●●●●
●

●●

●

●

●●

●●

●
●
●

●●●

●

●

●●

●
●● ●

●

●●●

●

●●

●●

●●●

●

●

●

●

●●●●●

●

●●

●

●
●

●
●●●●
●

●●●

●●

●

●
●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●
●

●●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●●
●●

●●

●●

●●

●●●
●

●●

●●●
●●
●

●

●●

●

●

●

●●
●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

Quintile (top 20% ... bottom 20%)

S
pr

ea
d

of
 c

o−
ed

ite
d

fil
es

C

C#

C++

Chapel

Java

Kotlin

PHP

Python

Ruby

Shell

Figure 7: Spread of fixes across quintiles. The box order from left-to-right is the same as the top-to-bottom order in the legend.

Change Impact Analysis suggests an intuitive relationship be-
tween the extent to which a file is ‘linked to’ by the rest of the sys-
tem and the extent to which it needs to be updated when elements
within the system are changed. This is corroborated by research
that suggests that the ‘fan-in’ metric, which measures the central-
ity of files within a system, is governed by a power-law [18].

In our work we do not distinguish between file-changes that
produce the essential fix to a defect and these adaptive changes to
the surrounding system. We did also not collect metrics for files
that could indicate their incoming dependencies from the rest of
the system (in part because we did not have access to the necessary
analysis infrastructure for all eleven programming languages used
here). Nevertheless, we do posit a conjecture (which we shall ex-
plore in our future work): The majority of files in the top 20% “most
fixed” files are not especially defective, but are highly connected with
the rest of the system and need to be updated frequently to accommo-
date fixes to genuine defects made elsewhere.

5.3 Potential Implications for Defect
Prediction

The question of how faults are spread throughout a system is re-
lated to defect prediction. We identify three areas in particular: (1)
The implications for selecting data throughwhich to train and eval-
uate models, (2) the question of capturing defective files that are
not frequently fixed, and (3) the role of LOC and Churn.

5.3.1 Training and evaluation. Defect prediction models [13] are
often trained to predict whether a file is “defect prone” by exam-
ining its dependencies (either syntactic [25] or dependencies that
involve relations between developers and code units [7]), and link-
ing these with historical fault data. Our research (specifically the
answer to RQ3) suggests, however, that defect-fixes are not partic-
ularly focussed on those files that are frequently subject to defect
fixes. Instead, it suggests that many of the files involved in a fix are
actually only rarely involved in fixes. We have conjectured above
that those files that are frequently involved in fixes are involved be-
cause of their connectivity with the rest of the system, not because
they are especially buggy.

If our conjecture from Section 5.2 is true (and this is what our
future work will be aiming to establish), it would imply that there
is a strong need to refine the data used to train and evaluate de-
fect predictors, otherwise the accuracy of the predictor (and the
reported accuracy of the technique) could be badly skewed. This is
however in itself problematic because it requires extensive human
intervention [15].

5.3.2 Capturing the defect. The question of whether the Pareto
principle holds also has some more general potential implications
for the usefulness of defect-prediction models. If only a small mi-
nority of files are genuinely responsible for a large majority of de-
fects, then an effective defect prediction model could be a vital tool.
However, our results indicate that this is not necessarily the case.
Fixes tend to incorporate multiple files and tend not to be restricted
to the top 20% of frequently fixed files (as shown in the results for
RQ3).

This mixture of files within a fix (some are frequently fixed,
others are not), is potentially problematic. We can expect defect-
prediction models to be reasonably good at predicting the files in
this 20%; for files that are frequently fixed there should be an abun-
dance of training data. However, if our conjecture holds – that fixes
to such files tend to be adaptations and that the genuine bugs hap-
pen elsewhere – then the ability to highlight faults in files that are
infrequently fixed becomes particularly critical.

5.3.3 The role of Churn and LOC. In RQ2 we examined the rela-
tionship between LOC, Churn, and the fix-frequency of a file. Sev-
eral studies have suggested that defect prediction models based
upon LOC alone tend to fare relatively well [23, 30]. Convention-
ally, prediction models tend to be produced by some form of re-
gression including other metrics such as Churn [13].

Our findings indicate that Churn is a better feature than LOC
when it comes to predicting which files belong to the top 20% of de-
fective files. Our task (of identifying the top 20% of most defective
files) is different from the file-by-file defect prediction task. Never-
theless, our finding that Churn is more useful than LOC would
appear to contradict findings from defect-prediction studies (as
summarised by Hall et al. [13]), where models based on LOC have
tended to outperform Churn (or ‘Process-based metrics’).

Are 20% of Files Responsible for 80% of Defects? ESEM ’18, October 11–12, 2018, Oulu, Finland

6 THREATS TO VALIDITY
This section describes the internal, external, and construct threats
of the study.

6.1 Internal Threats
As far as instrumentation is concerned, there is a risk that the iden-
tification of defect fixes from commit messages is inaccurate. Gen-
uine bug fixes may be missed out if their commit message does not
satisfy our pattern, and non-fixing commits might be erroneously
included if their message happens to satisfy our pattern.

We sought to attenuate the second risk (of including irrelevant
commits) by checking a random sample of fivemessages per project
(500 in total) to ensure that there were no obviously incorrect fixes
included. This came after several iterations of scrutinising the re-
turned fix commit messages to refine our search criteria to skip
non-fixing commits.

It is much harder to guard against the risk of missing out rele-
vant fixes. A degree of underreporting of fixes can be tolerated as
long as the fixes that are missed follow a similar distribution to the
fixes that were found. We have not observed any fixes that were
missed, and thus have not observed any indicators that this should
be the case.

6.2 External Threats
There is a risk that our process of selecting relevant projects from
Munaiah et al.’s database of GitHub projects [19] biased us towards
a particular family of projects. Using git-stars as a primary rank-
ing factor favours highly popular projects, which appear to favour
web-development frameworks (probably because these have espe-
cially large communities of developers who rely upon them). As a
result frameworks written in Ruby and and PHP are particularly
prevalent. Nevertheless, the sample is sufficiently large to include
a broad range of other projects, and our language-specific analy-
sis in Section 5.1 did not indicate that language was a significant
factor.

The selected projects are also all open source. It is possible that
closed-source projects developedwithin an industrial setting could
have different properties. However, there is no obvious indicator
that this is the case, given that our results do not contradict the
results produced by previous studies [3, 11, 23] which focussed on
closed-source industrial C projects. Furthermore, several of the sys-
temswe include in our sample are developed by industry (c.f. azure
powershell by Microsoft and buck by Facebook).

6.3 Construct Threats
In this study we took the decision not to focus our attention ex-
clusively on source code files. The goal was to encompass defects
that might include non-code defects as well such as configuration
errors (requiring fixes to build scripts), documentation errors, or
defective test data, etc. Accordingly we included every non-binary
file in our analysis.

Doing so does introduce the risk that, in projects with large
numbers of static non-source files, our analysis might be skewed.
Table 2 shows the proportion of file extensions that were .txt, .xml
and .json (the most prevalent non-source file extensions), they are

Table 2: Proportion of text, XML, and JSON files involved in
fixes, per quintile.

Quintile 1 2 3 4 5
Proportion .txt,.xml,.json 11% 12% 4% 10% 6%

even slightly more prevalent in the quintiles 1 and 2, indicating
that they feature prominently in defect fixes.

There is also the possibility that, by including non source-code
files, we are obscuring potentially significant relationships that
might arise if we focussed entirely upon the (executable) source
code. Relationships that are onlyweak in our analysis (e.g. between
defects and LOC) could be much stronger in a more restricted sce-
nario. This is a possibility that we intend to investigate in our fu-
ture work.

Finally, there is also the risk that, by using the version history as
a basis for identifying defects and their fixes, we only include those
defects that have been detected (and fixed). There is a probability
that there aremany undetected and unfixed defects within the files.
This would only skew our results if the undetected faults were dis-
tributed differently (amongst the quintiles) from the detected ones.
We have tried to attenuate this risk by selecting projects that are
well-established projects that are (it is hoped) less prone to exten-
sive, potentially defect-inducing restructurings.

7 CONCLUSIONS AND FUTURE WORK
The question of whether the Pareto Principle applies to software
defects ultimately depends on the definition of a “defect”. If we
count a fix that spans multiple files as multiple separate defects,
then the principle holds; 20% of files are responsible for (almost
exactly) 80% of defects.

However, our paper also shows that this definition is too sim-
plistic. Focussing on 20% of the files only makes practical sense
if all of the files required for a given fix reside within that set of
files. In this paper we have shown that, for every multi-file fix that
involves a file that is frequently fixed, it invariably also involves
a multitude of files that are only fixed very infrequently (and are
thus not part of this supposedly critical 20%).

There is an apparent contradiction between the findings from
change impact analysis (that a small change can havewide-ranging
impacts across the system), and fault distribution analysis which
suggests that the majority of bug fixes are restricted to a small
cohort of files. We conjecture that these can be reconciled by the
fact that a relatively small cohort of files does in fact need to be
changed frequently as part of bug fixes. However, this is not be-
cause they are especially buggy, but because they are especially
well connected within the system, and need to be updated to ac-
commodate changes to, for example, data structures or interface
adaptations that are routinely carried out as part of bug fixes.

Our most pressing goal in our future work is to establish exper-
imentally whether this conjecture is indeed true. This will require
a more focussed selection of subject systems, along with a hand-
curated database of defects (such as the Defects4J bug database
[15]) that separate out the ‘core’ fixes from the adaptations within
the system to accomodate these fixes. Once we have this data, we
would investigate the following specific hypotheses: (1) files that

ESEM ’18, October 11–12, 2018, Oulu, Finland Neil Walkinshaw and Leandro Minku

belong to a fix but do not contain the ‘core‘ are more likely to be-
long to the top quintile of fixed files, and (2) are more likely to be
highly connected than files that contain the genuine defects.

There is also the question of how important the choice of lan-
guage of design paradigm and the choice of file types is. Our sub-
sequent analysis has shown that there are potentially significant
differences between languages, and we have not investigated the
relationships that arise if we focus entirely on source code. In our
future work, we will replicate this experiment, but will focus on a
larger selection of C and C++ projects (since these are particularly
distinctive according to Figure 7), with the additional aim of ex-
ploring the change in relationship if we choose to focus on source
code files alone.

REFERENCES
[1] Mithun Acharya and Brian Robinson. 2011. Practical change impact analysis

based on static program slicing for industrial software systems. In Proceedings
of the 33rd International Conference on Software Engineering. ACM, 746–755.

[2] Lada A Adamic and Bernardo A Huberman. 2002. Zipf’s law and the Internet.
Glottometrics 3, 1 (2002), 143–150.

[3] Carina Andersson and Per Runeson. 2007. A replicated quantitative analysis of
fault distributions in complex software systems. IEEE Transactions on Software
Engineering 33, 5 (2007), 273–286.

[4] Steve Ballmer. 2002. Connecting with Customers. (2002).
[5] Albert-László Barabási and Eric Bonabeau. 2003. Scale-free networks. Scientific

american 288, 5 (2003), 60–69.
[6] Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden Smith, Matt

Visser, Hayden Melton, and Ewan Tempero. 2006. Understanding the shape of
Java software. In ACM Sigplan Notices, Vol. 41. ACM, 397–412.

[7] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and
Premkumar Devanbu. 2009. Putting it all together: Using socio-technical net-
works to predict failures. In Software Reliability Engineering, 2009. ISSRE’09. 20th
International Symposium on. IEEE, 109–119.

[8] Barry Boehm and Victor R Basili. 2005. Software defect reduction top 10 list.
Foundations of empirical software engineering: the legacy of Victor R. Basili 426,
37 (2005).

[9] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law
distributions in empirical data. SIAM review 51, 4 (2009), 661–703.

[10] Giulio Concas,MicheleMarchesi, AlessandroMurgia, Roberto Tonelli, and Ivana
Turnu. 2011. On the distribution of bugs in the eclipse system. IEEE Transactions
on Software Engineering 37, 6 (2011), 872–877.

[11] Norman E. Fenton and Niclas Ohlsson. 2000. Quantitative analysis of faults and
failures in a complex software system. IEEE Transactions on Software engineering
26, 8 (2000), 797–814.

[12] Xavier Gabaix. 1999. Zipf’s law for cities: an explanation. The Quarterly journal
of economics 114, 3 (1999), 739–767.

[13] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2012.
A systematic literature review on fault prediction performance in software en-
gineering. IEEE Transactions on Software Engineering 38, 6 (2012), 1276–1304.

[14] Tracy Hall, David Bowes, Gernot Liebchen, and Paul Wernick. 2010. Evaluat-
ing three approaches to extracting fault data from software change reposito-
ries. In International Conference on Product Focused Software Process Improvement.
Springer, 107–115.

[15] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 2014 International Symposium on Software Testing and Analysis. ACM,
437–440.

[16] Chih-Song Kuo and Chin-Yu Huang. 2010. A study of applying the bounded
Generalized Pareto distribution to the analysis of software fault distribution. In
Industrial Engineering and Engineering Management (IEEM), 2010 IEEE Interna-
tional Conference on. IEEE, 611–615.

[17] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. 2013. A survey of code-
based change impact analysis techniques. Software Testing, Verification and Re-
liability 23, 8 (2013), 613–646.

[18] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. 2008. Power
laws in software. ACM Transactions on Software Engineering and Methodology
(TOSEM) 18, 1 (2008), 2.

[19] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineer-
ing 22, 6 (2017), 3219–3253.

[20] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-
sures to predict system defect density. In Proceedings of the 27th international

conference on Software engineering. ACM, 284–292.
[21] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig, and

Brendan Murphy. 2010. Change bursts as defect predictors. In Software Reliabil-
ity Engineering (ISSRE), 2010 IEEE 21st International Symposium on. IEEE, 309–
318.

[22] Mark EJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Con-
temporary physics 46, 5 (2005), 323–351.

[23] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. 2005. Predicting the
location and number of faults in large software systems. IEEE Transactions on
Software Engineering 31, 4 (2005), 340–355.

[24] V Pareto. 1896. Cours d\’economie politique. (1896).
[25] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. 2006. Predicting

component failures at design time. In Proceedings of the 2006 ACM/IEEE interna-
tional symposium on Empirical software engineering. ACM, 18–27.

[26] Erik Steiner and U.S. Census Bureau. 2010. Spatial History Project. Stanford
University. https://github.com/cestastanford/historical-us--populations

[27] Sergi Valverde, R Ferrer Cancho, and Richard V Sole. 2002. Scale-free networks
from optimal design. EPL (Europhysics Letters) 60, 4 (2002), 512.

[28] Xiao Fan Wang and Guanrong Chen. 2003. Complex networks: small-world,
scale-free and beyond. IEEE circuits and systems magazine 3, 1 (2003), 6–20.

[29] Richard Wheeldon and Steve Counsell. 2003. Power law distributions in class
relationships. In Source Code Analysis and Manipulation, 2003. Proceedings. Third
IEEE International Workshop on. IEEE, 45–54.

[30] Yuming Zhou, Baowen Xu, and Hareton Leung. 2010. On the ability of complex-
ity metrics to predict fault-prone classes in object-oriented systems. Journal of
Systems and Software 83, 4 (2010), 660–674.

https://github.com/cestastanford/historical-us--populations

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Power Laws and the Pareto Principle
	2.2 Previous Results from Software Engineering
	2.3 Motivation

	3 Empirical Study
	3.1 Subject Systems
	3.2 Methodology

	4 Results
	5 Discussion
	5.1 The Role of Language and Paradigm
	5.2 A Link to Connectedness?
	5.3 Potential Implications for Defect Prediction

	6 Threats to Validity
	6.1 Internal Threats
	6.2 External Threats
	6.3 Construct Threats

	7 Conclusions and Future Work
	References

