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Abstract	8	

Remembering	 is	 a	 reconstructive	 process,	 yet	 little	 is	 known	 about	 how	 the	 reconstruction	 of	 a	9	
memory	 unfolds	 in	 time	 in	 the	 human	 brain.	 Here,	 we	 used	 reaction	 times	 and	 EEG	 time-series	10	
decoding	to	test	the	hypothesis	that	the	information	flow	is	reversed	when	an	event	is	reconstructed	11	
from	 memory,	 compared	 to	 when	 the	 same	 event	 is	 initially	 being	 perceived.	 Across	 three	12	
experiments,	we	found	highly	consistent	evidence	supporting	such	a	reversed	stream.	When	seeing	13	
an	 object,	 low-level	 perceptual	 features	 were	 discriminated	 faster	 behaviourally,	 and	 could	 be	14	
decoded	from	brain	activity	earlier,	than	high-level	conceptual	features.	This	pattern	reversed	during	15	
associative	 memory	 recall,	 with	 reaction	 times	 and	 brain	 activity	 patterns	 now	 indicating	 that	16	
conceptual	 information	 was	 reconstructed	 more	 rapidly	 than	 perceptual	 details.	 Our	 findings	17	
support	a	neurobiologically	plausible	model	of	human	memory,	suggesting	that	memory	retrieval	is	18	
a	 hierarchical,	 multi-layered	 process	 that	 prioritizes	 semantically	 meaningful	 information	 over	19	
perceptual	details.	 	20	



2		

1.	Introduction		21	

When	Rocky	Balboa	goes	back	to	his	old	gym	in	the	movie	Rocky	V,	the	boxing	ring	and	the	feeling	of	22	
the	 dusted	 gloves	 in	 his	 hands	 trigger	 a	 flood	 of	 vivid	 images	 from	 the	 past.	 Like	 in	many	 other	23	
movies	 featuring	 such	 mnemonic	 flashbacks,	 the	 main	 character	 seems	 capable	 of	 remembering	24	
what	 the	 room	 looked	 like	 years	 ago,	 who	 was	 there	 at	 the	 time,	 and	 even	 an	 emotional	25	
conversation	 with	 his	 old	 friend	 and	 coach	Mickey.	 Perceptual	 details	 like	 colours,	 however,	 are	26	
initially	missing	in	the	scene,	like	in	a	faded	photograph,	and	only	gradually	saturate	over	time.	This	27	
common	way	 of	 depicting	memories	 in	 pop	 culture	 nicely	 illustrates	 that	 the	memories	we	 bring	28	
back	 to	 mind	 are	 not	 unitary	 constructs,	 and	 also	 not	 veridical	 copies	 of	 past	 events.	 Instead,	 it	29	
suggests	that	remembering	is	a	reconstructive	process	that	prioritizes	more	meaningful	components	30	
of	an	event	over	other,	more	shallow	aspects1,2.	We	here	report	three	experiments	that	shed	 light	31	
onto	the	temporal	information	flow	during	memory	retrieval.	Once	a	reminder	has	elicited	a	stored	32	
memory	trace,	are	the	different	features	of	this	memory	reconstructed	in	a	systematic,	hierarchical	33	
way?		34	

Surprisingly	little	is	known	about	the	time	course	of	memory	recall,	considering	our	vast	knowledge	35	
about	 the	 information	 processing	 hierarchy	 during	 visual	 perception.	 Visual	 object	 recognition	 is	36	
generally	assumed	to	progress	from	low-level	perceptual	features,	processed	in	early	visual	areas,	to	37	
increasingly	higher	levels	of	integration	and	abstraction	along	the	inferior	temporal	cortex3–8.	What	if	38	
a	mental	representation	is	re-created	from	memory,	without	much	external	stimulation?	Retrieving	39	
a	 scene	 from	Rocky	V	will	 elicit	 semantic	knowledge	about	 the	 film	 (e.g.	 the	actor	being	Sylvester	40	
Stallone),	but	also	mental	images	that	can	include	fairly	low-level	details	(e.g.	whether	the	scene	was	41	
in	 colour	 or	 in	 grey	 scale).	 How	 the	 brain	 manages	 to	 bring	 back	 each	 of	 these	 features	 when	42	
reconstructing	an	event	from	memory	remains	an	open	question.	The	present	series	of	experiments	43	
tested	our	central	working	hypothesis	that	the	stream	of	information	processing	is	reversed	during	44	
memory	reconstruction	compared	with	the	perception	of	an	external	stimulus.	45	

Over	 the	 last	 years,	 multivariate	 neuroimaging	 methods	 have	 made	 it	 possible	 to	 isolate	 brain	46	
activity	patterns	that	carry	information	about	externally	presented	stimuli,	but	also	about	internally	47	
generated	mnemonic	representations.	Importantly,	it	has	been	shown	that	parts	of	the	neural	trace	48	
that	an	event	produces	during	 its	 initial	 encoding	are	 reinstated	during	 its	 later	 retrieval9–14.	Most	49	
studies	 focused	on	 the	 reactivation	of	 abstract	 information,	 including	a	picture’s	 category11,13,14	 or	50	
the	 task	 context	 in	 which	 it	 was	 encoded10.	 Evidence	 also	 exists	 for	 the	 reactivation	 of	 low-level	51	
perceptual	details	in	early	visual	areas15,16.	Moreover,	a	growing	literature	using	electrophysiological	52	
methods	 is	beginning	 to	 shed	 light	onto	 the	 timing	of	 such	 reinstatement,	 typically	demonstrating	53	
neural	 reactivation	within	 the	 first	 second	after	a	 reminder12,17–19,	 and	 sometimes	very	 rapidly16,20.	54	
However,	because	all	existing	studies	focused	on	a	single	feature	of	a	memory	representation	(e.g.,	55	
its	 semantic	 category),	 the	 fundamental	 question	 whether	 memory	 reconstruction	 follows	 a	56	
hierarchical	information	processing	cascade,	similar	to	perception,	has	not	been	investigated.			57	

We	 hypothesize	 that	 such	 a	 processing	 hierarchy	 does	 exist,	 and	 that	 the	 information	 flow	 is	58	
reversed	during	memory	retrieval	compared	with	perception.	That	is,	based	on	the	widely	accepted	59	
idea	 that	 memory	 reconstruction	 depends	 on	 back-projections	 from	 the	 hippocampus	 to	 neo-60	
cortex21,22,	we	expect	 that	 those	areas	 that	 are	 anatomically	 closer	 to	 the	hippocampus	 (i.e.	 high-61	
level	conceptual	processing	areas	along	the	inferior	temporal	cortex)	are	involved	in	the	reactivation	62	
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cascade	 faster	 relatively	 remote	 areas	 (i.e.,	 low-level	 perceptual	 processing	 areas).	 Therefore,	 we	63	
assume	 that	 once	 a	 reminder	 has	 initiated	 the	 reactivation	 of	 an	 associated	 event,	 higher-level	64	
abstract	features	will	be	reconstructed	before	lower-level	perceptual	features,	producing	an	inverse	65	
temporal	order	of	processing	compared	with	perception.		66	

We	 tested	 this	 reverse	 reconstruction	 hypothesis	 in	 a	 series	 of	 two	 behavioural	 and	 one	 EEG	67	
experiment.	 All	 studies	 used	 a	 simple	 associative	 memory	 paradigm	 where	 participants	 learn	68	
arbitrary	associations	between	word	cues	and	everyday	objects,	and	are	later	cued	with	the	word	to	69	
recall	 the	 object.	 In	 order	 to	 test	 for	 a	 processing	 hierarchy,	 it	 was	 important	 to	 independently	70	
manipulate	the	perceptual	and	conceptual	contents	of	these	objects.	Therefore,	objects	varied	along	71	
two	orthogonal	dimensions:	one	perceptual	dimension,	where	the	object	was	either	presented	as	a	72	
photograph	or	a	line	drawing;	and	a	semantic	dimension	where	the	object	represents	an	animate	or	73	
inanimate	 entity	 (Fig.	 1a).	 The	 two	 behavioural	 experiments	 measure	 reaction	 times	 while	74	
participants	 make	 perceptual	 or	 semantic	 category	 judgments	 for	 objects	 that	 are	 either	 visually	75	
presented	 on	 the	 screen,	 or	 reconstructed	 from	 memory.	 The	 EEG	 experiment	 uses	 a	 similar	76	
associative	recall	paradigm	together	with	time-series	decoding	techniques3,4,23,	allowing	us	to	track	77	
at	 which	 exact	 moment	 in	 time	 perceptual	 and	 semantic	 components	 of	 the	 same	 object	 are	78	
reactivated,	and	 to	create	a	 temporal	map	of	 semantic	and	perceptual	 features	during	perception	79	
and	memory	reconstruction.	Our	behavioural	and	electrophysiological	findings	consistently	support	80	
the	 idea	 that	 memory	 reconstruction	 is	 not	 an	 all-or-none	 process,	 but	 rather	 progresses	 from	81	
higher-level	semantic	to	lower-level	perceptual	features.	82	

2.	Results	83	

Behavioural	experiments	84	

Our	two	behavioural	experiments	used	reaction	times	(RTs)	to	test	our	central	hypothesis	that	the	85	
information	 processing	 hierarchy	 reverses	 between	 the	 visual	 perception	 of	 an	 object	 and	 its	86	
reconstruction	from	memory.	We	assumed	that	the	time	required	to	answer	a	question	about	low-87	
level	 perceptual	 features	 (photograph	 vs.	 drawing)	 compared	 to	 high-level	 semantic	 features	88	
(animate	vs.	 inanimate)	of	an	 item	reflects	 the	speed	at	which	these	types	of	 information	become	89	
available	in	the	brain.	If	so,	reaction	time	patterns	should	reverse	depending	on	whether	the	object	90	
is	 visually	 presented	 or	 reconstructed	 from	memory:	 during	 perception,	 RTs	 should	 be	 faster	 for	91	
perceptual	 compared	 with	 semantic	 questions	 reflecting	 a	 forward	 processing	 hierarchy;	 during	92	
retrieval,	RTs	should	be	faster	for	semantic	compared	with	perceptual	questions	if	there	is	a	reversal	93	
of	that	hierarchy.		94	

Both	 experiments	 used	 a	 2x2	 mixed	 design	 (Fig.	 1b	 and	 c),	 where	 all	 participants	 answered	95	
perceptual	 and	 semantic	 questions	 (factor	 question	 type,	 within-subjects)	 about	 the	 objects.	96	
Importantly,	 one	 group	 of	 participants	 was	 visually	 presented	 with	 the	 objects	 while	 answering	97	
these	questions,	whereas	the	other	group	recalled	the	objects	from	memory	(factor	task,	between-98	
subjects).	The	main	difference	between	the	two	experiments	was	that	in	Experiment	1,	both	types	of	99	
features	were	probed	for	each	object;	and	in	Experiment	2,	objects	were	presented	on	background	100	
scenes	(not	of	interest	for	the	present	purpose;	see	Methods	section).		101	

Overall	accuracy	in	both	experiments	was	near	ceiling	for	the	visual	reaction	time	task	(Experiment	102	
1:	M=96.88%;	SD=2.40%;	Experiment	2:	M=97.19%,	SD=2.99%),	 and	high	 for	 the	memory	 reaction	103	
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time	 task	 (Experiment	 1:	 83.15%;	 SD=0.92;	 Experiment	 2:	 M=66.23%,	 SD=15.35).	 Note	 that	104	
Experiment	 2	 was	 more	 difficult	 because	 participants	 had	 to	 memorize	 background	 scenes	 in	105	
addition	 to	 the	objects’	 semantic	and	perceptual	 features.	 In	both	experiments,	only	 correct	 trials	106	
were	used	for	all	further	RT	analyses.	107	

	108	

Figure	1.	Stimuli	and	design	of	the	behavioural	experiments.	(a)	Illustration	of	the	orthogonal	design	of	the	stimulus	set.	In	109	
all	experiments,	objects	(a	total	of	128)	varied	along	two	dimensions:	a	perceptual	dimension	where	objects	could	be	110	

presented	as	a	photograph	or	as	a	line	drawing;	and	a	semantic	dimension	where	objects	could	belong	to	the	animate	or	111	
inanimate	category.	(b)	In	the	visual	reaction	time	task,	participants	were	prompted	on	each	trial	to	categorize	the	112	
upcoming	object	as	fast	as	possible,	either	according	to	its	perceptual	category	(photograph	vs.	line	drawing)	or	its	113	

semantic	category	(animate	vs.	inanimate).	(c)	During	the	encoding	phase	of	a	memory	reaction	time	task,	participants	114	
were	asked	to	create	word-object	associations	(a	total	of	8	per	block).	Reaction	times	were	then	measured	during	the	115	

retrieval	phase,	where	subjects	were	presented	with	a	reminder	word,	and	asked	to	recall	and	categorize	the	associated	116	
object	according	to	its	perceptual	(photograph	vs.	line	drawing)	or	semantic	(animate	vs.	inanimate)	features.	Button	press	117	

symbols	indicate	at	which	moment	in	a	trial	RTs	were	collected.		118	

RTs	show	the	expected	perception-to-memory	reversal	119	
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To	directly	 test	 for	a	reversal	of	 the	reaction	time	pattern	between	visual	perception	and	memory	120	
reconstruction,	 we	 used	 generalized	 linear	 mixed-effect	 models	 (GLMM).	 GLMMs	 are	 ideal	 for	121	
modelling	single	trial	(e.g.	RT)	data,	without	assumptions	about	the	underlying	distribution.	They	are	122	
able	 to	 capture	 variance	 explained	 by	 fixed	 and	 random	 variables,	 including	 the	 experimental	123	
manipulations	 of	 interest24.	We	 used	 single	 trial	 RTs	 as	 target	 (dependent)	 variable.	 Fixed	 effects	124	
were	 the	 kind	 of	 task	 (visual	 vs.	 memory),	 question	 type	 (perceptual	 vs.	 semantic)	 and	 the	125	
interaction	 between	 task	 and	 question	 type.	 Participant	 IDs	 and	 slopes	were	 included	 as	 random	126	
factor	(including	intercept).		127	

Consistent	with	the	reverse	reconstruction	hypothesis,	we	found	that	the	interaction	between	task	128	
(visual	 vs.	memory)	 and	 question	 type	 (i.e.	 perceptual	 vs.	 semantic)	 significantly	 predicted	 RTs	 in	129	
Experiment	1	(F1,9020=18.027,	P<.001)	and	Experiment	2	(F1,3280=10.588,	P=.001).	To	test	whether	the	130	
interaction	 was	 produced	 by	 differences	 in	 the	 expected	 direction	 (perceptual<semantic	 during	131	
encoding,	and	semantic<perceptual	during	retrieval),	planned	comparisons	were	then	performed	for	132	
the	visual	and	memory	task	independently,	with	question	type	as	fixed	effect.	We	found	a	significant	133	
effect	of	question	type	in	the	visual	task	(Experiment	1:	B=-.042,	t=-3.973,	P<.001;	Experiment	2:	B=-134	
.048,	 t=-2.457,	P=.014),	where	 the	 negative	 coefficient	 indicates	 that	 the	model	 indeed	 predicted	135	
lower	RTs	for	perceptual	compared	to	semantic	questions.	A	significant	effect	of	question	type	was	136	
also	 found	 in	 the	memory	 task,	 following	 the	 opposite	 pattern:	 positive	 coefficients	 now	 indicate	137	
significantly	 faster	RTs	during	 semantic	 than	perceptual	questions	 (Experiment	1:	B=.156,	 t=2.551,	138	
P=.011;	Experiment	2:	B=.165,	t=2.523,	P=.012).		139	

For	descriptive	proposes,	Figure	2	also	illustrates	the	distribution	of	participant-averaged	RTs.	During	140	
the	visual	task	(Fig.	2A),	participants	on	average	were	faster	at	answering	perceptual	(Experiment	1:	141	
M=795ms;	 SD=235ms;	 Experiment	 2:	 M=733ms;	 SD=211ms)	 than	 semantic	 (Experiment	 1:	142	
M=842ms,	SD=185ms;	Experiment	2:	M=797ms,	SD=235)	questions.	When	performing	the	same	task	143	
on	 objects	 reconstructed	 from	 memory,	 they	 were	 now	 slower	 responding	 to	 perceptual	144	
(Experiment	1:	M=2502ms;	SD=561;	Experiment	2:	M=3348ms,	SD=754)	than	semantic	(Experiment	145	
1:	M=2334ms;	SD=534;	Experiment	2:	M=3133ms,	SD=660ms)	questions.	146	

Reaction	time	analyses	thus	support	our	central	hypothesis	that	the	speed	of	information	processing	147	
for	 different	 object	 features	 reverses	 between	 perception	 and	 memory,	 a	 pattern	 replicated	148	
between	Experiments	1	and	2.		149	

Accuracies	support	a	reversal	between	perception	and	memory	150	

Next	we	investigated	if	a	similar	pattern	was	present	in	terms	of	accuracy	(Fig	2d	and	2e).	We	used	a	151	
GLMM	 with	 a	 logistic	 link	 function	 and	 a	 binary	 probability	 distribution	 for	 our	 target	 variable	152	
(accuracy,	correct	or	incorrect	on	a	given	single	trial).	Fixed	effects	were	the	type	of	task	(visual	vs.	153	
memory),	 question	 type	 (perceptual	 vs.	 semantic),	 and	 the	 interaction	 between	 the	 two	 factors.	154	
Participant	IDs	and	slopes	were	selected	as	random	factor,	including	intercept.		155	

In	 both	 experiments,	 the	 interaction	 between	 task	 (visual	 vs.	 memory)	 and	 question	 type	156	
(perceptual	vs.	semantic)	significantly	predicted	participants’	accuracy	(Experiment	1:	F1,11260=12.215,	157	
P<.001;	Experiment	2:	F1,4124=8.383,	P=.004).	When	running	planned	comparisons	separately	for	the	158	
visual	and	the	memory	task	in	Experiment	1,	results	for	the	visual	task	revealed	that	question	type	159	
significantly	 predicted	 	 accuracy	 (F1,5886=5.066,	 P=.024;	 B=-.420,	 t=-2.251,	 P=.024),	 suggesting	 that	160	
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accuracy	 for	 perceptual	 questions	 (M=97.42%;	 SD=2.68%)	 was	 higher	 compared	 to	 semantic	161	
questions	 (M=96.33%;	 SD=1.99%;).	 In	 the	 memory	 task,	 question	 type	 also	 predicted	 	 accuracy	162	
(F1,5374=5.374,	 P=.001;	 B=.251,	 t=3.222,	 P=.001),	 with	 negative	 coefficients	 indicating	 that	163	
participants	 were	 more	 likely	 to	 give	 a	 correct	 answer	 in	 response	 to	 semantic	 (M=85.83%;	164	
SD=7.57%)	 than	 perceptual	 (M=82.63%;	 SD=8.79%)	 questions,	 in	 line	 with	 a	 reversed	 processing	165	
stream.	Experiment	2	showed	a	similar	trend	in	accuracy	profiles.	GLMM	analyses	for	the	visual	task	166	
indicated	that	question	type	significantly	predicted	accuracy	(F1,2062=4.371,	P=.037;	B=-.585,	t=-2.091,	167	
P=.037),	 with	 better	 performance	 for	 perceptual	 (M=97.97%;	 SD=2.77%)	 than	 semantic	 questions	168	
(M=96.41%;	SD=3.07%).	In	contrast,	for	the	memory	task	we	found	evidence	for	the	prioritization	of	169	
higher-level	 information	 (semantic	 accuracy	 M=69.57%;	 SD=15.17%)	 over	 low-level	 details	170	
(perceptual	 accuracy	M=62.89%;	SD=15.09%).	Here,	question	 type	again	predicted	accuracy	 in	 the	171	
expected	direction	(F1,2062=6.707,	P=.010),	with	more	accurate	answers	to	semantic	than	perceptual	172	
questions	(B=.319,	t=2.590,	P=.010).	173	

Altogether,	 the	 findings	 from	our	 two	 behavioural	 experiments	 support	 our	main	 hypothesis	 that	174	
during	 retrieval	 of	 a	 complex	 visual	 representation,	 the	 temporal	 order	 in	 which	 perceptual	 and	175	
semantic	features	are	processed	reverses	compared	with	the	initial	perception.	The	results	suggest	176	
that	reaction	times	can	be	used	as	a	proxy	to	probe	neural	processing	speed,	as	previously	argued25.	177	
In	the	next	sections,	we	report	the	findings	from	an	EEG	study	that	more	directly	taps	into	the	neural	178	
processes	that	we	believe	are	producing	the	behavioural	pattern.	179	
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	180	

Figure2.	Behavioural	RT	and	accuracy	results.	(a)	Box	plots	representing	reaction	times	in	Experiment	1	and	Experiment	2	181	
(b)	for	perceptual	(blue)	and	semantic	(pink)	questions	when	an	object	was	physically	presented	on	the	screen	(visual	task,	182	
left)	or	cued	by	a	reminder	(memory	task,	right).	We	found	that	RTs	were	significantly	predicted	by	an	interaction	between	183	
question	type	and	kind	of	task	(P	<	.001).	For	illustrative	purposes	the	Y-axis	in	(a)	and	(b)	is	logarithmically	scaled.	(c)	In	184	
Experiment	 1,	 both	 types	 of	 questions	 were	 asked	 for	 each	 object	 representation.	 This	 allowed	 us	 to	 measure	 the	185	
difference	in	RTs	between	perceptual	and	semantic	questions	(X-axis)	on	a	trial-by-trial	level	(Y-axis)	during	the	visual	task	186	
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(left	panel)	and	the	memory	task	(right	panel).	Curved	lines	represent	an	expected	normal	distribution.	The	solid	horizontal	187	
lines	indicate	the	50%	point	of	the	distribution	(i.e.,	half	of	the	trials),	and	dashed	horizontal	lines	indicate	the	trial	with	a	188	
value	 closest	 to	 zero,	 where	 the	 perceptual-semantic	 difference	 is	 flipping	 from	 positive	 (pink)	 to	 negative	 (blue).	 If	189	
differences	were	normally	distributed,	 the	solid	and	dashed	 lines	would	be	on	top	of	each	other.	 (d)	Accuracy	results	 in	190	
Experiment	 1	 for	 perceptual	 (blue)	 and	 semantic	 questions	 (pink)	when	 the	object	was	presented	on	 the	 screen	 (visual	191	
task)	or	had	to	be	recalled	(memory	task).	Behavioural	analyses	showed	that	an	interaction	between	type	of	task	(i.e.	visual	192	
or	memory)	 and	 question	 type	 (i.e.	 perceptual	 or	 semantic)	 significantly	 predicted	 accuracy.	 (e)	 Box	 plots	 representing	193	
accuracy	in	Experiment	2	during	the	visual	and	memory	task,	where	the	significant	interaction	effect	between	type	of	task	194	
and	question	type	was	replicated.	In	all	box	plots,	the	line	in	the	middle	of	each	box	represents	the	median,	and	the	tops	195	
and	 bottoms	 of	 the	 boxes	 the	 25th	 and	 75th	 percentiles	 of	 the	 samples,	 respectively.	 Whiskers	 are	 drawn	 from	 the	196	
interquartile	ranges	to	the	furthest	minimum	(bottom)	and	maximum	(top)	values.		Crosses	represent	outliers.	197	

EEG	experiment	198	

While	existing	literature25	suggests	that	reaction	times	tap	into	neural	processing	speed,	we	wanted	199	
to	 obtain	 a	more	 direct	 signature	 of	 feature	 activation	 from	 brain	 activity.	We	 therefore	 applied	200	
multivariate	pattern	analysis	to	electrophysiological	(EEG)	recordings,	with	the	goal	to	pinpoint	when	201	
in	time,	on	an	individual	trial,	the	perceptual	and	semantic	features	of	an	object	could	be	decoded	202	
from	 brain	 activity.	We	 expected	 that	 perceptual	 information	 becomes	 available	 before	 semantic	203	
information	when	 an	 object	 is	 visually	 presented	 on	 the	 screen,	 and	 expected	 the	 order	 of	 these	204	
peaks	 to	 reverse	 when	 the	 object	 is	 recalled	 from	 memory.	 The	 design	 closely	 followed	 the	205	
behavioural	 experiments,	 with	 the	 important	 difference	 that	 each	 participant	 now	 carried	 out	 a	206	
visual	 encoding	 phase	 that	 served	 to	 probe	 visual	 (forward)	 processing,	 and	 a	 subsequent	 recall	207	
phase	used	to	probe	mnemonic	(backward)	processing.	The	trial	timing	was	optimised	for	obtaining	208	
a	 clean	 signal	 during	 object	 presentation	 and	 recall,	 rather	 than	 for	 RTs	 (Fig.	 3).	 We	 therefore	209	
presented	 the	 perceptual	 and	 semantic	 questions	 only	 during	 the	 recall	 phase,	 and	 at	 the	 end	 of	210	
each	 trial,	 such	 that	 the	 questions	 would	 not	 bias	 processing	 towards	 perceptual	 or	 semantic	211	
features.			212	

Accuracy	in	the	EEG	study		213	

In	 the	 retrieval	phase	of	 the	EEG	experiment,	 subjects	were	again	cued	with	a	word	and	asked	 to	214	
retrieve	the	associated	object.	They	on	average	declared	to	retrieve	the	object	on	93.6%	of	the	trials	215	
(SD=5.89%),	 with	 an	 average	 reaction	 time	 of	 3046ms	 (SD=830ms;	 minimum=1369ms;	216	
maximum=5124ms).	We	then	asked	two	questions	at	the	end	of	each	trial,	one	perceptual	and	one	217	
semantic,	which	participants	answered	with	an	overall	mean	accuracy	of	86.37%	(SD=6.6).	Mirroring	218	
the	behavioural	experiments,	average	hit	rates	were	87.65%	(SD=6.57%)	for	semantic	questions,	and	219	
85.08%	(SD=6.53%)	for	perceptual	questions.	Within	A	GLMM	showed	that	the	fixed	factor	question	220	
type	 predicted	 accuracy	 (F1,5374=7.706,	 P=.006),	 with	 perceptual	 questions	 showing	 a	 significantly	221	
lower	hit	rate	than	semantic	questions	(B=-.225,	t=-2.776,	P=.006).	Note	that	EEG	participants	were	222	
instructed	to	prioritize	accuracy	over	speed.		223	

Evidence	for	a	reversal	in	single-trial	classifier	fidelity		224	

To	determine	the	temporal	trajectory	of	feature	processing	on	a	single	trial	 level,	we	carried	out	a	225	
series	 of	 time	 resolved	 decoding	 analyses.	 Linear	 discriminant	 analysis	 (LDA,	 see	Method	 section)	226	
was	 used	 to	 classify	 perceptual	 (photograph	 vs.	 drawing)	 and	 semantic	 (animate	 vs	 .inanimate)	227	
features	 of	 an	 object	 based	 on	 the	 EEG	 topography	 at	 a	 given	 time	 point,	 either	 during	 object	228	
presentation	(encoding)	or	during	object	retrieval	from	memory	(cued	recall).		229	
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Our	 first	 aim	 was	 to	 confirm	 that	 there	 was	 a	 forward	 stream	 during	 encoding.	 Two	 separate	230	
classifiers	 were	 trained	 and	 tested	 to	 classify	 the	 perceptual	 (photograph	 vs.	 drawing)	 and	 the	231	
semantic	 category	 (animate	 vs.	 inanimate)	 of	 the	 to-be-encoded	object,	 respectively,	 in	 each	 trial	232	
and	time	point	per	participant	(see	Fig.	3).	Decoding	was	performed	in	separate	time	windows	from	233	
100ms	 before	 stimulus	 to	 500ms	 post-stimulus.	 Our	 main	 interest	 was	 to	 determine	 the	 specific	234	
moment	 in	 each	 trial	 at	which	 the	 perceptual	 and	 semantic	 classifiers	 showed	 the	highest	 fidelity	235	
(Fig.	3b	and	c).	For	the	encoding	data,	we	thus	identified	the	absolute	d	value	peak	per	trial	within	236	
500ms	 of	 stimulus	 onset.	 This	 approach	 allowed	 us	 to	 compare,	 within	 each	 trial,	 whether	 the	237	
classification	 peak	 for	 perceptual	 features	 occurred	 earlier	 than	 the	 peak	 for	 semantic	 features.	238	
Similarly,	we	used	 the	 cued	 recall	 time	 series	 to	 find	 the	 time	points	of	maximum	decodability	 of	239	
perceptual	and	semantic	features	during	memory	retrieval.	Retrieval	analyses	are	time-locked	to	the	240	
button	press,	i.e.	the	moment	when	participants	declared	that	they	retrieved	the	associated	object	241	
from	memory.	The	time	window	used	in	this	analysis	covered	3sec	prior	to	participants’	responses,	242	
based	on	average	reaction	times.	243	

244	
Figure3.	Design	 for	EEG	experiment	and	 time	resolved	multivariate	decoding.	 In	 the	EEG	experiment	participants	were	245	
asked	 to	 create	word-object	associations	 (panel	A),	 and	 to	 later	 reconstruct	 the	object	as	vividly	as	possible	when	cued	246	
with	the	word,	and	to	 indicate	with	a	button	press	when	they	had	a	vivid	 image	back	 in	mind.	EEG	was	recorded	during	247	
learning	 and	 recall,	with	 the	 aim	 to	 perform	 time-series	 decoding	 analyses	 that	 can	 detect	 at	which	moment,	within	 a	248	
single	trial,	a	classifier	 is	most	 likely	 to	categorise	perceptual	and	semantic	 features	correctly.	Coloured	time	 lines	under	249	
object	and	cue	time	windows	represent	our	reversal	hypothesis	regarding	the	temporal	order	of	maximum	semantic	(pink)	250	
and	 perceptual	 (blue)	 classification	 during	 the	 perception	 (encoding)	 and	 retrieval	 of	 an	 object.	 All	 EEG	 analyses	 were	251	
aligned	 to	 the	 object	 onset	 during	 encoding,	 and	 to	 the	 button	 press	 during	 retrieval.	 (b)	 Decoding	 analyses	 were	252	
performed	 independently	 per	 participant	 at	 each	 time	 point.	 For	 each	 given	 time	 point	 during	 a	 trial,	 two	 linear	253	
discriminant	 analysis	 (LDA)	 based	 classifiers	 were	 trained	 on	 the	 EEG	 signal:	 one	 perceptual	 classifier	 discriminating	254	
photographs	 from	 line	 drawings,	 and	 one	 semantic	 classifier	 discriminating	 animate	 from	 inanimate	 objects.	 Classifiers	255	
were	 tested	 using	 a	 leave-one-out	 procedure,	which	 allowed	 us	 to	 obtain	 a	 time	 series	 of	 confidence	 values	 (d	 values,	256	
reflecting	the	distance	from	the	separation	hyperplane)	for	each	single	trial.	(c)	Our	main	interest	was	to	compare	the	time	257	
points	of	maximal	fidelity	of	the	perceptual	(blue)	and	semantic	classifiers	(pink)	on	each	trial,	to	test	the	hypothesis	that	258	
the	 perceptual	maximum	 (blue)	 precedes	 the	 semantic	 one	 (pink)	 during	 perception,	 and	 importantly	 that	 this	 order	 is	259	
reversed	during	memory	recall.		260	

The	 first	 single-trial	 peak	 analysis	 was	 similar	 to	 the	 analysis	 conducted	 on	 reaction	 times	 in	 the	261	
behavioural	 studies.	 The	 GLMM	 used	 to	 test	 if	 the	 relative	 timing	 of	 d	 value	 peaks	 from	 the	262	
perceptual	and	semantic	classifiers	reverses	between	encoding	and	retrieval	was	very	similar	to	the	263	
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RT	analyses.	The	 interaction	between	 type	of	 classifier	and	 type	of	 task	 significantly	predicted	 the	264	
timing	 of	 d	 value	 peaks	 (F1,5504=7.121,	 P=.003).	 Planned	 comparisons	 between	 perceptual	 and	265	
semantic	classifiers,	run	separately	for	encoding	and	retrieval,	revealed	that	type	of	classifier	did	not	266	
significantly	predict	the	timing	of	d	value	peaks	during	encoding	(F1,4326=0.328,	P=.567),	but	it	did	so	267	
during	retrieval	(F1,1180=3.879,	P=.049).	Beta	coefficients	showed	that	semantic	peaks	were	predicted	268	
significantly	 earlier	 than	 perceptual	 peaks	 (B=112.944,	 t=1.969,	 P=.049),	 as	 expected	 if	 there	 is	 a	269	
reversed	processing	cascade.		270	

We	 followed	up	 this	GLMM	with	a	 clustered	Wilcoxon	sign-rank	 test	 (	 Jiang,	 Lee,	&	Rosner,	2017)	271	
specifically	analysing	the	relative	order	of	semantic	and	perceptual	peaks	on	each	individual	trial.	At	272	
encoding	 (Fig.	 4c),	 we	 found	 a	 significant	 difference	 (T=-9.7642,	 P=.036)	 between	 the	 timing	 of	273	
perceptual	and	semantic	peaks.	Fig.	4c	shows	that	this	difference	was	caused	by	a	tendency	of	the	274	
single	trial	differences	to	be	negative	(learning	towards	the	blue	side),	suggesting	that	fidelity	peaks	275	
for	 perceptual	 classification	 occurred	 earlier	 than	 those	 for	 semantic	 classification.	 This	 result	276	
validates	 our	 peak	method,	 and	 confirms	 that	 low-level	 features	 are	 processed	 before	 high-level	277	
features	 during	 visual	 perception3–6,8.	 The	 results	 also	 suggest	 that	 an	 analysis	 that	 takes	 into	278	
account	the	paired	difference	between	the	classifier	maxima	from	each	single	trial	is	more	sensitive	279	
than	 a	 GLMM	 that	 uses	 the	 distributions	 of	 all	 single	 trials	 (not	 revealing	 a	 robust	 difference	 at	280	
encoding).				281	

Importantly,	 following	 the	 same	 procedure,	 we	 next	 analysed	 the	 differences	 between	 the	282	
perceptual	and	semantic	 classifier	peaks	during	memory	 reactivation,	 to	 test	 if	 the	order	 reversed	283	
during	 retrieval	 compared	 with	 encoding.	 The	 single-trial	 approach	 ensured	 that	 the	 relative	284	
temporal	 order	 of	 perceptual	 and	 semantic	 peaks	 within	 a	 trial	 would	 be	 preserved	 even	 if	 the	285	
retrieval	process	was	set	off	with	varying	delays	across	trials.	A	one-tailed	clustered	Wilcoxon	signed	286	
rank	 test26,	 revealed	 a	 significant	 difference	 (T=34.602,	 P<.001)	 when	 comparing	 perceptual	 with	287	
semantic	d	value	peaks	(leaning	towards	the	red	side	in	Fig.	4c).	Critically,	the	one-tailed	test	in	this	288	
case	 confirms	 our	 central	 hypothesis	 that	 during	 memory	 retrieval,	 semantic	 information	 can	 be	289	
classified	in	brain	activity	significantly	earlier	than	perceptual	 information,	suggesting	that	memory	290	
recall	prioritizes	semantic	over	perceptual	information.		291	

	292	
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	293	

Figure	4.	EEG	multivariate	analysis	results.	For	illustrative	proposes,	box	plots	show	group	peak	distribution	of	d	values	for	294	
perceptual	and	semantic	categories	during	encoding	(a;	Perceptual	peaks:	M	=	259,	SD	=	24;	Semantic	peaks:	M	=	267,	SD	=	295	
43)	and	retrieval	(b;	Perceptual	peaks:	M	=	-1646,	SD	=	247;	Semantic	peaks:	M	=	-1772,	SD	=	177)	after	averaging	peaks	296	
within	 participants.	 All	 box	 plots	 elements	 represent	 the	 same	metrics	 as	 in	 Figure	 2.	 (c)	Measuring	 classifier	 fidelity	 in	297	
terms	of	d	value	peaks	on	a	single-trial	 level	allowed	us	 to	measure	the	pairwise	time	distance	between	perceptual	and	298	
semantic	peaks	during	encoding	 (left	panel)	and	 retrieval	 (right	panel).	Y-axis	 represents	each	 individual	 trial,	with	 trials	299	
accumulated	 across	 participants.	 The	 time	 distance	 between	 classifier	 peaks	 (time	 of	 perceptual	 peak	 minus	 time	 of	300	
semantic	peak	on	a	given	trial)	 is	represented	on	the	X-axis.	The	curved	line	represents	an	expected	normal	distribution.	301	
The	 solid	 horizontal	 line	 indicates	 the	 50%	 point	 (half	 of	 the	 trials),	 and	 the	 dashed	 horizontal	 line	 indicates	 the	 point	302	
where	the	temporal	distance	values	change	sign	from	perceptual	<	semantic	(blue)	to	semantic	<	perceptual	(pink).		303	

ERP	results	are	consistent	with	a	reversed	processing		304	

In	a	final	step,	we	sought	to	corroborate	our	classifier-based	findings	by	conventional	event-related	305	
potential	(ERP)	analyses.	If	the	differences	picked	up	by	the	LDA	classifier	were	produced	by	a	signal	306	
that	is	relatively	stable	across	trials	and	participants,	these	signal	differences	would	also	be	visible	in	307	
the	average	ERP	time	courses.	A	comparison	of	the	ERP	peaks	during	encoding	and	retrieval	would	308	
then	reveal	the	same	perception-to-memory	reversal	as	found	in	our	multivariate	analyses.		309	

Firstly,	 a	 series	 of	 cluster-based	 permutation	 tests	 (see	 Methods)	 was	 performed	 during	 object	310	
presentation	to	test	for	ERP	differences	between	perceptual	and	semantic	categories.	A	perceptual	311	
contrast	of	the	waveforms	for	photographs	and	line	drawings	revealed	a	significant	positive	cluster	312	
(Pcorr=.008)	between	136ms	and	232ms	after	stimulus	onset,	with	a	maximum	difference	based	on	313	
the	 sum	 of	 T	 values	 at	 188ms,	 and	 located	 over	 occipital	 and	 central	 electrodes	 (see	 Fig.	 5a).	314	
Contrasting	objects	from	the	different	semantic	categories	(animate	and	inanimate)	revealed	a	later	315	
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cluster	 over	 frontal	 and	 occipital	 electrodes	 (Pcorr=.001)	 from	 237ms	 until	 357ms	 after	 stimulus	316	
presentation,	with	a	maximum	difference	at	306ms	(see	Fig.	5a).	The	peak	semantic	ERP	difference	317	
for	encoding	thus	occurred	~120ms	after	the	peak	perceptual	difference,	consistent	with	the	existing	318	
ERP	literature27	.	319	

Similar	 contrasts	 between	 perceptual	 and	 semantic	 categories	 were	 then	 carried	 out	 during	320	
retrieval,	 again	 aligning	 trials	 to	 the	 button	 press.	 We	 found	 a	 significant	 perceptual	 cluster	321	
distinguishing	 the	 recall	 of	 photographs	 and	 line	 drawings	 over	 occipital	 electrodes	 (Pcorr=.046)	322	
between	1390ms	and	1336ms	before	participants’	responses,	with	a	maximum	difference	at	1360ms	323	
prior	 to	 response	 (see	Fig.	 5b).	Comparing	ERPs	 for	 the	different	 semantic	 categories,	we	 found	a	324	
significant	cluster	distinguishing	the	recall	of	animate	from	inanimate	objects	over	frontal	electrodes	325	
(Pcorr	=	.032)	between	1781ms	and	1735ms	before	object	retrieval,	with	a	maximum	difference	at	-326	
1770ms	 (see	 Fig.	 5b).	 Therefore,	 during	 memory	 retrieval,	 the	 peak	 semantic	 ERP	 difference	327	
occurred	~400ms	before	the	peak	perceptual	difference.	Note	that	the	timing	of	these	effects	is	well	328	
aligned	with	the	timing	of	the	classifier	results	(see	Fig.	4).	Qualitatively,	the	ERP	results	thus	mirror	329	
the	results	of	our	multivariate	analyses,	again	supporting	the	reversal	hypothesis.		330	

An	additional	analysis	was	carried	out	to	statistically	test	for	an	interaction	on	the	ERP	level	between	331	
type	of	task	(encoding	vs.	retrieval)	and	representational	features	(perceptual	vs.	semantic).	In	each	332	
participant,	 we	 identified	 the	 time	 point	 of	 the	 maximum	 ERP	 difference	 in	 each	 of	 our	 four	333	
comparisons	 of	 interest	 (i.e.	 photographs/drawings	 during	 encoding/retrieval;	 and	334	
animate/inanimate	 objects	 during	 encoding/retrieval).	 A	 2x2	 within-subjects	 ANOVA	 revealed	 	 a	335	
significant	 interaction	 between	 type	 of	 task	 	 and	 type	 of	 representational	 feature	 	 (F1,42=7.798,	336	
P=.011).		337	

A	 final	 follow-up	 suggests	 that	 these	 ERP	 differences	 are	 not	 driven	 by	 a	 specific	 combination	 of	338	
perceptual	and	semantic	features.	For	each	of	the	clusters	 identified	in	the	above	ERP	analysis,	we	339	
ran	a	2x2	within-subjects	ANOVA,	averaging	the	signal	separately	for	the	four	types	of	sub-categories	340	
(animate-photographs,	animate-line	drawings,	inanimate-photographs,	inanimate-line	drawings,	see	341	
Supplementary	Figure	1).	We	did	not	find	a	significant	interaction	between	semantic	and	perceptual	342	
categories	 in	any	cluster	during	encoding	(perceptual	cluster:	F1,23=1.106,	P=.304;	semantic	cluster:	343	
F1,23=.640,	P=.432)	or	 retrieval	 (perceptual	 cluster:	F1,20=2.125,	P=.160;	 semantic	 cluster:	 F1,20=.403,	344	
P=.533),	and	thus	no	evidence	indicating	that	our	main	ERP	clusters	were	produced	by	a	difference	345	
in	one	of	the	sub-categories	that	constitute	the	orthogonal	dimension.		346	

Altogether,	 the	ERP	results	confirm	that	perceptual	aspects	are	coded	 in	brain	activity	earlier	 than	347	
semantic	aspects	during	visual	processing,	but	semantic	differences	dominate	the	EEG	signal	earlier	348	
than	perceptual	ones	during	retrieval.	349	
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	350	

Figure	 5.	 Univariate	 analysis	 results.	 (a)	 Left	 panels	 represent	 ERP	 group	 differences	 (T	 values)	 across	 time	 in	 those	351	
electrodes	that	formed	a	significant	cluster	during	object	presentation,	locked	to	the	onset	of	the	stimulus.	Top	left	panel	352	
shows	the	contrast	of	photographs	vs.	line	drawings,	and	the	bottom	left	panel	differences	between	animate	vs.	inanimate	353	
objects.	Scalp	 figures	next	 to	each	contrast	 illustrate	 the	maximum	cluster’s	 topography,	averaged	across	 the	significant	354	
time-window,	with	all	 significant	electrodes	 in	a	cluster	being	marked	with	an	asterisk.	 (b)	Right	panels	show	ERP	group	355	
differences	(T	values)	over	time	in	those	electrodes	that	are	contained	in	the	maximum	significant	clusters	during	memory	356	
retrieval,	time	locked	to	participants’	responses).	The	top	right	panel	shows	the	perceptual	contrast,	and	the	bottom	right	357	
panel	the	semantic	contrast.	Cluster	topographies	for	each	comparison	are	located	next	to	each	panel,	and	the	temporal	358	
extent	of	significant	clusters	is	shaded	in	colour.	359	

3.	Discussion	360	

How	does	the	neural	fingerprint	of	a	memory	unfold	in	time	when	triggered	by	a	reminder?	While	it	361	
is	widely	accepted	that	visual	object	 recognition	starts	with	 low-level	perceptual	 followed	by	high-362	
level	abstract	processing3,4,6,8,	much	less	is	known	about	the	mnemonic	feature	processing	cascade.	363	
Here	we	 demonstrate	 that	 the	 reconstruction	 of	 a	 visual	memory	 does	 depend	 on	 a	 hierarchical	364	
stream	too,	but	this	mnemonic	stream	follows	the	reverse	order	relative	to	visual	processing.	Across	365	
three	 experiments,	 we	 found	 highly	 converging	 evidence	 from	 reaction	 times	 and	 accuracy	366	
(Experiments	 1	 and	 2),	 multivariate	 classification	 analyses,	 and	 from	 univariate	 ERP	 analyses	367	
(Experiment	3),	all	indicating	that	conceptual	information	is	prioritized	during	retrieval.	368	

In	 the	 behavioural	 studies,	 participants	 were	 significantly	 faster	 at	 detecting	 low-level	 perceptual	369	
than	 abstract,	 conceptual	 differences	 during	 a	 visual	 classification	 task,	 while	 the	 object	 was	370	
presented	on	the	screen.	Critically,	when	probing	the	features	of	objects	recalled	from	memory,	the	371	
reverse	 effect	 was	 found:	 subjects	 required	 significantly	 less	 time	 to	 correctly	 retrieve	 semantic	372	
information	about	the	object	compared	to	perceptual	details	(see	Fig.	2a	and	2b).	This	reversal	was	373	
corroborated	by	a	significant	 interaction	between	the	kind	of	feature	(perceptual	or	semantic)	and	374	
the	kind	of	task	(visual	perception	or	memory	recall	task).	Based	on	signal-detection	models28,29,	the	375	
RT	 findings	suggest	 that	during	memory	 reconstruction,	 the	decision	 threshold	 to	 identify	abstract	376	
information	 of	 a	 mnemonic	 representation	 is	 reached	 before	 sufficient	 low-level	 information	 is	377	
available.	The	response	latency	pattern	therefore	supports	our	central	hypothesis	that	the	temporal	378	
order	 in	 which	 features	 come	 online	 is	 reversed	 when	 retrieving	 a	 stored	 representation	 of	 an	379	
object,	 relative	 to	 its	 perception.	 In	 addition	 to	 reaction	 times,	 the	 same	 reversal	 pattern	 was	380	
present	in	accuracy	profiles	in	both	experiments	(see	Fig.	2d).	These	findings	suggest	a	prioritization	381	
of	abstract	semantic	 information	over	perceptual	details	of	a	mnemonic	representation,	consistent	382	
with	hierarchical	memory	system	models30.			383	
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The	 EEG	 results	 fully	 support	 the	 conclusions	 drawn	 from	 the	 behavioural	 studies.	 We	 used	384	
temporally	 resolved	 multivariate	 decoding	 analyses	 to	 observe	 when	 in	 time,	 during	 object	385	
perception	and	retrieval,	the	perceptual	and	semantic	features	of	an	object	are	maximally	decodable	386	
from	brain	activity	patterns.	These	analyses	were	carried	out	such	that	the	relative	temporal	order	387	
of	the	perceptual	and	semantic	classifier	peaks	could	be	directly	compared	in	each	single	trial.	When	388	
an	 object	 was	 visually	 presented	 during	 encoding,	 the	maximum	 fidelity	 in	 classifying	 perceptual	389	
information	(photograph	vs.	drawing)	occurred	approximately	100ms	earlier	than	the	maximum	for	390	
semantic	 information	 (animate	 vs.	 inanimate)	 (see	 Fig.	 4a).	 This	 finding	 is	 consistent	 with	 a	391	
predominantly	 feed-forward	 processing	 as	 described	 previously3–6,8.	 Note	 that	 perceptual	 and	392	
semantic	 peaks	 during	 visual	 perception	 only	 differed	 statistically	 when	 comparing	 their	 relative	393	
timing	on	a	single	trial	level,	suggesting	that	such	an	analysis	is	more	sensitive	to	detecting	relatively	394	
small	 timing	 differences	 in	 noisy	 data.	 When	 we	 asked	 participants	 to	 reactivate	 an	 object’s	395	
representation	 from	 memory,	 semantic	 peaks	 were	 found	 approximately	 300ms	 earlier	 than	396	
perceptual	peaks	 (see	Fig.	4b).	 Like	 in	 the	behavioural	experiments,	a	consistent	 reversal	between	397	
perception	and	memory	was	supported	by	a	significant	interaction	between	the	type	of	feature	that	398	
was	probed	(perceptual	or	semantic),	and	the	type	of	task	participants	were	engaged	in	(encoding	or	399	
retrieval).	 Finally,	we	 also	 found	 the	 same	 reversal	 pattern	 in	 the	 ERP	peaks	when	 comparing	 the	400	
maximum	ERP	difference	between	perceptual	and	semantic	object	classes.	During	object	perception,	401	
the	largest	perceptual	ERP	cluster	occurred	~100ms	before	the	semantic	ERP	cluster,	whereas	during	402	
retrieval	the	perceptual	cluster	followed	the	semantic	one	with	a	lag	of	about	400ms	(see	Fig.	5).	In	403	
summary,	 our	 results	 provide	 robust	 evidence	 for	 our	main	 prediction	 that	 semantic	 features	 are	404	
prioritized	 over	 perceptual	 features	 during	 memory	 recall,	 in	 the	 opposite	 direction	 of	 the	 well-405	
known	forward	stream	of	visual-perceptual	processing.	Follow-up	studies	will	need	to	test	whether	406	
this	reversed	stream	is	robust	under	different	conditions,	for	example	in	tasks	that	explicitly	vary	the	407	
encoding	 demands	 to	 emphasize	 perceptual	 over	 semantic	 aspects	 of	 an	 event.	 If	 semantic	408	
information	 is	 always	 prioritized,	 this	 would	 suggest	 a	 hardwired	 characteristic	 of	 the	 output	409	
pathways	 from	 the	 hippocampus	 back	 to	 neocortex.	 Alternatively,	 and	 maybe	 more	 likely,	 the	410	
retrieved	 representation	 will	 to	 some	 degree	 also	 depend	 on	 what	 Marr22	 called	 the	 “internal	411	
description”	of	a	stimulus	during	encoding,	including	the	rememberer’s	goals	and	attentional	state.		412	

In	our	studies,	 the	behavioural	data	were	acquired	separately	 from	the	EEG	data,	 in	a	setting	 that	413	
was	 optimized	 for	 measuring	 reaction	 times.	 Studies	 simultaneously	 measuring	 RTs	 and	 neural	414	
activity	 suggest	 that	 a	 meaningful	 relationship	 exists	 between	 EEG	 classifier	 fidelity	 values	 and	415	
human	 behaviour.	 In	 line	 with	 signal	 detection	 models28,29,	 it	 has	 been	 argued	 that	 the	 distance	416	
between	two	or	more	categories	in	a	neural	representational	space	serves	as	decision	boundary	that	417	
guides	 behavioural	 categorization25.	 For	 example,	 Carlson	 et	 al.31	 used	 fMRI-based	 activation	418	
patterns	in	late	visual	brain	regions	in	an	object	animacy	task.	They	found	that	the	faster	the	RT	on	a	419	
given	 trial,	 the	 further	 away	 in	 neural	 space	 the	 object	was	 represented	 relative	 to	 the	 boundary	420	
between	semantic	categories.	Similarly,	an	MEG	study25	showed	that	the	decision	values	during	time	421	
points	 of	 maximum	 decodability,	 derived	 similar	 to	 our	 EEG	 decoding	 peaks,	 were	 strongly	422	
correlated	with	reaction	times	for	visual	categorization.	Both	studies	thus	suggest	that	during	object	423	
vision,	 single-trial	 decoding	 measures	 reflect	 a	 distance	 between	 categories	 in	 neural	 space	 that	424	
translates	 into	 behaviour.	 Our	 findings	 indicate	 that	 this	 brain-behaviour	 relationship	 extends	 to	425	
mental	object	representations	during	memory	reconstruction.	426	
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How	 does	 the	 reverse	 reconstruction	 hypothesis	 fit	 with	 existing	 knowledge	 about	 the	 neural	427	
pathways	 involved	 in	 memory	 reconstruction?	 It	 is	 generally	 accepted	 that	 during	 memory	428	
formation,	 information	 flows	 from	 domain-specific	 sensory	modules	 via	 perirhinal	 and	 entorhinal	429	
cortices	into	the	hippocampus.	Recent	evidence	suggests	that	during	visual	processing,	the	coding	of	430	
perceptual	 object	 information	 is	 preserved	 up	 to	 relatively	 late	 perirhinal	 processing	 stages7.	 The	431	
hippocampus	 is	 considered	 a	 domain-general	 structure21,32,33	 whose	 major	 role	 is	 the	 associative	432	
binding	of	the	various	elements	that	constitute	an	episode34–36.	The	hippocampal	code	later	allows	a	433	
partial	 cue	 to	 trigger	 the	 reconstruction	 of	 these	 different	 elements	 from	memory.	 This	memory	434	
process	likely	depends	on	back-projections	from	the	hippocampus	to	neocortical	areas,	causing	the	435	
reactivation	 of	 memory	 patterns	 in	 (a	 subset	 of)	 the	 areas	 that	 were	 involved	 in	 perceiving	 the	436	
original	 event.	 Such	 reactivation	 has	 consistently	 been	 reported	 in	 higher-order	 sensory	 regions	437	
related	 to	 processing	 of	 complex	 stimulus	 and	 task	 information10–12,14,	 but	 also	 in	 relatively	 early	438	
sensory	 cortex15,16,	 suggesting	 that	 in	 principle,	 higher-	 and	 lower-level	 information	 can	 be	439	
reconstructed	 from	 memory.	 Recent	 evidence,	 however,	 suggests	 that	 the	 structure	 of	 complex	440	
naturalistic	 events	 (movies)	 is	 transformed	 from	 perceptual	 to	mnemonic	 codes	 during	 retrieval9.	441	
This	finding	is	in	line	with	the	idea	that	remembering	prioritizes	higher-order	meaningful	information	442	
over	lower-level	details.		443	

While	 the	 reverse	 reconstruction	hypothesis	 is	 neurobiologically	 plausible	 and	has	 strong	 intuitive	444	
appeal,	 direct	 empirical	 evidence	 so	 far	 has	 been	 lacking.	 Indirect	 evidence	 comes	 from	 an	 fMRI	445	
study	 showing	 that	 within	 the	medial	 temporal	 lobe,	 regions	 involved	 in	 visual	 object	 and	 scene	446	
processing	 are	 also	 activated	when	 retrieving	 objects	 and	 scenes	 from	memory,	 but	with	 a	 delay	447	
relative	 to	 perception,	 consistent	 with	 a	 reversed	 information	 flow37.	 Intracranial	 EEG	 recordings	448	
have	 shown	 that	 connectivity	 between	 the	 entorhinal	 cortex	 and	 the	 hippocampus	 changes	449	
directionality	between	encoding	and	retrieval38,	which	could	provide	the	functional	basis	for	cortical	450	
reinstatement.	Studies	in	rodents	indicate	that	the	hippocampus	is	in	principle	capable	of	replaying	451	
the	 neural	 code	 that	 represent	 a	 certain	 spatial	memory	 in	 reverse	 order,	 in	 particular	when	 the	452	
animal	is	awake	and	resting39.	Finally,	work	using	MEG-based	decoding	suggests	that	it	is	mainly	the	453	
later	 visual	 processing	 stages	 that	 are	 reactivated	during	 retrieval	 and	mental	 imagery,	 consistent	454	
with	a	prioritization	of	higher-level	information23,40.	Our	proposal	of	a	reverse	processing	hierarchy	is	455	
thus	 plausible	 based	 on	 functional	 anatomy	 and	 the	 existing	 literature,	 even	 though	 it	 has	 never	456	
been	explicitly	tested	so	far.		457	

We	regard	our	reverse	reconstruction	hypothesis	as	complementary	to	existing	models	that	address	458	
the	nature	and	timing	of	different	 retrieval	processes,	 including	 the	 influential	dual	process	model	459	
(for	a	 review	see41).	Dual	process	models	 focus	on	recognition	rather	 than	recall	 tasks,	and	on	the	460	
cognitive	processes	and	operations	required	to	access	a	stored	memory	rather	than	the	reactivated	461	
features	of	a	memory.	Successful	recognition	presumably	can	be	based	on	a	sense	of	familiarity,	or	462	
on	the	recollection	of	contextual	information	from	the	initial	encoding,	an	influential	idea	since	the	463	
introspective	analyses	of	William	James42.	While	 the	original	model	does	not	explicitly	address	 the	464	
time	 course	 of	 these	 processes,	 the	 EEG	 literature	 suggests	 that	 familiarity	 signals	 occur	 earlier	465	
(approximately	300ms)	 than	 recollection	 signals	 (starting	 from	500-600ms)43–46.	 In	 contrast,	all	our	466	
experiments	 probed	 memory	 via	 cued	 recall,	 where	 successful	 recall	 strongly	 depends	 on	 the	467	
recollection	of	associative	information.	Our	results	suggest	that	within	this	recollection	process,	the	468	
semantic	“gist”	of	a	memory	is	accessed	before	perceptual	details.	Assuming	that	familiarity	signals	469	
reflect	a	more	gist-like	and	 less	detailed	stage	of	the	retrieval	process	than	recollection	signals	 (an	470	
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assumption	 that	 some	 find	 controversial,	 see47),	 the	 hierarchical	 progression	 from	 an	 early	 global	471	
semantic	signal	to	more	fine-grained	recollection	might	thus	be	a	fundamental	principle	of	retrieval	472	
that	is	shared	between	recall	and	recognition	memory.	473	

Interesting	parallels	also	exist	between	our	findings	and	visual	 learning	phenomena	like	the	Eureka	474	
effect48.	 The	general	 idea	 that	perception	 is	 shaped	by	 stored	 representations	has	been	proposed	475	
over	a	century	ago	by	von	Helmholtz49.	A	wealth	of	findings	support	the	idea	that	previous	exposures	476	
to	 a	 stimulus	 can	 exert	 a	 strong	 top-down	 influence	 on	 subsequent	 perception	 (for	 a	 review50).	477	
Reminiscent	of	our	present	 findings,	Ahissar	and	Hochstein51	 suggest	 that	 such	visual	 learning	 is	 a	478	
top-down	process	that	progresses	from	high-level	 to	 low-level	visual	areas.	Specifically,	 they	argue	479	
that	 improvements	 in	 visual	 discrimination	 (e.g.	 identifying	 a	 tilted	 line	 among	 distractors)	 are	480	
guided	by	high-level	 information	(e.g.	“the	gist	of	the	scene”)	during	earlier	stages	of	 learning,	and	481	
increasingly	 by	 low-level	 information	 (e.g.	 line	 orientations	 or	 colours)	 at	 later	 stages.	 If	 abstract	482	
information	 is	 reactivated	 more	 easily	 during	 earlier	 stages	 of	 visual	 learning,	 it	 will	 influence	483	
performance	more	 than	detailed	 information.	Even	 though	speculative,	 the	 reverse	 reconstruction	484	
framework	might	thus	have	explanatory	value	for	findings	in	related	fields.			485	

How	our	brain	brings	back	 to	mind	past	events,	 and	enriches	our	mental	 life	with	vivid	 images	or	486	
sounds	or	scents	beyond	the	current	external	stimulation,	is	still	a	fascinating	and	poorly	understood	487	
phenomenon.	 Our	 results	 suggest	 that	 memories,	 once	 triggered	 by	 a	 reminder,	 unfold	 in	 a	488	
systematic	 and	 hierarchical	 way,	 and	 that	 the	 mnemonic	 processing	 hierarchy	 is	 reversed	 with	489	
respect	 to	 the	 major	 visual	 processing	 hierarchy.	 We	 hope	 that	 these	 findings	 can	 inspire	 more	490	
dynamic	 frameworks	of	memory	 retrieval	 that	explicitly	 acknowledge	 the	 reconstructive	nature	of	491	
the	process,	 rather	than	simply	conceptualizing	memories	as	reactivated	snapshots	of	past	events.	492	
Such	models	will	 help	us	understand	 the	heuristics	 and	 systematic	biases	 that	 are	 inherent	 in	our	493	
memories	and	memory-guided	behaviours.		494	

4.	Methods	495	

Participants	496	

A	 total	 of	 49	 volunteers	 (39	 female;	mean	 age	 20.02	 +/-	 1.55	 years	 old)	 took	 part	 in	 behavioural	497	
Experiment	1.	Twenty-six	of	them	(19	female;	mean	age	20.62	+/-	1.62	years	old)	participated	in	the	498	
memory	reaction	time	task.	Five	out	of	these	26	participants	were	not	included	in	the	final	analysis	499	
due	to	poor	memory	performance	(<66%	general	accuracy)	compared	with	the	rest	of	the	group	(t24	500	
=	 6.65,	 p	 <	 0.01).	 Another	 group	 of	 23	 participants	 (20	 female;	 mean	 age	 19.35	 ±	 1.11	 years)	501	
volunteered	 to	 participate	 in	 the	 visual	 reaction	 time	 task.	 In	 a	 second	 behavioural	 experiment	502	
(Experiment	2),	48	participants	were	recruited	(42	female;	mean	age	19.25	+/-	0.91	years).	Twenty-503	
four	of	 them	performed	 the	memory	 reaction	 time	 task	and	another	group	of	24	 took	part	 in	 the	504	
visual	 reaction	 time	 task.	 For	 the	 electrophysiological	 experiment	 we	 recruited	 a	 total	 of	 24	505	
volunteers	 (20	 female;	 mean	 age	 21.91	 ±	 4.68	 years).	 Since	 the	 first	 3	 subjects	 we	 recorded	506	
performed	 a	 slightly	 different	 task	 during	 retrieval	 blocks	 (i.e.,	 they	 were	 not	 asked	 to	 mentally	507	
visualise	the	object	for	3	seconds,	and	they	had	to	answer	only	one	of	the	perceptual	and	semantic	508	
questions	per	trial),	we	did	not	include	these	participants	in	any	of	the	retrieval	analyses.	Since	our	509	
paradigm	was	designed	to	test	for	a	new	effect,	we	did	not	have	priors	regarding	the	expected	effect	510	
size.	Behavioural	piloting	of	the	memory	task	showed	a	significant	difference	in	reaction	times	in	a	511	
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sample	of	n	=	14.	We	therefore	felt	confident	that	the	effect	would	replicate	in	our	larger	samples	of	512	
n	=	24	per	group	in	each	in	the	two	behavioural	experiments	and	the	EEG	experiment.	513	

All	 participants	 reported	 being	 native	 or	 highly	 fluent	 English	 speakers,	 having	 normal	 (20/20)	 or	514	
corrected-to-normal	 vision,	 normal	 colour	 vision,	 and	 no	 history	 of	 neurological	 disorders.	 We	515	
received	 written	 informed	 consent	 from	 all	 participants	 before	 the	 beginning	 of	 the	 experiment.	516	
They	were	naïve	as	to	the	goals	of	the	experiments,	but	were	debriefed	at	the	end.	Participants	were	517	
compensated	 for	 their	 time,	 receiving	 course	 credits	 or	 £6	 per	 hour	 for	 participation	 in	 the	518	
behavioural	 task,	 or	 a	 total	 of	 £20	 for	 participation	 in	 the	 electrophysiological	 experiment.	 The	519	
University	 of	 Birmingham’s	 Science,	 Technology,	 Engineering	 and	 Mathematics	 Ethical	 Review	520	
Committee	approved	all	experiments.		521	

Stimuli	522	

In	 total,	 128	 pictures	 of	 unique	 everyday	 objects	 and	 common	 animals	 were	 used	 in	 the	 main	523	
experiment,	and	a	further	16	were	used	for	practice	purposes.	Out	of	these,	96	were	selected	from	524	
the	BOSS	database52,	and	the	remaining	 images	were	obtained	from	online	royalty-free	databases.	525	
All	 original	 images	 were	 pictures	 in	 colour	 on	 a	 white	 background.	 To	 produce	 two	 different	526	
semantic	object	categories,	half	of	the	objects	were	chosen	to	be	animate	while	the	other	half	was	527	
inanimate.	Within	 the	 category	 of	 inanimate	 objects,	we	 selected	 the	 same	 amount	 of	 electronic	528	
devices,	 clothes,	 fruits	 and	 vegetables	 (16	 each).	 The	 animate	 category	 was	 composed	 of	 an	529	
equivalent	number	of	mammals,	birds,	 insects	and	marine	animals	(16	each).	With	the	objective	of	530	
creating	two	levels	of	perceptual	manipulation,	a	freehand	line	drawing	of	each	image	was	created	531	
using	the	free	and	open	source	GNU	image	manipulation	software	(www.gimp.org).	Hence	a	total	of	532	
128	 freehand	 drawings	 of	 the	 respective	 128	 pictures	 of	 everyday	 objects	 were	 created.	 Each	533	
drawing	was	 composed	of	 a	white	background	and	black	 lines	 to	 generate	 a	 schematic	 outline	of	534	
each	stimulus.	For	each	subject,	half	of	the	objects	were	pseudo-randomly	chose	to	be	presented	as	535	
photographs,	and	half	of	them	as	drawings,	with	the	restriction	that	the	two	perceptual	categories	536	
were	equally	distributed	across	 (i.e.	orthogonal	with	respect	to)	 the	animate	and	 inanimate	object	537	
categories.	 All	 photographs	 and	 line	 drawings	were	 presented	 at	 the	 centre	 of	 the	 screen	with	 a	538	
rescaled	size	of	500	x	500	pixels.	For	the	memory	reaction	time	task	and	the	EEG	experiment,	128	539	
action	 verbs	 were	 selected	 that	 served	 as	 associative	 cues.	 Experiment	 2	 also	 used	 colour	540	
background	scenes	of	indoor	and	outdoor	spaces	(900	x	1600	pixels)	that	were	obtained	from	online	541	
royalty-free	databases,	which	are	irrelevant	for	the	present	purpose.	542	

Procedure	for	Experiment	1	-	Visual	reaction	time	task	543	

Before	 the	 start	 of	 the	 experiment,	 participants	 were	 given	 oral	 instructions	 and	 completed	 a	544	
training	block	of	4	trials	to	become	familiar	with	the	task.	The	main	perceptual	task	consisted	of	4	545	
blocks	of	32	trials	each	(Fig.1b).	All	trials	started	with	a	jittered	fixation	cross	(500	to	1500ms)	that	546	
was	followed	by	a	question	screen.	On	each	trial,	the	question	could	either	be	a	perceptual	question	547	
asking	 the	participant	 to	decide	as	quickly	as	possible	whether	 the	upcoming	object	 is	 shown	as	a	548	
colour	photograph	or	as	a	line	drawing;	or	a	semantic	question	asking	whether	the	upcoming	object	549	
represents	 an	 animate	 or	 inanimate	 object.	 Two	 possible	 response	 options	were	 displayed	 at	 the	550	
two	opposite	sides	of	 the	screen	 (right	or	 left).	The	options	 for	“animate”	and	“photograph”	were	551	
always	 located	 on	 the	 right	 side	 to	 keep	 the	 response	 mapping	 easy.	 The	 question	 screen	 was	552	
displayed	for	3	seconds,	and	an	object	was	then	added	at	the	centre	of	the	screen.	In	Experiment	2,	553	
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this	object	was	overlaid	onto	a	background	 that	 filled	 large	parts	of	 the	 screen.	Participants	were	554	
asked	to	categorize	the	object	 in	 line	with	the	question	as	fast	as	they	could	as	soon	as	the	object	555	
appeared	on	 the	screen,	by	pressing	 the	 left	or	 right	arrow	on	 the	keyboard.	Reaction	 times	 (RTs)	556	
were	 measured	 to	 test	 if	 participants	 were	 faster	 at	 making	 perceptual	 compared	 to	 semantic	557	
decisions.		558	

All	pictures	were	presented	until	the	participant	made	a	response	but	for	a	maximum	of	10	sec,	after	559	
which	the	next	trial	started.	Feedback	about	participants’	performance	was	presented	at	the	end	of	560	
each	 experimental	 block.	 There	 were	 256	 trials	 overall,	 with	 each	 object	 being	 presented	 twice	561	
across	 the	 experiment,	 once	 together	 with	 a	 perceptual	 and	 once	 with	 a	 semantic	 question.	562	
Repetitions	of	the	same	object	were	separated	by	a	minimum	distance	of	2	intervening	trials.	In	each	563	
block,	we	asked	the	semantic	question	first	for	half	of	the	objects,	and	the	perceptual	question	first	564	
for	the	other	half.		565	

The	 final	 reaction	 time	analyses	only	 included	 trials	with	 correct	 responses,	and	excluded	all	 trials	566	
with	an	RT	that	exceeded	the	average	over	subjects	by	+-	2.5	standard	deviations	(SDs).	567	

Procedure	for	Experiment	1	-	Memory	reaction	time	task	568	

The	memory	version	was	kept	very	similar	 to	 the	visual	 reaction	 time	task,	but	we	now	measured	569	
RTs	 for	objects	 that	were	reconstructed	 from	memory	rather	 than	being	presented	on	the	screen,	570	
and	we	thus	had	to	introduce	a	learning	phase	first.	At	the	beginning	of	the	session,	all	participants	571	
received	instructions	and	performed	two	short	practice	blocks.	Each	of	the	overall	16	experimental	572	
blocks	consisted	of	an	associative	learning	phase	(8	word-object	associations)	and	a	retrieval	phase	573	
(16	trials,	testing	each	object	twice,	once	with	a	perceptual	and	once	with	a	semantic	question).	The	574	
associative	 learning	and	 the	 retrieval	 test	were	separated	by	a	distractor	 task.	During	 the	 learning	575	
phase	(Fig.	1c),	each	trial	started	with	a	jittered	fixation	cross	(between	500	and	1500ms)	that	was	576	
followed	by	a	unique	action	verb	displayed	on	the	screen	(1500ms).	After	presentation	of	another	577	
fixation	cross	(between	500	and	1500ms),	a	picture	of	an	object	was	presented	on	the	centre	of	the	578	
screen	for	a	minimum	of	2	and	a	maximum	of	10	seconds.	Participants	were	asked	to	come	up	with	a	579	
vivid	mental	image	that	involved	the	object	and	the	action	verb	presented	in	the	current	trial.	They	580	
were	instructed	to	press	a	key	(up	arrow	on	the	keyboard)	as	soon	as	they	had	a	clear	association	in	581	
mind;	this	button	press	initiated	the	onset	of	the	next	trial.	Participants	were	made	aware	during	the	582	
initial	practice	that	they	would	later	be	asked	about	the	object’s	perceptual	properties	as	well	as	its	583	
meaning,	and	should	thus	pay	attention	to	details	including	colour	and	shape.	Within	a	participant,	584	
each	semantic	category	and	sub-category	(electronic	devices,	clothes,	fruits,	vegetables,	mammals,	585	
birds,	insects,	and	marine	animals)	was	presented	equally	often	at	each	type	of	perceptual	level	(i.e.	586	
as	 a	 photograph	 or	 as	 a	 line	 drawing).	 The	 assignment	 of	 action	 verbs	 to	 objects	 for	 associative	587	
learning	 was	 random,	 and	 the	 occurrence	 of	 the	 semantic	 and	 perceptual	 object	 categories	 was	588	
equally	distributed	over	 the	 first	 and	 the	 second	half	of	 the	experiment	 in	order	 to	avoid	 random	589	
sequences	with	overly	strong	clustering.	590	

After	each	learning	phase,	participants	performed	a	distractor	task	where	they	were	asked	to	classify	591	
a	random	number	 (between	1	and	99)	on	the	screen	as	odd	or	even.	The	task	was	self-paced	and	592	
they	were	 instructed	 to	 accomplish	 as	many	 trials	 as	 they	 could	 in	 45	 seconds.	At	 the	 end	of	 the	593	
distractor	 task,	 they	 received	 feedback	about	 their	accuracy	 (i.e.,	how	many	 trials	 they	performed	594	
correctly	in	this	block).		595	
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The	 retrieval	 phase	 (Fig.	 1c)	 started	 following	 the	 distractor	 task.	 Each	 trial	 began	with	 a	 jittered	596	
fixation	 cross	 (between	 500	 and	 1500ms),	 followed	 by	 a	 question	 screen	 asking	 either	 about	 the	597	
semantic	 (animate	 vs.	 inanimate)	 or	 perceptual	 (photograph	 vs.	 line	 drawing)	 features	 for	 the	598	
upcoming	 trial,	 just	 like	 in	 the	 visual	 perception	 version	 of	 the	 task.	 The	 question	 screen	 was	599	
displayed	 for	 3	 seconds	 by	 itself,	 and	 then	 one	 of	 the	 verbs	 presented	 in	 the	 directly	 preceding	600	
learning	phase	appeared	above	the	two	responses.	We	asked	participants	to	bring	back	to	mind	the	601	
object	 that	had	been	associated	with	 this	word	and	 to	answer	 the	question	as	 fast	 as	possible	by	602	
selecting	 the	 correct	 response	 alternative	 (left	 or	 right	 keyboard	 press).	 If	 they	 were	 unable	 to	603	
retrieve	the	object,	participants	were	asked	to	press	the	down	arrow.	The	next	trial	began	as	soon	as	604	
an	 answer	 was	 selected.	 At	 the	 end	 of	 each	 retrieval	 block,	 a	 feedback	 screen	 showing	 the	605	
percentage	of	accurate	responses	was	displayed.	606	

Throughout	 the	 retrieval	 test,	 we	 probed	memory	 for	 all	 word-object	 associations	 learned	 in	 the	607	
immediately	preceding	encoding	phase	 in	pseudorandom	order.	Each	word-object	association	was	608	
tested	twice,	once	together	with	a	semantic	and	once	with	a	perceptual	question,	with	a	minimum	609	
distance	 of	 2	 intervening	 trials.	 In	 addition,	 we	 controlled	 that	 the	 first	 question	 for	 half	 of	 the	610	
associations	was	semantic,	and	perceptual	for	the	other	half.	Like	in	the	visual	RT	task,	the	response	611	
options	 for	 “animate”	 and	 “photograph”	 responses	 were	 always	 located	 on	 the	 right	 side	 of	 the	612	
screen.	 In	 total,	 including	 instructions,	 a	 practice	 block	 and	 the	 16	 learning-distractor-retrieval	613	
blocks,	the	experiment	took	approximately	60	minutes.	614	

For	 RT	 analyses	we	 only	 used	 correct	 trials,	 and	 excluded	 all	 trials	with	 an	 RT	 that	 exceeded	 the	615	
average	over	subjects	by	+-	2.5	SDs.	616	

Procedure	for	Experiment	2	-	Visual	reaction	time	task	617	

Experiment	 2	was	 very	 similar	 in	 design	 and	 procedures	 to	 Experiment	 1,	 and	we	 therefore	 only	618	
describe	the	differences	between	the	two	experiments	in	the	following.	619	

The	 second	 experiment	 started	 with	 a	 familiarisation	 phase	 where	 all	 objects	 were	 presented	620	
sequentially.	 In	 each	 trial	 of	 this	 phase,	 a	 jittered	 fixation	 cross	 (between	 500	 and	 1500	ms)	was	621	
followed	 by	 one	 screen	 that	 showed	 the	 photograph	 and	 line	 drawing	 version	 of	 one	 object	622	
simultaneously,	next	to	each	other.	During	the	presentation	of	this	screen	(2.5	sec)	participants	were	623	
asked	 to	 overtly	 name	 the	 object.	 After	 a	 jittered	 fixation	 cross	 (between	 500	 and	 1500	ms),	 the	624	
name	of	the	object	was	presented.	625	

After	this	familiarisation	phase,	the	experiment	followed	the	same	procedures	as	the	visual	reaction	626	
time	task	 in	Experiment	1	except	for	the	following	changes.	Objects	were	overlaid	onto	a	coloured	627	
background	 scene	 (1600	x	900	pixels).	Also,	 each	object	 (286	 x	286	pixels)	was	probed	only	once,	628	
either	 together	 with	 a	 perceptual	 question,	 a	 semantic	 question	 (like	 above),	 or	 a	 contextual	629	
question	asking	whether	the	background	scene	was	indoor	or	outdoor.	For	the	current	purpose	we	630	
only	describe	the	RTs	to	object-related	questions	in	the	Results	section.	Another	minor	difference	to	631	
Experiment	1	was	that	in	this	version	of	the	task,	the	question	screen	was	displayed	for	4sec,	and	the	632	
two	options	to	answer	during	stimulus	presentation	were	removed	from	the	screen	as	soon	as	the	633	
object/reminder	appeared.		634	

Procedure	for	Experiment	2	-	Memory	reaction	time	task	635	
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The	memory	reaction	time	task	in	Experiment	2	also	included,	during	the	associative	learning	phase,	636	
a	background	scene	(1600	x	900	pixels)	that	was	shown	on	the	screen	behind	each	object	(286	x	286	637	
pixels),	and	participants	were	asked	to	remember	the	word-background-object	combination.	In	this	638	
version	 of	 the	 task,	 each	 word-object	 association	 was	 tested	 only	 once,	 together	 with	 either	 a	639	
perceptual	 question	 about	 the	 object,	 a	 semantic	 question	 about	 the	 object,	 or	 a	 contextual	640	
question	 regarding	 the	background	 scene	 (indoor	or	outdoor).	 Therefore,	one	 third	of	 the	objects	641	
were	 tested	with	a	 semantic	question,	one	 third	with	a	perceptual	question,	and	one	 third	with	a	642	
contextual	question.	Again,	context	was	not	further	taken	into	account	in	the	present	analyses.	643	

Procedure	for	Experiment	3	–	EEG			644	

Following	 the	EEG	 set-up,	 instructions	were	 given	 to	participants	 and	 two	blocks	of	 practice	were	645	
completed.	 The	 task	 procedure	 of	 the	 EEG	 experiment	 was	 similar	 to	 the	 memory	 task	 in	646	
Experiments	1	and	2	except	for	the	retrieval	phase	(Fig.	3a).	Each	block	started	with	a	learning	phase	647	
where	participants	created	associations	between	overall	8	action	verbs	and	objects.	After	a	40	sec	648	
distractor	task,	participants’	memory	for	these	associations	was	tested	in	a	cued	recall	test.	In	total,	649	
the	experiment	was	composed	of	16	blocks	of	8	associations	each.		650	

Each	 trial	 of	 the	 retrieval	 test	 started	with	 a	 jittered	 fixation	 cross	 (500-1500ms),	 followed	by	 the	651	
presentation	 of	 one	 of	 the	 action	 verbs	 presented	 during	 the	 learning	 phase	 as	 a	 reminder.	652	
Participants	were	asked	to	visualize	 the	object	associated	with	this	action	verb	as	vividly	and	 in	as	653	
much	 detail	 as	 possible	 while	 the	 cue	 was	 on	 the	 screen.	 To	 capture	 the	 moment	 of	 retrieval,	654	
participants	were	asked	to	press	the	up-arrow	key	as	soon	as	they	had	the	object	back	in	mind;	or	655	
the	down-arrow	if	they	could	not	remember	the	object.	This	reminder	was	presented	on	the	screen	656	
for	a	minimum	of	2	sec	and	until	a	response	was	made	(maximum	7	sec).	Immediately	afterwards,	a	657	
blank	 square	 with	 the	 same	 size	 as	 the	 original	 image	was	 displayed	 for	 3	 sec.	 During	 this	 time,	658	
participants	were	asked	 to	“mentally	visualize	 the	originally	associated	object	on	 the	blank	square	659	
space”.	After	 a	 short	 interval	where	only	 the	 fixation	 cross	was	present	 (500-1500ms),	 a	 question	660	
screen	 was	 displayed	 for	 10	 seconds	 or	 until	 participant	 response	 asking	 about	 perceptual	661	
(photograph	 vs.	 line	 drawing)	 or	 semantic	 (animate	 vs.	 inanimate)	 features	 of	 the	 retrieved	662	
representation,	 like	 in	 the	 behavioural	 tasks.	 However,	 in	 this	 case	 both	 types	 of	 questions	were	663	
always	asked	on	the	same	trial,	and	they	were	asked	at	the	end	of	the	trial	rather	than	before	the	664	
appearance	of	the	reminder.	The	first	question	was	semantic	in	half	of	the	trials,	and	perceptual	in	665	
the	other	half.	Therefore,	each	retrieval	phase	consisted	of	8	trials	where	we	tested	all	verb-object	666	
associations	learned	in	the	same	block	in	random	order.		667	

Data	Collection	(behavioural	and	EEG)	668	

Behavioural	 response	 recording	 and	 stimulus	 presentation	 were	 performed	 using	 Psychophysics	669	
Toolbox	 Version	 353	 running	 under	MATLAB	 2014b	 (MathWorks).	 For	 response	 inputs	 we	 used	 a	670	
computer	keyboard	where	directional	arrows	were	selected	as	response	buttons.		671	

Electroencephalography	 (EEG)	 data	 was	 acquired	 using	 a	 BioSemi	 Active-Two	 amplifier	 with	 128	672	
sintered	Ag/AgCl	active	electrodes.	Through	a	second	computer	the	signal	was	recorded	at	a	1024	Hz	673	
sampling	rate	by	means	of	the	ActiView	recording	software	(BioSemi,	Amsterdam,	the	Netherlands).	674	
For	 all	 three	 experiments	 it	was	 not	 possible	 for	 the	 experimenters	 to	 be	 blind	 to	 the	 conditions	675	
during	data	collection	and	analysis.	676	
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GLMM	analyses	677	

Generalized	linear	mixed	models	(GLMMs)	were	used	to	test	our	alternative	hypotheses	for	accuracy	678	
(all	 experiments),	 reaction	 times	 (Experiments	 1	 and	 2),	 and	 the	 relative	 timing	 of	 EEG	 classifier	679	
fidelity	 (d	 value)	 peaks	 (Experiment	 3).	We	 chose	 GLMMs	 instead	 of	more	 commonly	 used	 GLM-680	
based	models	(i.e.,	ANOVAs	or	t-tests)	because	they	make	fewer	assumptions	about	the	distribution	681	
of	 the	 data,	 are	 better	 suited	 to	 model	 RT-like	 data	 (REF)	 including	 our	 d-value	 peaks,	 and	 can	682	
accurately	model	proportional	data	 that	 are	bound	between	0	and	1	 (like	memory	accuracy).	Our	683	
conditions	 of	 interest	were	modelled	 as	 fixed	 effects	 in	 the	GLMM.	Unless	 otherwise	mentioned,	684	
these	were	the	type	of	task	(visual	perception	vs	memory	retrieval)	and	the	type	of	feature	probed	685	
(perceptual	 vs	 semantic).	 Our	 central	 reverse	 processing	 hypothesis	 was	 tested	 by	 an	 interaction	686	
contrast	between	the	factors	type	of	task	and	question	type.	Two	further	planned	comparisons	were	687	
then	conducted	to	test	if	an	interaction	was	driven	by	effects	in	the	expected	direction	(e.g.,	reaction	688	
times	 perceptual	 <	 semantic	 during	 visual	 perception,	 and	 semantic	 <	 perceptual	 during	memory	689	
retrieval).	 For	 all	 analyses,	 participant	 ID	 (including	 intercept)	 was	 modelled	 as	 a	 random	 factor.	690	
Wherever	possible,	we	also	included	slope	as	a	random	factor	because	GLMMs	that	do	not	take	into	691	
account	 this	 factor	 tend	 to	overestimate	effects	 (that	 is,	 they	are	overly	 liberal54).	 In	 all	 cases,	we	692	
used	a	compound	symmetry	structure	based	on	theoretical	assumptions	and	AIC	and	BIC	values.		We	693	
would	 like	to	emphasize	that	all	of	 the	effects	reported	as	significant	 in	the	results	section	remain	694	
significant	(with	a	tendency	for	even	stronger	effects)	when	excluding	the	random	factor	slope,	but	695	
we	chose	to	report	the	results	from	the	more	conservative	analysis.			696	

Due	 to	 the	 data	 structure	 (specifically,	 the	 Hessian	matrix	 not	 being	 positive	 definite),	 slope	 as	 a	697	
random	effect	 could	not	be	modelled	 in	2	of	 the	analyses	 in	Experiment	3:	 (i)	when	analysing	 the	698	
interaction	between	type	of	task	and	type	of	classifier	as	predictive	factor	 for	EEG	classifier	peaks;	699	
and	(ii)	when	testing	behavioural	accuracy.	In	these	two	cases,	the	results	are	reported	for	GLMMs	700	
that	do	not	include	slope	as	a	random	factor.	For	the	interaction	analysis	in	(i),	we	also	had	to	apply	701	
a	 linear	transformation	to	the	data,	because	the	d-values	during	encoding	and	retrieval	 (which	are	702	
compared	directly	in	the	interaction	contrast)	differed	too	much	in	scale.	Data	was	thus	z-scored	to	703	
avoid	errors	calculating	the	Hessian	matrix,	and	a	constant	value	of	1000ms	was	added	to	each	value	704	
to	avoid	negative	values	in	our	target	variable.	705	

For	all	accuracy	analyses	we	used	a	binomial	distribution	with	a	logistic	link	function.	All	models	for	706	
analysing	RTs	and	d	value	peaks	used	a	gamma	probability	distribution	and	an	identity	link	function.	707	
The	 choice	 of	 a	 gamma	 distribution	 was	 justified	 because	 in	 all	 cases	 it	 fit	 our	 single	 trial	708	
distributions	better	 than	alternative	models,	 for	 example	 inverse	Gaussian	or	normal	distributions	709	
(evidence	from	AIC	and	BIC	available	on	request).			710	

Clustered	Wilcoxon	signed	rank	test	711	

To	 compare	 the	 pairwise	 differences	 between	 perceptual	 and	 semantic	 d	 value	 peaks	 in	 each	712	
encoding	or	retrieval	trial	(Experiment	3),	and	test	whether	the	median	of	these	differences	deviates	713	
from	zero	in	the	expected	direction	(that	is,	perceptual	<	semantic	during	encoding,	and	semantic	<	714	
perceptual	during	retrieval),	we	used	a	one-tailed	Wilcoxon	signed	rank	test	that	clustered	the	data	715	
per	 participant,	 using	 random	 permutations	 (2000	 repetitions).	 This	 analysis	 was	 run	 using	 the	 R	716	
package	“clusrank”26.	717	
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EEG	Pre-processing	718	

EEG	 data	 was	 pre-processed	 using	 the	 Fieldtrip	 toolbox	 (version	 from	 3rd,	 August,	 2017)	 for	719	
MATLAB55.	Data	recorded	during	 the	associative	 learning	 (encoding)	phase	was	epoched	 into	 trials	720	
starting	500ms	before	 stimulus	onset	 and	 lasting	until	 1500ms	after	 stimulus	offset.	 The	 resulting	721	
signal	 was	 baseline	 corrected	 based	 on	 pre-stimulus	 signal	 (-500ms	 to	 onset).	 Retrieval	 epochs	722	
contained	segments	from	4000ms	before	until	500ms	post-response.	Since	the	post-response	signal	723	
during	 retrieval	will	 likely	 still	 contain	 task-relevant	 (i.e.,	 object	 specific)	 information,	we	baseline-724	
corrected	the	signal	based	on	the	whole	trial.	Both	datasets	were	filtered	using	a	 low-pass	filter	at	725	
100	Hz	and	a	high-pass	filter	at	0.1	Hz.	To	reduce	line	noise	at	50	Hz	we	band-stop	filtered	the	signal	726	
between	48	and	52	Hz.	The	signal	was	then	visually	inspected	and	all	epochs	that	contained	coarse	727	
artefacts	were	removed.	As	a	 result,	a	minimum	of	92	and	a	maximum	of	124	 trials	 remained	per	728	
participant	for	the	encoding	phase,	and	a	range	between	80	and	120	trials	per	subject	remained	for	729	
retrieval.	 Independent	 component	analysis	was	 then	used	 to	 remove	eye-blink	and	horizontal	 eye	730	
movement	 artefacts;	 this	was	 followed	by	 an	 interpolation	of	 noisy	 channels.	 Finally,	 all	 data	was	731	
referenced	to	a	common-average-reference	(CAR).	732	

Time	resolved	multivariate	decoding	733	

First,	 to	 further	 increase	the	signal	 to	noise	ratio	 for	multivariate	decoding,	we	smoothed	our	pre-734	
processed	 EEG	 time	 courses	 using	 a	 Gaussian	 kernel	 with	 a	 full-width	 at	 half-maximum	 of	 24ms.		735	
Time	 resolved	 decoding	 via	 linear	 discriminant	 analysis	 (LDA)	 using	 shrinkage	 regularization56	was	736	
then	 carried	 out	 using	 custom-written	 code	 in	 MATLAB	 2014b	 (MathWorks).	 Two	 independent	737	
classifiers	were	applied	 to	each	given	 time	window	and	each	 trial	 (see	Fig.	3b):	one	 to	classify	 the	738	
perceptual	category	(photograph	or	line	drawing)	and	one	to	classify	the	semantic	category	(animate	739	
or	inanimate).	In	both	decoding	analyses,	we	used	undersampling	after	artefact	rejection	(i.e.	for	the	740	
category	 with	 more	 trials	 we	 randomly	 selected	 the	 same	 number	 of	 trials	 as	 available	 in	 the	741	
smallest	 category).	 The	 pre-processed	 raw	 amplitudes	 on	 the	 128	 EEG	 channels,	 at	 a	 given	 time	742	
point,	were	used	as	features	for	the	classifier.	LDA	classification	was	performed	separately	for	each	743	
participant	and	time	point	using	a	leave-one-out	cross-validation	approach.	This	procedure	resulted	744	
in	a	decision	value	(d	value)	for	each	trial	and	time	point,	where	the	sign	indicates	in	which	category	745	
the	observation	had	been	classified	(e.g.,	-	for	photographs	and	+	for	line	drawings	in	the	perceptual	746	
classifier),	 and	 the	 value	 of	 d	 indicates	 the	 distance	 to	 the	 hyper-plane	 that	 divided	 the	 two	747	
categories	(with	the	hyper-plane	being	0).	This	distance	to	the	hyper-plane	provided	us	with	a	single	748	
trial	time-resolved	value	that	indicates	how	confident	the	classifier	was	at	assigning	a	given	object	to	749	
a	given	category.	In	order	to	use	the	resulting	d	values	for	further	analysis,	the	sign	of	the	d	values	in	750	
in	one	category	was	inverted,	resulting	in	d	values	that	always	reflected	correct	classification	if	they	751	
had	a	positive	value,	and	increasingly	confident	classification	with	increasingly	higher	values.		752	

Our	main	intention	was	to	identify	the	specific	moment	within	a	given	trial	at	which	each	of	the	two	753	
classifiers	 showed	 the	highest	 fidelity,	 and	 to	 then	 compare	 the	 temporal	order	of	 the	perceptual	754	
and	semantic	peaks.	We	thus	found	the	maximum	positive	d	value	 in	each	trial,	separately	 for	the	755	
semantic	and	perceptual	classifiers.	The	time	window	used	for	d	value	peak	selection	covered	3sec	756	
prior	 to	 participants’	 response	 and,	 based	 on	 behavioural	 reaction	 times,	 only	 trials	with	 an	 RT	 ≥	757	
3sec	were	included	(rejecting	a	total	of	1459	trials	on	a	group	level).	For	all	further	analyses	we	only	758	
used	 peaks	 with	 a	 value	 exceeding	 the	 95th	 percentile	 of	 the	 classifier	 chance	 distribution	 (see	759	
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section	on	bootstrapping	below),	such	as	to	minimize	the	risk	of	including	meaningless	noise	peaks.	760	
The	resulting	output	from	this	approach	allowed	us	to	track	and	compare	the	temporal	“emergence”	761	
of	perceptual	and	semantic	classification	within	each	single-trial.	When	a	peak	for	a	given	condition	762	
does	not	exceed	 the	95th	percentile	 threshold,	we	do	not	 include	 the	 trial	 in	 further	analyses.	 For	763	
encoding	 trials,	 including	 all	 participants,	 we	 excluded	 1.77	 per	 cent	 of	 the	 trials	 based	 on	 this	764	
restriction.	 In	 the	 case	 of	 retrieval	 trials,	 all	 maximum	 peaks	 found	 exceeded	 the	 value	 of	 the	765	
threshold.	In	addition	to	this	single-trial	analysis,	we	also	calculated	the	average	d	value	peak	latency	766	
for	perceptual	and	semantic	classification	in	each	participant	to	compare	the	two	average	temporal	767	
distributions.	 Note,	 however,	 that	many	 factors	 could	 obscure	 differences	 between	 semantic	 and	768	
perceptual	peaks	when	using	 this	average	approach,	 including	variance	 in	processing	speed	across	769	
trials,	e.g.	for	more	or	less	difficult	recalls.	We	therefore	believe	that	the	single	trial	values	are	more	770	
sensitive	 to	 differences	 in	 timing	 between	 the	 reactivated	 features.	 We	 used	 these	 single	 trial	771	
classifier	 peaks	 as	 dependent	 variables	 in	 a	 GLMM	 to	 test	 for	 an	 interaction	 between	 two	 fixed	772	
effect:	 the	 type	 of	 feature	 (perceptual	 vs.	 semantic)	 and	 the	 type	 of	 task	 (encoding	 vs.	 retrieval).	773	
Significant	 interaction	 results	 were	 followed	 up	 by	 planned	 comparisons	 to	 test	 for	 a	 significant	774	
effect	 of	 feature	 (perceptual	 vs.	 semantic)	 separately	 for	 encoding	 (expecting	 an	 earlier	 timing	 of	775	
perceptual	 than	 semantic	 peaks)	 and	 retrieval	 (expecting	 an	 earlier	 timing	 of	 semantic	 than	776	
perceptual	 peaks).	 Clustered	 Wilcoxon	 signed	 rank	 tests	 were	 then	 carried	 out	 to	 further	777	
corroborate	the	relative	timing	of	the	single-trial	classifier	peaks.		778	

Generating	an	empirical	null	distribution	for	the	classifier	779	

Previous	 work	 has	 shown	 that	 the	 true	 level	 of	 chance	 performance	 of	 a	 classifier	 can	 differ	780	
substantially	 from	 its	 theoretical	 chance	 level	 that	 is	 usually	 assumed	 to	 be	 1/number	 of	781	
categories57–59.	 A	 known	 empirical	 null	 distribution	 of	 d	 values	 would	 allow	 us	 to	 determine	 a	782	
threshold	 for	considering	only	 those	d	value	peaks	as	significant	whose	values	are	higher	 than	the	783	
95th	percentile	of	this	null	distribution.	We	generated	such	an	empirical	null	distribution	of	d	values	784	
by	repeating	our	classifier	analysis	with	randomly	shuffled	labels	a	number	of	times,	and	combined	785	
this	with	a	bootstrapping	approach,	as	detailed	in	the	following.		786	

As	a	first	step,	we	generated	a	set	of	d	value	outputs	that	were	derived	from	carrying	out	the	same	787	
decoding	 procedure	 as	 for	 the	 real	 data	 (including	 the	 leave-one-out	 cross-validation),	 but	 using	788	
category	 labels	 that	 were	 randomly	 shuffled	 at	 each	 repetition.	 This	 procedure	 was	 carried	 out	789	
independently	per	participant.	On	each	 repetition,	before	 starting	 the	 time-resolved	 LDA,	all	 trials	790	
were	randomly	divided	into	two	categories	with	the	constraint	that	each	group	contained	a	similar	791	
number	 of	 photographs	 and	 line	 drawings,	 and	 approximately	 the	 same	 amount	 of	 animate	 and	792	
inanimate	 objects	 (the	 difference	 in	 trial	 numbers	was	 smaller	 than	 8%).	 The	 output	 of	 one	 such	793	
repetition	per	participant	was	one	d	value	per	trial	and	time-point,	 just	as	 in	the	real	analysis.	This	794	
procedure	was	conducted	150	times	per	participant	for	object	perception	(encoding)	and	retrieval,	795	
respectively,	with	a	new	random	trial	split	and	random	label	assignment	on	each	repetition.	For	each	796	
participant	we	thus	had	a	total	of	151	classification	outputs,	one	using	the	real	labels,	and	150	using	797	
the	randomly	shuffled	labels.		798	

Second,	to	estimate	our	classification	chance	distribution	for	the	random-effects	(i.e.,	trial-averaged)	799	
peak	 analyses,	 we	 used	 the	 151	 classification	 outputs	 from	 all	 participants	 in	 a	 bootstrapping	800	
procedure60.	 On	 each	 of	 the	 bootstrapped	 repetitions,	 we	 randomly	 selected	 one	 of	 the	 151	801	
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classification	outputs	 (150	 from	shuffled	 labels	 classifiers	and	one	 from	a	 real	 labels	 classifier)	per	802	
participant,	and	calculated	the	d	value	group	average	based	on	this	random	selection	for	each	given	803	
time	 point.	 Real	 data	was	 included	 to	make	 our	 bootstrapping	 analyses	more	 conservative,	 since	804	
under	the	null	hypothesis,	 the	real	classifier	output	could	have	been	obtained	 just	by	chance.	This	805	
procedure	was	repeated	with	replacement	10000	times.	To	generate	different	distributions	for	the	806	
perceptual	and	semantic	classifiers,	we	run	this	bootstrapping	approach	two	times:	once	where	the	807	
real	 labels	output	from	each	subject	came	from	the	semantic	classifier,	and	once	where	the	real	d	808	
values	came	from	the	perceptual	classifier.		809	

Univariate	event-related	potential	(ERP)	analysis		810	

A	series	of	cluster-based	permutation	tests	(Monte	Carlo,	2000	repetitions,	clusters	with	a	minimum	811	
of	 2	 neighbouring	 channels	 within	 the	 FieldTrip	 software)	 was	 carried	 out	 in	 order	 to	 test	 for	812	
differences	in	ERPs	between	the	two	perceptual	(photograph	vs.	line	drawing)	and	the	two	semantic	813	
(animate	vs.	inanimate)	categories,	controlling	for	multiple	comparisons	across	time	and	electrodes.	814	
First,	we	contrasted	ERPs	during	object	presentation	in	the	encoding	phase	in	the	time	interval	from	815	
stimulus	 onset	 until	 500ms	 post-stimulus.	We	 then	 carried	 out	 the	 same	 type	 of	 perceptual	 and	816	
semantic	ERP	contrasts	during	retrieval,	in	this	case	aligning	all	trials	to	the	time	of	the	button	press.	817	
We	 used	 the	 full	 time	 window	 from	 3000ms	 before	 until	 100ms	 after	 the	 button	 press,	 but	 we	818	
further	subdivided	this	time	window	into	smaller	epochs	of	300ms	to	run	a	series	of	T	tests,	again	819	
using	cluster	 statistics	 to	 correct	 for	multiple	 comparisons	across	 time	and	electrodes.	For	all	 four	820	
contrasts,	we	reported	the	cluster	with	the	lowest	p	value.	821	

We	 were	 mainly	 interested	 in	 the	 temporal	 order	 of	 the	 ERP	 peaks	 that	 differentiated	 between	822	
perceptual	and	semantic	classes	during	encoding	and	retrieval.	The	above	procedure	resulted	in	four	823	
statistically	 meaningful	 clusters	 across	 subjects:	 one	 each	 differentiating	 perceptual	 categories	824	
during	 encoding,	 semantic	 categories	 during	 encoding,	 perceptual	 categories	 during	 retrieval,	 and	825	
semantic	 categories	 during	 retrieval.	 To	 statistically	 test	 for	 an	 interaction	 in	 this	 timing	 of	 these	826	
clusters,	we	extracted	the	time	point	of	the	maximum	ERP	difference	for	each	individual	participant,	827	
restricted	 to	 the	electrodes	 showing	an	overall	 cluster	effect	but	over	 the	entire	 time	window	 for	828	
encoding	and	retrieval.	These	time	points	were	entered	into	a	2x2	within-subjects	ANOVA	with	the	829	
factors	 type	of	 feature	 (perceptual	or	 semantic),	and	 type	of	 task	 (encoding	or	 retrieval),	with	 the	830	
only	planned	comparison	in	this	analysis	being	the	interaction	contrast.		831	
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