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Abstract 22 

Cubital tunnel syndrome is the most prevalent neuropathy of the ulnar nerve and its aetiology 23 

is controversial. Potential replacement materials should display similar viscoelastic 24 

properties. The purpose of this study was to assess the feasibility and merit of quantifying the 25 

frequency-dependent viscoelastic properties of proximal and distal sections of the human 26 

ulnar nerve. Four ulnar nerves (n = 4) were dissected from the elbows of human cadavers and 27 

sectioned at the level of the cubital tunnel into proximal and distal sections. These eight 28 

sections of the ulnar nerve were sinusoidally loaded to induce stresses between 0.05 - 0.27 29 

MPa and the viscoelastic properties were measured between 0.5 - 24 Hz using Dynamic 30 

Mechanical Analysis. The nerves were found to exhibit frequency-dependent viscoelastic 31 

behaviour throughout this frequency range. The median storage moduli of the proximal 32 

nerves ranged between 7.03 and 8.18 MPa, and 8.85 to 10.19 MPa for distal nerves, over the 33 

frequency-sweep tested. The median loss moduli of the proximal nerves ranged between 0.46 34 

and 0.81 MPa and between 0.51 - 0.80 MPa for distal nerves. Ulnar nerves display frequency 35 

dependency viscoelasticity. Such characterisation is feasible with potential applications to 36 

suitable nerve grafts.  37 

Keywords: Dynamic Mechanical Analysis; Frequency; Human; Ulnar nerve; Viscoelasticity. 38 

  39 



3 
 

1. Introduction 40 

The ulnar nerve travels through the upper limb and cubital tunnel transmitting sensation from 41 

the skin overlying the hypothenar eminence, the corresponding area of skin posteriorly, the 42 

little finger and half of the ring finger as well as supplying motor function to numerous 43 

muscles of the forearm and hand [1]. Cubital tunnel syndrome is the most prevalent 44 

neuropathy of the ulnar nerve and the second commonest neuropathy of the upper limb [2]. 45 

Its aetiology is controversial. Originally, it was thought to be due to a compressive or 46 

entrapment neuropathy [3–5]. However, more recently, it has been thought to be due to nerve 47 

strain [2,6–9]. 48 

Studies have found that at certain levels of strain (6-16%), blood flow to the nerve and 49 

conduction of impulses by the nerve were reduced or even arrested [10–13]. In terms of nerve 50 

conduction, it has been shown that a 6% increased nerve strain for longer than an hour led to 51 

70% decreased conduction velocity while a 12% increase in strain led to completely arrested 52 

nerve conduction in a study on rabbit nerves [13]. The nerve conduction returned once the 53 

above strains were removed [13]. In terms of blood flow, a 50% reduction was induced by 54 

8% strain in a rat’s sciatic nerve while an 80% reduction in blood flow was caused by 15% 55 

nerve strain [12]. Blood flow was completely blocked by 16% strain in a rabbit sciatic nerve 56 

[11]. Therefore, for adequate nerve function, nerve strain must be minimised. It has 57 

previously been shown that during normal motion of the elbow and shoulder joints, strain is 58 

applied dynamically to the ulnar nerve to  levels that could result in both impaired conduction 59 

and perfusion [8,14,15]. 60 

Human peripheral nerves are known to exhibit viscoelastic properties [16] and this has been 61 

demonstrated for the human ulnar nerve by performing in vitro stress relaxation tests [17]. 62 

Unlike creep and stress relaxation, Dynamic Mechanical Analysis (DMA) is a dynamic 63 
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testing method used to determine the viscoelastic properties of a material or multi-component 64 

structure [18]. DMA involves the application of an oscillating force to a specimen and 65 

measuring the out-of-phase displacement [19]. This gives time-dependent strain, ε(t) 66 

(equation 1), developed in response to the induced time-dependent stress, σ(t), and the 67 

complex (dynamic) modulus, E*(ω) [20]: 68 

𝜀(𝑡) =  
𝜎(𝑡)

𝐸∗(𝜔)
    (1) 69 

The viscoelasticity of a material can be characterised in terms of storage and loss moduli [20–70 

22]. The storage modulus (E’) characterises the ability of the material to store energy that is 71 

then available for elastic recoil; while, the loss modulus (E’’) characterises the material’s 72 

ability to dissipate energy. The storage and loss moduli are related to E* and the phase angle 73 

(δ) by equation 2 and 3, respectively [20,22,23]:  74 

|𝐸∗| =  √𝐸′2 + 𝐸′′2   (2)  75 

𝛿 =  tan−1 (
𝐸′′

𝐸′ )   (3) 76 

To the authors’ knowledge, the understanding of frequency-dependent viscoelastic properties 77 

of human ulnar nerve is currently absent. As the ulnar nerve is viscoelastic, and exposed to 78 

dynamic loading, its frequency-dependency requires characterisation. Furthermore, any 79 

potential replacement materials (allograft, synthetic grafts, etc.) should display similar 80 

viscoelastic properties. Moreover, frequency-dependent viscoelastic properties are important 81 

because if these measurements are used to infer the in vivo strain, then the strain itself would 82 

be highly sensitive to the rate of loading: of importance given the dynamic loading to which 83 

the ulnar nerve is exposed in vivo. Additionally, mechanical behaviour of viscoelastic 84 

biomaterials may differ considerably between physiological and sub-physiological loading 85 

rates [24]. 86 
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The aim of this study was to assess the feasibility and merit of quantifying the frequency-87 

dependent viscoelastic properties of proximal and distal sections of the human ulnar nerve. 88 

Furthermore, this study subsequently compared the ulnar nerve frequency-dependency 89 

viscoelastic properties of storage and loss moduli proximally and distally to the cubital 90 

tunnel. Given the limited availability of fresh human ulnar nerves for mechanical testing, 91 

embalmed human nerves have been used. 92 

 93 

2. Materials and Methods 94 

2.1 Cadaver Information and Ulnar Nerve Specimen Preparation 95 

Four ulnar nerves were dissected and surgically removed from four elbows of three whole, 96 

intact embalmed cadavers (Table 1). Ethical approval was obtained from the Human Tissue 97 

Authority according to the Human Tissue Act (2004) under the University of Birmingham 98 

license (number 12236) with the donors consenting to the use of their cadavers for education 99 

and research. All tissues were obtained following the Declaration of Helsinki ethical 100 

principles.  101 

The elbows were first marked and incised to expose the nerves. Sutures were then placed at 102 

approximately 20 mm or 30 mm (due to anatomical positioning). Biomechanical tests 103 

consisting of flexion and extension of the elbow at varying degrees of shoulder abduction 104 

were performed as part of a separate study [15]. The nerves were removed from the cadaver 105 

then wrapped and soaked in a damping down solution containing H2O, Poly(ethylene glycol) 106 

8000, biocleanse (Fisher Scientific, Loughborough, UK) and Industrial Methylated Spirits 107 

(IMS) (VWR International Ltd, Leighton Buzzard, UK). Next, the nerves were double 108 

bagged as whole nerves. Each nerve was approximately 20-30 cm in length. The nerves were 109 

then sectioned (Figure 1), at the level of the cubital tunnel into proximal and distal sections. 110 
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Three nerves were divided into 40 mm sections, (approximately 20 mm of a gauge and two 111 

10 mm shoulder sections used to grip the nerve for mechanical testing) and one nerve was 112 

divided into 50 mm sections, (approximately 30 mm of a gauge and two 10 mm shoulder 113 

sections). The difference in length was to maintain consistent suture positioning from a 114 

previous study [15]. Specimens were hydrated with the aforementioned damping down 115 

solution. Branches were removed with the nerves. The nerves were then mechanically tested 116 

the following day at room temperature. 117 

 118 

2.2 Preliminary tests 119 

BOSE Electroforce DMA Grips (Bose Corporation, ElectroForce Systems Group, Minnesota, 120 

USA), were used to grip 10 mm on either side of the nerve. Preliminary ramp tests were 121 

conducted on two specimens from one cadaver (taken 10 cm proximal to and 10 cm distal to 122 

the cubital tunnel) of approximately 20 mm of a gauge of proximal and distal sections of all 123 

nerves. These samples were extended at a linear translational rate of 0.05 mm/s in accordance 124 

with a previous study [17] to characterise the quasi-static stress-strain curves of the human 125 

nerves (ulnar proximal and distal). Tensile tests were performed at an initial ramp up strain of 126 

10% [17]. A Vernier calliper was used to measure height and diameter of each nerve 127 

specimen. As the nerves were approximately elliptical in cross-sectional area, three sagittal 128 

(a) and three coronal (b) radii were measured and averaged, respectively, to calculate the 129 

elliptical cross-sectional area (Ae) using equation 4 [17]. 130 

𝐴𝑒 =  𝜋𝑎𝑏    (4)  
131 

Force versus displacement of proximal and distal nerves showed differences in stiffness 132 

(gradient of the line in N/mm) between the two nerve specimens (see Figure 2). When 133 

comparing a linear region (often termed post-transitional), but avoiding any potential end-134 
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stage plastic deformation, the proximal human nerve was stiffer than the distal nerve (see 135 

Figure 2). Calculating the stiffness of each nerve (as the force/extension within this linear 136 

range) led to values of 15.00 N/mm for the proximal human nerve and 8.07 N/mm for the 137 

distal nerve. Therefore, the DMA protocol devised included comparison of proximal and 138 

distal samples (Section 2.3). 139 

Figures 3a and 3b show stress versus strain of the proximal and distal human nerves. For the 140 

proximal nerve, 2% (0.02) strain was equivalent to 0.04 MPa stress while 6% (0.06) strain 141 

was equivalent to 0.15 MPa of stress (see Figure 3a). However, 2% (0.02) strain, of the distal 142 

nerve, was equivalent to 0.05 MPa while 6% (0.06) strain was equivalent to 0.27 MPa of 143 

stress (see Figure 3b).  144 

At approximately 7-8% strain, the distal nerve began to demonstrate signs of damage, as 
145 

evidenced by a plateau of the induced stress (see Figure 3b), and may be associated with 
146 

plastic deformation of the nerve and/or rupture. This plateau could mean that the 
147 

microstructure of the nerve is rupturing. Therefore, the distal nerve’s values of stress and 
148 

strain were chosen to guide the DMA testing to avoid rupture in the actual experiment. 
149 

 
150 

2.3: Dynamic Mechanical Analysis (DMA) 151 

The viscoelastic properties of the nerve sections were characterised using a Bose 152 

ElectroForce 3200 testing machine running Bose WinTest 4.1 DMA software (Bose 153 

Corporation, ElectroForce Systems Group, Minnesota, USA). DMA has previously been used 154 

to quantify the storage and loss properties  of a variety of biological tissues [22,25–28] and 155 

orthopaedic implants [18,29]. 156 

For DMA, each nerve was sinusoidally loaded to induce stresses between 0.05 MPa 
157 

(equivalent to 2% strain of the distal nerve stress-strain curve; Figure 3) and 0.27 MPa. 2% 
158 
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strain was chosen as the lower strain boundary to mimic the nerve in vivo conditions [30–32]. 
159 

As the elliptical area of the nerve varied, the applied force was calculated for each individual 
160 

nerve specimen and the individual force ranges were applied to the individual specimens. 
161 

Thus, the induced sinusoidal stress was consistent for all samples, varying from a trough of 
162 

0.05 MPa to a peak of 0.27 MPa. Preliminary data (section 2.2), of the distal nerve (Figure 3), 
163 

demonstrated that 6% strain was equivalent to 0.27 MPa of stress (see equation 5 where σ is 
164 

stress, F is the applied force and Ae is the area of an ellipse). 
165 

𝐹 = 𝜎 𝐴𝑒   (5) 166 

A preload condition, at 1 Hz for 28 cycles, was applied before the frequency sweep to ensure 
167 

no stress relaxation affected the frequency sweep. Next, the storage (E’) and loss (E’’) moduli 
168 

were evaluated for 9 frequencies (0.5, 1, 1.5, 2, 5, 10, 15, 20 and 24 Hz). E’ and E’’ were 
169 

calculated using the WinTest DMA software. Following the application of the oscillating 
170 

force, the out-of-phase displacement response is measured [19]. By performing a Fast Fourier 
171 

Transform (FFT) of the sinusoidal load (F) and displacement (d) for each frequency, the 
172 

magnitudes of the force (F*), magnitude of the displacement (d*), the phase lag (δ) and 
173 

frequency (f) were quantified [18]. F* and d* were used to calculate the dynamic stiffness 
174 

(k*) using equation 6.  
175 

𝑘∗  =  
𝐹∗

𝑑∗ (6) 176 

As the nerves were elliptical, a shape factor, Sc (equation 7), was used to calculate E’ and E’’ 
177 

of the nerves using equations 8 and 9, respectively. Equation 7 uses a standard shape for a 
178 

cylindrical sample [22,23], modified from a circular to an elliptical cross-section (see 
179 

equation 4); h refers to the gauge length (‘height’) of the specimen. The procedure used for 
180 

measuring the preliminary specimens, which is described above (Section 2.2), was used to 
181 

measure the specimens tested with DMA. The test gauge length of the specimens was 19.71 ± 
182 
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1.26 mm with the exception of BM 172-14 in which a gauge length of 27.83 ± 2.61 mm was 
183 

used as sutures were placed differently due to anatomical positioning.  
184 

𝑆𝑐  =  
𝜋

ℎ
(𝑎𝑏) (7) 185 

𝐸’ =
𝑘∗ 𝑐𝑜𝑠 𝛿

𝑆𝑐
 (8) 186 

𝐸’’ =
𝑘∗ 𝑠𝑖𝑛 𝛿 

𝑆𝑐
 (9) 187 

2.4 Data analysis 188 

All statistical analyses were performed using SigmaPlot 13.0 (SYSTAT, San Jose, CA, 189 

USA). To evaluate the frequency-dependent viscoelastic behaviour of the nerves, regression 190 

analysis, was performed for E’ and E’’. A logarithmic fit (equations 10 and 11) was found to 191 

best fit the data, and was evaluated in terms of the significance of the curve fit (p < 0.05) and 192 

goodness of fit (R2). 193 

𝐸′ = 𝐴 ln(𝑓) + 𝐵 (10) 194 

𝐸′′ = 𝐶 ln(𝑓) + 𝐷 (11) 195 

The 95% confidence intervals were calculated for proximal sections (n = 4) and distal 196 

sections (n = 4). For comparisons of all nerves, confidence intervals error bars were 197 

calculated with a sample size of 8 (n = 8). A Wilcoxon ranked sum test was performed to 198 

evaluate the significant difference of the E’, of the proximal and distal nerves for each 199 

frequency tested. This test was also performed to compare E’’ of the proximal and distal 200 

nerves at each frequency tested. All statistical results with p < 0.05 were considered 201 

significant. 202 

 203 
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3. Results 204 

The nerves displayed viscoelastic behaviour throughout the tested frequency range.  Figure 4 205 

shows the frequency dependent trend of the E’ of the proximal and distal sections of ulnar 206 

nerves. The median E’ of the proximal nerves ranged between 7.03 and 8.18 MPa for the 207 

different frequencies tested. This compared to the range of the distal nerves’ median E’ which 208 

was between 8.85 and 10.19 MPa for the same frequency range. The frequency-dependency 209 

of the E’ (equation 10) was determined empirical to follow a logarithmic fit (p < 0.05). No 210 

significant difference was observed for E’ between the proximal and distal sections across all 211 

frequencies tested (p > 0.05). 212 

Figure 4b shows the frequency dependent trend of the E’’ of the proximal and distal sections 213 

of ulnar nerves. The E’’ was lower than the E’ for both proximal and distal sections of nerves 214 

at all tested frequencies. Over the same frequency range tested, the median value for E’’ of 215 

the proximal nerve specimens ranged between 0.46 and 0.81 MPa while the range of median 216 

for the distal nerves was 0.51 and 0.80 MPa. No significant difference was observed between 217 

proximal and distal sections for E’’ (p > 0.05). With the exception of the E’’ for proximal 218 

BM 172-14, the frequency-dependency of the E’’ (equation 11) was empirically described by 219 

a logarithmic fit (Table 2). Individual fits for E’ and E’’ have been provided as 220 

supplementary data. 221 

Figure 5 shows the frequency dependent trend of the E’ of all proximal and distal sections of 222 

the ulnar nerves combined. The confidence interval error bars approximately halve between 223 

E’ and E’’ of proximal and distal nerves and E’ and E’’ of all nerves due to doubling of the 224 

sample size. Figure 5b shows the frequency dependent trend of the E’’ of all proximal and 225 

distal sections of the ulnar nerves combined. The E’’ was less than the E’ for all sections of 226 

the nerves combined at all tested frequencies. 227 
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 228 

4. Discussion 229 

This study has, for the first-time, demonstrated that human ulnar nerves display frequency-230 

dependent viscoelastic properties. Embalmed nerves have been used to demonstrate the 231 

feasibility of characterising their viscoelastic properties throughout a physiologically relevant 232 

frequency range. Except for BM 172-14 E’’, all nerves E’ and E’’ followed an empirical 233 

logarithmic frequency-dependent trend. Preliminary data, of the distal nerve, demonstrated 234 

that 6% strain was equivalent to 0.27 MPa of stress. This induced stress was selected as the 235 

maximum induced stress for dynamic mechanical analysis to ensure no rupture occurred 236 

under dynamic loading. The median storage moduli of the proximal nerves ranged between 237 

7.03 and 8.18 MPa for the different frequencies tested. This compared to the range of the 238 

distal nerves’ median storage modulus which was between 8.85 and 10.19 MPa for the same 239 

frequency range. Over the same frequency range, the median loss moduli of the proximal 240 

nerves ranged between 0.46 and 0.81 MPa while the range of the distal nerves’ median loss 241 

modulus was 0.51 and 0.80 MPa. In this preliminary study, no significant differences in 242 

viscoelasticity were identified between proximal and distal samples, however, this finding 243 

would require confirmation with a larger data set. A larger data set would also allow 244 

meaningful comparisons to assess of any gender differences in nerve viscoelasticity.  245 

No consensus exists regarding the critical limit of elongation with various studies ranging 246 

from 6% to 100% [16]. From the preliminary test of the distal nerve, the nerve began to 247 

rupture at approximately 7-8% strain; this can be seen by a plateau of the induced stress with 248 

increased strain. This maximum stress (0.27 MPa) at 6% strain was used to ensure no 249 

rupturing occurred during DMA while the stress at 2% strain (0.05 MPa) was used to ensure 250 

the nerve specimens were always under tension. A comparison was undertaken to investigate 251 
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whether the strain measured, from the preliminary ramp test, was comparable with the 252 

dynamic “estimated” strain measured by using the complex modulus and induced peak and 253 

trough stresses (Equation 1; see Table 3).   254 

The estimated strain at 0.05 MPa ranged from 0.65 ± 0.18% (0.5 Hz) to 0.56 ± 0.16% (24 Hz) 255 

while at 0.27 MPa the estimated strain ranged from 3.49 ± 0.99% (0.5 Hz) to 3.01 ± 0.85% 256 

(24 Hz). This estimated strain is different to the preliminary strain (2%, for 0.05 MPa, and 257 

6% for 0.27 MPa). This variation may be due to differences in testing procedure (quasi-static 258 

versus dynamic) or may also be due to the linearity assumption of using the complex 259 

modulus for the estimated strain [20]. In relation to in situ strain of human cadavers, 260 

numerous studies have quantified a wide range of strains; 0-17% [15], 0-14% [7], 29% [8], 9-261 

69% [33]. The values estimated in this present study are within these ranges; thus, the 262 

viscoelastic measurements provided are within a range which corresponds to existing 263 

measures of strain.  264 

To the authors’ knowledge, no other studies have investigated the viscoelastic properties 265 

(storage modulus and loss modulus) of the ulnar nerve through DMA. Therefore, there is no 266 

other literature with which to compare the current results directly. Ma et al. [17] investigated 267 

in vitro mechanical properties (tensile ramp and stress relaxation tests) of cadaveric nerves as 268 

well as measuring in vivo stress and deformation intraoperatively. At the same strain, the 269 

authors found that the in vivo induced stress was over seven times higher than the measured 270 

induced stress from the in vitro tests [17]. This highlights the different biomechanical 271 

properties of a nerve in situ, when it is surrounded by connective tissue and still has branches 272 

and blood vessels attached, to when it is removed from the body. Further, at 10% strain, Ma 273 

et al. [17] calculated that the in vitro induced stress, of the ulnar nerve, was approximately 274 

0.18-0.19 MPa while the present study calculated an induced stress of 0.37 MPa (distal) and 275 

0.43 MPa (proximal); approximately 2.0-2.4 times greater. This difference may be due to 276 
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multiple factors which includes the variability of human tissues, the inconsistency across the 277 

testing methodologies and storage/preservation techniques (fresh-frozen [17] versus 278 

embalmed (present study).  279 

A potential limitation of the present study is the use of embalmed nerves instead of fresh 280 

nerves. Embalmed cadavers were the only type available to use at the time of testing. It is 281 

unethical and, therefore, impossible to obtain live human nerves for in vitro mechanical 282 

testing. Thus, all intact nerves would have had some form of treatment. However, while there 283 

is a difference in absolute values between in situ biomechanical properties of unembalmed 284 

and embalmed ulnar nerves, a correlation in strain values has been previously demonstrated 285 

[34]. Another limitation of this study is that only 4 cadavers were available at the time of 286 

testing which likely explains the variability seen in the results of this study. This sample size 287 

might preclude generalizability. In this study, all samples were obtained from only 4 nerves; 288 

thus, a large difference in means would be necessary, and minimal standard deviation, to 289 

detect a difference with significance (p < 0.05) when comparing proximal and distal samples. 290 

However, our results are consistent with literature where appropriate, and furthermore, clear 291 

and consistent trends were obtained. 292 

In this current study, frequency-dependent viscoelasticity has been assessed over a range of 293 

0.5-24 Hz. While much of this range of frequencies may not appear physiological, 294 

characterisation of natural tissues should consider not only physiological rates of loading, but 295 

also loading associated with exercise, other daily activities, pathophysiology and/or trauma 296 

[23,24,35]. However, loading rates and equivalent frequencies associated with loading of the 297 

upper-limb/elbow, and of potential relevance to the ulnar nerve are less well understood than, 298 

say, for natural tissues such as for heart valves [35-37] or lower limbs [23,38,39]. However, 299 

there are upper-limb studies which suggest that frequencies of 20 repeats/min (0.33 Hz) are 300 

associated with discomfort levels within a physiological loading range [40], providing a 301 
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lower range for an experimental loading frequency. Whereas, hand-transmitted vibration for 302 

steering wheels have been calculated as having a weighting factor (from an ergonomic 303 

perspective) which is greatest between 6-25 Hz [41]; peaking at 12.5 Hz. The range of 304 

loading frequencies identified from the above studies (0.33 – 25 Hz) is consistent with the 305 

range assessed in our study (0.5 – 24 Hz). However, it is recognised there may be conditions 306 

which might expose the nerve to higher loading frequencies not assessed in our study, e.g.  307 

300 Hz [42]. Furthermore, the frequencies used to guide this current study are estimates, as 308 

the strain rate of the ulnar nerve itself associated with loading in vivo is not currently known. 309 

Thus, it is the trend across a range of frequencies (0.5 – 24 Hz) which is viewed as important 310 

in our current study, indicating a frequency range for future studies. 311 

Repeatable characterisation of samples with DMA requires a dynamic “steady-state” [38] to 312 

be reached using preconditioning loading cycles. For some natural soft tissues (e.g. articular 313 

cartilage) there is evidence that this can require in excess of 1000 loading cycles [43]. 314 

However, a minimal number of preconditioning cycles is recommended to avoid the risk of 315 

fatigue. In our current study, 28 preconditioning loading cycles were found to enable 316 

repeatable viscoelastic characterisation with DMA. Therefore, while 28 cycles may appear 317 

high as compared to quasi-static material’s characterisation studies (typically employing less 318 

than 10 preconditioning loading cycles), it is low as compared to preconditioning used for 319 

DMA of natural soft tissues.  320 

Nerves are non-homogenous in nature and structure varies throughout and between individual 321 

nerves [16], so the conclusions from this study should be extrapolated only with caution to 322 

other nerves, as the measurements may be specific to the ulnar nerve in the region of the 323 

cubital tunnel.  However, determining the viscoelastic properties of nerves is crucial for 324 

choosing suitable nerve grafts, either in manufacturing synthetic grafts or in checking the 325 

suitability of allografts. Knowledge of viscoelastic properties is also important in designing 326 
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and manufacturing  diagnostic, surgical and surgical training devices as well as for making 327 

computational models for research [25] and for the multi-physics modelling of nerves. 328 

Furthermore, a deeper understanding of the mechanical properties of peripheral nerves allows 329 

a greater appreciation of mechanisms of nerve injury and repair. It is hoped that such 330 

knowledge and equipment will lead to better patient outcomes. 331 

 332 

5. Conclusion 333 

The human ulnar nerves display frequency-dependency viscoelasticity. Both the median 334 

storage and loss moduli increased logarithmically as the frequency increased, with the storage 335 

modulus consistently greater than the loss modulus. Such characterisation is feasible with 336 

potential applications to suitable nerve grafts.   337 
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FIGURE CAPTIONS 500 

Figure 1: BM 171-14 left ulnar nerve with (a) Five sutures marked in red numbers. b) Left 501 

ulnar nerve with black arrow marking where it was sectioned at the cubital tunnel. c) Left 502 

ulnar nerve proximal (left) and distal (right) sections. One section had 30 mm of a gauge with 503 

10 mm for gripping at either end. d) Final nerve sections for testing (lengths are 504 

approximate). 505 

 506 

Figure 2: Force (N) versus displacement (mm) of proximal and distal human nerves.  507 

 508 

Figure 3: Stress versus strain of proximal (a) and distal (b) sections of the human ulnar 509 

nerve. Stress is measured in MPa while strain is dimensionless. Red lines show 2% and 6% 510 

(0.02 and 0.06) strain which corresponds to 0.05 and 0.27 MPa stress. 511 

 512 

Figure 4: The proximal and distal ulnar nerve frequency dependent (a) storage modulus (E’) 513 

(N/mm2) and (b) loss modulus (E’’) (N/mm2) (median ± 95% confidence intervals).  514 

 515 

Figure 5: The ulnar nerve (combined proximal and distal sections) frequency dependent (a) 516 

storage modulus (E’) (N/mm2) and (b) loss modulus (E’’) (N/mm2) (median ± 95% 517 

confidence intervals). 518 
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TABLES 520 

Table 1. Ulnar nerve specimens. 521 

Cadaver ID Donor Age Gender Side 

Cadaver 1 90 Male Right 

Cadaver 1 90 Male Left 

Cadaver 2 89 Male Left 

Cadaver 3 75 Female Left 

 522 

Table 2. Logarithmic regression of storage modulus (E’) and loss modulus (E’’) for proximal 523 

and distal sections of nerves. The units of coefficients (A and C) and constants (B and D) are 524 

N/mm2. Regression with a p < 0.05 were deemed significant. 525 

Specimen ID A B R² p value C D R² p value 

Proximal BM 176-14 0.32 7.80 0.98 <0.001 0.03 0.59 0.69 0.006 

Proximal BM 172-14 0.25 6.07 0.65 0.009 0.09 0.42 0.41 0.063 

Proximal BM 171-14 Left 0.33 9.99 0.98 <0.001 0.05 0.63 0.60 0.014 

Proximal BM 171-14 Right 0.26 6.54 0.96 <0.001 0.03 0.41 0.72 0.004 

Median of all proximal 0.29 7.17 0.98 <0.001 0.05 0.51 0.53 0.026 

Distal BM 176-14 0.33 7.94 0.97 <0.001 0.03 0.51 0.70 0.005 

Distal BM 172-14 0.30 5.42 0.97 <0.001 0.02 0.40 0.64 0.009 

Distal BM 171-14 Left 0.41 12.66 0.97 <0.001 0.10 0.73 0.68 0.006 

Distal BM 171-14 Right 0.35 10.12 0.98 <0.001 0.06 0.62 0.63 0.010 

Median of all distal 0.34 9.03 0.98 <0.001 0.04 0.67 0.67 0.007 

Median all proximal and distal 0.33 7.87 0.98 <0.001 0.04 0.54 0.51 0.031 

 526 

 527 

 528 
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Table 3. Estimated strain (%) calculated from the complex (dynamic) modulus (E*). The 529 

estimated strain is calculated at the maximum (0.27 MPa) and minimum (0.05 MPa) induced 530 

stress (median ± standard deviation).  531 

Frequency (Hz) E* (MPa) Strain at 0.05 MPa (%) Strain at 0.27 MPa (%) 

0.5 7.73 ± 2.39 0.65 ± 0.18 3.49 ± 0.99 

1 7.89 ± 2.46 0.63 ± 0.18 3.42 ± 0.97 

1.5 8.02 ± 2.48 0.62 ± 0.18 3.37 ± 0.96 

2 8.09 ± 2.50 0.62 ± 0.18 3.34 ± 0.95 

5 8.30 ± 2.53 0.60 ± 0.17 3.25 ± 0.92 

10 8.54 ± 2.54 0.59 ± 0.16 3.16 ± 0.85 

15 8.78 ± 2.58 0.57 ± 0.15 3.08 ± 0.81 

20 8.96 ± 2.48 0.56 ± 0.14 3.01 ± 0.77 

24 8.97 ± 2.70 0.56 ± 0.16 3.01 ± 0.85 

 532 
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