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Abstract 

Aims: The species abundance distribution (SAD) is a fundamental pattern in macroecology. 

Understanding how SADs vary spatially, and identifying the variables that drive any change 

is important from a theoretical perspective as it enables greater understanding of what factors 

underpin the relative abundance of species. However, precise knowledge on how the form of 

SADs varies across large (continental) scales is limited. Here, we use the shape parameter of 

the gambin distribution to assess how meta-community scale SAD shape varies spatially as a 

function of various climatic variables and dataset characteristics. 

Location: Eastern North America. 

Time period: Present Day. 

Major taxa studied: Trees. 

Methods: Using an extensive continental scale dataset of 863,930 individual trees in plots 

across Eastern North America (ENA) sampled using a standardised method, we use a spatial 

regression framework to examine the effect of temperature and precipitation on the form of 

the SAD. We also assess whether the prevalence of multimodality in the SAD varies spatially 

across ENA as a function of temperature and precipitation, as well as other sample 

characteristics.  

Results: We found that temperature, precipitation and species richness can explain two thirds 

of the variation in tree SAD form across ENA. Temperature had the largest effect on SAD 

shape, and it was found that increasing temperature resulted in more log-series like SAD 

shapes (i.e. SADs with a relatively higher proportion of rarer species). We also found spatial 

variation in SAD multimodality as a function of temperature and species richness.  

Main conclusions: Our results indicate that temperature is a key environmental driver 

governing the form of ENA tree meta-community scale SADs. This finding has implications 

for our understanding of local-scale variation in tree abundance, and also suggests that niche 

factors and environmental filtering are important in the structuring of ENA tree communities 

at larger-scales.  

 



 

 

INTRODUCTION 

The species abundance distribution (SAD) describes how the number of individuals is 

distributed across all species in a sample or community, and is one of the fundamental 

patterns in macroecology (May, 1975; Gaston & Blackburn, 2000; McGill et al., 2007; 

McGill, 2011). Whilst a multitude of different SAD models have been proposed (see McGill 

et al. 2007), SADs can be grouped into two main classes: logseries and lognormal-like shaped 

distributions (Ulrich, Ollik, & Ugland, 2010; Ulrich, Kusumoto, Shiono, & Kubota, 2016). 

The logseries distribution itself results from the Poisson sampling of a gamma distribution 

after a certain relevant limit is taken, and it is characterised by a right-hand skewed curve 

with a modal value of one (Fisher, Corbet, & Williams, 1943). The lognormal distribution 

represents a situation in which the logarithms of abundances follow a Gaussian distribution 

and it is characterised by a community in which species of intermediate abundance are most 

prevalent (Preston, 1948; May, 1975). Both the logseries and lognormal are unimodal 

models, which have been the focus of many studies until recently (but see Ugland & Gray, 

1982). However, recent work has indicated that a small proportion of empirical SADs are in 

fact multimodal (e.g. Dornelas & Connolly, 2008; Vergnon, van Nes, & Scheffer, 2012; 

Matthews & Whittaker, 2015; Antão, Connolly, Magurran, Soares, & Dornelas, 2017). For 

example, a recent synthesis of 117 datasets found significant evidence of multimodality in 

approximately 20% of cases (Antão et al., 2017). A number of potential causes of 

multimodality in SADs have been put forward, such as the amalgamation of different types of 

species within a single sample (e.g. core and satellite species; Magurran & Henderson, 2003; 

Matthews & Whittaker, 2015), and the increasing taxonomic breadth, sampling variation, and 

spatial extent (i.e. increasing ecological heterogeneity; Antão et al. 2017) of a study. 

However, variation in the prevalence of SAD multimodality at large scales and across 

ecological gradients is largely unknown.  

Whilst a large proportion of previous (unimodal) SAD studies has focused on either finding 

the best fitting model given a set of local-scale ecological data (e.g. Ulrich et al., 2010), or 

using the SAD to test the performance of a particular theory or model (e.g. Volkov, Banavar, 

Hubbell, & Maritan, 2003), there has been increasing recognition of the importance of 

assessing how different SAD properties change across ecological gradients, such as climate, 

succession and disturbance gradients (e.g. Dornelas, Soykan, & Ugland, 2011; Matthews et 

al., 2014; Ulrich et al. 2016; Matthews, Borges, de Azevedo, & Whittaker, 2017). 

Traditionally, these SAD gradient studies have mostly been undertaken at relatively local 

scales (e.g. Bazzaz, 1975; Matthews et al., 2014). However, likely due to the increased 

availability of open source SAD datasets, in combination with an increase in computer 

processing power, there has been a rise in the number of SAD studies focusing on larger, 

macroecological, scales (e.g. Ulrich et al. 2010, 2016; White, Thibault, & Xiao, 2012; 

Kubota, Kusumoto, Shiono, Ulrich, & Jabot, 2015). Generally speaking, macroecological 

scale analyses are characterised by a trade-off between global coverage and local/regional 

resolution, that is, studies that analyse datasets from across multiple continents (e.g. Ulrich et 

al., 2016) tend not have very high coverage in any particular region / continent, and vice 

versa. Thus, most global scale SAD analyses have large gaps within any given region. Whilst 

this is not a criticism of global SAD analyses, which are often able to identify broad scale 

patterns, it often involves analysing datasets from multiple studies that employ different 

sampling methods and have varying aims, which may result in some patterns of interest being 



 

 

obscured. A different and more effective approach involves extensively sampling one large 

region using a standardised sampling protocol. This approach is arguably better at identifying 

spatial variation in SAD properties as it allows for more variables to be controlled, but, due to 

the resources required to undertake the standardised sampling, has been employed less 

frequently in SAD studies (but see White et al., 2012, Locey & White, 2013).  

Understanding how SADs vary spatially is important from a theoretical perspective as it 

enables greater understanding of: (1) what underpins the relative abundance of species 

(MacArthur, 1960, 1972; May, 1975; Matthews et al., 2017), and (2) large-scale species 

richness gradients (Rosenzweig, 1995; Currie et al., 2004). However, precise knowledge on 

how the form of SADs varies across large scales, and the role of different processes driving 

this change, is limited (Ulrich et al., 2016). It can be theorised that variation in climate across 

space will be important in driving variation in SAD form. Climatic variables are known to be 

important drivers of species richness gradients at macroecological scales (Currie & Paquin, 

1987; Brown et al., 2004; Field et al., 2008). In particular, temperature and precipitation are 

known to be the primary limiting drivers of richness variation in North American trees 

(Currie & Paquin, 1987; Allen, Brown, & Gillooly, 2002; Whittaker, Willis & Field, 2003). 

The effect of variation in climate on the shape of the SAD is largely unknown, but based on 

the findings of previous studies on species richness gradients (e.g. Currie & Paquin, 1987; 

Currie et al., 2004), we predict logseries SAD shapes to be more prevalent with increasing 

temperature and precipitation. Primary productivity correlates strongly with climatic 

variables, and higher energy and productivity is known to: (1) result in finer scale divisions of 

niche space (Whittaker et al., 2003), and (2) enable areas to support more individuals (Currie 

et al., 2004) at smaller minimum viable population sizes (Hawkins et al., 2003). In addition, it 

has been argued that, in contrast to the theoretical predictions of the species-energy 

hypothesis, populations of species are smaller in more productive environments (Currie et al., 

2004). These factors have been postulated to result in greater richness in productive 

environments, but together would also mean a higher proportion of rarer species and thus 

logseries SAD shapes. The role of climatic variables in driving multimodality in SADs has 

not, to our knowledge, been previously assessed at this scale.  

Macroecological SAD studies have tended to compare the fit of different models, and then 

assessed spatial variation in the best fitting model (e.g. Ulrich et al., 2016). However, this 

approach does not necessarily provide accurate information about the shape of the SAD, as 

certain SAD models are relatively flexible and can fit a range of SAD forms, and choosing a 

best fitting model does not necessarily mean that it fits the data well (i.e. none of the models 

in the comparison may provide an accurate representation of the SAD shape). An alternative 

approach focuses on a single value that characterises the shape of the SAD (Ulrich, Nakadai, 

Matthews, & Kubota, 2018), such as the shape parameter of the gambin model (Ugland et al., 

2007). Gambin is a stochastic model which combines the gamma distribution with a binomial 

sampling method; the unimodal gambin model has a single free parameter (α), which 

characterises the distribution shape: low values indicate logseries shaped curves, whilst 

higher values indicate more lognormal shaped curves (see Fig. 1 for an example). Gambin 

has been shown to provide good fits to a wide variety of empirical datasets, and α has been 

found to represent a useful metric that can be used to assess the effect of different variables 

on SAD shapes (Dornelas et al., 2011; Matthews et al., 2014; Arellano et al., 2017). Recent 

methodological developments (Matthews et al., 2018) have derived the likelihood functions 



 

 

for multimodal gambin models (multimodality also being a measure of the shape of the 

SAD), thus providing a means of easily assessing multimodality in SAD datasets. 

Here, we analyse an extensive dataset of 863,930 individual trees in 33,282 plots across 

Eastern North America (hereafter, ENA) sampled using a standardised method, to examine 

the effect of climate on the form of ENA tree SADs across broad spatial scales. We combined 

adjacent plots (within grid squares of roughly 44km by 44km) to create coarse-scale SADs; 

thus, we are analysing SADs at the meta-community scale. We use gambin’s α to assess how 

SAD shape varies spatially as a function of various climatic variables and dataset 

characteristics. We hypothesise that, due to the arguments outlined above, we will observe a 

shift from lognormal to logseries shaped SADs with increasing temperature and precipitation. 

We also assessed the prevalence of SAD multimodality and whether SAD multimodality 

varies spatially as a function of temperature and precipitation. 

MATERIALS AND METHODS 

Data and sampling methodology  

Our analyses were based on publicly available plot-level data produced by the United States 

Department of Agriculture, Forest Service’s Forest Inventory and Analysis Program (FIA; 

http://fia.fs.fed.us/). The FIA program conducts a systematic and consistent inventory of all 

forest land in the United States, with a comprehensive summary of the associated data and 

sampling methodology provided by O'Connell et al. (2017). Briefly, inventory plots are 

systematically distributed across the entire United States with remotely sensed information 

used to identify plots that are located in a forest land use where a field plot is measured for 

site/forest attributes. Each FIA plot comprises four circular subplots of area 0.017 ha, each 

located within a circular 0.10 ha macroplot. All free-standing woody stems (live and dead) 

with a diameter ≥ 12.7 cm are sampled within each subplot. Within each subplot there is a 

circular 0.001 ha microplot in which all live stems with a diameter ≥ 2.54 cm are sampled 

(O’Connell et al., 2017). The full dataset contained sampling data from two time periods, that 

is, each plot was re-sampled a second time on average five years later. For this study, we only 

used the data from the first sampling period. The location of the plots is illustrated in Fig. 2. 

Annual mean temperature and annual mean precipitation data for each plot were sourced 

from the WorldClim database (Version 2.0; 2.5-minute resolution; Fick & Hijmans, 2017) 

using averages based on annual means (1970-2000) and extracted using the ‘raster’ R 

package (Hijmans, 2017; see Appendix S1 for further details). Climatic seasonality variables 

were also extracted but not used further due to multicollinearity issues (based on variance 

inflation factors).  

Dataset format and fitting the gambin model 

Whilst the full dataset had a very high spatial resolution (i.e. coverage of plots within ENA), 

the individual plots did not contain sufficient individuals to confidently fit SAD models (see 

McGill, 2011). Thus, we pooled all plots within a given distance to create meta-community 

scale SADs. To achieve this, we divided the ENA into a grid of squares of x1 by x2. For each 

grid square, we then pooled all plots with centre points within the boundaries; thus, creating 

individual meta-community samples of individuals (hereafter, ‘samples’) for each grid 

square. For the main analyses, we used 0.4 degrees of latitude (i.e. x1 = 0.4 degrees). As the 

length of a degree of longitude varies with latitude, we varied the selected degrees of 



 

 

longitude (x2) at different latitudinal bands to ensure the grid squares were all approximately 

the same size (roughly 44km by 44km).  

As SAD model parameters are known to be biased when sample size is small (McGill, 2011; 

Matthews et al., 2014), we removed all samples with less than 500 individuals. For the 

remaining samples, we fitted the one-component (unimodal) gambin model to each sample 

using the gambin R package (version 2.4, Matthews et al., 2014). Because SAD model 

parameters are sensitive to variations in sample size (McGill, 2011), we used a procedure 

where, for each sample, we subsampled 500 individuals, fitted the unimodal gambin model to 

this subsample and stored the α parameter value. As this subsampling procedure is stochastic, 

we repeated the process 100 times for each sample and took the mean α value. The 100 

subsamples were also used to create estimates of the standard error of the mean value. As 

comparing SAD model parameters only makes sense if the model provides a reasonable fit to 

the data, for each model we fitted we also stored the X
2 

goodness of fit statistic and its 

associated P-value; the mean values of the 100 subsamples were then calculated. We then 

discarded all samples where the mean P-value was less than 0.05. Occasionally, the model 

did not fully converge and the fit generated unrealistically high values of α (e.g. 50). 

Following previous work and earlier versions of the gambin package (Matthews et al., 2014) 

we discarded all samples that had a mean α value > 15. Species identities were taken from 

O’Connell et al. (2017; see their Appendix F).  

Spatial regression analyses 

To determine whether temperature and precipitation could explain any of the variation in 

SAD form across our samples, we used a spatial linear regression modelling approach. For 

the response variable, we used the α values from the fits of the unimodal gambin model to the 

samples. The distribution of α values was skewed, so it was log transformed to enable use of 

standard Gaussian linear models. We included three predictor variables (temperature, 

precipitation and species richness of the sample) and all predictor variables were standardised 

to have a mean of 0 and a standard deviation of 1 to enable comparison of effect sizes. 

Species richness was simply the number of species in a sample, whilst precipitation and 

temperature were taken as the mean values of the plots within a sample. The variance 

inflation factors of all predictors were below three. The number of individuals was not 

included as a predictor as this was standardised prior to fitting the gambin models. First, we 

fitted a standard linear model using all predictors. We tested for spatial autocorrelation in the 

residuals of this model fit using a permutation test (999 permutations) for Moran's I statistic 

and the ‘spdep’ R package (Bivand, 2017); spatial weights for neighbour lists were calculated 

using the ‘knearneigh’ (k = 4) and ‘nb2listw’ functions and row standardised weights. This 

test revealed strong spatial autocorrelation in the residuals (Moran’s I = 0.38, P = 0.001). To 

account for this, we used a spatial regression framework (Ward & Gleditsch, 2008; Bivand, 

2017). We fitted both a spatial lag model (i.e. a spatial simultaneous autoregressive lag 

model) and a spatial error model (i.e. a spatial simultaneous autoregressive error model) using 

the ‘spdep’ R package and compared the models using Akaike’s information criterion (AIC). 

Due to the large number of data points, it was not necessary to use AICc. Using the best-

fitting spatial regression model, we fitted the global model (i.e. with all predictors), and 

models with all possible predictor combinations that included species richness; species 

richness was included in all models as it was a predictor we wanted to control for. We also 

fitted a null model (just an intercept term, Mac Nally et al., 2018). Model comparisons used 



 

 

an information theoretic approach (Burnham & Anderson, 2002). All global and best-fit 

models were re-checked for residual spatial autocorrelation and we also calculated 

Nagelkerke’s pseudo R
2
 values to assess model fit. To validate models, we extracted the 

fitted values and the residuals from the spatial error model fit object, and constructed qqplots 

to check for residual normality and plotted the fitted values against the residuals to check for 

homoscedasticity. We constructed partial regression plots to assess the effect of each variable 

after taking into account the effect of the other predictors.  

Assessing multimodality using multiple-component gambin models 

To assess whether the prevalence of multimodality in the SAD varied as a function of the 

predictor variables, for each sample (from the 0.4 degrees of latitude grid) we fitted both the 

one-component and two-component gambin models using the gambin R package (version 

2.4; Matthews et al., 2018) and derived the Bayesian information criterion (BIC) values. We 

used BIC here rather than AIC as the former is known to more strictly penalise more complex 

models than AIC (Burnham & Anderson, 2004), and this is a desirable property in this 

context as arguably a test of multimodality should be conservative. The two-component 

model was considered the best fit model if it had a ΔBIC value lower than the one-component 

model (Burnham & Anderson, 2002, 2004). As we were not interested in comparing 

parameter values across samples in this part of the analysis, we fitted the models without 

standardising for the number of individuals in the samples. We excluded all samples where 

neither the one-component or two-component model had a X
2 

P-value greater than 0.05. We 

converted the number of times the two-component model was the best fit model into a 

binomial variable to be used as a response variable in a binomial GLM using temperature and 

precipitation as predictor variables. As we did not standardise by sample size, we also 

included the number of individuals and number of species in a sample as predictors. All 

predictors were standardised to have a mean of zero and a standard deviation of one. The 

variance inflation factors of all parameters were below five. To deal with spatial 

autocorrelation, we created an autocovariate to be used in autologistic regression, using the 

‘autocov_dist’ function (type = “inverse”, style = “W”) in the spdep R package. We set the 

neighbourhood radius to 50 km to ensure there were few regions that included points with 

zero links to other points (0.04 % of regions, average number of links = 2.61). We used the 

MuMIn R package (Bartoń, 2012) to fit a complete set of models considering all predictors; 

the autocovariate was set as fixed. As with the unimodal model selection analysis, we used 

AIC to compare regression models. Weight of evidence (WoE) values for each predictor 

variable were calculated by summing the AIC weights for all models in which a variable was 

present (Burnham & Anderson, 2002; Giam & Olden, 2016). McFadden’s pseudo R
2
 was 

calculated for each model using the formula: 1 – (residual deviance / null deviance).  

Sensitivity analyses 

In order to determine whether our results were influenced by the location and size of the grid 

squares, the pooling of data within grid squares in general, and to test the effect of potentially 

including managed plots on our results, we ran a number of sensitivity analyses to account for 

these factors (the full methods are provided in Appendix S1).  

Inspection of plots of the standard error of the mean alpha values (the mean of the alpha 

values from the 100 subsamples) indicated that the standard error increased with increasing 

mean alpha (Figure S1 in Appendix S2). Thus, to ensure that this did not bias our results we: 



 

 

1) re-ran the main analyses using unstandardized alpha values (i.e. the gambin model was 

fitted without any subsampling), and 2) we used the standard errors as weights in a linear 

regression model selection. The standard errors were normalised between 0 and 1 and we 

used the inverse of these values as the weights. It was necessary to use a standard linear 

model as it was not possible to add weights to our spatial regression models. Re-running the 

analyses using unstandardized alpha values also enabled us to check that our random 

subsampling did not affect the results. For example, this could happen as our subsampling 

procedure randomly sampled individuals from a plot, which disregards the possibility that 

individuals of a species are spatially aggregated rather than randomly distributed within a 

plot. 

In addition, when the number of species in a sample is low, the shape of the SAD is 

constrained (Locey & White, 2013). Thus, to test whether our results are simply an artefact of 

low richness in certain samples we ran an additional simulation analysis where we assessed 

the effect of the number of species in a sample on the alpha value of the unimodal gambin 

model (full details in Appendix S1).  

All analyses were undertaken in R (version 3.5.1; R Core, Team 2017). The R code is 

provided in an online repository on GitHub (txm676/NEA_SADs). 

RESULTS 

Across the 33,282 plots there were 863,930 individual trees representing 214 species. Using a 

ca. 44km by 44km grid square and a minimum number of individuals threshold of 500, there 

were 763 coarse-scale SAD samples. After removing samples to which the one-component 

gambin model did not provide a good fit (according to the X
2
 statistic or an unreasonably 

high α value), we were left with 737 samples distributed across ENA. The mean species 

richness of the samples was 30 (SD = 8), whilst the mean number of individuals was 904 (SD 

= 343, although the number of individuals in each sample was standardised prior to model 

fitting). 

Variation in gambin’s alpha along macroecological gradients 

When all predictors were considered, the spatial error model (AIC = 644.8) had a lower AIC 

value than the spatial lag model (AIC = 647.8) and the standard non-spatial linear model 

(AIC = 822.8), and the residuals were no longer autocorrelated (Moran’s I of the global 

model = -0.03, P = 0.91). Thus, the spatial error model was used in subsequent analyses. 

There was substantial spatial variation in α (see Fig. 2). The best spatial error model (i.e. the 

model with the lowest AIC) contained temperature and species richness (Table 1); 

temperature had the largest effect on α (i.e. this variable had the largest coefficient), followed 

by species richness. A second model containing all three predictors was also within 2 ΔAIC 

values of the global model (Table 1). The model with the lowest AIC value explained a large 

amount of the variance in SAD form (pseudo R
2
 = 0.65). The ΔAIC value of the null model 

was 132.5 (Table 1), meaning the best model provided a substantially better fit than an 

intercept only model. The partial regression plots (Fig. 3) of the global model (i.e. the model 

with all three predictors) show a stronger negative effect of temperature on α (Fig. 3a) 

relative to the effects of species richness (Fig. 3c) and precipitation (Fig. 3b). The residuals of 

the best spatial error model were not significantly autocorrelated (Moran’s I = -0.03, P = 



 

 

0.91) and were observed to be normally distributed according to both the qqplot and 

histogram (Shapiro-Wilk normality test on the residuals: w = 1.00, P = 0.15).  

Multimodal model results 

After filtering out samples according to our acceptance criteria (i.e. number of individuals 

and X
2
 goodness of fit test), we were left with 653 samples. Across these, the two-component 

(bimodal) gambin model had the lowest BIC value in 65 cases (10%). Examples of unimodal 

and bimodal SADs are provided in Fig.4a,b. A heat map of the bimodal BIC weights is 

provided as Fig. S2 in Appendix S2. The best binomial GLM model contained temperature, 

number of species and number of individuals, in addition to the spatial autocovariate (Table 

2). The pseudo-R
2 

of the
 
best model was low (0.09) and there was no residual spatial 

autocorrelation (Moran’s I = 0.03, P = 0.10). There were two additional models with ΔAIC 

values less than two; temperature and species richness were included in both (Table 2). 

Temperature had a WoE value of one, whilst precipitation, and the number of individuals and 

species had values of 0.34, 0.60 and 0.98, respectively (Table 2). The fit of a simple non-

spatial logistic regression model using just temperature as a predictor is shown in Fig. 4c; it 

shows an increasing probability of a one-component model providing the best fit with 

increasing temperature.  

Sensitivity analyses 

Removing the potentially managed plots, re-running the analyses from different starting 

points to create the grid cells, or with smaller grid squares did not affect the overall results: 

the spatial model selection results, partial regression plots, and binomial GLM model 

selection analyses produced largely similar outcomes (see Appendix S2). The main difference 

was the performance of the precipitation variable, which had a positive effect in some of the 

smaller grid square models (in both the unimodal and multimodal model selection analyses) 

and in two of the shifted grid square analyses (Appendix S2). 

Re-running the spatial error model selection using alpha values generated from fitting gambin 

to the raw plot data also did not affect the overall results. Regardless of the number of 

individuals threshold used (i.e. 25 or 50; which resulted in 10,181 and 729 plots, 

respectively), the model selection results were very similar (Tables S6 & S7 in Appendix S2). 

Again, the main difference was the performance of the precipitation variable, which was 

included in the best model and had a positive effect, in both cases. Re-running the spatial 

error model selection using unstandardized alpha values did not change the overall results 

(Table S8 & Figure S5 in Appendix S2). In addition, using the standard error (of mean alpha) 

values as weights in a standard linear model resulted in a very similar global model (Table S9 

in Appendix S2). 

The species richness simulations indicated that the alpha parameter of a sample is an accurate 

estimate of the population alpha value when the number of species is greater than ten (see 

Figure S6 in Appendix S2). When the number of species is less than 10, the alpha value tends 

to be inflated. As only one of our samples in the main analysis had fewer species than ten 

(nine), we are confident that our results are not an artefact of low richness in our samples.  

 

 



 

 

DISCUSSION 

The majority of SAD analyses are undertaken at local scales, and thus less is known about 

SADs at larger meta-community scales. In addition, the use of standardised plot data avoids 

the biases introduced in many macroecological studies whereby data from multiple studies 

that use different sampling methods, are combined. We found that our global model (the two 

climatic variables and species richness) can explain around two thirds of the variation in 

meta-community SAD shape across ENA. This is a significant amount; a recent global 

synthetic analysis (i.e. combining multiple independent studies) of SADs was able to explain 

roughly 20% of variation in SAD form (Ulrich et al., 2016). We also found some spatial 

variation in SAD multimodality as a function of temperature, species richness and, to a lesser 

extent, the number of individuals.  

Model selection indicated that temperature was the most important variable driving variation 

in α; it had the largest effect in all ΔAIC < 2 models (Table 1). Our findings show that, in line 

with our prediction, the effect of temperature was negative (see Fig. 3); increasing 

temperature resulted in lower α and thus more logseries-like SADs. This finding suggests that 

temperature is more important than water in structuring ENA tree SADs. Allen et al. (2002) 

report a similar finding for the species richness of North American trees. However, although 

precipitation had a smaller effect than temperature, it was still retained in a model with ΔAIC 

< 2. It is likely that at some extremes, precipitation has a greater effect on SAD form (e.g. 

highly arid areas), and that our dataset did not cover enough of these extreme environments 

(see also Hawkins et al., 2003). It is also possible that other variables (e.g. potential 

evapotranspiration, Currie et al., 2004) might be more accurate measures of water availability 

and water deficit than mean precipitation (Anderegg et al., 2015). A more in-depth analysis 

of the role of different productivity metrics on SAD form would be an interesting future step, 

although such an analysis is reliant on the availability of suitable data at large scales. It 

should be noted that in some of the sensitivity tests the effect of precipitation on alpha was 

positive (rather than negative as in the main analysis; compare for example Fig.3 with Fig.S4 

in Appendix S2). However, the effect was often close to zero and the standard error of the 

effect often overlapped zero (e.g. see Table S3 in Appendix S2). In addition, within the same 

model selection analysis (e.g. Table S3 and S7 in Appendix S2) the effect of precipitation on 

alpha was found to switch between positive and negative for different models. Thus, the 

effect of precipitation on alpha, based on these data at least, can be considered negligible.  

The strong role of temperature and thus energy availability implies that niche processes (e.g. 

niche division) leave an imprint on the SAD. Previous climate-richness gradient studies have 

shown that diversity is positively correlated with productivity, due in part to the fact that 

more individuals can be supported in productive ecosystems and the minimum viable 

population sizes of individual species are often smaller; thus, a larger number of species, with 

smaller population sizes, can be supported in a given unit of area than in less productive 

systems (Allen et al., 2002; Hawkins et al., 2003; Brown et al., 2004). For example, the 

average population densities and population sizes of tree species have both been shown to 

decrease with increasing temperature (Allen et al., 2002) and decreasing latitude (Currie et 

al., 2004). A separate but linked idea is the theory that greater niche division in more 

productive environments enables more species to coexist in a given area (Rosenzweig, 1995; 

Whittaker et al., 2003). If abundance is linked to niche size (MacArthur, 1972), then greater 

niche division would result in a higher proportion of relatively rare species being found in 



 

 

more productive environments, which would also explain our findings. The negative effect of 

species richness on α, whilst less than the effect of temperature (Table 1), also fits into this 

rationale: more productive environments, in general, support larger numbers of species 

(Hawkins et al., 2003). A novel finding of our study is that abundance is distributed across 

these larger number of species in a less even way than in cooler environments. These 

observations could also be due to the filtering out of rarer species (i.e. species with small 

populations) in colder regions, which in turn could be linked to tropical niche conservatism 

(Wiens et al., 2010); fewer lineages are adapted to colder temperatures, and thus there is less 

competition and a larger proportion of species is able to have higher relative abundance. 

Another possibility is that increasing temperature results in a higher rate of speciation (Allen, 

Gillooly, Savage, & Brown, 2006), leading to a larger number of young species with 

relatively small population sizes and thus more log-series like SADs. These different 

explanations are not necessarily mutually exclusive.   

An alternative explanation is the possible constraining influence of community richness on 

the shape of the SAD (Locey & White, 2013). A meta-analysis by White et al., (2012), who 

included in their analysis a subset of the plots we have analysed, has shown that the 

maximum entropy theory of ecology (see Harte, 2011) can successfully capture a large 

proportion of the variation in SADs. In addition, Locey & White (2013) found that the form 

of SADs in many cases is not different to the central tendency of the feasible set of possible 

distributions. However, our results are not actually in contradiction with those of White et al. 

(2012) or Locey & White (2013). Both these studies found that the application of a maximum 

entropy model and the feasible set framework to empirical data does not capture all of the 

variation in SAD form, particularly in cases where the SAD is exceptionally even or uneven 

(see Locey & White, 2013). More importantly, as the authors state, the results of these studies 

do not imply that ecological processes are unimportant. Rather, ecological processes are 

likely to be important indirectly through their impacts on the state variables and constraints 

considered (e.g. the total number of individuals or the number of species, see Harte, 2011). 

Our results, alongside the many studies of large-scale richness gradients (e.g. Currie & 

Paquin, 1987; Hawkins et al., 2003; Field et al., 2008), indicate that temperature in particular 

is a key variable of interest in this regard.  

Whilst the unimodal gambin model provided a better fit, according to BIC, in the majority of 

cases, the bimodal model was the best fit model to a small proportion of samples (10%). 

Multimodality is also a measure of the shape of a SAD, and our multimodal SAD model 

selection results (Table 2) provide further evidence in support of the role of temperature in 

driving variation in SAD shape. However, it should be noted that the amount of variation 

explained by the best model in this case (pseudo R
2 

= 0.09) was much lower than in the 

unimodal gambin alpha analyses (Table 2) and it is thus hard to make any general 

conclusions on the variables driving this pattern. That being said, one interesting result is that 

the effect of temperature and species richness (in the models in which species richness was 

included, see Table 2) have opposite signs; temperature has a negative effect (see Fig.4c), and 

species richness a positive effect, on the log odds prevalence of bimodality in the analysed 

SADs (Table 2). The reasons for contrasting effects of temperature and richness are unclear. 

One potential explanation might be that an additional variable not included in our analysis 

covaries with either or both temperature and species richness, such as topographical relief or 

human disturbance. Another potential explanation for the presence of multimodal SADs more 



 

 

generally is the possible presence of strong fine-scale climatic gradients within some of our 

coarse-scale grid squares; the fact that our sensitivity analysis using a smaller grid square size 

provided evidence for a relatively larger (compared to the larger grid square analysis) 

positive effect of precipitation on the prevalence of multimodality provides evidence 

supporting this explanation. Further work is needed to explore these possibilities, and to 

identify additional covariates that explain more variation than those analysed here. 

Forest management provides another potential confounding factor in our interpretation. Due 

to the systematic nature of the FIA inventory, some of the plots included in the study dataset 

were in managed forest (see O’Connell et al., 2017). The inclusion of these forests could 

potentially have biased our results if there is strong spatial variation in the location of 

managed forest plots in relation to the other covariates. For example, there are currently 

known to be large tracts of managed forests (e.g. aspen and birch, and spruce and fir 

plantations) in northern USA. However, whilst management was not explicitly recorded 

during sampling, each of the plots (and individual trees) included in our analysis have been 

surveyed at multiple points in time, and when an individual tree was found to have died 

between time periods a cause of death was inferred. This allowed us to remove all plots that 

contained several trees that were listed as having died due to management related activities 

and re-run the analyses (which did not affect the overall results; see Appendix S2). Whilst 

this is not a perfect metric of management and human disturbance, we are confident that our 

overall results are not simply an artefact due to the inclusion of managed forests.  

In a previous study of the SADs of North American trees using a functional trait-based 

maximum entropy model, Xing, Swenson, Weiser, & Hao (2014) found that broad-scale 

SADs were important drivers of local-scale abundance, arguing that it was thus necessary to 

discern what the underlying mechanisms of North American tree SADs across broader scales 

are. The results of our study indicate that temperature is a (perhaps the) key environmental 

driver governing the form of ENA tree SADs at large meta-community scales, which should 

thus aid in our understanding of the local-scale variation in tree abundance. This, in turn, 

suggests that niche factors and environmental filtering are important in structuring ENA tree 

communities.  
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TABLE 1. Spatial error model selection results. The response variable in all models was the 

alpha parameter of the gambin species abundance distribution model (log transformed). The 

three predictors (temperature, precipitation and species richness) were standardised to have a 

mean of zero and standard deviation of one. The data were pooled samples (N = 737) of 

North American tree monitoring plots. The abundance data of each sample were standardised 

to ensure all samples contained 500 individuals. For each model, the variable coefficient 

estimate is given with the standard error in parentheses. The AIC, ΔAIC, and the Z-value of 

each model are also provided. *indicates a significant Z-value at the p≤0.001 level.  

Rank Temperature Precipitation Species richness AIC ΔAIC  Z-value  

1 -0.39 (0.03) - -0.12 (0.02) 643.4 0.0 14.64* 

2 -0.36 (0.04) -0.04 (0.04) -0.12 (0.02) 644.8 1.4 14.85* 

3 - -0.27 (0.04) -0.14 (0.02) 694.6 51.2 22.80* 

4 - - -0.15 (0.02) 730.0 86.6 29.57* 

5 - - - 775.8 132.5 32.96* 

 

 

 

 

 

 

 

 

 

 

 



 

 

TABLE 2. Binomial GLM model selection results. Models were compared using AIC. All 

models with a ΔAIC ≤ 2 are shown. The response variable in all models was a binary variable 

describing whether or not a two-component gambin model provided a better fit than a one-

component gambin model. The five predictors were: temperature (Temp.), precipitation 

(Precip.), number of individuals in a sample (N), a spatial autocovariate (AutCov) and species 

richness (SR). All predictors were standardised to have a mean of zero and standard deviation 

of one. The data were pooled samples of North American tree monitoring plots (n = 653). For 

each model, the variable coefficient estimate is given with the standard error in parentheses. 

The AIC and ΔAIC of each model are also provided.  

 

Rank AutCov N Precip. SR Temp. AIC ΔAIC 

1 -0.21 (0.12) -0.22 (0.14) - 0.53 (0.17) -1.05 (0.23) 395.52 0.00 

2 -0.22 (0.12) - - 0.51 (0.17) -0.91 (0.20) 396.21 0.69 

3 -0.19 (0.12) -0.24 (0.14) 0.19 (0.21) 0.50 (0.17) -1.21 (0.29) 396.74 1.22 

WoE 1.00 0.60 0.34 0.98 1.00   

 

  



 

 

 

 

 

 

FIGURE 1. The two most commonly observed SAD shapes: logseries-like distributions (a), 

and lognormal-like distributions (b). In both (a) and (b) the gambin model (black circles) has 

been fitted to the data binned into logarithmic octaves (grey bars). The data were simulated 

by sampling random values from gambin distributions with alpha parameters of 0.5 (a) and 4 

(b); in both plots the number of species was set to 200.   



 

 

 

FIGURE 2. Left-hand plot: the distribution of 33,282 FIA tree plots (blue dots) across 

Eastern North America, overlaid on a heat map of temperature values. Temperature data were 

sourced from the WorldClim database and represents the annual mean temperature at 2.5 min 

resolution (temperature data are in the form °C * 10). Right-hand plot: a heat map showing 

spatial variation in the α parameter (log transformed) of the gambin model; alpha values were 

grouped into 30 bins and the median value displayed. Lower values of alpha correspond to 

log-series like SAD shapes, while higher values correspond to more log-normal like SAD 

shapes (see Fig. 1). The alpha values were generated from fitting the gambin SAD model to 

tree data from 737 coarse-scale samples, where a sample is a collection of FIA tree 

monitoring plots within a roughly 44km by 44km grid. 

 

 

 

  

  



 

 

 

FIGURE 3. Partial residual plots showing the effect of temperature (a), precipitation (b) and 

species richness (c) on the alpha parameter of the gambin SAD model (log transformed), after 

taking into account the effect of the other independent variables in the global model (i.e. the 

model containing all three predictors). The red solid line in each plot represents the best fit 

linear model to the partial residual data. The alpha values were generated from fitting the 

gambin SAD model to tree data from 737 coarse-scale samples, where a sample is a 

collection of FIA tree monitoring plots within an approximately 44km by 44km grid.  

  

  



 

 

 

FIGURE 4. An example of a unimodal (a) and bimodal (b) SAD (grey bars), generated using 

samples of North East American trees, where a sample is a collection of FIA tree plots. In (a) 

the fit of the one-component gambin model (blue circles), and in (b) the fit of the two-

component gambin model (red triangles), are shown. The sample in (a) comprises 26 species 

and 1902 individuals, and in (b) 46 species and 1456 individuals. In (c) the results of a 

logistic regression are displayed; the red line represents the curve of the predicted values 

from the model and the grey bars are the observed data points displayed as histograms. The 

predictor variable in the model was (standardised) temperature. The response variable in the 

model was a binary variable indicating whether or not a two-component gambin model 

provided a better fit than a one-component gambin model to a given sample; we used one 

minus this value for illustrative purposes, and thus the curve shows an increasing probability 

of a one-component model providing the best fit with increasing temperature. The data are 

653 meta-community scale samples of Eastern North American trees.  

 

 

 

 

 

 

 

 

 

 

 


