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Abstract. Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway 

tracks that distribute the wheel loads from the rails to the track support system. Over a period 

of time, the concrete sleepers age and deteriorate in addition to experiencing various types of 

static and dynamic loading conditions, which are attributable to train operations. In many 

cases, structural cracks can develop within the sleepers due to high intensity impact loads or 

due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan 

due to excessive negative bending. These cracks can cause broken sleepers and sometimes 

called ‘center bound’ problem in railway lines. This paper is the world first to present an 

application of non-destructive acoustic emission technology for damage detection in railway 

concrete sleepers. It presents experimental investigations in order to detect center-bound cracks 

in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point 

bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure 

mode, when the loads are not transferred uniformly to the ballast support. It is observed that 

AE sensing provides an accurate means for detecting the location and magnitude of cracks in 

sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the 

reliability-based damage detection of the sleepers. 

1. Introduction 

Railway concrete sleepers are a safety-critical component of the railway track system as shown in 

Figure1; therefore, it is essential to conduct a thorough investigation into its structural behaviours for 

safe operational purposes as well as guiding development for the future [1-4]. There is an existing lack 

of insight into the use of non-destructive technologies (NDTs) within the industry. Increasing demands 

placed onto track structures have pressed the need for a more adequate monitoring system. The 

integration of NDTs into the development of ‘smart tracks’ can reduce the risks imposed by any 

damage to the structure.  The subsequent knowledge gained by track engineers would be valuable in 

future maintenance procedures and railway operations. Current detection methods, including visual 

observation, fail to record damage in real-time and they are not efficient enough for significant 

demands to reduce track possessions.  
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Acoustic emission technology has been a useful application in many other fields of engineering, thus 

its application of these principles to railway sleepers is highly potential.  By investigating the 

competence of these technologies as a means to collect real-time damage information, it could 

eradicate the aforementioned flaws in detection leading to safer railway tracks whilst minimising long-

term maintenance costs. This study will determine the adequacy of AE sensing for the evaluation of 

static loading responses of sleepers.  In addition, it will establish an engineering assessment and 

guideline for structural health monitoring of railway sleepers that may be used for practical 

application.  

 
Figure 1. Railway sleeper [5]. 

2. Acoustic Emission Sensing 

The first studies using AE were conducted in the 1950s, and a number of different ideas regarding its 

most useful application, whether commercially or industrially came about. The subsequent decades 

saw a rapid advance in the technology and by the 1970s it was an integral method of structural 

monitoring. Crack initiation and propagation is the stress source of interest with concrete railway 

sleepers. When a load is applied by rolling stock, instigating crack growth, a signal is emitted from the 

tip of the crack identifying its location and growth rate. A passing train may interfere with the AE 

signals producing disturbances known as extraneous noise. Extraneous noise is identifiable by its 

distinct frequency spectra therefore making it possible to determine the relevant AE signals [6]. 

Additionally, modern technology addresses this by using the master-slave technique that uses ‘guard 

sensors’ to eliminate extraneous noise [7]. 

 

 
Figure 2. Acoustic emission technigue. 
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2.1. Application 

AE sensing is particularly useful in circumstances that require long-term observation. Once the AE 

technology has been installed it can be left to perform structural health monitoring without physical 

maintenance, this is an important advantage to distinguish it as a feasible method. In 2012, repair 

works to the Hammersmith flyover in London used over 400 AE sensors for the detection of tendon 

failure [8]. The AE system was only partially effective because the sensors were installed decades 

after the initial construction, so the already defected structure was taken as the base condition [9]. 

Implementation on railway structures would have the same flaw, as damage to the sleeper may only be 

identified from the moment of installation, even if failure had already occurred. However, the data is 

still valuable as the sleepers with the most progressive cracking can be identified.  

2.2. Kaiser effect  

The Kaiser effect describes the phenomenon that AEs may only become detectable once the previous 

load has been exceeded. Joseph Kaiser observed that under elastic behaviour, a material produces 

virtually no detectable emission waves until the previous maximum stress level is obtained [10]. This 

phenomenon is therefore very relevant for cyclic loading of rail tracks. Other investigations have also 

indicated that a cyclic load will not influence the AE results until the previous maximum stress level is 

achieved [7]. 

2.3. Equipment  

AE measurements were carried out during the mechanical tests of all the specimen types to monitor 

and evaluate damage evolution during loading. The AE signals were detected and recorded using a 4-

channel DAQ AE system procured from Physical Acoustics Corporation (PAC, now Mistras). The 

data acquisition was performed using “AE-Win” software. The AE signals were detected using 

wideband PAC-WD piezoelectric acoustic emission transducers operating at frequency range of 20-

1000kHz. The data acquisition system used was a custom-built AE and vibration acquisition system 

capable of continuously recording the complete waveform for periods of few seconds. The custom-

built acquisition system consisted of the following components: 

• A computer with a customised data logging software. 

• An Agilent U2531A 4 channel data acquisition card. 

• A 4 channel decoupling hub. 

• A MISTRAS Wide bandwidth AE amplifier provided by PAC. 

• A PAC model 2/4/6 preamplifier operating in the frequency range of 20-1200 kHz. 

• A wideband PAC-WD piezoelectric AE sensor operating in the frequency range of 20-1000 

kHz. 

3. Experimental Method 

CEMEX have generously supplied four sleepers for, these are manufactured to industry specifications 

as used throughout the UK. For the sleeper to meet Eurocode standards a Schmidt Hammer test will be 

conducted to check the concrete strength is sufficient to comply with BS EN 13230-1 that requires a 

minimum concrete strength of C45/55 MPa [11]. For this study, a static load is applied at mid span to 

cause negative 3-point bending cracks and failure as shown in Figure 3. The 3-point bending 

behaviour will stimulate the center-bound problems associated with poorly-maintained ballast beds. 

When the sleeper is not evenly distributing load into the ballast, it will generate negative bending to 

the structure. As shown in Figure 3, locations of acoustic emission sensors have been strategically 

placed to determine the location criticality of the sensors and to evaluate the sensing signal clarity. In 

addition, Schmidt Hammer has been used to estimate in situ concrete strength of existing specimens. 
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Figure 3. Negative bending test setup. 

 

 
Figure 4. Non-destructive compressive strength correlation. 

4. Material Testing 
CEMEX specifies a 28-day design strength of 110 MPa. This shows a good correlation with the data 

extracted from the Schmidt Hammer. The results are very similar for each of the four sleepers with all 

strength values within 0.5 MPa of each other, demonstrating good manufacturing control. The strength 

values are then used to make numerical calculations of the ultimate loads and to compare them with 

the stress values obtained as shown in Figure 4. It is clear in Figure 4 that the compressive strength can 

be linearly extrapolated. Note that these comparative results are based on 100x100x100 mm
3
 cube 

compression tests in accordance with British Standards. 

5. Acoustic Emission Signals 

A load-deflection curve shows the elastic and plastic behaviour of the sleeper with the linear portion 

representing the elastic zone. When the curve reaches ultimate load substantial loss of tensile strength 

will occur. By overlaying the AE data, the damage events picked up by the sensors correlate with the 

transition into the plastic zone (when concrete cracks/crushes, steel wires yield, and sleeper plastically 

deforms) and its nonlinear behaviour thereafter. It is expected that the most substantial AE energy hits 

will occur at the ultimate load, and provided the sleepers still have tensile capacity, significant activity 

may continue after failure. By controlling the rate of deflection, it can be plotted against time to give 

meaningful results, but controlling this rate can be challenging which gives some minor 

inconsistencies. Deflection was recorded using a linear variable differential transformer (LVDT) under 

the mid span. 

    Figure 5 shows the elastic zone extends to approximately 60 kN at which point the first crack 

occurs, a lower value than visual observations of 70 kN. Energy from the first crack event is 

negligible, thus it cannot be seen due to the magnitude of later events. The highest energy signal of 

31,600 joules takes place at the ultimate load of the specimen, 102 kN. Beyond this point, the steel 

tendons assume the tensile load, allowing further deformation to take place, hence AE activity 

continues. At 78 kN post failure, another substantial event leads to a dense concentration of high 

energy hits up to 16,500 joules. There is a significant loss of tendon prestressed force and concrete 
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disintegration here. The CEMEX G44 sleeper is a relatively brittle design with just six tendons making 

the behaviour less predictable. 

 

 
 

Figure 5. Load-deflection against acoustic emission energy under ultimate static loading. 

 

    Figure 6 shows the incremental loading pattern from the crack progression test. In comparison to the 

failure curve, the energy hits are very low, but it does confirm the observed initial cracking in Figure 5 

at 53 kN. Activity prior to the initial surface cracks corresponds to minor internal cracks and 

extraneous noise. Due to the Kaiser effect, when the sleeper is unloaded then reloaded back to the 

force required for the initial crack, there is no AE activity, so it is possible to put these in a single time 

sequence. Cracking alters the flexibility of the sleeper, hence why for 1 mm deflection the load is 6 kN 

greater. Beyond the first crack, the slope of the curve indicates the transition into the plastic zone, 

where regular AE activity is maintained. Comparing the crack progression to the AE energy hits, there 

is a strong correlation between them, supporting the competence of using AE in damage detection. 

There are clearly peaks and troughs in the energy sequence that display when any major cracking 

events that are taking place. 

 

 
 

Figure 6. Load-deflection against acoustic emission energy under cyclic loading. 
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Figure 7. Sensing location criticality. 

 

    As shown in Figure 7, the exact location of damage can be found based on the time taken for a 

signal to arrive at each sensor, this method is called linear localisation. Separating the sensors into 

individual channels means that by identifying the sensor corresponding to an energy event, the damage 

location can be spatially approximated. The first crack is identified by sensor 4 at the mid span, this is 

expected since the first crack is flexural. It matches well with the load deflection curve as it marks the 

transition in the plastic zone. Sensor 2 – located at the rail seat, records a high energy hit just after the 

initial cracking, which represents spalling of the concrete at the supports. At the ultimate load, sensors 

3 and 4 record high energy hits, as expected, since they are located nearest the mid span. 

6. Conclusions 

The experimental investigation into acoustic emission probe has successfully guided its structural 

health monitoring capabilities. With limited existing research into this field, this paper realises the 

potential of self-monitoring systems, providing a positive case for their implementation on track 

structures. The study has also presented many challenges that remain before a functional monitoring 

system can be feasibly applied to a railway track. However, our results are the first to show that the 

AE sensing technology is effective in the detection of initial crack events. The energy jump induced 

by these cracks correlate well with other variable parameters. Due to the brittle nature of the 

specimens tested in this study, AE is unsuccessful in anticipating when failure is about to occur, which 

suggests that the failure mechanisms for these sleepers should be reassessed. The data obtained 

through AE confirms the behaviour of concrete sleepers under flexural bending. The deflection curve 

provides a simple method of real-time damage detection, because vertical displacement recordings can 

identify changes in structural integrity. 
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