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Abstract 12 

The aim of this study is to simulate the Mitral Regurgitation (MR) disease 13 

progression from mild to severe intensity. A Fluid Structure Interaction (FSI) 14 

model was developed to extract the hemodynamic parameters of blood flow in 15 

mitral regurgitation (MR) during systole. A two-dimensional (2D) geometry of the 16 

mitral valve was built based on the data resulting from Magnetic Resonance 17 

Imaging (MRI) dimensional measurements. The leaflets were assumed to be 18 

elastic. Using COMSOL software, the hemodynamic parameters of blood flow 19 

including velocity, pressure, and Von Mises stress contours were obtained by 20 

moving arbitrary Lagrange-Euler mesh. The results were obtained for normal and 21 

MR cases. They showed the effects of the abnormal distance between the leaflets 22 

on the amount of returned flow. Furthermore, the deformation of the leaflets was 23 

measured during systole. The results were found to be consistent with the relevant 24 

literature. 25 

Keywords:  Fluid-Structure Interaction, hemodynamics, mitral, regurgitation, 26 

systole 27 



Introduction 1 

Mitral valve regurgitation is a condition in which the valve does not close tightly 2 

and there is an abnormal reversal of blood flow from the left ventricle to the left 3 

atrium. This increases the pressure in the left atrium and may lead to complications 4 

such as dyspnea, fatigue, orthopnea, and pulmonary edema. Mitral valve 5 

regurgitation is an important health issue. More than three millions people in the 6 

USA suffer from moderate or severe regurgitation [1]. In spite of the fact that 7 

measuring hemodynamic parameters in left ventricle and mitral valve stress 8 

patterns are significantly challenging, numerical analyses can be used to develop 9 

new models to further understand this issue [2]. Coincident with developments in 10 

non-invasive blood flow imaging (echo-doppler and Magnetic Resonance Imaging, 11 

MRI), in recent years significant studies have combined such imaging with 12 

numerical simulation [3]; with applications to human mitral valves, including 13 

prediction of disease progression and treatment. 14 

One of the first attempts for modeling of mitral regurgitation (MR) was by Dent et 15 

al. [4] who introduced a mathematical model for the quantification of MR using 16 

experimental data. In parallel, Doppler echocardiography, color Doppler 17 

assessment, and color Doppler mapping were used to study the degree of MR 18 

[5,6,7]. More recently, Wenk et al. [8] have studied a finite element model of the 19 

left ventricle with mitral valve. Their model was based on magnetic resonance 20 

imaging data from a sheep that had developed moderate ischemic MR after 21 

postero-basal myocardial infarction. A three-dimensional (3D) FSI model of MR 22 

flow was presented by Mao et al. [9] that showed the FSI method could simulate 23 

the coupled valves structure response and the intraventricular hemodynamics in 24 

left ventricle. Little et al [10] introduced a 3D ultrasound imaging model of MR. 25 

Einstein [11] studied MR by using a Fluid-Structure Interaction (FSI) model. 26 



Together these studies have presented a comprehensive strategy for analyzing MR. 1 

Development by This et al. [12] presented a one-way FSI model to simulate three 2 

different mitral valve defects, including blood-flow in patients. While numerical 3 

techniques, including FSI, have been applied for the development of a ‘healthy’ 4 

mitral valve model [13-15], Su et al. [16] studied the intraventricular flow in a 5 

patient-specific mitral and aortic valves integrated model including left ventricle 6 

using a Two-dimensional methodology. Their results confirmed the ability of 7 

estimating the patient-specific intraventricular flow by means of numerical method 8 

together with FSI approach. While models of MR are developing, there has been 9 

limited assessment of the effect of ventricular and annular dimensions on MR. 10 

Particularly valuable is intraventricular flow during the early diastolic phase, when 11 

the hemodynamic parameters including vortices may be important in filling [17], 12 

closure and regurgitation of the mitral valve. 13 

The aim of this study is the development of a computational model for the 14 

assessment of MR, including its progression from mild to severe. To assess the 15 

feasibility of developing such an FSI model, a 2D model is assessed, which may 16 

also be more likely to undergo clinical translation due to the model solution times 17 

[3]. This initial model has focused on assessing MR during three main cases: mild, 18 

moderate, and severe conditions. 19 

 20 

Methods 21 

A 2D simplified parametric model of the mitral valve was built using Comsol 22 

Multiphysics software (Figure 1). This model was based on certain dimensions of 23 

left ventricle that was measured through an MRI image. The model included two 24 

leaflets and a semi elliptical left ventricle. Both leaflets have the same geometry 25 



and considered as symmetrical. The tips of the leaflets were set as touching in a 1 

‘normal’ position [15] whereas the distance between the leaflets is 1 mm (mild 2 

MR), 3 mm (moderate MR), and 5 mm (severe MR) inspired from a physical 3 

model [18]. Blood is a virtually incompressible fluid and non-Newtonian [19-21]; 4 

however, it can be considered as Newtonian in large arteries and the heart. In the 5 

present study, we assumed blood to be a Newtonian fluid [22-23]. The leaflets 6 

were considered as isotropic and linear elastic material with Poisson’s ratio of 0.33 7 

[24] and Young’s modulus of 1 MPa [25]. The viscosity of blood was set to 2.7 8 

mPa.s and density of 1060 kg/m3 [17]. Because the model was solved during the 9 

systolic phase, the ventricular pressure as well as the atrial pressure were 10 

considered as inputs. 11 

Boundary conditions  12 

The total time of systolic phase was 0.3 s which was considered for the simulation. 13 

The fluid applied a force on the leaflets leading to closure; further described 14 

elsewhere [13]. The functions of the ventricular pressure and atrial pressure were 15 

defined in the software as time-dependent inlet boundary conditions (Figure 2a, 16 

2b) [16]. For the systolic phase, an aortic velocity function was defined at the 17 

boundary of a simplified aorta (Figure 2c, 2d). All other boundaries, including 18 

ventricle walls were considered as a non-slip condition. It should be noted that 19 

mitral leaflets and related edges were restricted from moving.  20 

Triangular normal elements were used, with a finer meshing was set for leaflet 21 

areas in order to get more precise numerical solution (Figure 3; Table 1). A moving 22 

Arbitrary-Lagrange-Euler (ALE) mesh was applied to the leaflets and the blood 23 

flow, however, the other areas had a fixed mesh. COMSOL Multiphysics (Comsol 24 

Multiphysics, Stockholm, Sweden) was used to solve the model using a transient 25 

FSI method; described in further detail elsewhere [26-28]. 26 
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 2 

Table.1: Specifications of mesh parameters  3 

Number of vertex elements  13  

Number of boundary elements  245  

 Number of elements 2781  

Minimum element quality  0.505  

  4 

Results 5 

The preformed numerical simulation was used to predict the pressure, velocity, and 6 

Von Mises stress contours, for blood-flow and the valve leaflets, respectively, 7 

during mild, moderate, and severe MR. The extracted hemodynamic parameters 8 

are presented and compared as below. 9 

1-Pressure: 10 

Figure 4a-4c provides the pressure contours in three different time steps for severe 11 

MR. In severe MR, the leaflets were not attached to each other completely and 12 

there is an approximately 5 mm distance between the leaflets. The contours 13 

showed a pressure drop in the left ventricle. At a time of 0.3 s, the ventricle 14 

pressure variation was between 0.9 to 14.5 kPa with much back flow to the atrium.  15 

Figure 5a-5c shows the pressure contours at three different time steps for 16 

moderate MR. The pressure drop within the left ventricle was lower than for severe 17 

MR but was still between 10-15 kPa. This drop was still considerable and due to a 18 

3 mm distance between the leaflets.  19 

Figure 6a-6c presents the pressure contours for mild MR. The ventricular 20 

pressure reached to 16 kPa which was near to that for a ‘healthy’ valve. The 21 



distance of 1 mm, between leaflets, was not effective in reducing the ventricle 1 

pressure as compared to severe MR. The backflow of blood towards the atrium 2 

was much lower than for moderate and severe MR. 3 

Therefore, the severity of MR could be quantified from the pressure contours and 4 

decreasing of ventricle pressure. For severe MR, a decrease in ventricle pressure is 5 

predicted, down to 0.9 kPa (at 0.3 s). Furthermore, the backflow of blood was 6 

much greater toward the atrium during severe MR. Wenk et al [8] reported the left 7 

ventricle pressure between 0.8 kPa to 12.19 kPa during MR. These values are 8 

consistent with our results during moderate and severe MR, which ranged from 9 

was 0.9 kPa to 14 kPa.  10 

  11 

2-Velocity: 12 

The velocity streamlines of severe, moderate and mild MR are shown in Figures 7-13 

9, respectively. Moreover, Figure 10 shows the maximum velocity at the tip of the 14 

leaflets area for three time steps during systole in three MR modes. According to 15 

these results, it can be concluded that the velocity increases up to 6 and 4.8 m/s at 16 

the leaflet tips area in severe and moderate MR, respectively, resulting to the 17 

formation of a velocity jet. However, there appeared to be a slight increase in the 18 

velocity (about 1.6 m/s) for mild condition resulting no velocity jet. The velocity 19 

changing trend is generally consistent with all MR conditions including some 20 

vortices evident in the center of ventricle. Vermenlen [29] reported the range of jet 21 

velocities between 2.6 m/s to 4 m/s during mitral valve leakage. However, Lassila 22 

[30], Thomas [31], and Grayburn [32] concluded that the jet velocity is increased 23 

to the highest value during severe MR. 24 

 25 

3- Stress: 26 



The stress distribution varied significantly over the leafs in our 1 

results.Stress in Severe MR case Figure 11 (a,b,c) presents the Von Mises 2 

stress distribution in severe MR case in three time steps. The stress varied 3 

between 100-500 kPa. Stress in Moderate and mild MR case Figure 12 (a,b) 4 

shows the stress distribution in moderate and mild MR case at t=0.3 s. The 5 

average of Von Mises stress on leaflets at mid systole (0.2 sec) for severe, 6 

moderate and mild MR are 275, 214 and 74 kPa, respectively. Lee et al. 7 

predicted the in vivo stresses of a region of interest using a numerical 8 

analysis method for the anterior leaflet of a healthy mitral valve. The total 9 

range of region of interest (ROI) stresses that they estimated were between 10 

80.9 to 593.2 kPa, consistent with our results [33]. The stresses varied 11 

between 100 to 500 kPa over the leaflets based on our numerical results for 12 

moderate and severe MR. For instance, Wenk et al. [8] reported the 13 

effective stress in the center of the anterior leaflet to 119 kPa. Prot et al [34] 14 

results showed the leaflet stress to be 130-220 kPa. In another study, Salgo 15 

[35] reported higher stresses up to 400 kPa. The difference between the 16 

reported values comes back to different type of leaflet material models 17 

including linear isotropic, orthotropic, etc. 18 

 19 

Discussions: 20 

In this study, an FSI model was developed to simulate the progression of 21 

MR disease from mild to severe. Using this model, the blood hemodynamic 22 

parameters can be extracted within the progression process and compared 23 

between different intensities of MR. There are some limitations to 24 

understanding the exact physiology of MV function in healthy and diseased 25 

states due to the influence of elastic leaflets and the role of left ventricle in 26 

fluid dynamics [36-38]. Therefore, the elastic material properties were also 27 



incorporated into simulation in addition to non-Newtonian fluid properties. 1 

FSI was used because of the forces that fluid had applied on the leaflets in 2 

interaction with the structure which leads to large structural deformations. 3 

A comparison of the results obtained between the different severities of MR has 4 

led to the following findings: 5 

• Increasing severity of disease leads to decrease of intraventricular 6 

pressure. 7 

• As the distance between the leaflets increases, the Von Mises stress 8 

on the leaflets increases and the return flow to the atrium increases. 9 

• The increased velocity near the tip of the leaflets in severe MR 10 

causes the vortex in the atrium area. This vortex is due to the 11 

interaction of the back flow from the ventricle to the fluid flow in the 12 

atrium. 13 

• Another developed vortex, inside the left ventricle, was increased 14 

during the early to the end of the systolic phase. 15 

• It was also shown that a pair of vortices, which were developed 16 

under the leaflets, leaded to valve closure. 17 

 18 

 It was shown that this method can measure the stress patterns on the 19 

leaflets as the disease progresses. We tried to develop a model to study the 20 

hemodynamic parameters of blood flow in mitral regurgitation case. It was 21 

found that the pressure throughout the ventricle is decreased and also the 22 

velocity jet increased as the distance between leaflets is increased. 23 

Moreover, it was shown that an increase in the distance between the leaflets 24 

increases the average of Von Mises stress on leaflets at mid systole.  25 



On the other hand, considering the same input boundary conditions for 1 

different MR states, the contraction of ventricle muscle is not effective, so 2 

the leakage plays an important role on decreasing the pressure. When the 3 

leakage occurs in one of the components, the pump will not be able to 4 

create ideal pressure. In a similar way, for severe disorder mitral function, 5 

severe leakage of blood from left ventricle to the atrium (flow back) during 6 

systole is observed and leads to decrease of the pressure in the ventricle. 7 

There are simplifications in this study, particularly around the use of a 2D 8 

model which limits assessment of mitral annular motion. In future, this may 9 

be overcome by use of a 3D model. However, in current solution times are 10 

prohibitory as regards real-time translation into clinical practice; unlike 2D 11 

models which solve over a time-frame which is compatible with clinical 12 

practice, as discussed elsewhere [39]. The model presented in this study 13 

along with the obtained results was able to capture the mitral regurgitation 14 

in different cases based on the gap size between the leaflets. It is important 15 

to consider multiple parameters for evaluating MR severity and one single 16 

measurement is not sufficient. Thus, we calculated different hemodynamic 17 

parameters of MR including pressure and velocity contours as well as 18 

leaflets’ stress. These predicted results show that a regurgitant jet flow is 19 

always present in different MR cases due to an open way from left ventricle 20 

to atrium. The severity of MR was studied quantitatively as the area of the 21 

jet by above mentioned hemodynamic parameters. We believe that our 22 

model was able to demonstrate the function of MR and it can be very 23 

helpful for surgeons to use surgical plans based on predicted results of 24 

blood flow hemodynamics and leaflet stress during mitral regurgitation. 25 

 26 

 27 



Conclusion 1 

In this study, we have modelled the left ventricle with symmetric mitral 2 

valves integrated in 2D. In addition to the mitral valve prescribed according 3 

progression of MR disease, the FSI approach was applied to the leaflets of 4 

valves to simulate the interaction between the blood flow and elastic leaflet. 5 

We have successfully demonstrated important parameters (such as pressure 6 

and velocity) and development in the mitral regurgitation. 7 

 8 
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