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Abstract 10 

X-ray crystallographic studies of class I peptide-MHC molecules (pMHC) continue to 11 

provide important insights into immune recognition, however their success depends on 12 

generation of diffraction-quality crystals, which remains a significant challenge. While 13 

protein engineering techniques such as surface-entropy reduction and lysine methylation have 14 

proven utility in facilitating and/or improving protein crystallisation, they risk affecting the 15 

conformation and biochemistry of the class I MHC antigen binding groove. An attractive 16 

alternative is the use of noncovalent crystallisation chaperones, however these have not been 17 

developed for pMHC. Here we describe a method for promoting class I pMHC 18 

crystallisation, by exploiting its natural ligand interaction with the immunoregulatory 19 

receptor LILRB1 as a novel crystallisation chaperone. First, focussing on a model HIV-1-20 

derived HLA-A2-restricted peptide, we determined a 2.4Å HLA-A2/LILRB1 structure, 21 

which validated that co-crystallisation with LILRB1 does not alter conformation of the 22 

antigenic peptide. We then demonstrated that addition of LILRB1 enhanced the 23 

crystallisation of multiple peptide-HLA-A2 complexes, and identified a generic condition for 24 

initial co-crystallisation. LILRB1 chaperone-based crystallisation enabled structure 25 

determination for HLA-A2 complexes previously intransigent to crystallisation, including 26 

both conventional and post-translationally-modified peptides, of diverse lengths. Since both 27 

the LILRB1 recognition interface on the HLA-A2 α3 domain molecule and HLA-A2-28 

mediated crystal contacts are predominantly conserved across class I MHC molecules, the 29 

approach we outline could prove applicable to a diverse range of class I pMHC. LILRB1 30 

chaperone-mediated crystallisation should expedite molecular insights into the 31 

immunobiology of diverse immune-related diseases and immunotherapeutic strategies, 32 

particularly involving class I pMHC complexes that are challenging to crystallise.  33 
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1. Introduction 34 

A molecular understanding of the class I MHC molecule has been pivotal in deciphering its 35 

central role in T cell immunity. From the initial descriptions of class I MHC architecture (1), 36 

which highlighted a highly polymorphic groove containing electron density corresponding to 37 

bound antigen peptides, structural analyses of pMHC complexes, to date still predominantly 38 

focussed on X-ray crystallographic approaches, have led the way in our efforts to understand 39 

MHC function. While these have established fundamental molecular principles underlying 40 

peptide antigen presentation and T cell recognition (2) structural studies of pMHC molecules 41 

continue to provide major insights into the critical role of antigenic peptides in disease 42 

pathogenesis (3, 4), immunotherapeutic strategies (5, 6) and into poorly understood aspects of 43 

T cell recognition, such as post-translationally modified peptides (7-9).  44 

Despite the advent of recombinant methods, availability of extended screens, introduction of 45 

crystallisation nanovolume robotics and dramatic technological advances in synchrotron 46 

radiation sources, the requirement to overcome the “crystallisation bottleneck” is still a 47 

significant impediment to such X-ray crystallographic analyses of pMHC (10). Consequently, 48 

reliably achieving structure determinations for predefined pMHC targets can be challenging, 49 

a fact exacerbated by the huge diversity of MHC alleles and antigenic peptides of interest. In 50 

addition to standard crystallisation techniques such as sparse matrix sampling and seeding 51 

techniques (11), a number of novel strategies are available to facilitate crystallisation of 52 

challenging proteins, including the surface-entropy reduction approach (12) involving 53 

substitution of lengthy side chains with Ala, Ser, His and Tyr, and chemical modification of 54 

Lys residues by reductive methylation (13). These clearly have proven utility but are not 55 

successful for every protein, and also have the potential to interfere with the delicate 56 

chemistry of the biologically critical class I MHC antigen-binding groove. An alternative is 57 

the use of non-covalent crystallisation protein chaperones (14). This approach involves co-58 
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crystallizing a target protein, such as an antibody fragment, and can promote crystallization 59 

by reducing target conformational heterogeneity and providing an additional surface for 60 

crystal contacts (15). While superficially appealing, it is unclear how this approach could best 61 

be applied to pMHC molecules.   62 

Post-translationally modified peptides have emerged as an important group of antigens 63 

relevant to both autoimmunity and cancer. Phosphorylated peptides are increasingly 64 

recognised as promising tumour-associated antigens (9, 16-18) and recent studies have 65 

focused on establishing the molecular ground rules for phosphopeptide presentation by class I 66 

MHC molecules (7, 8). Our own initial molecular studies in this area, which focussed on 67 

peptides bearing phosphorylations at P4 (so called “canonical” phosphorylations, the most 68 

prevalent in the HLA-A2-restricted phosphopeptide repertoire), outlined clearly how the P4 69 

phosphate moiety can mediate energetically significant contacts to positively charged MHC 70 

residues, while remaining highly prominent within the antigen-binding groove, and available 71 

for TCR recognition. Based on these findings the phosphate was defined as a novel 72 

“phosphate surface anchor” (7).  73 

Subsequent to these studies, we sought to address two outstanding questions in 74 

phosphopeptide immunology: firstly, how conformationally distinct phosphopeptide antigens 75 

are compared to their non-phosphorylated counterparts (9) – an issue highly relevant for 76 

therapeutic targeting of phosphopeptide antigens, and secondly, how peptides bearing 77 

phosphorylations at positions other than P4 are accommodated in the MHC antigen binding 78 

groove – about which only very limited structural data are available. We prioritised structural 79 

studies on a range of specific pMHC complexes to address these questions, which focussed 80 

on both non-phosphorylated counterparts of previously structurally analysed P4 81 

phosphopeptides and phosphopeptides bearing “non-canonical” (i.e. non-P4) 82 
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phosphorylations. However, difficulties in crystallising both of these classes of pMHC 83 

complexes led us to explore different approaches to circumvent this problem. 84 

This study describes a non-covalent crystallisation chaperone methodology to efficiently 85 

facilitate crystallisation of pMHC molecules, which exploits a natural ligand interaction 86 

involving LILRB1. This strategy has been applied to both conventional and post-87 

translationally modified peptide-HLA-A2 complexes that were recalcitrant to crystallisation, 88 

facilitating both crystallisation and structure determination. This provides a new approach to 89 

catalyse molecular studies of immunobiologically important pMHC complexes.  Although 90 

our results focus on HLA-A2, LILRB1 is an immunoregulatory receptor that binds a diverse 91 

range of classical (HLA-A, HLA-B and HLA-C) and non-classical (HLA-E, HLA-F and 92 

HLA-G) MHC molecules (19-22), highlighting the potential of the method to be applied to a 93 

wider range of class I MHC molecules. 94 

 95 

2. Materials and Methods 96 

2. 1 Cloning, Expression and Purification 97 

The recombinant clones of the LILRB1 D1D2 region (residues 24−221 of the mature protein; 98 

hereafter referred to as LILRB1) and HLA-A2 were prepared as previously reported 99 

(expression constructs will be made available upon request) (20). High levels of pHLA-A2 100 

complexes (comprising residues 25−300 of the mature A2 heavy chain, non-covalently 101 

associated with β2M and peptide) and LILRB1 were produced using conventional methods 102 

involving expression in Escherichia coli and in vitro dilution refolding (23). Renatured 103 

LILRB1 and pHLA-A2 complexes were concentrated independently, and purified by size-104 

exclusion chromatography using a Superdex 200 column.  105 
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2.2 Crystallisation, Data Collection and Processing 106 

HLA-A2 molecules in complex with non-P4 phosphorylated and non-phosphorylated 107 

epitopes were screened against commercially available crystallisation conditions with the 108 

Mosquito nanolitre robot (TTP Labtech) using the vapour diffusion method (Table 1). 109 

Alternative crystallisation strategies involving LILRB1 were performed using a 1:1 110 

stoichiometric mixture of purified LILRB1 and pHLA-A2 at 10-14 mg/ml. Diffraction-grade 111 

crystals of the LILRB1-pHLA-A2 complexes appeared after 1-2 weeks at 23°C (Table 1).  112 

Prior to X-ray data collection LILRB1-pHLA-A2 complex crystals were soaked in reservoir 113 

solution incorporating increasing concentrations of ethylene glycol (18-22%) and flash 114 

cooled in liquid nitrogen. X-ray diffraction data for the LILRB1-HLA-A2ILKEPVHGV complex 115 

were collected to 2.4Å resolution with the ADSC Quantum 4 detector at beamline ID14-4 116 

(ESRF). The LILRB1-HLA-A2ILKEPVHGV complex crystallised in the trigonal space group 117 

P3221, with two molecules per asymmetric unit, and unit cell parameters a=b=116.2Å and 118 

c=192.8Å. For all other LILRB1-pHLA2-A2 complexes, X-ray data were collected with an 119 

‘in-house’ MicroMax 007HF rotating anode Rigaku X-ray generator using a Saturn 944 CCD 120 

detector. The LILRB1-pHLA-A2 complex typically crystallizes in the trigonal space group 121 

P3221, with 2 molecules per asymmetric unit. All data were processed using the XDS suite 122 

(24) and the relevant statistics are listed in Table 2.  123 

2.3 Structure Determination and Refinement 124 

The 2.4Å  resolution LILRB1-HLA-A2ILKEPVHGV complex structure was solved by molecular 125 

replacement using MOLREP (25). The search model consisted of the LILRB1-HLA-126 

A2ILKEPVHGV complex refined to 3.4Å resolution ((20); PDB code 1P7Q). The LILRB1-HLA-127 

A2RQASIELPSMAV, LILRB1-HLA-A2RTFSPTYGL and LILRB1-HLA-A2RLSSPLHFV complex 128 

structures were also determined by molecular replacement using the high-resolution LILRB1-129 
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HLA-A2ILKEPVHGV structure complex as the search model with the co-ordinates of the ILK 130 

peptide moiety omitted. The structures were refined by alternating cycles of energy-131 

minimization and B-factor refinement using CNS and REFMAC5 (26, 27). Manual 132 

rebuilding was performed with the graphics program COOT (28). All of the complexes 133 

demonstrated unequivocal Fo-Fc difference density for the epitopes, which were directly built 134 

into each of the structures. The stereochemical and refinement parameters are listed in Table 135 

3. Structure validation and analysis were carried out with CCP4 suite (29). The atomic 136 

coordinates and structure factors have been deposited in the RCSB Protein Data Bank. 137 

Figures were generated using the programs POVSCRIPT (30), Pov-Ray 138 

(http://www.povray.org) and PyMOL (31). 139 

3. Results 140 

3.1 HLA-A2 bound phosphopeptides can be refractory to crystallisation 141 

During our previous studies of phosphopeptide presentation by HLA-A2 we found that, 142 

whereas canonical P4-phosphorylated phosphopeptides were amenable to crystallisation, the 143 

majority of their unmodified counterparts, with the exception of a few isolated examples (8, 144 

9), proved highly intransigent to crystallisation. Similarly, structural determination of pMHC 145 

in complex with “non-canonical” (ie non-P4 phosphorylated) phosphopeptides was also 146 

hampered by the majority of such complexes being refractory to crystallisation (Table 1). 147 

Hence our attempts at structure determinations of both non-phosphorylated pMHC and non-148 

canonical phosphopeptide antigens highlighted the need for an alternative strategy to aid 149 

pMHC crystallisation.  150 

3.2 Validating the LILRB1 strategy for crystallising intransigent HLA-A2 molecules  151 

We explored the possibility of co-crystallising intransigent pMHC complexes with a natural 152 

immune receptor ligand. One candidate receptor that reproducibly co-crystallises with HLA-153 

http://reference.iucr.org/dictionary/Refinement
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A2 is LILRB1, which binds to the non-polymorphic regions of the MHC protein comprised 154 

of the α3 and β2M domains. Crucially, the LILRB1-pMHC interface is located distal to the 155 

peptide-binding site (20), suggesting that it is highly unlikely to interfere with epitope 156 

conformation. Comparison of the LILRB1-HLA-A2ILKEPVHGV complex (20) with previous 157 

structural analyses of HLA-A2ILKEPVHGV (32) failed to note any differences in the HLA-A2 158 

bound peptide in the presence/absence of LILRB1 (20). However, LILRB1-HLA-159 

A2ILKEPVHGV structural data were only available to 3.4Å, limiting detailed analysis of the 160 

peptide conformation. To definitively resolve whether the binding of LILRB1 to HLA-A2 161 

affected peptide conformation, we determined a higher resolution structure of the LILRB1-162 

HLA-A2ILKEPVHGV complex (to 2.4Å resolution (Figure 1a)), which enabled a more accurate 163 

structure of the ILK peptide moiety (Figure 1b). Structural overlay comparisons of this 164 

higher resolution LILRB1/HLA-A2 structure with the HLA-A2ILKEPVHGV determined in the 165 

absence of LILRB1 (32) demonstrated that the peptide binding platform in both complexes 166 

was very similar with an r.m.s.d value of 0.6Å (Figure 1c). Most crucially, no significant 167 

changes in structure of the ILK peptide epitope were evident upon LILRB1 binding to HLA-168 

A2 as demonstrated by the low r.m.s.d value of 0.24Å (Figure 1d). This confirmed that co-169 

crystallisation of LILRB1 with HLA-A2 complex does not alter the conformation of the 170 

MHC-bound antigenic peptide, and established a basis for exploring its potential as a 171 

chaperone for facilitating crystallisation of pMHC complex molecules. 172 

3.3 LILRB1 facilitates crystallisation and structure determination of tumour-associated 173 

pHLA-A2-complexes 174 

To assess whether LILRB1 could promote the crystallisation of pMHC complexes, we 175 

selected several pHLA-A2 complexes that had previously proven to be refractory to 176 

crystallisation, based on extensive nanolitre-scale crystallisation trials using commercial 177 

screening kits, at concentrations commonly used for class I MHC crystallisation (typically 178 
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10-25 mg/ml). These were generally tumour associated phosphopeptides, and their 179 

unphosphorylated counterparts (33). LILRB1 and pHLA-A2 complexes were produced as 180 

previously described (20).  181 

Initial attempts at crystallising pMHC complexes previously found to be refractory to 182 

crystallisation alone, frequently resulted in multiple hits in co-crystallisation trials with 183 

LILRB1 (Table 1). Initial attempts focussed on non-phosphorylated antigens, which involved 184 

equilibrating against conditions that had yielded LILRB1-HLA-A2ILKEPVHGV crystals, 185 

revealed a crystallisation solution (PEG 3350, Ammonium acetate and, Tris-HCl – hereafter 186 

referred to as PAT) that proved somewhat generic, as it was successful in providing useful 187 

primary hits for a diverse subset of pMHC complexes previously intransigent to 188 

crystallisation.  An example included the 10-mer HLA-A2KMDSFLDMQL peptide complex, 189 

crystals of which grew with a morphology similar to that of LILRB1-HLA2ILKEPVHGV crystals 190 

(Figure 2a), in the presence of LILRB1. In addition, the 12-mer HLA-A2RQASIELPSMAV 191 

complex, also previously intransigent to crystallisation, yielded crystals with LILRB1 that 192 

grew in an optimised form of the generic PAT crystallisation reagent (comprised of 20% PEG 193 

3350, 0.2M ammonium acetate and 0.1M HEPES pH 7.4 – hereafter referred to as PAH) 194 

(Figure 2b). Crucially, this same PAH condition failed to crystallise HLA-A2RQASIELPSMAV in 195 

the absence of LILRB1, underlining the critical chaperone function of LILRB1 in the 196 

crystallisation process.  Importantly, the PAT condition also demonstrated considerable 197 

promise for crystallising HLA-A2 molecules bound to non-canonical phosphopeptides, 198 

including the 9-mer (IMDRpTPEKL) (Figure 2c) and 11-mer (KLIDIVpSSQKV) (Figure 199 

2d).  200 

Despite successful use of the PAT condition as a generic crystallisation condition for a subset 201 

of peptide-HLA-A2 complexes, for other peptide-HLA-A2 complexes fresh crystallisation 202 

hits were identified in the presence of LILRB1 following rescreening of complexes against 203 
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commercial sparse matrix kits. An example was HLA-A2RTFSPTYGL crystals, which yielded 204 

co-crystals with LILRB1 from the PEG Ion screen in the presence of 0.2M potassium sodium 205 

tartrate and 20% PEG 3350 (Figure 2e). A similar LILRB1 co-crystallisation screening 206 

strategy for the HLA-A2RLSSPLHFV complex resulted in initial micro-crystals obtained in drops 207 

equilibrated against 3% Tacsimate pH 6 and 12.8% PEG 3350, after which further 208 

optimisations in the presence of dimethyl sulphoxide produced large well ordered LILRB1-209 

HLA-A2RLSSPLHFV complex crystals (Figure 2f).  Finally, it was possible to crystallise the 210 

HLA-A2RLQSTSERL complex, which we found previously was intransigent to crystallisation 211 

attempts, in complex with LILRB1 in the presence of 0.2M Potassium Acetate and 20% PEG 212 

3350, resulting in microcrystals worthy of further optimisation (Figure 2g). 213 

When combining the two groups of antigens we focussed on (non-phosphorylated 214 

counterparts of P4 phosphopeptides, and non-canonical phosphopeptides), only 10 out of the 215 

19 pMHC complexes yielded hits with conventional trials (Table 1). In contrast, a majority of 216 

pMHC complexes (8/9) generated hits when co-crystallised with LILRB1 (Table 1). 217 

Furthermore, several complexes yielded multiple independent hits thereby increasing the 218 

likelihood of growing diffraction-grade crystals (>5, Table 1). 219 

Crystals produced using the LILRB1 co-crystallisation strategy were of sufficient quality for 220 

data collection. Optimised LILRB1 co-crystals of the unmodified 12-mer, LILRB1-HLA-221 

A2RQASIELPSMAV complex (Figure 2d), permitted data collection and structure determination 222 

to 2.7Å (9).   Moreover, LILRB1 co-crystals of the HLA-A2RTFSPTYGL and HLA-A2RLSSPLHFV 223 

complexes diffracted X-rays to 2.4Å and 3.2Å, resulting in full structure determinations 224 

(Figure 3). The quality of the resulting electron density maps were significantly improved 225 

using two-fold non-crystallographic symmetry averaging, which is present in all LILRB1-226 

pHLA-A2 complex crystals, thereby aiding model building and structure determination 227 

(Figure 3, Table 2).  Collectively, these results clearly highlight the potential of exploiting 228 
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LILRB1 as a crystallisation chaperone, to facilitate X-ray crystallographic analyses of 229 

biologically important peptide-HLA-A2 complexes. 230 

3.4 LILRB1/HLA-A2 crystal contacts are conserved for other pMHC molecules.   231 

To assess the possibility that this approach might also be relevant for improving 232 

crystallisation of other MHC molecules known to bind LILRB1 (19), we first aligned the 233 

sequences of HLA-A2, HLA-B27, HLA-Cw06, HLA-E, HLA-F and HLA-G1 using 234 

PRALINE (Figure 4a). Analysis of HLA-A2 heavy chain crystal contacts in our LILRB1-235 

HLA-A2 complex structures highlighted that of the total 84 residues forming crystal contacts 236 

(Figure 4b), 44 are conserved across class I MHC, 33 are semi-conserved and 5 are non-237 

conserved (Figure 4a). This demonstrates that the majority of HLA-A2 residues involved in 238 

forming crystal contacts within LILRB1/HLA-A2 crystals are conserved in many different 239 

class I MHC molecules.   240 

4. Discussion 241 

Structural studies of class I peptide MHC structures continue to make major contributions to 242 

our understanding of important areas of immunobiology. However, despite availability of 243 

numerous pMHC structures, reliable structural analyses of predefined pMHC targets can still 244 

be challenging, as certain pMHC complexes can be intractable to crystallisation.  This 245 

represents a significant impediment to molecular studies aiming to define the role of MHC-246 

restricted antigenic peptide epitopes in specific immunobiological contexts such as disease 247 

pathogenesis and immunotherapeutic development. In the context of MHC alleles that have 248 

been crystallised, this phenomenon is superficially surprising, given conservation of the alpha 249 

chain and β2M, and the fact that only the peptide moiety would be altered between each 250 

individual pMHC complex. Whilst the molecular basis underlying it is unclear, it is likely to 251 

result from the hugely diverse properties of bound peptides. Given the strong link between 252 
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protein stability and propensity for crystallisation, one significant factor is likely to be the 253 

wide span of peptide binding affinities for MHC, and the relative kinetics of complex 254 

dissociation and aggregation, versus crystal nucleation. However, our demonstration that 255 

peptides with similar epitope sequence and binding affinities, such as RQA_V in its 256 

phosphorylated and non-phosphorylated states (9), may not exhibit the same propensity for 257 

crystallisation, suggests that factors other than peptide affinity, such as the potential of 258 

peptide conformation to favour or disrupt crystal packing interactions, or differential complex 259 

solubility, are likely to be relevant to crystal formation.  260 

In this study we investigated a novel strategy for circumnavigating crystallisation of 261 

intransigent pMHC complexes. The approach relies upon the addition of a natural ligand of 262 

class I MHC, LILRB1, to promote alternative, and in many cases more optimal crystal 263 

packing contacts. Our findings, focused in this study on the HLA-A2 allele, highlight that 264 

LILRB1 can serve as an effective non-covalent crystallization chaperone for peptide-HLA-265 

A2 complexes. This strategy offers several advantages. Firstly, since co-crystallisation with 266 

LILRB1 does not perturb the biologically critical α1α2 peptide-binding platform, it allows 267 

bone fide peptide conformation to be observed.  Secondly, the approach is experimentally 268 

highly feasible. LILRB1 is easily over-expressed in large amounts into E. coli inclusion 269 

bodies (typical yields of 100g/l), and renaturation and purification is relatively efficient.  270 

Moreover, peptide-HLA-A2 crystallisation optimisation with LILRB1, which exploits a 271 

generic crystallisation condition in many cases, is extremely efficient, and results in the 272 

production of large crystals within a relatively short time interval (<2 weeks), often of a 273 

sufficient size for data collection. Although we did not formally prove that all such crystals 274 

were of LILRB1/HLA-A2 complex, single protein controls (HLA-A2 or LILRB1 alone) did 275 

not yield crystals under similar conditions.  Furthermore, both the timescale of crystallisation, 276 

the crystal morphology and when x-ray data were collected the trigonal space group and unit 277 
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cell constants were all characteristic of LILRB1/HLA-A2 complex crystals. Moreover, while 278 

such crystals yield acceptable data using ‘in-house’ sources, clearly use of synchrotron 279 

sources would inevitably improve resolution further. In addition, the availability of the higher 280 

resolution structure of LILRB1 provides useful model-based phase information necessary for 281 

resolving LILRB1-pHLA-A2 complexes, a process that has become increasingly routine 282 

since all LILRB1-pHLA-A2 crystals exhibit similar unit cell constants, even if grown in 283 

chemically distinct conditions. Typically, the presence of two LILRB1-HLA-A2-petide 284 

complexes in the asymmetric unit allows non-crystallographic symmetry averaging, 285 

improving the quality of the electron density. Thirdly, based on the evidence we present here, 286 

LILRB1 co-crystallisation is clearly an approach capable of catalyzing crystallisation of a 287 

diverse range of peptides in the context of HLA-A2, including those previously intransigent 288 

to crystallisation.  289 

Two observations highlight that the LILRB1 chaperone approach we outline here might be 290 

applicable to different class I MHC molecules. Firstly, LILRB1 is known to recognize a 291 

broad range of class I pMHC molecules, which is explained by its recognition of a relatively 292 

non-polymorphic region of the class I MHC molecule (the α3 domain, as well as β2-293 

microglobulin) that is substantially conserved across different of different classical (HLA-A, 294 

-B, -C) and non-classical (HLA-E, -F, -G) molecules. Secondly, a majority of HLA-A2 295 

residues involved in forming crystal contacts within LILRB1/HLA-A2 crystals are conserved 296 

in a diverse range of classical/non-classical class I MHC molecules. Therefore there is 297 

considerable potential for extending the current strategy to facilitate crystallisation of a more 298 

diverse range of class I MHC molecules, although this is a focus for future studies. 299 

Development of LILRB1 as a crystallisation chaperone for pMHC could have several 300 

applications. Immune presentation and recognition of post-translationally modified peptide 301 

antigens is increasingly recognised as an area of immunobiological importance, not least in 302 
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the context of cancer immunosurveillance and immunotherapy. We have successfully applied 303 

the method to dissect the effects of phosphorylation on peptide conformation. Of relevance in 304 

this context, so-called “non-canonical” phosphopeptide HLA-A2 complexes, for which 305 

limited structural data are available, have proven to be relatively intransigent to conventional 306 

crystallisation attempts; furthermore unmodified counterparts of naturally occurring 307 

phosphopeptides tend to be notably lower affinity, and would be expected to represent 308 

challenging crystallisation targets. Use of LILRB1 as a crystallisation chaperone facilitated 309 

crystallisation of several such peptides. In addition, the method may also be particularly 310 

suitable for longer, more bulged peptides (either unmodified or those bearing bulky post-311 

translational modifications), where conventional class I MHC crystal packing interactions 312 

may be disrupted. Of relevance to this grouping, exhaustive conventional attempts to 313 

crystallise the bulky 12-mer unmodified HLA-A2RQASIELPSMAV complex failed entirely, 314 

despite in this case an equivalent affinity to the naturally phosphorylated form. The LILRB1 315 

chaperone approach quickly led to its structure determination, allowing us to demonstrate that 316 

phosphorylation of this leukaemia-associated epitope resulted in an unprecedented 317 

conformational change relative to this unmodified form, creating a highly distinct 318 

conformational “neoepitope” (9).  Indeed, examination of the structure of unphosphorylated 319 

HLA-A2RQASIELPSMAV in complex with LILRB1 provided a molecular explanation for its 320 

failure to crystallise alone, highlighting a more pronounced bulge to the peptide conformation 321 

at P8 (Proline) that precluded crystallisation in the same mode as the phosphorylated form 322 

(HLA-A2RQApSIELPSMAV) by causing steric clashes with a neighbouring molecule.  This 323 

observation highlights that altered crystal contacts introduced by LILRB1 co-crystallisation 324 

can clearly circumvent such problems. A second scenario, peptide anchor modification, 325 

which is an immunotherapeutic approach used to boost antigen immunogenicity whereby 326 

peptide immunogens are engineered with modified anchor residues to optimise MHC 327 
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binding, is another setting where the LILRB1 crystallisation chaperone methodology could be 328 

productively applied. Here the intention is to increase MHC affinity but without altering 329 

peptide conformation presented to TCR. Structural comparisons of unmodified and modified 330 

forms (the former by definition of low affinity) are likely to be highly informative in this 331 

setting. In addition, there has been considerable interest in the potential to crystallise ‘empty’ 332 

class I MHC molecules that lack bound peptide, and this would be another worthy application 333 

of the LILRB1 crystallisation chaperone approach. 334 

In light of our results, we propose that other class I MHC receptors could be exploited as 335 

alternative crystallisation chaperones - for class I pMHC, the two most likely candidates are 336 

LILRB2 and CD8αα, both of which bind to a broad range of class I MHC molecules (19, 34). 337 

Moreover, previous structural studies of both LILRB2 and CD8αα immune receptors in 338 

complex with class I MHC have highlighted that they interact with sites of the MHC that are 339 

distal to the antigen binding platform and therefore are highly unlikely to influence epitope 340 

conformation (35, 36). LILRB2 displays an overlapping but distinct MHC-I recognition 341 

mode relative to LILRB1 and predominantly mediates hydrophobic contacts to the HLA-G 342 

α3 domain (36). Moreover, structural comparisons of HLA-G and its bound peptide in the 343 

presence and absence (37) of LILRB2 have demonstrated no substantial shifts in 344 

conformation (Figures 5 a-b) thus confirming the potential of LILRB2 as a tool for 345 

promoting protein crystallisation of non-classical MHC molecules. In contrast, the CD8αα-346 

MHC binding interaction mode significantly differs to that of LILRB1 and LILRB2 forming 347 

interactions with the α2 and α3 domains of HLA-A2 as well as β2M (35), but similarly has no 348 

significant effects on the conformation of the α1α2 peptide binding platform (Figures 5 c-d). 349 

Therefore LILRB2 and CD8αα could have potential as crystallisation chaperones for pMHC. 350 

Importantly, the fact that LILRB1/B2 receptors are human/primate receptors and absent in 351 

rodents precludes use of them as crystallisation chaperones for mouse pMHC crystallisation. 352 
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However, CD8αα, and also the murine LILR orthologue paired immunoglobulin-like 353 

receptor-B (PIR-B), both recognise a broad range of murine class I MHC molecules, and 354 

represent candidates for an analogous non-covalent crystallisation chaperone approach.     In 355 

summary, the success we have observed with the LILRB1 co-crystallisation approach 356 

suggests that this method offers an effective means for promoting crystallisation of 357 

intransigent HLA-A2 complexes. We predict that co-crystallization of pMHC molecules with 358 

LILRB1 will be a valuable addition to the growing repertoire of tools available to resolve the 359 

macromolecular crystallisation bottleneck for class I pMHC molecules. 360 
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 496 

Figure Legends  497 

Figure 1: Co-crystallisation of LILRB1 with HLA-A2 does not alter the conformation of 498 
the MHC-bound antigenic peptide. (a) Ribbon representation of the LILRB1-HLA-499 
A2ILKEPVHGV complex structure determined to 2.4Å resolution  (HLA-A2 α chain (red), β2-500 
microglobulin (yellow) and LILRB1 (cyan). (b) 2Fo-Fc electron density map contoured at 501 
1.0 σ (blue wire) for the ILK peptide moiety bound within the HLA-A2 peptide binding cleft. 502 
(c) Superimposition of the HLA-A2 C-α chains determined in the presence (red) and absence 503 
of LILRB1 (blue). The co-ordinates for the HLA-A2ILKEPVHGV complex were retrieved from 504 
the PDB (accession code (1HHJ))(32). (d)  Overlay of the ILK peptide moiety derived from 505 
HLA-A2 in the presence (red) and absence (blue) of LILRB1. 506 

Figure 2: Crystallisation of intransigent HLA-A2-peptide complexes with LILRB1. 507 
Crystal morphologies of LILRB1-HLA-A2KMDSFLDMQL (a), LILRB1-HLA-A2RQASIELPSMAV 508 
(b), LILRB1-HLA-A2IMDRpTPEKL (c), LILRB1-HLA-A2KLIDIVpSSQKV (d), LILRB1-HLA-509 
A2RTFSPTYGL (e), LILRB1-HLA-A2RLSSPLHFV (f) and LILRB1-HLA-A2RLQSTSERL (g). 510 

Figure 3: Crystal structures of LILRB1-HLA-A2RTFSPTYGL and LILRB1-HLA-511 
A2RLSSPLHFV complexes. (a) Ribbon representation of the LILRB1-HLA-A2RTFSPTYGL 512 
complex structure determined to 2.3Å resolution (HLA-A2 α chain (green), β2-microglobulin 513 
(yellow) and LILRB1 (cyan). (b) 2Fo-Fc electron density map contoured at 1.0 σ (blue wire) 514 
for the RTF peptide moiety bound within the HLA-A2 peptide binding groove. (c) Ribbon 515 
representation of the LILRB1-HLA-A2RLSSPLHFV complex structure determined to 3.2Å 516 
resolution (HLA-A2 α chain (purple), β2-microglobulin (yellow) and LILRB1 (cyan). (d) 517 
2Fo-Fc electron density map contoured at 1.0 σ (blue wire) for the RLS peptide moiety 518 
bound within the HLA-A2 peptide binding cleft.  519 

Figure 4 Conservation of HLA-A2 alpha chain crystal contacts within HLA-A2-520 
LILRB1 complex structures. a) Sequence alignment of select class I MHC molecules that 521 
bind LILRB1. Sequences were obtained from Uniprot (accession numbers P01892 (HLA-522 
A2:01), P13747 (HLA-E), P03989 (HLA-B27:02), P17693 (HLA-G1), P30511 (HLA-F) and 523 
Q29963 (HLA-Cw06:02)) and aligned with Praline. The colour scheme of the alignment is 524 
for amino acid conservation. HLA-A2 alpha chain residues that contribute to crystal contacts 525 
in the HLA-A2-LILRB1 complex structures are highlighted (pink star). b) Ribbon 526 
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representation of HLA-A2 heavy chain derived from HLA-A2-LILRB1 complex structure 527 
(green).  For clarity the LILRB1 and β2M molecules have been omitted. HLA-A2 alpha 528 
chain residues that contribute to crystal contacts have been mapped (pink spheres).  529 

 530 

Figure 5: Co-crystallisation of LILRB2 or CD8αα with MHC class I molecules does not 531 
affect the conformation of the bound antigenic peptide. (a)  Superimposition of the HLA-532 
G C-α chains determined in the presence (purple) and absence (pink) of LILRB2. The co-533 
ordinates were retrieved from the PDB (accession codes for HLA-GRIIPRHLQL (1YDP) (37)and 534 
HLA-GRIIPRHLQL-LILRB2 (2DYP) (36) (b) Overlay of the RII peptide moiety derived from 535 
HLA-G in the presence (purple) and absence (pink) of LILRB2. (c)  Superimposition of the 536 
HLA-A2 C-α chains determined in the presence (yellow) and absence (blue) of CD8αα. The 537 
co-ordinates were retrieved from the PDB (accession codes for HLA-A2ILKEPVHGV 538 
(1HHJ)(32) and HLA-A2ILKEPVHGV-CD8αα (1AKJ) (35)(d) Overlay of the ILK peptide 539 
moiety derived from HLA-A2 in the presence (yellow) and absence (blue) of CD8αα. 540 

 541 
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Epitope Source Protein Commercial Screens  
(no of crystallisation hits) 

Total  
Hits 

Data 
collection 

Screening with LILRB1  
(no of crystallisation hits) 

Total 
Hits 

Data 
collection 

RQASIELPSMAV LSP1 JSCG+ (1) , Wizard 1+2, Pact,  
PEG/Ion, and Index (1) 

2 No  Proplex (8) and PAH (1) 9 2.7Å 

RQASIELPSM LSP1 JCSG+ 0 n/a Not screened - - 
RTYSGPMNKV POF1B PEG/Ion, Structure  

Screen 1+2, JCSG+ and Index 
0 n/a PAT (1) 1 Yet to be 

optimised 
RQASLSISV PKD2 JCSG+, BCS (1) and Wizard 1+2 1 1.9Å - - - 

KMDSFLDMQL N4BP2 Index, JCSG+, PEG/Ion (1), 
 Pact and Wizard 1+2  

1 No PAT/PAH (2),PEG Rx (3),  
JCSG+ (2), PEG/Ion (4) and 
Structure Screen 1+2 (1) 

12 Yet to be 
optimised 

RQISQDVKL AMPD2 PEG/Ion (3), Pact (1),  
Index and BCS 

4 2.1Å - - - 

IMDRpTPEKL BCAR3 JCSG+, PEG/Ion, Structure  
Screen 1+2, Index (1), Pact and BCS 

1 No PAT/PAH (1) 1 Yet to be 
optimised  

KLLDFGSLpSNLQV RPS17 JCSG+, PEG/Ion, Structure  
Screen 1+2 (1), Index and Pact 

1 No PAT 0  

KLIDIVpSSQKV CHEK1 PEG/Ion, Pact, JCSG+, 
 Index and BCS 

0 n/a PAT (1) 1 Yet to be  
optimised 

SMpTRSPPRV SRp46 splicing  
factor 

BCS 0 n/a Not screened - - 

SLQPRSHpSV PLEKHA6 BCS 0 n/a Not screened - - 
RQLSSGVSEI HSP27 Pact (1), Index (2) and  

PEG/Ion (5) 
8 No Not screened - - 

RLSSPLHFV RETREG2 PEG/Ion, Index, Pact, Structure  
Screen 1+2 and BCS 

0 n/a PAT/PAH (1) and  
PEG/Ion (20) 

21 3.2Å 

RLQSTSERL Mitochondrial  
escape 1-like 1 

Wizard 1-4 (1), JCSG+,  
Pact and BCS 

1 No PEG/Ion 13 2.8Å 

RTLSHISEA FLJ13725 JCSG+, Structure Screen 1+2, Index,  
ProPlex (1), Wizard 1-4 (1),  

PEG/Ion and BCS 

2 No Not screened - - 

RTFSPTYGL β-synemin/ 
Desmulin 

PACT, JCSG+, Structure Screen 1+2, 
Index, Wizard 1-4, PEG Rx,  

PEG/Ion and BCS 

0 n/a PAT/PAH (1), PEG Rx (2),  
JCSG+ (2) and PEG/Ion (5) 

10 2.3Å 

RLDSYVRSL TRAPPC1 Index, JCSG+, PEG/Ion, Pact,  
PEG Rx, Wizard 1+2 and BCS 

0 n/a Not screened - - 

RLFSKELRC TAF13 PEG/Ion, Wizard 1+2 and Pact 0 n/a Not screened - - 

Table 1: Crystallisation trials for HLA-A2 molecules bound to non-canonical or non-phosphorylated peptides in the presence (dark 
grey)/absence (light grey) of LILRB1.  Source Proteins: LSP1 - Lymphocyte Specific Protein1, POF1B - Premature Ovarian failure 1B, PKD2 
- Protein Kinase D2, N4BP2 - Nedd4 binding protein 2, AMPD2 - adenosine monophosphate deaminase 2, BCAR3 - Breast cancer anti-
estrogen resistance 3, RPS17 - Ribosomal Protein S17, CHEK1 - Checkpoint kinase 1, PLEKHA6 - Pleckstrin homology domain-containing 
family A member 6, HSP27 - Heat Shock Protein 27, RETREG2 - Reticulophagy regulator 2, TRAPPC1 - Trafficking protein particle complex 
subunit 1, PLEKHA6 -Phosphoinositol 3-phosphate binding protein and TAF13 - TFIID transcription initiation factor subunit 13. 
Commercial Screens: Molecular dimensions (Structure screen 1+2, Pact, ProPlex, BCS and JCSG+), Hampton Research (PEG/Ion, Index and 
PEG Rx) and Emerald Biosystems (Wizard 1-4). Generic LILRB1-pHLA-A2 crystallisation conditions:  PAT (20% PEG 3350, Ammonium 
0.2M acetate and 0.1M Tris-HCl pH 8.5) and PAH (20% PEG 3350, 0.2M ammonium acetate and 0.1M HEPES pH 7.4) 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Data processing and refinement statistics for the LILRB1-HLA-A2ILKEPVHGV, LILRB1-HLA-A2RTFSPTYGL and LILRB1-HLA-A2RLSSPLHYV 
complex structures. Figures in parentheses in the data processing section apply to data in the highest resolution shell. 

 

 LILRB1-HLA-A2-ILK LILRB1-HLA-A2-RTFS LILRB1-HLA-A2-RLSS 

PDB ID code 6EWA 6EWO 6EWC 

Peptide Sequence ILKEPVHGV RTFSPTYGL RLSSPLHYV 

Data Processing    

 Resolution (Å) 48.6-2.4 (2.5-2.4) 20-2.3 (2.4-2.3) 20-3.2 (3.1-3.2) 

 Unit cell dimensions (Å) 116.1, 116.1, 192.8 116.3, 116.3, 192.6 117.5, 117.5, 203.7 

 Space Group P3221 P3221 P3221 

 Total reflections 578024 (80872) 758810 (41698) 149740 (12971) 

 Unique reflections 60013 (8505) 66969 (7259) 26415 (2338) 

 Multiplicity 9.6 (9.5) 11.3 (5.5) 5.7 (5.5) 

 Completeness (%)a 99.6 (99.7) 99.1 (94) 96 (98.6) 

 Rmerge (%)b 12.2 (53.7) 10 (73.4) 17.3 (44.2) 

 I/σ(I) 5.2 (1.4) 23.6 (2.8) 10.7 (3.9) 

Refinement     

 Resolution (Å) 48.6-2.4 19.7-2.3 19.58-3.2 

 Reflections used 56939 63567 26414 

 Rcryst (%)c 22.8 23.4 20.6 

 Rfree (%)d 27.9 27.6 24.5 

 Protein residues 1101 1117 1122 

 Water molecules 45 228 - 

Model Geometry    

Ramachandran Plot    

   Most favoured 90.8 89 88.5 

   Additionally allowed 8.1 9.6 10.1 

   Generously allowed 0.7 1.0 0.9 

   Disallowed 0.4 0.4 0.5 

 RMS deviations  

      Bond lengths (Å) 

      Bond angles (°) 

 

0.008 

1.26 

 

0.008 

1.29 

 

0.008 

1.19 
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