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Tension and resolution: Dynamic, evolving populatio ns of organelle genomes within 
plant cells  
Iain G. Johnston 
School of Biosciences, University of Birmingham, Birmingham, UK 
Birmingham Institute for Forest Research, University of Birmingham, Birmingham, UK 
 
Short summary  
 
Complex life is powered by mitochondria and plastids, which form dynamic, evolving 
populations within plant cells. Here we review the coupled physical and genetic behaviour 
of these vital populations, and hypothesise that an evolutionary tension can account for 
several dramatic differences between plant organelles and those in other kingdoms. 
 
Abstract  
 
Mitochondria and plastids form dynamic, evolving populations physically embedded in the 
fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the 
cell controls the genetic structure and the physical behaviour of its organelle populations. 
While the specific genes involved in these processes are gradually being revealed, the 
governing principles underlying this controlled behaviour remain poorly understood. As the 
genetic and physical dynamics of these organelles are central to bioenergetic performance 
and plant physiology, this challenges both fundamental biology and strategies to engineer 
better-performing plants. This article will review current knowledge of the physical and 
genetic behaviour of mitochondria and chloroplasts in plant cells. An overarching 
hypothesis is proposed, whereby organelles face a tension between genetic robustness 
and individual control and responsiveness, and different species resolve this tension in 
different ways. As plants are immobile and therefore subject to fluctuating environments, 
their organelles are proposed to favour individual responsiveness, sacrificing genetic 
robustness. Several notable features of plant organelle dynamics including mtDNA 
recombination and plastid/mitochondrial differences may be explained by this hypothesis. 
Finally, the article highlights how tools from quantitative and systems biology can help 
shed light on the plethora of open questions in this field. 
 
Introduction  
 
Bioenergetic organelles – mitochondria and chloroplasts – power complex life. 
Chloroplasts are responsible for photosynthesis, producing ATP in the light, fixing 120Pg 
(1Pg (petagram) = 1012 kg) of carbon each year [1], and providing the 2.46Pg per year of 
grain yields that feed the human world [2]. Mitochondria are responsible for plant 
respiration, releasing 60Pg of carbon per year [1] and producing ATP across plant tissues 
and environments. Together, these plant organelles are the fundamental biological actors 
in the biosphere’s energy and carbon budgets. 
 
Both mitochondria and plastids (the broader class of organelle of which chloroplasts are 
one differentiated type) have a rich and fascinating evolutionary heritage. Both are 
descended from free-living precursors. Absorbed by ancestral ‘host’ cells through 
endosymbiotic events [3, 4], these precursors retained aspects of their identity in what 
became a symbiotic relationship. Modern organelles retain genomes – mtDNA 
(mitochondrial DNA) and ptDNA (plastid DNA, contained in chloroplasts and in other 
plastid forms). Throughout evolutionary history, as endosymbionts have become 
organelles, the (originally full) complements of genes contained within these genomes 
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have been dramatically reduced [5, 6, 7, 8, 9] in an ongoing coevolutionary game that has 
defined the genesis and evolution of eukaryotic life [10, 11, 12, 8, 9]. 
 
Most organelle genes have either been transferred to the nucleus or lost completely. 
Generally, transfer to the nucleus sequesters these genes in a safer environment at the 
cost of reducing individual organellar control of gene expression [7, 13, 9]. The pressures 
leading to the loss or retention of specific organelle genes have been debated for decades 
[14, 15, 16, 17, 8, 18], supported by ongoing genetic studies elucidating the evolutionary 
dynamics of plant mtDNA [19, 20] and ptDNA [21, 22, 23, 24]. Striking experiments in 
tobacco have demonstrated that transfer of genes from the plastid to the nucleus is 
frequent enough to be explored over experimental timescales [25]. Large-scale genomic 
data and statistical modelling continue to shed quantitative light on these open questions 
[26, 18, 23, 27], exploiting the increasing volume of organelle genome data, with 235 
mitochondrial and 2716 chloroplast/plastid genomes labelled as ‘plants’ on NCBI at the 
time of writing [28]. 
 
Today, mitochondria and plastids exist in dynamic populations in plant and algal cells. The 
size of these cellular populations vary. Some algae (for example, Chlamydomonas 
reinhardtii) have only a single chloroplast per cell [29]; some plant cells contain many 
dozen tightly-packed chloroplasts [30]. Cellular populations of mitochondria also vary in 
number from single (for example, in the red alga Cyanidioschyzon merolae [31]) to the 
hundreds or thousands. Plastids in green tissues have usually differentiated into 
chloroplasts; in, for example, root tissue, they remain in undifferentiated forms [32, 33]. 
These organelles contain the reduced genomes that reflect their evolutionary heritage, 
maintained in dynamic populations inside cells [6, 34, 35]. In plant cells, there are often 
fewer mtDNA molecules than mitochondria, and more ptDNA molecules than plastids [36, 
37, 38]. The sets of genes retained by these organelles are of central importance to 
bioenergetics and eukaryotic life, dictating organelle responses to changing conditions [13, 
39]. As a result, the dynamics of these cellular populations have profound implications 
from the systematic study of plant evolution [40] to hybrid crop breeding [41, 42, 43, 44] 
and biotechnology [45]. 
 
These cellular populations of molecules are embedded in physical organelles, and their 
population structure and dynamics is tied to the behaviour of their compartments. Recent 
and ongoing developments of fluorescent reporter lines and microscopy tools and 
techniques have revealed the intricacy and dynamism of organelles within cells [46, 47]. 
Elegant work over the last two decades [48, 49, 50, 51, 37] has shed light on the rich 
dynamics of mitochondria in plant cells and the notable differences from the more-studied 
mammalian world. Plastids, particularly chloroplasts, exhibit highly dynamic physical 
responses to their environment, particularly light conditions [52, 53, 54]. The cell invests 
considerable resource in maintaining the motion and cellular structure of organelle 
populations, some reasons for which remain poorly understood [55]. 
 
Perturbations to the genetic and physical dynamics of organelles have dramatic 
consequences forplants, including compromising growth and photosynthesis and inducing 
male sterility. Despite this importance, multiscale questions remain open in our 
understanding of the control and maintenance of organelle populations. Systems biology 
and modelling approaches offer the opportunity to build theoretical foundations with which 
to understand these phenomena. Given the complex co-evolutionary history of organelles 
and plant cells, the paradigm of evolutionary systems biology (encompassing, amongst 
other topics, the evolution of regulatory systems and genotype-phenotype maps [56, 57]) 
is of particular pertinence. This review will attempt to synthesise existing knowledge of the 
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complex genetic and physical behaviour of plant organelles through the lens of 
evolutionary systems biology, highlighting where quantitative and interdisciplinary 
approaches can make progress understanding the evolved mechanisms governing these 
ubiquitous and vital systems. 
 
Organelle genomes in plant cells – general principl es 
 
Ref. [34], in reviewing the similarities and differences between mitochondria and 
chloroplasts, cautions that seeking single explanations for their similarities may be an 
‘oversimplistic trap’. However, keeping this risk in mind, it is tempting to consider what may 
constitute general pressures on these organelles. 
 
First, the reduced genomes of both modern mitochondria and plastids encode subsets of 
the products necessary for organelle function, including subunits of the organelles’ electron 
transport chains and ribosomes, tRNAs and rRNAs (Fig. 1). The remaining genes 
necessary for organelle function are encoded by the nucleus. Communication and co-
operation between organelles and the nucleus is therefore vital for bioenergetic 
functionality [8]. 
 
The genetic integrity of organelle genomes must be retained in the face of stochastic 
mutagenic events [58]. Some studies hypothesise that redox imbalance – a difference 
between pro-oxidant production and anti-oxidant defences – is an important source of DNA 
damage [59, 60]. As the bioenergetic activity of mitochondria and chloroplasts involves 
highly dynamic redox processes, organelle genomes may be particularly subject to 
mutational damage. This link is subject to some controversy: experiments manipulating the 
severity of oxidative damage have not induced dramatic changes in mitochondrial mutation 
rates [61], and detailed analysis of mtDNA mutational profiles during ageing suggest a 
dominant role for replicative errors or other mutagenic events over oxidative damage [62]. 
Regardless of the weighting of these different influences, the comparative lack of 
protective DNA packaging, and frequent replication of organelle genomes, makes 
organelle DNA highly susceptible to potential mutation. Muller’s ratchet – the ongoing 
buildup of deleterious mutation [63] – must be avoided in organelle inheritance. 
 
Cellular noise and organelle populations  
 
In addition to mutational damage, plant organelles also face physical and environmental 
challenges. These reduced genomes are physically embedded in their host organelles, in 
a noisy cellular world [66, 67]. Stochasticity due to low copy numbers and diffusive 
dynamics dominates many cellular processes, and cells’ ability to suppress the resulting 
fluctuations is subject to fundamental theoretical limits [68]. Cellular populations of 
organelles must be controlled to fulfil cellular energy needs against the background of this 
noisy world [69, 70, 71, 72, 73, 74]. 
 
Figure 1: Organelle genomes in Arabidopsis. (A) Circular mapping of mtDNA (NCBI NC 
037304), encoding some (not all) subunits of Complexes I-IV, ATP synthase, the 
mitochondrial ribosome, tRNAs and rRNAs. The genome is much larger than the familiar 
16kb mammalian mtDNA, with large non-coding regions. (B) Circular mapping of ptDNA 
(NCBI KX551970), encoding some (not all) subunits of photosystem complexes, electron 
transport chain proteins, the plastid ribosome, tRNAs and rRNAs. The genome is divided 
into large and small single copy regions (LSC and SSC) separated by inverted repeat 
regions IRA and IRB [64]. Figures adapted from output of OGDRAW [65]. 
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An important and general source of genetic and physical noise in organelle dynamics is 
the partitioning of organelles when cells divide. The variability associated with organelle 
partitioning at cell divisions has been an active area of research for decades [75]. Early 
results on algae plastids suggested that partitioning was rather stochastic and the 
consequent variability was mitigated by subsequent control of organelle replication [76]. 
Recent results have showed tighter-than-random control of the partitioning of some cellular 
components [70], with results on mitochondria compatible with stochastic models involving 
a binomial partitioning picture and subsequent replication control [72, 77]. Further, 
organelles are inherited uniparentally in most circumstances [12], requiring a physical 
mechanism to degrade or otherwise remove organelles from one parent between 
generations [78, 79]. 
 
Intracellular dynamics provide more noisy influences on organelle genome populations. 
Organelle genomes replicate, degrade, and may recombine within cells. These processes 
take place in the noisy physical environment of the cell and so contribute to stochasticity in 
organelle populations within and between cells. A common consideration here is the 
heteroplasmy of a cell: the proportion of mutated or foreign organelle genomes in the 
cellular population. Heteroplasmy may arise from mutation, inheritance of more than one 
organelle genotype, or synthetic introduction of foreign organelle DNA into a cell. 
 
Experimental observation of single-cell organelle genome populations over time is 
challenging. Pioneering work in single-celled organisms yielded results including the rates 
of genetic drift and recombination shaping heteroplasmic cellular populations of 
mitochondria in yeast [80] and the dynamics resulting from controlled chloroplast 
replication in algae [76]. Several experimental studies, referenced in sectionsbelow, have 
explored the genetic structure of organelle populations in plant cells at different 
developmental times, but time-course experiments on organelle genomes dynamics in 
plants remain limited. The dynamic study of heteroplasmic organelle populations remains 
more established in the animal kingdom, where mtDNA and heteroplasmy dynamics have 
been studied in mouse and other animal models, and human cells (reviewed in Ref. [81]). 
 
Due to these experimental challenge, a range of mathematical and modelling studies have 
explored the behaviour and principles shaping organelle genome populations (recently 
reviewed in Ref. [82]). 
 
These models usually picture organelle genome replication and degradation as random 
processes occuring with characteristic rates. A central question addressed by these 
models is whether random genetic drift explains the dynamics of heteroplasmic 
populations, or if there is evidence of differential selection on different organelle 
genotypes. To this end, classical results from population genetics [83] have been 
leveraged to predict the distribution of organelle heteroplasmy in cells under neutral drift 
[84]. This work is complemented and extended by stochastic modelling approaches 
considering well-mixed cellular populations of discrete organelles [71, 77, 85, 86, 87]. 
These approaches have, for example, helped identify tissue-specific selection shaping 
heteroplasmy over time [88], and characterised the increase in cell-to-cell heteroplasmy 
variance over time during development and ageing [77, 89]. This dynamic increase in 
variance has been shown to be independent of cellular attempts to control organelle 
content [71]. Modelling work has also revealed the quantitative capacity and limits of such 
cellular control [90]. 
 
Other modelling approaches impose some spatial structure within the model cell to explore 
the joint physical and genetic behaviour of mitochondrial genomes [91, 92, 93, 94]. These 
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studies consider the impact of mitochondrial fission and fusion on the genetic makeup of 
cellular populations. Insights from this work include that slower fission-fusion dynamics 
lead to faster increases in heteroplasmy variance [91, 92], and that selective mitochondrial 
fusion can act to diminish cellular heteroplasmy [93, 82]. The propagation of mutation load 
in development to pronounced organelle heterogeneity in developed organisms has also 
been quantitatively highlighted [94]. 
 
Much of this modelling work has focussed on the animal kingdom. While many of the 
principles may be expected to hold in plant cells, we will see below that several unique 
features of organelle populations mean that more theoretical study is needed in the plant 
kingdom. Stochastic modelling approaches specifically in plant systems include classical 
work on mtDNA recombination in plants [95, 96], which has revealed the influence of 
multiscale selection on the complex mtDNA populations of plant cells, and the dynamics 
and reversibility of mtDNA rearrangements due to recombination, described in more detail 
below. 
 
An evolutionary tension underlying organelle genome  evolution  
 
In addition to these sources of cellular noise, plants are immobile and must survive in 
fluctuating environments. Taken together, plant cells thus face the challenge of controlling 
the structure and function of organelle populations in the face of mutagens, physical noise, 
and fluctuating environments. 
 
How does this challenge manifest in the structure and dynamics of organelle populations? 
The CoRR (colocation for redox regulation of gene expression) hypothesis is an elegant 
theory that phrases the observed evolutionary dynamics of organelles in the language of 
this cellular control [97, 13]. CoRR suggests that expression of genes for protein subunits 
of energy-transducing enzymes must respond to physical environmental change by means 
of a direct and unconditional regulatory control – control exerted by change in the redox 
state of the corresponding gene product [13]. Here, genes are evolutionarily retained in 
organelle genomes because they allow organelles to directly regulate expression of key 
components of energetic pathways. Competing theories have questioned the mechanism 
by which a subset of organelle genes can exert control on the function of bioenergetic 
machinery, given that nuclear genes are invariably also required [60]. One possible answer 
is suggested by recent work showing that genes encoding more central subunits of the 
electron transport chain are more likely to be retained in mitochondria [18]. This 
observation suggests a picture where genes that ‘set the pace’ for complex assembly are 
retained by organelles [98]. For example, consider the case where an environmental 
challenge means that an individual mitochondrion requires a new copy of Complex I. If that 
mitochondrion can intrinsically express ‘core’ Complex I genes, these can nucleate 
assembly of the required new complex in situ using nuclear-expressed ‘periphery’ subunits 
imported from the cytosol. If mitochondria cannot intrinsically express genes, all core and 
periphery subunits must be expressed in the nucleus. Then, the original mitochondrion 
may obtain a new complex, but so may all other mitochondria in the cell, challenging 
regulation at the level of the individual organelle. 
 
An alternative redox-based hypothesis has been presented [60] where organelle DNA itself 
acts as a long-term redox sensor. Damage to DNA manifests as altered activity of the 
enzymes that the DNA encodes, which is sensed by the nucleus as a readout of redox 
poise. Other hypotheses for the retention of organelle genes include the difficulty of 
importing hydrophobic gene products to the organelle from the nucleus [16, 99], genetic 
code incompatibility, and others (compared in [18]). Importantly, many of these hypotheses 
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are neither incompatible nor exclusive: Bayesian model selection harnessing large-scale 
genomic data reveals support for several mechanisms acting together (hydrophobic, 
energetically central products of genes with high GC content are retained), partly 
explaining the ongoing debate in the field [18]. 
 
CoRR, redox sensing, and many other hypotheses suggest that retaining genes in 
organelle DNA enhances the ability of organelles to efficiently respond as individuals to 
fluctuating demands and/or conditions. If this general principle is true, a universal tension 
underlies organelle evolution (Fig. 2). This tension is between avoiding mutational damage 
and retaining organelle genes for regulatory and/or biophysical reasons. The diverse 
modern-day populations of organelle genomes in cells may then be viewed as a spectrum 
of resolutions to this consistent evolutionary tension. That different organisms have 
adopted different positions on this tradeoff – visualised as a Pareto front in Fig. 2C – may 
reflect the diversity of environmental and pressures across life. For example, mirroring 
dramatic gene loss in other parasitic taxa, parasitic plants like mistletoe have lost many 
mitochondrial genes [100] (indeed losing bioenergetic machinery completely rather than 
transferring to the nucleus [101]), suggesting a balancing towards genetic robustness and 
away from individual organelle control (Fig. 2A and C(i)). Conversely, free-living plants 
retain large organelle genomes (Fig. 1, Fig. 2B and C(ii)) but have evolved strategies to 
mitigate the consequent mutational damage (reviewed below). As we will see, these 
strategies come at a new set of costs, further increasing the complexity of organelle 
genomes across plant life. 
 
 
Figure 2: The hypothesised evolutionary tension in organelle genome structure.  
Bioenergetic organelles are chemically damaging environments. Transferring genes from 
organelle DNA to the nucleus embeds them in a safer environment at the cost of the ability 
of individual organelles to express genes or otherwise respond to local conditions. In (A), if 
a nuclear-encoded gene product is required by a specific organelle, it must be expressed 
then somehow transferred to that specific organelle. In (B), genes are encoded locally and 
can be expressed according to individual organellar priorities. Fluctuating environments 
place more variable demands on individual organelles, potentially favouring situations 
towards (B). (C) A Pareto front reflecting this tradeoff. Organisms can (i) retain fewer genes 
in organelles, increasing genetic robustness (due to nuclear features including decreased 
exposure to potential mutagens, more protective packaging, and higher-fidelity copying 
and proofreading machinery) at the cost of individual organelle control, or (ii) retain more 
genes in organelles, sacrificing genetic robustness to gain individual organelle control. 
 
Dynamics of organelle populations in plant cells  
 
This section will provide an overview of the major genetic and physical classes of 
dynamics elucidated to date in mitochondria and chloroplasts. Working at a mesoscopic 
level, it will focus on the possible ‘governing principles’ aligned with the cellular control of 
these organelle populations; some of these mesoscopic degrees of freedom are illustrated 
in Fig. 3. 
 
Genetic populations of mitochondria in plant cells  
 
We will begin with mitochondria. Several contrasts with the better-known mammalian 
mitochondrial system must be made clear from the outset. First, plant cells often contain 
fewer copies of mtDNA than mitochondria, so that some organelles contain no mtDNA [36, 
37, 38]. Second, despite a pervasive picture of circular mtDNA molecules, it is likely that 
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circular mtDNA is the exception rather than the rule in plant cells [35, 41]. Rather, mtDNA 
exists in a structurally diverse range of linear and branched linear forms, the contents of 
which map to a circular structure [37, 41]. The specific forms involved change during plant 
development and have been observed in mung bean to increase in complexity from simple 
linear molecules to large rosette structures [109]. Third, plant mtDNA exhibits a dramatic 
separation of scales in its evolutionary rates. In contrast to mammalian mtDNA, plant 
mtDNA has a nucleotide substitution rate (‘genic evolution’) far below the nuclear rate 
[110]. However, the rate of genome structure evolution (‘genomic evolution’) in plant 
mtDNA is high, with dramatic reorganisations, duplications, and other large-scale changes 
to mtDNA occuring rapidly and repeatedly through evolution [110, 111, 19, 20, 112]. By 
contrast with other taxa, substantial gene transfer has occured into plant mitochondria 
from the plastid and nucleus, to the extent where mitochondria have been described as a 
‘dumping ground’ for other genetic material [41]. Finally (and related to the above points), 
while recombination between mtDNA molecules in metazoa is thought to be very limited, 
indeed negligible [113], recombination between plant mtDNA molecules is frequent and 
common [114, 115, 116]. 
 
Mitochondrion Size Area �0.55 µm2 Arabidopsis [49]; area 0.5-0.8 µm2 spinach (#104802); volume 

0.1-1.6 µm3 spinach (#104801) 
Number 200-300 per cell Arabidopsis mesophyll [50]; 300 per cell young leaves, 400 per 

cell mature leaves Arabidopsis [36]; 500-600 per cell tobacco mesophyll 
protoplasts [102] 

Speed 0.6-3.4 µms−1 (up to 10 µms−1 ) Arabidopsis root hair [103]; 0.1-0.5 µms−1 maize 
BY-2 cells [104]  

Genome size 368kb Arabidopsis (NC_037304); 222kb rapeseed (NC_008285.1); 1685kb 
cucumber (NC_01600[4-6].1); 11.3Mb Silene conica [105], 16kb Chlamydomonas 
(NC_001638) 

Genome number 40 per cell young leaves, 280 per cell mature leaves Arabidopsis [36]; 50 per cell 
Chlamydomonas (#107478) 

Chloroplast Size Area 68 µm2 spinach (#104798); volume 31 µm3 spinach (#104800); volume 129 
µm3 Chlamydomonas (#110528) 

Number 100 per cell Arabidopsis mesophyll (#107029); 40-120 per cell Arabidopsis 
mesophyll protoplast [38]; 23 per cell palisade, 13 per cell spongy tissue poplar 
(#107028); 14-39 per cell Heterosigma akashiwo (#107032); 1 per cell 
Chlamydomonas (#107030) 

Speed 0.0015-0.0067 µms−1 Arabidopsis [106]; 0.005 µms−1 Adiantum capillus-veneris 
[107] 

Genome size 154kb Arabidopsis (NC 000932.1; #105918); 120-200 kb plants (#1022759, 
#111608); �130 genes plants (#106553); 204kb Chlamydomonas (NC_005353) 

Genome number �600 per cell Arabidopsis [38]; 224 per chloroplast pea (#107108); 310-320 per 
chloroplast wheat (#107107); 500-10000 per cell tobacco (#102758); 80 per cell 
Chlamydomonas (#107478)  

 
Table 1: Physical quantities pertinent to organelle  populations.  References starting 
with # are to the BioNumbers database [108]; references starting with NC are to annotated 
NCBI reference sequences. Species are given after values, including Arabidopsis 
(thaliana) and Chlamydomonas (reinhardtii). 
 
 
Figure 3: The multiscale biology of organelle popul ations.  Physical and genetic 
processes influence organelle populations in plant cells. Small arrows reflect individual 
physical processes, the rates of which are to some extent controlled by the cell but are 
also influenced by stochastic effects. Longer arrows give an idea of the complex 
dependencies and influences of these physical and genetic processes at intra- and inter-
cellular scales. We highlight two features in particular. (i) The coupling between physical 
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and genetic dynamics of organelles within cells. Physical dynamics contrain what genetic 
processes are possible: mtDNA recombination between molecules in different organelles, 
for example, requires colocalisation and fusion of those two organelles, and autophagy of 
an organelle removes genomes within it from the cellular population. (ii) The rates of these 
physical and genetic processes can be modified by selective pressures on cellular and 
organismal performance throughout evolution. 
 
This additional ‘genetic operator’ of recombination gives rise to considerable complexity in 
the structure of cellular populations of mtDNA [115]. In metazoa, the dominant cellular 
picture is a set of molecules all highly similar to one full mtDNA sequence, with a 
mutational ‘cloud’ of variations on this theme [117]. By contrast, plant cells contain a 
‘dynamic syncytium’ of differently structured mtDNA molecules in an evolving and 
interacting population [118, 50] with competition between multiple levels of selection 
(molecules, organelles, and cells) [95, 96]. 
 
The field of plant mitochondrial genetics contains several items of jargon that should be 
explained early. Different structures of mtDNA, perhaps involving rearrangements or 
truncations of genetic content, are called different mitotypes. Molecules of mtDNA with 
mitotypes that differ from the ‘full’ genome are called sublimons. These are referred to as 
existing substoichiometrically – that is, fewer sublimons exist than copies of the ‘main’ 
genome. Numbers of substoichiometric molecules are typically 10 − 1000 times lower than 
the number of main genome molecules [115]; in some cases, only a small fraction of plant 
cells contains sublimons [119]. Substoichiometric shifting [120] refers to the dynamic 
process by which the relative copy number of these sublimons changes, sometimes 
dramatically and over the course of one generation [121] (Fig. 4). This potential for rapid 
shifting can lead, for example, for one mitotype being amplified from rarity to dominance in 
a short period of time, perhaps during reproduction where organismal mtDNA copy 
numbers are low [122]. 
 
The dynamic structure of these cellular populations vary between species. Some Brassica 
species, for example, possess a relatively simple tripartite core system where a large 
mitotype coexists with two smaller mitotypes [123, 124]. Others, most notably in the Silene 
genus, partition their genome into dozens of different ‘chromosomes’ [125, 111]. This 
multichromosomal structure has been proposed as an adaptive feature facilitating a mode 
of sex to ameliorate mutational damage [111]. 
 
It has been postulated that the genetic content of the organelle population is partitioned 
into ‘master circles’ acting as complete repositories of genetic information, and ‘small 
circles’ containing a subset of genetic content [126, 123], although sequencing technology 
is revealing increasing nuance to this picture [127]. Analogous to this picture, it has been 
suggested that some mitochondria act as ‘genetic vaults’ [128] relatively insulated from 
DNA damage, while, in a division of labour, others are used, repaired but eventually 
abandoned, and replenished. 
 
How frequently does recombination occur between mitotypes? In Arabidopsis, 
nonhomologous end-joining and recombination activity is rapid [129]. ‘Recombination 
surveillance’ machinery has been identified (notably involving the genes Msh1 and RecA3) 
that controls the process of recombination in the mtDNA syncytium [130, 131, 129, 132]; 
when these are perturbed, recombination rates increase in Arabidopsis [133, 134]. It has 
been proposed that strand invasion occurs frequently and throughout the mtDNA genome 
in plants, but that Msh1 prevents this leading to DNA exchange for any repeat regions 
under a cutoff size [129]. Notably, RecA3 and Msh1 expression is enhanced during flower 
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development where substoichiometric shifting has high potential to induce genetic 
changes [131]. 
 
The influence of recombination may be responsible for the dramatic difference between 
genic andgenomic rates of plant mtDNA evolution. Recombination and associated repair 
allows the avoidance of deletrious mutations, but comes at the cost of facilitating large-
scale genomic changes, including the proliferation of selfish elements [12, 95, 96], and the 
risk of damaging structural changes to mtDNA. Ref. [112] proposes a more specific model 
for this link: DNA damage is converted into double-strand breaks, which are then fixed by 
various processes of varying accuracy (including non-homologous end joining and 
homologous recombination [130]). When an inaccurate fix induced change in a coding 
region, it is removed by selection, whereas large-scale changes can occur and propagate 
in non-coding regions. Such structural changes can yield dramatic phenotypes including 
cytoplasmic male sterility (see below). In general, then, recombination yields genetic 
advantages but necessitates cellular control mitigating against the proliferation of selfish 
elements and the appearance of damaging gene rearrangements. 
 
This ‘no free lunch’ tradeoff has been the focus of theoretical developments using 
stochastic modelling and simulation [95, 96], and has led to the proposal of an umbrella 
theory for organelle inheritance strategies: an unstable tension between allowing 
recombination and disallowing it [12]. The adoption of different strategies on this spectrum 
– from no recombination, through occasional leakage, to ongoing frequent recombination – 
is discussed in Ref. [132]. 
 
The control of replication and degradation of plant mtDNA remains poorly understood [135, 
136]. The rate of mtDNA replication, when it occurs during the cell cycle, and how it is 
controlled by the cell reflect open questions. Theory motivated by mammalian studies has 
proposed the ‘relaxed replication’ paradigm – where mtDNA replication is not tightly 
coupled to the cell cycle but is controlled to keep copy numbers somewhat stable [86, 87, 
71]. MtDNA degradation is at least in part linked to mitophagy, the autophagy of 
mitochondria, which is an active area of investigation in plants [137]. 
 
Specific factors involved in the replication, repair, and recombination of mtDNA (reviewed, 
for example, in Ref. [138]) include DNA polymerases PolIA and PolIB, the Twinkle 
helicase, topoisomerases GyrA, GyrB, and TopI, recombinases RECA2 and RECA3, 
ssDNA-binding SSB1, SSB2, OSB1, OSB3, WHY2, and ODB1, ligase LigI, and the 
notable case of MSH1 above. 
 
Physical populations of mitochondria in plant cells  
 
Mitochondria are actively transported along actin [139, 140] and undergo diffusive and 
streaming motion [48, 140, 48, 49, 50, 51, 37, 47] (illustrated in Fig. 5A-B). Why does the 
cell invest energy in moving mitochondria so rapidly through the cell? One class of 
reasons is surely metabolic. Positioning organelles near where their functionality is 
required allows rapid responses to changing demands – this is observed across taxa, in 
the positioning of functional mitochondria near to energy-demanding regions like the 
growing bud in yeast [141] and the synapses in axons [142]. Plant metabolic pathways 
involving components from different organelles, including the important example of 
photorespiration [143], are facilitated by proximity between organelles. Mitochondrial-
chloroplast colocalisation is commonly observed, notably in Arabidopsis, and has been 
linked to gradients of O2 and CO2 in the cell [48]. One key example of this positional 
control is that the relative position of these organelles is of central importance in the 
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emergence of Kranz anatomy in C4 plants [144]. An early evolutionary step [145] in the 
emergence of C4 photosynthesis is the relocation of mitochondria to inner bundle-sheath 
cell regions (near the vasculature) [146]. This positioning of organelles may allow the high 
levels of CO2 efflux from mitochondria during photorespiration to be re-fixed by adjacent 
chloroplasts [144]. 
 
 
Figure 4: Risks arising from organelle DNA recombin ation.  A simple hypothetical 
illustration of a recombining organelle system. + and − symbols denote illustrative 
population sizes. (A) Recombination facilitates a dynamic sharing of genetic information 
between, for example, a large molecular type and two smaller sublimons. This example 
illustrates the proliferation of selfish organelle DNA elements. In an extreme case, here 
one ‘selfish’ recombination product (2) contains only an origin of replication (OR) and 
limited additional content, and the other (3) contains more coding regions. The small 
selfish element will proliferate rapidly while the coding element disappears, and may come 
to dominate over the original element (1). (B) Stoichiometric shifting. Here a progenitor 
mitotype (1) exists with the tripartite system (2-3-4) existing substoichiometrically. One of 
the recombination products (3) contains a sterilising factor (white star). (i) Stoichiometric 
shifting can lead to the amplification of system (2-3-4) over mitotype (1), amplifying the 
sterilising factor and causing male sterility. Further shifting (ii) can reduce the presence of 
that recombination product, causing reversion to fertility. This is the model for CMS and 
reversion in common bean from Ref. [121]. 
 
In the context of this review, however, these physical behaviours also place strong bounds 
on the genetic dynamics of mtDNA in cells. MtDNA molecules are contained within their 
respective organelles in partly packaged structures called nucleoids [147, 50]. Clearly, the 
containment of mtDNA within organelles physically limits the genetic dynamics that can be 
supported. Molecules cannot recombine if they are not physically proximal; newly-
replicated molecules will be tightly localised to their ‘parent’; molecules cannot be 
degraded without physical colocalisation with autophagic machinery [148, 137, 149]. At cell 
divisions, the genetic makeup of daughter cell organelles is exclusively determined by the 
physical inheritance of partitioned content during division [72, 70, 85]. These physical-
genetic couplings necessitate a systems biology perspective to dissect. 
 
Plant mitochondria often exist as discrete, individual organelles (Fig. 5), generally forming 
less fused structures than in metazoa, where large reticulated networks are often 
observed. Notably, plant mitochondria are known for undergoing ‘kiss-and-run’ dynamics 
[150, 149, 151]. This motion involves mitochondria transiently meeting and fusing, then 
partitioning and physically diverging. 
 
Various stimuli, often associated with cell stress, alter the balance between fission 
(discrete mitochondrial elements) and fusion/expansion (elongated, expanded, or joined 
mitochondria). Observed across species, these include low oxygen [152], dark [153], 
physical and chemical cell death stimuli [154], and UV light [155]. Stress stimuli often 
induce mitochondrial clustering, expansion, and reduced motion. This behaviour may be 
linked with the activation of the permeability transition pore [154], a dramatic mechanism 
by which the mitochondrion releases its contents into the cytosol [156]. 
 
More extensive fusion is observed in particular circumstances in plants. One is in the 
Arabidopsis shoot apical meristem, where mitochondria form a reticulated ‘cage’ 
surrounding the nucleus prior to divisions [157]. Another is during Arabidopsis germination, 
where mitochondrial fusion is similarly transiently increased before subsequent 
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fragmentation [158]. Enhanced mitochondrial fusion is also observed in early protoplast 
culture in tobacco prior to cell divisions [102], including so-called ‘massive mitochondrial 
fusion’ associated with dedifferentiation [147]. ‘Condensation’ of mitochondria is also 
observed during barley pollen development [159, 160]. The perinuclear clustering of fused 
mitochondria observed in several of these situations is mirrored in other taxa; this has 
been suggested to optimise ATP supply to energy-demanding nuclear processes [157], or 
to optimise supply of nuclear-encoded components to mitochondria to facilitate biogenesis 
[158]. During germination-induced fusion in Arabidopsis, the stoichiometry of mtDNA 
sequences, and associated recombination activity, remains tightly controlled [158]. At the 
actual point of plant cell division, mitochondria are evenly distributed through the cytosol in 
tobacco [102] to assist in unbiased organelle partitioning between daughter cells [161]. 
 
Ref. [162] highlights that the Arabidopsis shoot apical meristem but not the root meristem 
or other tissues exhibit this cage-like fusion. The authors hypothesise that the SAM has a 
particular requirement for faithful partitioning of mtDNA to daughter cells because it is the 
ultimate source of the female gametes responsible for mtDNA heredity. The SAM-specific 
partitioning control thus preserves the stability of the mitochondrial population between 
generations. 
 
 
Figure 5: Dynamic populations of organelles in plan t cells.  Timelapse confocal 
microscopy illustrates dynamics of mitochondria and chloroplasts in the hypocotyl of a 7-
day mtGFP Arabidopsis [48] seedling. (A) Snapshot showing mitochondria (mtGFP, green), 
chloroplasts (autofluorescence, blue), and cell walls (propidium iodide stain, red). Scale 
bar is 10 µm. (B) Mitochondrial trajectories over 120s. Mitochondria exhibit a combination 
of directed and random, slow and fast motion, with dense and consistent movement 
around actin (i) and localised around chloroplasts (ii). (C) Chloroplast trajectories over 
120s. Chloroplast motion is slower than mitochondrial motion and has a greater random 
component, with limited directed movement in the absence of light responses. Trajectories 
captured using Mosaic Particle Tracker software [163]. 
 
Outside of these special cases, why is mitochondrial fusion in plants so limited compared 
to other taxa? Kiss-and-run dynamics afford fewer opportunities for sharing organelle 
content than existence in a highly fused state (concurrently, the authors of Ref. [157] 
propose that the ‘cage-like’ fusion they observe can facilitate increased mtDNA 
recombination). This review hypothesises that this physically limited opportunity for 
exchange could constitute a control mechanism limiting recombination and the emergence 
of selfish elements. Additionally, maintaining mitochondria as discrete individuals allows 
more immediate identification and degradation of poorly-performing organelles. This 
picture bears some analogy to the fission-fusion axis for quality control in mammalian 
mitochondria, where individual mitochondria are functionally ‘assessed’ before being 
degraded [164]. 
 
Our understanding of how the physical degradation of plant mitochondria (mitophagy) is 
controlled remains limited. Whole-mitochondrion capture by the autophagosome and 
degradation in the vacuole has been observed in wheat when mitochondria are damaged 
or produce excess ROS [165]. During leaf senescence it appears that mitophagy removes 
mitochondria in Arabidopsis [166]. However, the rates of and cues for these processes 
remain unclear. 
 
Specific genes involved in controlling mitochondrial dynamics in Arabidopsis continue to be 
elucidated [47]. A seminal study [49] identified five mutants, named mmt1-2, bmt, nmt, and 
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fmt, respectively for motley (heterogeneous), big, networked, and friendly (clustered) 
mitochondria. Perturbations to nmt and similar elm1 [167] result in elongated mitochondria, 
suggesting perturbed fission dynamics. FRIENDLY has been characterised more recently 
and found to have dramatic effects on plant growth, mitochondrial functionality, and 
photosynthesis [150]. Dynamin-like genes DRP3A and DRP3B and BIGYIN1 and BIGYIN2 
regulate mitochondrial size and number [168, 169, 170]. 
 
Genetic populations of plastids in plant cells  
 
The genetic dynamics of ptDNA through plant life and development are not 
uncontroversial. PtDNA is contained in plastids, with typically dozens of ptDNA molecules 
per plastid, contained in nucleoids [171].As with mtDNA, ptDNA is often considered to map 
to a circular form, but physically consists of linear or branched molecules [172, 173, 174, 
35]. 
 
The extent to which cellular copy numbers of ptDNA change during plant development has 
been the source of some controversy [175, 176]. Findings, chiefly from one research 
group, suggest pronounced changes in ptDNA copy number as protoplasts differentiate 
into chloroplasts, first increasing then decreasing [35], with this behaviour mirrored in plant 
development, with a several-fold increase in ptDNA per chloroplast in early seedling 
development, followed by a pronounced decrease in functional ptDNA levels as leaves age 
[177]. These results have attracted scepticism largely because of the high turnover of 
photosynthetic machinery encoded by ptDNA: how can chloroplast protein turnover be 
sustained without ptDNA? Experiments from other groups have not supported this picture, 
reporting instead (with a diversity of experimental techniques) that ptDNA levels decrease 
marginally or not at all [178, 179, 180, 181], or even increase, retaining ptDNA integrity 
[182] in ageing leaves. 
 
PtDNA nucleoids may be tethered to a plastid membrane or membrane-free: an emerging 
hypothesis (reviewed in Ref. [35]) involves most activity (replication and repair) associated 
with the tethered nucleoids, with membrane-free molecules being prone to degradation. 
Once more, this picture bears some analogy to the fission-fusion axis for quality control in 
mammalian mitochondria, in the sense that a special state is used to protect organelles 
from degradation [164]. As with mitochondria, bioenergetic functionality may induce ptDNA 
damage in a progressive manner through development and time. Some observations are 
concurrent with this picture: in maize, DNA damage was observed to be lowest at the base 
of stalks and increased during leaf development in both light and dark conditions [183]. 
Again, this observation is subject to some controversy, with another group’s results in a 
different maize cultivar finding little evidence for ptDNA damage [182]. However, even in 
the case of limited DNA damage, a picture is suggested where less active organelles are 
sequestered in less bioenergetically active cells, safer from damage and preserving 
genetic content for heredity, while more active organelles are exposed to damage (and 
repair) in more active cells. 
 
PtDNA can undergo homologous recombination in plants and algae [184, 185, 186]. This 
fact is leveraged in numerous synthetic biology approaches to transform ptDNA for 
scientific, biotechnological, and potentially agricultural applications (reviewed in Ref. [45] 
and discussed below). Genes responsible for ptDNA recombination, including RecA, have 
been perturbed in algal, moss, and higher plants, decreasing the stability of cellular ptDNA 
populations [187, 186, 188, 189]. These recombination processes play important roles in 
repair and maintenance of ptDNA across plant species [190, 171]. However, the capacity 
for ptDNA to recombine does not imply a similar ‘dynamic syncytium’ picture to 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
mitochondria [171]. As plastids undergo fusion less readily than mitochondria (see below), 
and within-cell ptDNA heteroplasmy appears limited, the current picture is that ptDNA 
recombination between different ‘chlorotypes’ over cellular timescales is comparatively 
limited [191, 27]. Limited recombination has been observed between different plastid types 
in cells [192, 193, 184], with segregation separating rather than homogeneising these 
populations. Recombination-dependent replication of ptDNA has been suggested to 
account for diversity in ptDNA structure [64], and bioinformatic studies have suggested that 
rearrangements of gene order in ptDNA may provide adaptive advantages [194]. 
 
The within-cell genetic heterogeneity of ptDNA molecules is controversial, with studies in 
different species reporting presence or absence of ptDNA heteroplasmy (reviewed, for 
example, in Ref. [195]).The specific technological and bioinformatic pipelines used can 
lead to different interpretations of observations [196]. A comprehensive review of the 
appearance and proliferation of ptDNA mutants in higher plants appears in Ref. [191]. 
PtDNA degradation and recycling occurs during chlorophagy [197] (see below). 
 
Specific factors involved in the replication, maintenance, and degradation of ptDNA in 
Arabidopsis have been recently reviewed [38]. These include MSH1, gamma polymerases, 
RecA proteins, TWINKLE, and the WHIRLY ssDNA-binding regulators. Notably, there is a 
large overlap between this set of factors and the above involved in the genetic dynamics of 
mtDNA. Comparable regulatory machinery thus influences the dynamics of the two 
organelle classes. 
 
Physical populations of plastids in plant cells  
 
Despite their substantially larger size compared to mitochondria, plastids are also dynamic 
organelles, albeit with lower rates of motion (Table 1, Fig 5). The motion of chloroplasts in 
response to light conditions has been well studied across species [52, 53]. Chloroplasts 
move away from intense light (‘avoidance’) and towards desirable levels of light 
(‘accumulation’), balancing photosynthetic capacity against photodamage [198]. The 
motion of chloroplasts, in concert with that of other organelles, also seems geared to 
facilitate colocalisation between different classes of organelle [54]. As with mitochondria, 
chloroplasts have a plethora of additional physical and metabolic degrees of freedom. As 
with mitochondria, chloroplast positioning plays important facilitating roles in 
photorespiration and efficient photosynthesis, with the number, size, and position of 
chloroplasts differing dramatically in different cell types in C3 and C4 photosynthesis [144, 
199]. 
 
Plastids divide, and modulate their copy number and compartment size, through fission 
[33]. Chloroplast division is tightly controlled to yield uniform daughter organelles [200]. 
Divisions involving other classes of plastid seem to be less physically constrained and give 
rise to a wider variety of physical forms [33]. 
 
Fusion of plastids, facilitating exchange and potentially interaction of macromolecules 
including ptDNA, is more controversial. Observations of ‘stromules’, elongated links 
between plastids, seemed for some time to imply that plastids were capable of fusing and 
exchanging content. Experiments with photobleaching have cast doubt on this idea [201], 
and while proteins may be exchanged via stromules [202], ptDNA nucleoids appear not to 
be [203]. Plastid fusion is observed in root-fungal interactions in tobacco and other 
species, when the arbuscule forms in root cells [204, 205, 206], where a plastid network 
forms, facilitate by stromule connections. This fusion has been hypothesised to be linked 
to an increased demand for plastid metabolic activity [206]. Outside this specific 
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circumstance, evidence for widespread fusion is limited [207], raising the question of what 
about arbuscule formation places such unique demands on plastid behaviour. 
 
If mitochondrial fusion serves to homogeneise the cellular mtDNA population prior to 
divisions, how is ptDNA partitioned without pronounced fusion? Ref. [162] suggests that 
due to the larger size of plastids (and, implicitly, the fact that each plastid contains several 
ptDNA molecules), the ptDNA population is already more homogenised than the mtDNA 
population. At cell divisions, plastids adopt perinuclear positions [102] to assist in unbiased 
organelle partitioning between daughter cells. 
 
Chlorophagy removes plastid content either ‘piecemeal’ or at the level of the whole 
organelle. This recycling is mediated by rubisco-containing bodies and senescence-
associated vesicles; a recently-reportedadditional mechanisms involves chloroplast 
vesiculation in Arabidopsis [208] (reviewed in [197]). Chlorophagy is induced during 
senescence and as a response to abiotic stress [209]. Photodamaged chloroplasts are 
transported to the vacuole for degradation [210], suggesting an analogy with the function-
dependent quality control of mitochondria through mitophagy [211]. Both photodamaged 
chloroplasts and dysfunctional mitochondria are important sources of reactive oxygen 
species in the cell, suggesting a common priority to remove these potentially damaging 
organelles from the cell. 
 
Specific factors involved in the physical dynamics of plastid division are reviewed in Ref. 
[33]. Chloroplast division involves a contractile complex including FtsZ1 and FtsZ2, PDV1 
and PDV2, ARC6, and ARC5/DRP5B. A control system analogous to the bacterial Min 
system, involving MinD1, MinE1, and ARC3 assists in the spatial regulation of chloroplast 
division. CLMP1 and CRL have been implicated in the later separation of chloroplasts after 
division. Factors involved in chloroplast motion are reviewed in Ref. [52] and include 
CHUP1, KAC, PMI1, PMIR1 and PMIR2, and THRUMIN1. 
 
Synthesis: Organelles through a lens of evolutionar y systems biology  
 
While the rich modes of behaviour of these organelles are being increasingly revealed 
through experiments, many questions remain regarding the control and purpose of these 
processes. For example, why is organelle recombination common in plants but not 
animals? Why are mitochondria more heteroplasmic, dynamic, and prone to fusion than 
plastids? This section will attempt a synthesis of the genetic and physical behaviour we 
have summarised into a consistent picture. It must be underlined that this is a highly 
speculative endeavour, intended to generate discussion and hypotheses, rather than a 
claim of scientific fact. 
 
Start with our hypothesised tension (Fig. 2): (i) removing genes from organelle DNA 
decreases their susceptibility to mutational damage via mutagens generated through 
organelle activity, while (ii) retaining genes in organelle DNA enhances organelle 
responses to fluctuating environments. Plants are immobile and so must deal with 
fluctuating environments in situ. Retaining higher numbers of organellar genes, and 
therefore higher control over individual organelles, may therefore be adaptive, by (ii). 
However, by (i), these genes will be damaged, necessitating ameliorative mechanisms. 
Further, the inability to evade environmental fluctutations will make these genes more 
susceptible to damage from mutagens produced through redox imbalance arising from 
bioenergetic activity. We can speculate that immobile organisms are under increased 
pressure to evolve mechanisms to ameliorate organelle DNA damage (Fig. 6A). 
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As we have seen, plant cells employ a (coupled) range of such mechanisms, including 
recombination-mediated repair, recombination-mediated exchange of genetic material 
between organelles, and ‘divisions of labour’, where some genomes are kept intact and 
safe for heredity and to sustain the organelle populations (‘genetic vaults’ of mtDNA, and 
less active plastids), while some are used and abandoned. This division of labour is 
supported by repair and by the physical control and distribution of organelles (Fig. 6B). 
 
Figure 6 : Hypothesised synthesis of physical and genetic plan t organelle control.  
(A) Plants are immobile and thus subject to greater environmental fluctuations than motile 
organisms. These fluctuations are hypothesised to lead to increased potential for organelle 
DNA damage through redox activity, and an increased pressure to retain organelle genes 
for CoRR or alternative sensing and control. (B) This increased potential for damage 
requires mitigation, which occurs through ‘division of labour’ facilitated by recombination, 
repair, and abandonment. Plastids can sequester genetic content in less active organelles, 
repairing but eventually abandoning content in bioenergetically active organelles. 
Mitochondria are all active and must instead mitigate damage through physically-mediated 
exchange, surveillance, and repair. 
 
If these hypotheses do reflect general principles of organelle behaviour, how can we 
explain the dramatic differences between mitochondria and chloroplasts in genetic and 
physical structure? One possibility stems from how mitochondria and plastids differ in their 
spread of bioenergetic activity. Mitochondria are ‘always on’: their metabolic, bioenergetic, 
and signalling pathways rely on an intact membrane potential generated by redox activity. 
Plastids have a set of forms that do not involve photosynthetic activity. In a coarse-grained 
picture, perhaps these less active forms can be regarded as ‘safe’ repositories for ptDNA. 
Then, if plastids can adopt such a ‘safe’ mode, there is no need for any further complexity. 
 
PtDNA can be sequestered in safe plastids in less active cells, while ‘unsafe’ active 
chloroplasts function, gradually degrade their ptDNA (with some repair) and are eventually 
abandoned. If mitochondria are always active (and unsafe), there is no reliable ‘genetic 
vault’. Then, following the hypothesised behaviour in Ref. [128], partitioning the genome 
between many actively recombining organelles, repairing or abandoning molecules when 
they get damaged, is a safer strategy. To quote from Ref. [128]: unequal distribution of the 
mitochondrial genome between mitochondria with different functions would invoke a 
requirement for mitochondrial fusion and subsequent fission to provide mtDNA, mtDNA-
encoded mRNA or protein to those bioenergetically active mitochondria without the 
capacity, or with a reduced capability, to provide for their own needs. 
 
Pursuing this idea, may the plant indeed leverage physical dynamics to control genetic 
dynamics of organelles? This sharing of genetic content is actively facilitated and 
controlled by the physical motion of organelles. Does rapid ‘kiss-and-run’ dynamics ensure 
that all organelles get a chance to ‘see’ a given gene? If the cell limits mitochondrial fusion 
to control rates of mtDNA recombination, kiss-and-run dynamics may be the most optimal 
alternative to allow this mitochondrial ‘complementation’ [55, 128]. 
 
An alternative explanation for recombination, also potentially linked to plants’ immobility 
and consequent environmental fluctuations, is that nuclear genes like Msh1 allow the 
control of recombination in response to environmental circumstances, allowing the 
reversible generation of genetic variation if desired [130]. 
 
Systems biology approaches, combining microscopy, genetic characterisation, and 
modelling, can test these hypotheses and shed new light on these evolutionary and 
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cellular connections.If this line of reasoning has merit, we would expect other immobile 
organisms to share some of these features with plants. Intriguingly, the few metazoans that 
have been observed to share mtDNA recombination machinery with plants are those with 
relatively immobile lifestyles (corals, sponges, and sea anemones [132]). Ref. [132] 
highlights that these species and plants also share a developmentally late partitioning of 
somatic and germline cells. This observation aligns with theoretical results suggesting that 
germline sequestration is driven by high mitochondrial mutation rate [212]. Within the 
speculative scheme in this article, this cell-to-cell division of labour may be ‘allowed’ 
because organelle-to-organelle division of labour protects organelle genetic integrity. 
 
Further, in this scheme, we may expect plants that are less subject to environmental 
fluctuations to retain fewer organelle genes. Indirect potential evidence for this comes from 
recent observations in mistletoe, where some mitochondrial genes have been completely 
lost [100, 101]. Mistletoe’s parasitic lifestyle means that it is less dependent on its own 
intrinstic bioenergetic performance in fluctuating environments; the associated gene loss 
mirrors observations in other taxa, where parasitic organisms have lost substantial 
mitochondrial content (both genetic and metabolic) [213, 214]. Further exploration of gene 
retention (using large-scale genomic data) and recombination rates across plant species 
will help support or falsify these hypotheses. 
 
Human exploitation of plant organelle populations  
 
Clearly, the centrality of mitochondria and chloroplasts in plant metabolism mean that their 
value to the human sphere is as broad as that of plants themselves. But what aspects 
specifically of the behaviours summarised above are pertinent in agriculture and 
biotechnology? Perhaps the best-known phenotype directly associated with dysfunctional 
control of organelle genome populations is cytoplasmic male sterility (CMS). CMS is a trait 
conferred by the mitochondrial genome that compromises the ability to produce functional 
pollen, anthers, or male gametes (reviewed in [41, 42, 43, 44]). CMS has been observed 
naturally in over 150 species [215]. CMS is of central importance in crop breeding, 
allowing the creation of female plants that cannot produce viable male gametes, and 
hence the straightforward production of hybrid plants. Hybrid vigour or heterosis results in 
substantial yield increases from hybrids compared to their inbred precursors, with 
improvements of 15-50% possible [216], making hybrid formation highly agrinomically 
desirable. 
 
CMS has been observed in many species and manifests through a range of mtDNA 
features acting as ‘sterilising factors’ and a corresponding and debated range of 
mechanisms. Perturbations to recombination surveillance can induce these factors, with, 
for example, the Msh1 gene being the focus of several exciting translational advances 
exploiting the control of mtDNA populations for agricultural purposes in tomato and other 
species [217, 218]. CMS can result from substoichiometric shifting amplifying the low-level 
representation of a mitotype containing a sterilising factor (Fig. 4C) [124, 121, 130]. MtDNA 
alterations causing CMS include chimeric gene fusions, partial ORFs, and disruptions in 
gene orientation and promoter association [41]. These alterations typically affect the 
mitochondrial electron transport chain. CMS has been suggested to result from 
compromised energy supply (although an inducible mutant in Arabidopsis compromising 
ATP production did not mirror the CMS phenotype [219]), dysfunctional signalling, 
induction of programmed cell death, or cytotoxicity, although these mechanisms remain to 
be fully characterised. 
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An early harnessing of ptDNA populations arose from the fact that ptDNA mutants give rise 
to variegation – patterns of discolouration – in higher plants. This physical patterning 
depends on the type and the proliferation of the mutation (reviewed in Ref. [191]) and is an 
aesthetically valued trait in some ornamental plants. 
 
Further, ptDNA is readily transformable and is experiencing growing use in biotechnology. 
Expressing genes of interest in plant or algal ptDNA can lead to high yields of desirable 
products (reviewed in [45] and [220]). Active areas of development involve introducing 
resistance traits to plants, and using chloroplasts as factories for vaccines, antibodies, and 
biofuel enzymes. In exciting recent work, for example, the complete metabolic pathway for 
artemisinic acid (the precursor for anti-malarial drugs) was introduced to tobacco, leading 
to plants producing 120mg artemisinic acid per kilogram [221]. 
 
Harnessing the genetic mixing induced by grafting [222, 223, 224], such engineered 
pathways can be introduced from a transformable species into other species [225] to avoid 
toxicity or to capitalise on other desirable properties. The nuances of inheritance of 
organelle DNA mean that these transgenes are readily containable and do not constitute 
germline changes to organisms, important features that may make organelle manipulation 
more palatable to regulators and the public. 
 
Engineering the physical control of organelle populations is also a potential translational 
avenue, for example, for the ongoing goal of enhancing crop yields by re-engineering 
photosynthetic performance [226]. One facet of this target is the engineering of C4 
photosynthesis into C3 plants [227, 228]. In recent work, the synthetic re-engineering of 
organelle development in rice (inducing large bundle-sheath chloroplasts) induced other 
C4 traits including enhanced cell-to-cell communication via plasmodesmata [229]. As the 
repositioning of mitochondria is an early and central feature in the emergence of C4 
photosynthesis, perhaps the ability to artificially engineer mitochondrial position may open 
analogous doors to this grand target?  
 
Much more speculatively, the central thesis of this article suggests another potential 
avenue of investigation of investigation. Organelle populations reflect an evolved tradeoff 
between genetic robustness and organelle control. Can we, in agricultural settings, 
manipulate the position that plants have adapted on this tradeoff to better suit human 
needs? For example, if organelle activity is limited in some plant tissues to protect some 
ptDNA for the purposes of heredity, can we instead sacrifice this ptDNA, producing less 
viable plants but increasing photosynthetic capacity? One interesting and potentially 
aligned result involved the overexpression of Golden2-like transcription factors in 
Arabidopsis leading to global induction of chloroplast biogenesis in the root, increasing 
CO2 fixation and promoting phototrophic performance [230]. It is tempting to speculate that 
other re-engineering strategies may manipulate this evolved tradeoff for human gains. 
 
Tools from systems and interdisciplinary biology  
 
Even if the highly speculative synthesis above has merit, a plethora of other questions 
remain. To what extent do physical features (noise, discrete compartments, etc) limit how 
the plant controls its organelles? What control principles govern the replication and 
degradation of organelles? How are the feedback control signals that govern these 
behaviours transduced? Systems biology approaches can also help shed light on these 
questions. 
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With a particular view to evolutionary systems biology, an important class of open 
questions relates to the genotype-phenotype (GP) maps [57] of the complex organelle 
population system. In a system where heteroplasmy and multiple genome copies are 
present, the picture of a GP map becomes even more complicated: cellular phenotypes 
from protein complex structure to bioenergetic performance are potentially determined 
both by features of, and interactions between, many (organelle and nuclear) genotypes. 
 
How can approaches from interdisciplinary, quantitative, and systems biology help 
elucidate these systems? Firstly, mathematical models of complex biological systems can 
be used to develop insight and intuition in noisy biological systems where experimental 
results are hard to obtain [82]. As described above in ‘Cellular noise and organelle 
populations’, such modelling work has provided general insights into the behaviour and 
principles underlying stochastic cellular populations of organelle genomes. While these 
mathematical results have direct and general implications for asexual organelle 
populations, further work (including consideration of how to parameterise such models 
[231]) is required to explore recombination as a cellular control strategy. 
 
Another branch of quantitative modelling, the physical representation of organelles in the 
cell, remains challenging, largely due to the many factors that in principle need to be 
accounted for and parameterised, including cytoskeletal structure, concentrations of 
metabolites, and electrochemistry of organelles. However, even in the absence of fully-
detailed physical models, important mechanistic insights can be gained from mesoscopic 
modelling. Coarse-grained studies are emerging that use generative models to simulate 
expected organelle dynamics under different hypotheses and circumstances, and compare 
the behaviour of these simulations to experimental observations. These approaches have 
revealed, for example, the consequences of perturbing the control of mitochondrial 
dynamics on organelle ultrastructure [150]. The influence of the physical location of 
organelles on their inheritance has also been considered in jointly theoretical and 
experimental work [79]. A ‘low-hanging fruit’ here is the question of how mitochondrial 
dynamics influence the genetic structure of the cellular population. For example, does the 
highly dynamic ‘kiss-and-run’ system facilitate efficient sharing of limited mtDNA content 
across the physical population of organelles? Modelling work can also shed light on the 
evolutionary principles governing organelle populations [10]. Powerful theoretical studies 
over the last few years have revealed how competition between different levels of 
selection in organelle-cell systems drive the evolution of sex [232] and uniparental 
inheritance [233]. Further work revealed that the theoretical fitness advantage of 
uniparental inheritance depends on wider population context, suggesting a tension that 
may result in the emergence of different inheritance modes [234]. A multiscale theoretical 
study identified mitochondrial fission-fusion, genome segregation, uniparental inheritance 
and paternal leakage to explore how non-recombining organelles can mitigate mutational 
damage [235], complementing and expanding earlier mtDNA models for recombination 
[95, 96]. In work aligned with the central thesis of this article, theory has shown that 
selection for mitochondrial quality can drive the evolutionary emergence of a distinct 
germline (as observed in animals, and as opposed to the somatic gametogenesis in 
plants) [212]. This work proposes that high mtDNA mutationrates require a division of 
labour, in the sense that a ‘safe’ germline is sequestered for heredity while less ‘safe’ 
somatic cells engage in bioenergetic function. 
 
Next, systems biology approaches to harness and integrate the expanding volumes of 
‘omics’-style data can help shed light on several underlying questions. The genes 
controlling the physical and genetic dynamics of organelles are increasingly being 
elucidated. Regulatory interactions controlling these genes, revealed through systems 
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biology, can help explore hypotheses for the fundamental principles underlying cellular 
control of organelles. The integration of gene expression data for bioenergetic genes from 
the organelles and nucleus will help dissect organelle-nuclear co-operation, and support or 
falsify the various hypotheses underlying organelle gene retention and control (CoRR, 
redox sensing, etc). Integrated characterisation of genome structure, gene expression and, 
metabolic poise will help elucidate the mechanisms by which CMS becomes manifest [41]. 
 
At the evolutionary level, the increasing volume of genomic data available from 
sequencing initiatives can be harnessed by systems biology approaches to quantify 
support for evolutionary hypotheses [18]. More generally, systems biology offers the tools 
to quantitatively investigate hypotheses and mechanisms in this world of noisy dynamics 
and uncertain measurements [236, 237]. Mirroring other fields of biology, the study of 
organelle dynamics is transitioning from a traditional ‘t-test’ picture – where a difference in 
two cases is reported – to a ‘model selection’ picture, where different hypotheses are 
quantitatively tested for their ability to explain the observed data. In particular, the ‘multiple 
causes’ problem [238, 239], well known in ecology and evolution but less central in cell 
biology, is pertinent to these multiscale questions and is best dissected through systems 
approaches. 
 
Conclusions  
 
Physically embedded, dynamic, stochastic populations of organelle genomes are 
constantly evolving and moving in plant cells. These organelles feed the world and are 
natural targets for biotechnological approaches to improve yields and bioengineering 
processes. A host of open questions remain from the evolutionary to the cellular levels, 
quantitative answers to which will open new research and development avenues. 
Researchers from complex systems, stochastic processes, control theory, evolutionary 
physics, biochemistry, genetics, cell biology, and metabolism, among others, will find fertile 
ground for valuable research here. The tools of systems biology, from large-scale 
characterisation of cellular behaviour to mathematical modelling, can help learn about 
these multiscale problems. I hope that this article will serve as a valuable reference for, 
and to stimulate discussion with, interdisciplinary researchers approaching this exciting 
field. 
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