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Abstract  

 We propose a framework for the memory function of spindle oscillations during 

sleep. In this framework, memories are reinstated by spindle events, and further 

reprocessed during subsequent spindle refractory periods. We posit that spindle 

refractoriness is crucial for protecting memory reprocessing from interference. We further 

argue that temporally-coordinated spindle refractory periods across local networks facilitate 

the consolidation of rich, multimodal representations, and that localized spindle 

refractoriness optimizes oscillatory interactions that support systems consolidation in the 

sleeping brain. 
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Sleep spindles and memory consolidation 

 Sleep spindles are ~1 s bursts of 11-16 Hz oscillatory activity that characterize non-

rapid eye movement (NREM) sleep and have been repeatedly linked to memory 

consolidation [1]. More specifically, spindles are thought to support a covert reactivation of 

newly formed memories, prompting their integration into cortical sites for long-term 

storage. Yet, the nature of the operations underpinning spindles’ role in sleep-dependent 

memory processing is poorly defined. Here, we attempt to fill this gap by presenting a 

framework to explain how spindles might facilitate overnight consolidation. 

 Memory reinstatement refers to the re-emergence of learning-related neural 

activity, and is linked to spindle activity in sleep [1]. Here, we propose that newly formed 

memories are reinstated during spindle events and further reprocessed during subsequent 

spindle refractory periods. Crucially, spindle refractoriness blocks additional reinstatement 

of other memory traces, enabling reprocessing to unfold without interference from 

unrelated information. Spindle refractory periods occur locally, supporting reprocessing 

across interrelated memory units and optimizing oscillatory interactions underpinning 

systems consolidation.  

 

Memories are reprocessed during spindle refractory periods 

 Central to our framework is that spindles provide a neurobiological scaffold for 

memory reinstatement and subsequent reprocessing in sleep. There are multiple lines of 

evidence in support of this idea.  In the EEG, spindle activity during regular overnight sleep 

can robustly discriminate between categories of information (e.g., faces vs. houses) 

encoded in a prior learning phase [2]. Furthermore, inducing memory reactivations in NREM 

sleep evokes a transient increase in spindle activity, during which the content of reactivated 
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memories can be reliably decoded [3]. Inhibiting spindles during reactivation 

correspondingly eradicates the retention benefits associated with sleep [4]. Thus, spindles 

appear to promote the spontaneous reinstatement and reprocessing of newly formed 

memories. 

Another key component of our framework is that effective information processing 

requires limited interference. Spindle refractoriness may play a central role in this context 

by safeguarding memory reprocessing from additional reinstatement. In the human brain, 

spindles undergo refractory periods of 3-6 s [5], which places limits on memory reactivation 

[6].  

 As a corollary to the presumed protective role of spindle refractoriness, one could 

expect that the likelihood of reinstatement of other, unrelated traces would increase as 

time passes from a spindle oscillation. Indeed, the memory benefits of cueing reactivations 

in NREM sleep, an established index of successful reactivation, are eradicated when cues are 

presented immediately after the spindle offset [5]. 

  

Local refractory periods facilitate localized reprocessing 

 Much of the sleep research in humans relies on scalp electroencephalography (EEG), 

which represents the global signal summed across large parts of the brain. Of note, 

however, spindles are predominantly local phenomena [1]. Everyday memories are rich, 

multimodal representations, formed of many units and encoded across numerous neural 

regions. As such, we furthermore argue that spindles support consolidation by mediating 

the reinstatement and reprocessing of discrete memory traces in local networks. Indeed, 

spindle-coupled neural reactivations are topographically-restricted to the cortical areas 
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activated during learning [7], and cued memory reactivations elicit spindles across learning-

specific brain regions [8].  

 Importantly, we propose that localized spindle refractory periods gate reinstatement 

in a temporally-coordinated manner, facilitating highly synchronized periods of mnemonic 

reprocessing across multiple, interrelated memory units. The concurrent reprocessing of 

component memory traces will then sum to promote the consolidation of coherent 

representations (see Figure 1). Within our framework, inhibiting spindles in local networks is 

expected therefore to block the reinstatement and subsequent reprocessing of regionally-

dependent memory units.  

   

Spindle refractoriness optimizes spindle-ripple interactions 

 Another possible role of spindle refractoriness is optimizing oscillatory interactions 

across regions and nested frequencies during NREM sleep. The Active Systems model, for 

instance, postulates that memory consolidation in sleep is driven by finely-tuned 

interactions between spindles, slow oscillations (SOs, < 1 Hz), and sharp wave-ripple 

complexes (hereafter, ripples; ~80-100 Hz in humans [1]). More specifically, under the global 

control of cortical SOs, thalamocortical spindles cluster hippocampal ripple events 

representing local memory units, facilitating crosstalk between cortical and subcortical 

memory systems [9].  

 Assimilating our framework and this broader oscillatory hierarchy, we argue that 

spindle-ripple interactions and associated reinstatement events are separated by periods of 

spindle refractoriness, facilitating mnemonic reprocessing and neocortical integration. 

Although ripples can emerge independently of spindles, we propose that their occurrence 

alone is insufficient to support reinstatement. Indeed, reducing spindle-ripple co-
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occurrence, but not ripples or spindles independently, impairs the memory benefits of sleep  

[10]. Correspondingly, optogenetic induction of spindles enhances spindle-ripple coupling 

and sleep-dependent consolidation [9]. 

 Temporal coupling between spindles and ripples occurs both locally [11] and cross-

regionally [9]. While localized spindle-ripple interactions would subserve the reinstatement 

of highly specific memory units, cross-regional interactions might work to strengthen 

connections between the component traces of broader representations. Under the current 

framework, enhancing the temporal coupling of spindle-ripple events in local areas would 

facilitate the retention of only regionally-specific memory elements, whereas cross-regional 

enhancement would strengthen associations between them.  

  

A role for theta oscillations? 

An outstanding issue in the field of memory consolidation is the functional 

significance of theta activity during NREM sleep. Recent work has suggested that theta 

oscillations, in unison with sleep spindles, support the reinstatement and stabilization of 

newly-formed memory traces [4]. Yet, transient variations in theta activity during mnemonic 

processing have not emerged in other work [3, 5], raising questions about the specific 

conditions in which theta synchronization is necessary for consolidation. Interestingly, in [4] 

and related studies, the critical memory associations contained substantial linguistic 

components, which might depend on theta-related mechanisms to a greater extent than 

non-linguistic representations. Related to this possibility, theta synchronization during 

wakefulness provides an electrophysiological index of lexical integration [12]. A systematic 

assessment of the oscillatory dynamics underpinning memory reinstatement and 

reprocessing will be an important endeavor in future research.   
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Conclusion 

We have outlined a framework to explain the role of sleep spindles in memory 

consolidation. First, we proposed that spindle refractoriness gates memory reinstatement in 

NREM sleep, which allows mnemonic reprocessing to unfold without interference from 

other, unrelated information. Second, we proposed that local control of spindle 

refractoriness gates reinstatement in a temporally-coordinated manner to allow 

synchronized reprocessing across the component traces of broader representations. Third, 

we assimilated our framework with the hierarchical oscillatory structure of NREM sleep, 

arguing that spindle refractoriness optimizes the timing of spindle-ripple events and 

associated memory reinstatement. Testable predictions for our framework are outlined in 

Box 1. We encourage a global effort to address the mnemonic function of sleep spindles, 

and hope that this will provide important new insights into the fundamental biology of 

memory. 

 

Box 1. Predictions for Future Research 

Here we outline the core questions relating to our framework and offer experimental 

predictions: 

• Do spindle refractory periods support memory reprocessing? Disrupting 

reprocessing after spindle events (e.g. via auditory interference) should produce 

greater memory impairments when disruption follows a short (< 1 s) vs long (> 2 s) 

delay.  

• Do local spindles reflect localized memory reinstatement? For instance, inhibiting 

spindle events (e.g. via electrical stimulation) in the fusiform face area should impair 

the consolidation of memories for faces, but not memories for objects.  
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• Do localized and cross-regional spindle-ripple events serve different purposes? 

Enhancing temporal coupling of local spindle-ripple events via closed loop 

optogenetic approaches [9] should strengthen regionally-specific memory units, 

whereas enhancing cross-regional coupling should strengthen associative links 

between local memory traces.   

• Do the neural correlates of reinstatement differ according to the nature of 

reactivated associations? Cueing the reactivation of linguistic versus non-linguistic 

associations should evoke stronger responses in the theta band, with linguistic 

representations relying on increased theta synchronization.  
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Figure Legends 

Figure 1. Integrated view of memory reactivation during NREM sleep. A) Hypothetical 

paired-associate learning task involving images of common objects, scenes, and faces. The 

lateral occipital complex (LOC), parahippocampal place area (PPA), and fusiform face area 

(FFA) represent object, scene and face information, respectively. B) Schematic of coincident 
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neural events from LOC, PPA, FFA and local field potentials from the hippocampus (HC). 

Sleep spindles occur preferentially in the slow oscillation (SO) up-state, and can be seen as 

the high-frequency rhythm imposed over the SO. In the schematic, reinstatement of the 

‘House in Woods – Pewter Mug’ memory occurs during a hippocampal ripple, which is 

coincident with the troughs of spindles over PPA and LOC. After this reactivation event, 

refractoriness prevents another spindle from occurring for a few seconds, meaning 

hippocampal ripples may be ineffective at inducing reinstatement. This enables memory 

reprocessing to continue without disruption from unrelated traces. The refractory period 

may be accompanied by a gradual decline in reprocessing, and an increasing potential for 

the reactivation of other memories. Once refractoriness fades, the reinstatement and 

reprocessing cycle is repeated, allowing, in this example, the ‘Sunglasses – Woman in Hat’ 

memory to be reactivated. 
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