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ABSTRACT 
 

Heat exposure impairs human blood pressure control and markedly reduces 

tolerance to a simulated hemorrhagic challenge. Inspiratory resistance breathing 

enhances blood pressure control and improves tolerance during simulated hemorrhage 

in normothermic individuals.  However, it is unknown if similar improvements occur with 

this maneuver in heat stress conditions. This study tested the hypothesis that inspiratory 

resistance breathing improves tolerance to simulated hemorrhage in individuals with 

elevated internal temperatures. On 2 separate days, 8 subjects performed a simulated 

hemorrhage challenge (lower body negative pressure, LBNP) to pre-syncope following 

an increase in internal temperature of 1.3±0.1 °C. During one trial subjects breathed 

through an inspiratory impedance device set at 0 cmH20 of resistance (Sham), while on 

a subsequent day the device was set at -7 cmH20 of resistance (ITD). Tolerance was 

quantified as cumulative stress index (CSI). Subjects were more tolerant to the LBNP 

challenge during the ITD protocol as indicated by a >30% larger CSI (Sham: 520±306 

mmHg × min; Experimental: 682±324 mmHg × min, P<0.01). These data indicate that 

inspiratory resistance breathing modestly improves tolerance to a simulated progressive 

hemorrhagic challenge during heat stress.  

 

 

 

 

 

 



New Findings 

What is the central question of this study? 

Does inspiratory resistance breathing improve tolerance to simulated hemorrhage in 

individuals with elevated internal temperatures? 

What is the main finding and its importance? 

The main finding of this study is that inspiratory resistance breathing modestly improves 

tolerance to a simulated progressive hemorrhagic challenge during heat stress.  These 

findings demonstrate a scenario in which exploitation of the respiratory pump can 

ameliorate serious conditions related to systemic hypotension.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

Military operatives deployed in hot environments, especially desert climates, are 

exposed to considerable heat stress (Welles et al., 2013). A combination of elevated 

environmental temperatures, increased metabolic heat production due to demanding 

physical activity, and clothing/body armor can cause internal temperatures of soldiers to 

rise by more than 2 °C (Buller et al., 2008).  According to the U.S. Armed Forces Health 

Surveillance Branch, heat-related health conditions remain a significant threat to the 

safety and operational effectiveness of military personnel (Armed Forces Health 

Surveillance Bureau, 2017). One medical complication that has been well documented 

in hyperthermic conditions is compromised blood pressure control (C. G. Crandall & 

Gonzalez-Alonso, 2010; C. G. Crandall & Wilson, 2015; Horvath & Botelho, 1949; Keller 

et al., 2009; Lind, Leithead, & McNicol, 1968; Nunneley & Maldonado, 1983; Schlader, 

Wilson, & Crandall, 2016; Shvartz & Meyerstein, 1970; Wilson, Cui, Zhang, & Crandall, 

2006; Yamazaki, Monji, Sogabe, & Sone, 2000). This results in an overwhelmingly 

earlier incidence of cerebral hypoperfusion and syncope during a hemorrhagic injury, 

relative to if the individual was normothermic (Bain, Nybo, & Ainslie, 2015; Wilson et al., 

2006).  Because hemorrhage from major trauma is the leading cause of death on the 

battlefield (Eastridge et al., 2011), the combination of heat stress and hemorrhage 

increases the lethality of a battle injury.  

Prior investigations have demonstrated the effectiveness of inspiratory 

impedance as a resuscitative countermeasure against organ hypoperfusion during 

hemorrhage in normothermic conditions (Lurie et al., 2004; Sigurdsson et al., 2006; 

Yannopoulos, Metzger, et al., 2006; Yannopoulos, McKnite, Metzger, & Lurie, 2006). 



Mechanistically, inspiratory impedance decreases intrathoracic pressure, which 

enhances venous return and increases cardiac output and mean arterial pressure 

(Convertino et al., 2004).  Inspiratory impedance can be achieved with an impedance 

threshold device (ITD).  This device is composed of a rubber valve and mechanical 

spring which induces negative pressure at -7 mmH2O during inspiration (Convertino et 

al., 2011).   

In a normothermic state, the ITD improves tolerance to a simulated hemorrhagic 

challenge (Kay, Sprick, & Rickards, 2017; Rickards, Ryan, Cooke, Lurie, & Convertino, 

2007). In swine, the ITD is effective in the rescue of hypotension due to heat stroke 

(Voelckel, Yannopoulos, Zielinski, McKnite, & Lurie, 2008). It is unknown whether this 

device is equally effective in improving tolerance to a hemorrhagic challenge in heat 

stressed humans. Therefore, the purpose of this investigation was to examine the effect 

of inspiratory impedance on tolerance to a hemorrhagic challenge in a hyperthermic 

state. We hypothesized that utilizing the ITD would better preserve blood pressure and 

improve tolerance to simulated hemorrhage in heat stressed humans. 

 

MATERIALS AND METHODS  

 

Subjects and Ethical Approval 

 Eight subjects (7 males) that were not taking any medications, normotensive, 

non-smokers, and free of any known cardiovascular, metabolic, or neurological 

diseases volunteered to participate in this study.  Descriptive characteristics (mean ± 

SD age) include: age, 29 ± 5 years; height, 180 ± 5 cm; and weight, 75 ± 4 kg.  Subjects 



were instructed to refrain from alcohol, caffeine, and exercise for 24 hours prior to the 

experimental trials.  All subjects were informed of the purpose, procedures, and risks of 

the study before providing written informed consent.  The protocol and consent were 

approved by the Institutional Review Boards at the University of Texas Southwestern 

Medical Center and Texas Health Presbyterian Hospital Dallas (IRB # 102007-013).  

This research project conformed to the Declaration of Helsinki. 

 

Instrumentation 

 In order to assess internal temperature (Tcore), subjects swallowed an ingestible 

telemetry pill (HQ Inc., Palmetto, FL, USA) approximately 2 hr prior to start of data 

collection.  Also prior to data collection, euhydration was confirmed with a urine specific 

gravity measurement of less than 1.025 utilizing a digital refractometer (Atago, Japan).  

Heart rate was measured from an electrocardiogram (ECG, Agilent, Munich, Germany) 

that was interfaced with a cardiotachometer (1000 Hz sampling rate, CWE, Ardmore, 

PA, USA). Non-invasive arterial blood pressure was continuously measured utilizing 

photoplethysomography (Finometer Pro, FMS, Amsterdam, Netherlands).  Arterial blood 

pressure was also obtained via auscultation of the brachial artery (SunTech Mecical 

Instruments, Raleigh, NC, USA).  Respiratory rate and the partial pressure of end-tidal 

carbon dioxide (EtCO2) were acquired from a nasal cannula connected to a 

capnography (9004 Capnocheck Plus; Smiths Medical Internaltion Ltd, Watford, Herts, 

UK).   

 Heat stress was imposed passively using a tube-lined water perfusion suit, which 

covered the entire skin surface area except for the feet, hands, one forearm, and the 



head (Allen-Vanguard Technologies Inc., Ottawa, ON, Canada). Laser Doppler flux 

(LDF; an index of skin blood flow) was measured on the skin of the exposed dorsal left 

forearm via a laser-Doppler probe (Periflux413; Perimed, North Royalton, OH, USA) 

connected to a laser-Doppler flowmeter (Periflux5010; Perimed). All measurements 

were obtained from participants lying in the supine position on a patient bed.    

 

Lower body negative pressure (LBNP) tolerance testing 

 A LBNP tolerance test is a commonly utilized experimental technique to simulate 

a hemorrhage challenge (Cooke, Ryan, & Convertino, 2004; Hinojosa-Laborde et al., 

2014).  In this model, blood is redistributed to the lower extremities by application of 

sub-atmospheric pressure to the lower body, effectively reducing central venous 

pressure and venous return (i.e. central hypovolemia) (V. A. Convertino, 2014; Cooper 

& Hainsworth, 2001).  An incremental LBNP protocol was used to determine maximum 

tolerance.  This incremental protocol begins with applying 20 mmHg of negative 

pressure for 3 min, with increases of 10 mmHg of negative pressure every 3 min until 

test termination. Termination of LBNP was based on at least one of the following 

criteria: a) continued reports by the subject of feeling faint and/or nauseous; b) a rapid 

decline in blood pressure resulting in systolic blood pressure less than or equal to 80 

mmHg; and/or c) a relative bradycardia accompanied with narrowing of pulse pressure.   

 A cumulative stress index (CSI: mmHg*min) was used to quantify maximum 

tolerance to the progressive LBNP.  This index is determined mathematically by 

summing the product of the negative pressure and time, in minutes (or fraction of min), 



for each stage (e.g., 20 mmHg X 3 min + 30 mmHg X 3 min + 40 mmHg X 3 min, etc.) 

until test termination (Levine, Lane, Buckey, Friedman, & Blomqvist, 1991). 

 

Experimental protocol 

 Participants volunteered for two experimental trials separated by a minimum of 4 

days, with the experimental protocols for each subject initiated at the same time of day.  

All experimental trials were performed at an ambient room temperature of 22-23 °C.  

Day 1 was the control trial (SHAM) and day 2 was the ITD trial, utilizing ITD as a 

countermeasure.  The protocol dictated the need to identify tolerance with the SHAM 

trial first, and then to use this tolerance information for the ITD trial.  Therefore, the 

experimental days were not randomized.  For both experimental days, following 

instrumentation, subjects first rested in the supine position for 30 min while 34 °C water 

perfused the tube-lined suits.  Following normothermic baseline measurements, whole-

body heating commenced by circulating 48-50 °C water in the suit until an increase in 

Tcore of approximately 1.3 °C was observed.  Upon reaching the desired change in Tcore, 

the temperature of the water perfusing the suit slightly reduced to maintain Tcore at the 

desired elevated temperature and prevent a further increase in Tcore. The ITD face mask 

was then applied and the graded LBNP testing protocol initiated.   

 During LBNP in the SHAM trial, no inspiratory resistance (0 cmH20) was engaged 

through the ITD device.  For the experimental trial, the same facemask was used 

throughout but with the ITD device engaged (at 7 cmH2O) at the start of the LBNP stage 

immediately prior to that at which pre-syncope occurred in the SHAM trial.   

 



Data analysis 

 All experimental data were sampled at 1000 Hz on a 16-channel data acquisition 

system (Biopac, Santa Barbara, CA, USA).  Analysis of the cardiovascular, respiratory, 

and thermoregulatory variables were determined from the final min of normothermic 

baseline, the final min of the whole-body heating conditions prior to LBNP, and the final 

20 sec of respective LBNP stages. Mean arterial pressure (MAP) acquired from brachial 

auscultation was derived using an adjusted mathematical equation to account for the 

proportional changes of time spent in systole and diastole as a function of heart rate 

(Moran et al., 1995).  These values were analyzed and reported for steady-state 

conditions, i.e. normothermic baseline and hyperthermia prior to LBNP.  Finometer MAP 

was analyzed throughout LBNP due to the dynamic nature of the cardiovascular 

measurements induced by this stress.  Cutaneous vasodilation was indexed as 

cutaneous vascular conductance (CVC = arbitrary units/MAP) and was analyzed based 

on relative changes during the heat stress period just prior to the onset of LBNP.   

 Cardiovascular and respiratory responses during LBNP were compared between 

SHAM and ITD trials at three distinct time points.  T3 indicates the point at which 

presyncope occurred, resulting in LBNP test termination, during the SHAM trial.  That 

same time point (i.e., from the onset of LBNP) was identified for the ITD trial, which 

reflects the maximal common duration of LBNP for both trials.  T2 represents the time 

point one completed LBNP stage prior to T3 in both SHAM and ITD trials.  Notably, the 

ITD device was engaged at the start of this LBNP stage during the ITD trial.  T1 

represents two full LBNP stages prior to T3 in both trials.  For the one subject that 
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achieved presyncope during the SHAM trial before completing two full LBNP stages, 

data for T1 were analyzed from the period of time just prior to the initiation of LBNP. 

 

Statistical Analysis 

 All values are presented as mean ± standard deviation (SD).  A paired-t test was 

utilized to compare the differences in CSI between the two conditions (SHAM vs ITD).  

A two-way repeated measures ANOVA (condition and time) was used to compare the 

cardiovascular and respiratory variables at T1, T2, and T3 between SHAM and ITD 

trials.  If a significant interaction was observed, post-hoc multiple comparisons were 

performed utilizing paired t-tests with a Sidak adjustment.  Paired t-tests were 

performed on baseline measurements and responses to whole-body heating of the two 

experimental trials.  All analysis and graphing was conducted using GraphPad Prism 6 

(GraphPad Software Inc., La Jolla, CA USA).  Statistical significance was accepted at 

P<0.05. 

 

RESULTS 

 The cardiovascular and Tcore measurements at normothermic baseline and 

hyperthermic conditions are presented in Table 1.  No differences were identified for 

any of the variables (HR, MAP, respiratory rate, Tcore) between trials at these two 

steady-state conditions.  Increases of internal temperature induced by whole-body 

heating prior to LBNP testing were similar (1.3±0.1 °C; P=0.59) between the two 

experimental trials.  This observation held consistent with the results of the ANOVA 



analysis, demonstrating no differences in Tcore responses at T1, T2, and T3 between 

conditions (interaction, P=0.73; condition, P=0.16; and time, P=0.13).  

 Maximum LBNP tolerance, expressed as CSI (Figure 1), improved during the 

ITD trial (SHAM: 521±306; ITD: 682±324 mmHg min, P=0.003).  A significant condition 

x time interaction was discovered for blood pressure (Figure 2, P<0.001).  Post-hoc 

multiple comparisons revealed greater MAP for the ITD experimental trial at T2 (SHAM: 

62 ± 9; ITD: 68 ± 10 mmHg, P=0.02) and T3 (SHAM: 50 ± 9; ITD: 66 ± 12 mmHg, 

P<0.0001).  Likewise, the interaction for HR was also significant (Figure 3, P=0.023).  

Post-hoc testing for HR revealed higher heart rates at T3 in the ITD trial (SHAM: 124 ± 

33; ITD: 136 ± 19 bpm, P=0.01).   

ETCO2 decreased from T1 to T3 in both SHAM and ITD conditions (SHAM: T1 

33 ± 7, T2 31 ± 8, T3 28 ± 9 mmHg; ITD: T1 32 ± 8, T2 29 ± 8, T3 28 ± 9; main effect of 

time, P=0.02); however, there was no difference in ETCO2 between conditions 

(P=0.52). No differences in respiration rate (RR) were evident between conditions 

(P=0.23), but RR tended to decrease over time (SHAM: T1, 15 ± 5, T2, 14 ± 4, T3, 15 ± 

7 mmHg; ITD: T1, 15 ± 3, T2, 11 ± 4, T3, 12 ± 5; P=0.08), an observation that appears 

to have been driven by a decline in RR primarily in the ITD trial.  CVC was lower for 

each of the ITD trials at each of the assessed periods (Figure 4, P<0.01)  

DISCUSSION 

The major new finding of this study is that inspiratory resistance breathing 

improves tolerance to simulated hemorrhage in individuals with elevated internal 

temperatures.  On average, individuals in this study had a ~31% improvement in CSI, 

an index for maximal tolerance to a progressive LBNP test.  In all but one subject, 
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cardiovascular decompensation, i.e., hypotension and bradycardia, associated with 

progressive central hypovolemia was delayed during a subsequent experimental trial 

utilizing the ITD device.   

The data from this study agree with findings from previous studies demonstrating 

the beneficial use of an ITD device during hypotensive conditions, including 

hemorrhagic shock (Convertino, Ratliff, et al., 2005; Convertino et al., 2007; Victor A. 

Convertino, Cooke, & Lurie, 2005; Marino et al., 2004; Melby, Lu, Sakaguchi, Zook, & 

Benditt, 2007; Rickards et al., 2007).  Notably, these prior investigations were 

conducted in normothermic humans.  Previously, the effects of an ITD on hypotension 

during hyperthermia have only been evaluated in swine (Voelckel et al., 2008).  In that 

study, it was revealed that in swine experiencing hypotension caused by heat stroke, 

blood pressure was immediately increased with the utilization of an ITD device.  The 

current study extends this finding and demonstrates that in hyperthermic humans facing 

a hemorrhagic insult (simulated via LBNP), the use of an ITD device preserves arterial 

blood pressure, thereby delaying the precipitous drop in blood pressure that attend 

presyncope. Thus, the data from this study provides experimental evidence extending 

the improvements of blood pressure control with inspiratory impedance in hyperthermic 

conditions to humans.   

The ITD counteracts progressive central hypovolemia by decreasing intrathoracic 

pressure. This leads to greater venous return, stroke volume, cardiac output, and 

ultimately higher arterial blood pressure (V. A. Convertino et al., 2004, 2007).  In 

hyperthermic conditions, thermoregulatory demands for heat dissipation reduces central 

blood volume due to profound cutaneous vasodilation (C. G. Crandall et al., 2008, 2012; 



C. G. Crandall & Gonzalez-Alonso, 2010; L. B. Rowell, Brengelmann, & Murray, 1969; 

L. B. Rowell, 1986).  The present study attempted to investigate the interplay of this 

physiological response by measuring cutaneous vascular conductance – an index of 

cutaneous vasodilation.  The data reveal differences in cutaneous vascular 

conductance between the sham and ITD trials.  However, these differences need to be 

interpreted with caution as the analysis reveals differences in cutaneous vascular 

conductance two stages (T1) before test termination in the SHAM trial.  On the account 

that the ITD device was not engaged until one stage (T2) before test termination of the 

SHAM trial, these differences cannot be fully explained by the use of the ITD.  Future 

studies are needed to clarify the previously mentioned cutaneous vasodilatory 

responses.   

The present study represents an exploratory, proof of concept study on the 

feasibility of improving tolerance to a hemorrhagic challenge during heat stress with 

inspiratory resistance breathing.  Lacking in this study are mechanistic measurements 

that may give insight into how inspiratory impedance prolongs tolerance to simulated 

hemorrhage while heat stressed. Rickards et al. provided experimental evidence that 

the ITD induced larger oscillations in cerebral blood flow velocity that may explain the 

improvements in LBNP tolerance time (Rickards et al., 2007).  In the present study, 

indices of cerebral blood flow were not measured.  However, at the frequency of 

respiration, greater oscillations in spectral power of blood pressure (SHAM: 0.04 ± 0.03; 

ITD: 0.26 ± 0.17 mmHg2; P<0.01) and laser Doppler flux (SHAM: 0.25 ± 0.35; ITD: 0.67 

± 0.66 arbitrary units2; P=0.02) were uncovered during the ITD trial (AcqKnowledge 

4.2.0, power spectral analysis). However, the interpretation of these data should be 



made with the understanding that laser-Doppler indices of skin blood flow were obtained 

from an exposed forearm wherein skin temperature was not clamped.  Responses at 

this site may be different from oscillations in skin blood flow from the ~85% of the body 

surface under the water perfused suit.  Therefore, the physiological responses for 

majority of the cutaneous vasculature (i.e., that under the water perfused suit) may not 

represent responses from skin blood flow outside the water perfused suit.   

The extent to which these and other mechanisms (e.g., preserved central blood 

volume, enhanced venous return, improved cardiac filling, and/or maintained cerebral 

perfusion), are responsible for the ITD-induced improvements in tolerance need to be 

further investigated.  Furthermore, on the account of the expanding body of evidence 

suggesting cerebral hypoperfusion does not play as pivotal of a role in the tolerance to 

central hypovolemia (Ainslie, Hoiland, & Bailey, 2016; Jeong, Shibata, Levine, & Zhang, 

2012; Kay et al., 2017; Lucas et al., 2017; Lucas, Pearson, Schlader, & Crandall, 2013) 

as previously thought, future research directed at elucidating the specific physiological 

processes that improve tolerance to hemorrhage during heat stress is highly warranted.    

A conspicuous constraint of this investigation was that the study design 

prevented the randomization of the order of the experimental trails.  In order to ascertain 

the proper time to engage the ITD device, tolerance testing without the device must first 

be conducted.  An attempt to address this inherent methodological constraint was the 

blinding of the participants from the order of experiments.  Despite this, the lack of 

randomization may confound the interpretation of the findings in the form of a training 

effect.  However, given that the improvements in tolerance during the ITD trials were 

nearly ubiquitous, and prior studies have demonstrated reliable reproducibility of 
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tolerance to LBNP in normothermia and hyperthermia (V. A. Convertino, 2001; V. A. 

Convertino & Sather, 2000; Howden, Tranfield, Lightfoot, Brown, & Swaine, 2001; 

Schlader & Crandall, 2014), even in trials separated by at least 72 hours (Lightfoot, 

Hilton, & Fortney, 1991), the limitations of this study design restriction appears to be 

minimal.     

Concerning the clinical applications of this study, the data demonstrate a 

scenario in which exploitation of the respiratory pump can ameliorate serious conditions 

related to systemic hypotension.  These findings indicate the feasibility that an ITD 

device may be effective in improving life support of the hyperthermic soldier who has a 

hemorrhagic injury.  In conditions that lead to hyperthermia (e.g., prolonged physical 

activity under environmental heat stress), the use of inspiratory impedance may reduce 

the incidence of permanent injury or death of the injured soldier by prolonging the 

treatment window for the soldier to receive medical care.   

CONCLUSION 

In summary, the results of this study extend previous finding by demonstrating 

that inspiratory resistance breathing improves tolerance to a simulated hemorrhage 

challenge in humans with an elevated internal temperature.  In addition, the data 

suggest that this is accomplished by maintaining arterial blood pressure when using an 

ITD during heat stress and progressive LBNP, thus delaying the onset of presyncope.  

Future research is needed to evaluate the physiological mechanism responsible for the 

improved tolerance.    
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Table 1.  Cardiovascular and temperature responses during passive whole-body 

heating trial. 

 
 NT Baseline HT (pre-LBNP) 
 SHAM ITD SHAM ITD 
Heart Rate 
(bpm) 64 ± 7 66 ± 12 98 ± 10 98 ± 7 

MAP (mmHg) 91 ± 7 85 ± 13 93 ± 9 87 ± 8 
Respiratory 
Rate 
(breaths/min) 

18 ± 2 17 ± 2 17 ± 3 17 ± 4 

Tcore (°C) 37.0 ± 0.2 36.8 ± 0.2 38.3 ± 0.2 38.1 ± 0.3 
NT: normothermic; HT: hyperthermic; MAP: mean arterial pressure; LBNP: lower body 
negative pressure;  ITD: impedance threshed device; Tcore: internal temperature.  
Comparison of all variables for SHAM vs. ITD revealed p>0.05. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 



 

Figure 1.  

Group averaged (±SD) and individual data showing cumulative stress index as a 

quantitative measure of maximal tolerance to a graded lower-body negative pressure 

test for the SHAM and impedance threshold device (ITD) experimental trials. 

 

Figure 2. 

Group averaged (±SD) data showing mean arterial pressure at four distinct time points 

during LBNP.  T4, presyncope for the ITD trial.  T3, presyncope for the SHAM trial and 

the corresponding identical time point for the ITD trail; T2, one full LBNP stage prior to 

T3 – activation of the impedance threshold device (ITD); and T1, two full LBNP stages 

prior to T3. *Significantly different than SHAM trial (P<0.05). 

 

Figure 3. 

Group averaged (±SD) data showing HR at four distinct time points during LBNP.  T4, 

presyncope for the ITD trial.  T3, presyncope for the SHAM trial and the corresponding 

identical time point for the ITD trail; T2, one full LBNP stage prior to T3 – activation of 

the impedance threshold device (ITD); and T1, two full LBNP stages prior to T3. 

*Significantly different than SHAM trial (P<0.05). 

 

Figure 4. 

Group averaged (±SD) data showing cutaneous vascular conduction as percentages 

relative to the value just prior to initiation of LBNP at four distinct time points during 



LBNP.  T4, presyncope for the ITD trial.  T3, presyncope for the SHAM trial and the 

corresponding identical time point for the ITD trail; T2, one full LBNP stage prior to T3 – 

activation of the impedance threshold device (ITD); and T1, two full LBNP stages prior 

to T3. *Significantly different than SHAM trial (P<0.05). 
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