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ABSTRACT 

A vibration energy harvester is proposed for rotating systems based on transverse vibrations 

of an assembly of thin beams and electromagnetic interaction of a carried magnet with a 

coil of wire. The harvester is designed in a way such that centrifugal forces are utilized to 

tune the system’s natural frequency to the expected frequency of torsional vibrations. In 

fact, a novel combination of a tuning mass positioned at the beam’s support and an applied 

preload are introduced to establish a tuning mechanism that is capable of maintaining 

resonance along a wide frequency range. The device’s tuning can cover relatively high rotor 

speeds, overcoming previous limitations on the size and the physics of tuning via axial loads. 

Moreover, exact expressions of the beams’ mode shapes are taken into account to improve 

the accuracy of the proposed tuning mechanism. Numerical simulations of the device’s 

response are carried out for case studies corresponding to different frequency orders. It is 

shown that the system can maintain a flat power output across a wide range of operating 

speeds, effectively leading to purely broadband energy harvesting.  

KEYWORDS: Energy harvesting; Rotational; Self-tuning; Beam; Centrifugal force. 
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NOMENCLATURE � Area of the beams’ cross-section (m
2
) �� , ��, ��, ��  Coefficients of the general mode shape formulation for the �-th beam 

segment (m) �� Remnant magnetic field strength (T) ��  Inner diameter of the coil (m) �	 Outer diameter of the coil (m) 
 Young’s modulus for each of the beams (Pa) 
� Young’s modulus for the two beams together (Pa) �(�) External excitation force (N) � Current (A) �� Second moment of area of the beams’ cross-section (m
4
) � Total length of each beam (m) �� Position of the vibrating magnet (m) �� Distance of the vibrating magnet from the far-end support (m) �� Inductance (H) ��,�� Non-magnetic portion of �� (kg) �� Mass of the vibrating magnet (kg) �� Tuning mass positioned at the beams’ far-end support (kg) �� Total lumped mass carried by the beams (kg) �� Number of turns of the coil ���  Centrifugal force acting on ��  (N) ��,�  Average electrical power delivered to the load (W) �� Electrical power delivered to the load (W) ��  Axial force acting on the beams at !�  (N) �"�# Axial pre-load (N) $%  Electrical resistance of the coil (Ω) 
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$� Load resistance (Ω) &� Voltage induced to the coil (V) '� Width of the beams (m) ( Mechanical damping coefficient (Ns/m) () Generalised damping coefficient (Ns/m) *+(!�, �) Strain due to axial deformation *)(!�, �) Strain due to bending ,) Generalised external excitation force (N) ℎ�  Length of the coil (m) . Preload spring stiffness coefficient (N/m) / Mass per unit length of each beam (kg/m) /� Mass per unit length of the two beams together (kg/m) 0� Speed of the rotor housing the harvester (rpm) 1 Temporal generalised coordinate 2 eccentric radius (m) 3�,�, 3),� Shape parameters of the beams’ first mode shape for the �-th beam 

segment (m
-1

) �� Thickness of the beams (m) 4+ Axial displacement of the far-end support of the beams (!� = 0) (m) 4�(!�, �) Axial displacement of the beams at !�  (m) 47�(!�, �) Axial displacement of the beams at !�, with the same positive direction 

(m) 8�(!�, �) Lateral displacement of the beams at !�  (m) !�  Distance of a point of the �-th beam segment (m) 9 Electromagnetic coupling factor (Vs/m) : Angular velocity of the rotor housing the harvester (rad/s) ; Generalised nonlinear stiffness coefficient (N/m
3
) <=  Base excitation (acceleration) of the housing rotor (rad/s

2
) 
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>(∙) Variational operator >@(∙) Dirac-delta function A�(!�, �) Strain of the beams at !�  B Density of the beams (kg/m
3
) C),�(!�, �) Bending stress at point !�  (Pa) D�(!�) First mode shape of the beams at point !�  (m) E Frequency of torsional vibrations (rad/s) E�,� First modal frequency of a cantilevered counterpart harvester (rad/s) E� First modal frequency of the harvester (rad/s) � Area of the beams’ cross-section (m

2
) 
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1 INTRODUCTION 

Vibration energy harvesting is a growing technological field that concerns scavenging energy 

from ambient mechanical vibrations and converting it to useful electricity [1] for the 

purpose of powering small electronic devices, such as sensors and wireless transmitters [2]. 

Usually, vibration energy harvesters are considered for applications where typical power 

mains are difficult to access such as structural health monitoring [3], tyre pressure 

monitoring systems [4] -[5] etc. Harvesting vibration energy allows remote powering of such 

distributed electronics. 

The literature with proposed concepts and techniques for vibration energy harvesting is 

vast. Typically, a mechanical oscillator is coupled with an electroactive element, such as 

piezoelectric patches attached to a vibrating beam [6], or a coil of inductive wire in the 

proximity of a magnetic vibrating mass [7]. The oscillator is designed to resonate due to the 

vibrations of the host system, from which energy is to be harvested. However, the 

conditions for resonance are difficult to be met in a durable manner since ambient 

vibrations arising from environmental or mechanical loads are commonly subject to 

variations of their dominant frequency. This issue is particularly noteworthy when rotor 

machines with variable speed are considered for the host system, such as power 

transmission shafts. Variations of the rotor speed typically lead to corresponding variation 

of the dominant frequency of the host vibrations (torsional or translational). Therefore, 

vibration energy harvesters with set natural frequency (e.g. linear harvesters) are resonating 

only for a small fraction of the host’s operating spectrum, leading the harvester to work off-

tune with severe underperformance in terms of its power output.  

This drawback is referred to as the bandwidth problem and it has concerned many recent 

research works. Among these, significant interest has been drawn by the proposed 

introduction of nonlinearity to the stiffness of the harvester [7], which results in a wider 

frequency range over which the oscillator vibrates with large amplitudes due to 

hardening/softening behaviour or due to other nonlinear phenomena, such as parametric 

resonance [8], bi-stability and multiple resonances [9]. The technique significantly relaxes 

the requirement for precise tuning of the harvester; however, large-scale frequency 

variations, as those typically observed in variable speed rotors, cannot be adequately 

answered since the response widening can only realistically cover a relatively narrow region 

around the linearized natural frequency. Even if essential nonlinearity is introduced, 

damping and restrictions imposed by the basin of attraction limit the efficient frequency 

range. 
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Instead, self-tuning tuning mechanisms have been proposed for such applications, which 

largely invoke the modification effect that an axial load has on the lateral frequency of a 

vibrating beam [10] –[12]. Tension or compression of a thin beam in its longitudinal 

direction is known to introduce a corresponding increase or decrease on the beam’s modal 

frequencies respectively in the pre-buckling regime [13] -[14]. This property is particularly 

important for rotating systems with radially extending beam elements (rotor blades for 

instance), where inertial forces are always present. Bhat [15] calculated the modal 

frequencies of a rotating cantilever beam with a tip mass for increasing rotor speed and 

Naguleswaran [16] studied various combinations for the types of support of the beam’s 

ends. Both works rigorously show the stiffening effect that increasing rotor speeds have on 

the lateral vibrations of a beam. Moreover, in the latter work, the selection of the axially 

restricted end was shown to have a distinct effect in the lateral frequency. In general, 

boundary conditions play an important role in determining the modal frequencies. Li [17] 

obtained analytical solutions for the transverse beam motion under generalised support 

forcing including axial loads. Further to that, Lenci and Rega [18] and Lenci et al. [19] 

considered the lateral dynamics with elastic support. They used an asymptotic approach to 

analyse a thin beam supported by a mechanical spring in the axial direction, showing that 

the spring stiffness may have a hardening or softening contribution to the beam overall 

stiffness, apart from frequency shifting due to preloads. These adjusting capabilities have 

been exploited by researchers for establishing self-tuning oscillations. Leland and Wright 

[11] proposed the use of axial load to appropriately adjust the resonant frequency of a 

piezoelectric bimorph harvester, largely introducing the technique for translational energy 

harvesting. Niri and Salamone [10] used a sliding mass connected to oblique springs with the 

resultant axial load tuning the frequency of a beam energy harvester, whereas Cheng et al. 

[12] used a piezoelectric actuator at one end of the beam in closed circuit with the vibrating 

parts, to passively control the axial load applied to the beam. 

In rotor applications, centrifugal forces are utilized to establish self-tuning mechanisms for 

vibrating beams, due to their favourable dependence on the rotor speed. Gu and Livermore 

[20] first proposed exploiting this dependence to tune a radially extending cantilever with a 

tip mass and piezoelectric patches to the host rotational speed and they experimentally 

investigated the tuning effect. The stiffening effect was coupled with the frequency 

modification inherent in vibro-impact systems by the same authors [21], in an attempt to 

overcome the necessity for large root radius of the mounting support of the cantilever. 

Several modifications of this master design have been proposed in the literature primarily 

intended for spinning wheels [22] - [25] due to the relatively low rotational speeds of vehicle 

wheels. Elhadidi et al. [22] analysed a cantilever with magnetic tip coupled with an axially 

repulsive magnet that led to bi-stable potential energy. Wang et al. [23] introduced a tensile 
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preload to a trapezoidal cantilever’s clamped support and Li et al. [24] introduced 

magnetoelectric transducers to effectively tune the harvester in low speeds further to the 

centrifugal stiffening effect. Hsu et al. [25] used a finite element approach to facilitate the 

master design of the cantilever harvester. The therein comprehensive analysis and 

experimental works demonstrated the self-tuning capabilities of a cantilever harvester 

alongside the concept’s limitations. In particular, even if the tuning target is equal to the 

rotor speed (1 × 0�), a large root radius is required to allow the harvester to be tuned to the 

slope of the rotating speed. From a physical point of view, the limitation is imposed by the 

lateral component of the centrifugal force that arises as soon as the cantilever tip starts 

vibrating. This component effectively acts as a negative virtual spring, as the analysis by 

Elhadidi et al. [22] clearly shows. A direct consequence is that the design becomes relatively 

insensitive to design modifications (e.g. tip mass weight) as the speed increases, practically 

disrupting the self-tuning concept. In other works, inverted cantilevered beams [26] have 

been considered, with additional magnetic coupling in pairs [27]. More advanced dynamics 

have also been investigated for vibration energy harvesting from rotational motion, 

including stochastic resonance that combines bi-stable dynamics with randomly fluctuating 

excitation profiles [28] [29] and even chaotic responses [30]. However, they are similarly 

subject to the limitations of the master cantilever concept. 

In this paper, a novel self-tuned rotational vibration energy harvester is proposed consisting 

of an assembly of thin beams carrying a magnetic mass at an intermediate point and a 

tuning mass at their outer end. Such a layout has not been hitherto reported in the 

literature, offering the main advantage of a self-tuning mechanism which is insusceptible to 

the limitations pertinent to previous cantilevered designs. Vibration energy is converted to 

electrical via electromagnetic induction to a coil of wire. Section 2 introduces the proposed 

concept and the governing equations are extracted. The system’s modal frequencies are 

obtained and the effect of the tensile tuning force on the beams’ mode shapes is 

considered. The self-tuning mechanism is demonstrated in Section 3 using selected case 

studies of vibrations of up to 2 × 0�, which are further showcased in Section 4 (time history 

domain). The paper ends with a discussion of the main conclusions of this work. 

 

2 THE PROPOSED ENERGY HARVESTER 

The electromechanical system shown in Fig. 1 is considered. Two identical thin beams 

support a magnet of mass ��. The beams are assumed to be made from a high strength 

material, such as blue tempered steel springs, and they have a uniform cross-section along 

their length �. The material’s Young’s modulus is denoted by 
; B is its density, / is the 
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mass per unit length and �� is the second moment of area of the cross-section. The 

rectangular cross-section has thickness denoted by �� and width given by 'J, whereas it is 

assumed that is undergoes negligible shear deformations and thus it abides by the Euler-

Bernoulli beam theory. The beams are clamped on one end to a rigid support rotating with 

angular velocity : = 2K0�/60, so that the whole assembly is free to rotate. The other end 

of the beams is clamped to a massless, undeformable rod that is free to slide along the 

beams’ axial direction (or radial direction with respect to the rotating frame of reference). 

This rod also carries a weight �� at its midspan and it is connected to a linear spring with 

stiffness ., acting in the axial direction. Moreover, the two beams are connected by a 

massless, undeformable rod that spans perpendicularly to the beams’ main axes, positioned 

at a distance �� from the clamped ends. A magnet of mass �� is attached on this rod, 

interacting with a coil of thin wire wrapped around the rod’s longitudinal axis. The magnet’s 

centre of mass is equally spaced between the two beams and the coil is positioned in such a 

way that the electromagnetic coupling is maximised, as it will be discussed later. The 

connecting rod also separates the beams into two segments, each point of which is at a 

distance !� 	from its adjacent support for � = 1, 2, as shown in Fig. 1. Note that !� and !� are 

related by !� 	= � − !�, leading to the definition �� = � − ��. Opposite positive directions 

for !� and !� are chosen to ease the subsequent analysis following [31]. The distances �� 

and �� denote the same point on the beams with respect to the two beam segments, 

fulfilling continuity constraints. 

 

 

Figure 1 

 

2.1 Operating principle and main assumptions 

The beams’ assembly is allowed to vibrate in its transverse direction, as Fig. 1 shows. The 

relative motion between the magnet �� and the rigidly mounted coil induces voltage to the 

latter that can be harvested to power the electrical load $� via the current flow of the 

closed circuit. The electromagnetic coupling is derived from solving the magnetic field and 

employing Faraday’s law for a point magnet and then using a correction factor for ring 

magnets. In fact, following Owens and Mann [32] and referring to Fig. 2, the voltage &� 

induced to the coil is given by: 

 

 &� = 9P8�(��)Q	8R �(��) (1) 
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where 9P8�(��)Q is the electromechanical coupling factor given by: 

 

 9P8�(��)Q = ����B���S2T� U(−1)�VW Xln(2� + \�W) − 2�\�W]
�

�,W^�  (2) 

 

with \�W� = 2�� + _ Ẁ − 8�(��)a� and T� = (2� − 2�)(`� − `�) (with dimensions shown in Fig. 

2); N_c is the number of coil turns, �� is the remnant magnetic field intensity, B� is the 

magnet density and S is the coil fill factor, which is a ratio of the conductive material’s 

volume over the total coil volume including the wire coating. Hence, the current flowing in 

the closed circuit is derived through Kirchoff’s second law and is coupled to the mechanical 

response of the beam assembly via 9(`) and 8R �(��). 
 

 

Figure 2 

 

Since the beams are identical and symmetrically placed, the undeformable connecting rod 

allows the assumption that the beams vibrate with equal lateral displacements and 

velocities, i.e. 8�(!�, �) = 8�∗(!�, �) and 4�(!� , �) = 4�∗(!�, �) for � = 1, 2. In what follows, the 

asterisk is omitted from the notation for simplicity, as well as the functional arguments 

except when it is required otherwise (e.g. for !� = ��). Moreover, the axial rigidity of the 

thin beams, 
�, is much larger than their flexural rigidity, 
�. The rotary displacement of the 

magnet �� with respect to each of the beams is supressed by the axial stiffness of the 

symmetrically positioned beams and therefore, the rotary inertia of the magnet can be 

ignored as far as bending motion is considered. If the connecting rod was deformable, this 

would hold true only for �� = �/2. However, the rigidity of the connecting rod leads to 

negligible inertia for any �� ∈ (0, �). Moreover, we can assume that the connecting rod is 

clamped onto the beams at ��. Therefore, the geometry of the assembly constrains the 

beams to have zero slopes at the points attached to the connecting rod, i.e.	8R �(��, �) =8R �(��, �) = 0. This assumption will be useful for simplifying the system’s boundary 

conditions and the mathematical derivations relevant to the natural frequency equations. 

The beams considered in this paper are thin, i.e. �� ≪ �, and consequently the local strain A 

of a beam element follows the linear Euler-Bernoulli beam theory (where ´ denotes 

derivative with respect to spatial coordinate): 
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 A� = e(1 + 47�f)� + 8�f� − 1 + `	 (1 + 47�f)8�ff − 47�ff8�f_(1 + 47�f)� + 8�f�ag/� (3) 

 

where 47�(!�, �) = (−1)�h�4�(!�, �)	to account for the change of positive direction of the 

axial displacement in the two � segments. The first two terms of the RHS correspond to 

strain due to axial deformation, denoted by *+, whereas the last term corresponds to strain 

from bending, *), with ` denoting the distance of a point in the cross-section from the beam 

midplane axis along the �� thin dimension. Considering that one end of each beam is free to 

move along the axial direction and that 
� ≫ 
�	and	
� ≫ .�, we may impose the 

inextensionality condition that leads to:  

 

 *+ = 0 ⇒ e(1 + 47�f)� + 8�f� − 1 = 0 (4) 

 

Essentially, Eq. (4) means that any axial displacement	47� 	is induced only by the transverse 

motion	8�. If this condition is relaxed, the beams can undergo stretching, which is known to 

incur strong nonlinearities in the dynamics of the problem [13]. However, this phenomenon 

would require fixed ends to unfold, or at least a resistive support stiffness comparable to 

the beam’s axial one. Herein, by assuming that 
� ≫ .�, stretching can be shown to be of 

very small magnitude. We may thereby solve Eq. (4) for the axial slope to arrive at:  

 

 47�f = e1 − 8�f� − 1 (5) 

 

where the boundary conditions of the undeformed beam have been taken into account. 

Expanding to a Taylor series up to 4-th order we get:  

 

 47�f = −12 k8�f� + 148�fmn (6) 
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Upon integration of Eq. (6), each segment’s end displacement can be obtained and the total 

end shortening of the whole assembly of the beams is derived as:  

 

 47�(�) = 47�(0) = −U12o k8�f� + 148�fmn��
+ p!��

�^�  (7) 

 

Furthermore, the beams’ strain is solely dependent on the bending strain, which upon 

expansion up to 4-th order becomes:  

 

 A� = ` k8�ff + 128�ff8�f�n (8) 

 

Equations (3)-(8) will be recalled in the next section for the derivation of the governing 

equations. 

The harvester assembly is attached to a rotating inertial frame that exerts centrifugal forces 

on the beam and the lumped masses. Coriolis forces are also acting in the radial direction 

due to the beams’ transverse vibrations; yet, their magnitude can be considered small 

enough to be neglected, especially for relatively high rotational speeds when the centrifugal 

force can be orders of magnitude bigger than the Coriolis force due to its dependence 

on	:�	instead of	:. In what follows, we shall only consider the effect of the rotational 

inertial framework due to the lumped masses, assuming that �� ≫ 2/�, � = 1, 2. 

The beam assembly carries two lumped masses: one at an arbitrary point !� = �� and 

another at the moveable end !� = 0. The centrifugal forces acting on theses masses apply 

tension to the beam proportional to :�	and subject to the mass weight and location. The 

axial forces applied on a beam in transverse vibration mode are known to provide a 

frequency altering effect, either stiffening (tensile load) or softening (compressive load) that 

can even lead to buckling [13]. This allows the possibility to design a beam assembly, where 

the natural frequencies are knowingly changing with variations of the rotational speed. In 

most rotational engineering applications, the main frequency of torsional vibrations of 

shafts and other components is typically a multiple of the rotational speed (e.g. automotive, 

marine, aerospace applications). Careful manipulation of the design such that the natural 

frequency variation corresponds to the main (fluctuating) vibration frequency, could lead 

the system to operate in resonance as long as this relation holds. The assembly design is 
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also complemented with an axial compressive force due to the elastic support ., which is 

included to allow farther flexibility in the design. Potentially, a passive tuning design 

strategy is established with favourable results for vibration energy harvesting. The 

advantage of the proposed concept is due to the positioning radius of the harvester. 

Previous literature regarded devices that needed a considerable offset radius to achieve 

tuning of the beam-based harvesters. Effectively, this drawback limited the range of the 

potential applications to rotors working at relatively low speeds. The herein proposed 

concept offers the possibility of tuning at high working speeds, taking into account more 

accurate expressions of the system’s mode shapes that may influence the practical 

implementation of the designed tuning. 

 

2.2 Governing equations 

We shall employ Hamilton’s extended principle to extract the governing equations, which 

requires the extraction of the system Lagrangian	ℒ = r − s, where r is the kinetic energy 

and s is the potential energy, complemented by the work done by non-conservative forces t��. The kinetic energy of the system is given by:  

 

 

r = 12Uuo /��+ P8R �� + 47R ��Qp!� +o /��+ (8R �∗� + 47R �∗�)p!�v�
�^� + 12��_8R ��(��) + 47R��(��)a + 12��47R��(0) (9) 

 

where the last two terms correspond to the kinetic energy of the masses �� and �� in 

transverse and axial directions. Recalling that the beams are identical, Eq. (9) becomes:  

 

 r = 12Uuo /���
+ 8R ��p!�v�

�^� + 12��w8R ��(��)x (10) 

 

where /� = 2/. In this paper, nonlinear inertia is not considered since it does not 

contribute to the sought tuning mechanism and so, the axial velocities 47R �  are neglected 

from the expression of the kinetic energy. Then, recalling that the beams are identical, the 

potential energy reads: 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

 

s = 12UXo 2C),�y�
+ A),�p&� −o ��z{�(��)

z{�(+) p47�]�
�^� + 12.w4+ + 47�(0)x�

− 12��o >@(!� − ��)��|8��(!�)�|
+ p!� 

(11) 

 

where 4+ is an initial compression of the spring . responsible for pre-loading the system 

and >@(⋅) is the Dirac delta function. The axial load � is defined across the span of the 

beams and it is given by:  

 

 � = ~ �� = ��� + ��� , 0 < !� < ��
�� = ��� ,													 	0 < !� < ��	 (12) 

 

where ��| = ��:��� and 	��� = ��:�� are the centrifugal forces acting on the lumped 

masses and tensile loads are taken positive. The material has been assumed to obey the 

linear stress-strain relationship, C),� = 
A),�. Substituting this equation for the stress, the 

strain expression from Eq. (8), defining 
� = 2
, substituting p47�  using Eq. (6) and Eq. (7) 

and recalling that 47� = −4�, Eq. (11) up to 4-th order becomes:  

 

 

s = 12Uo �
���P8�ff� + 8�ff�8�f�Q + ��2 k8�f� + 148�fmn�	��
+ p!��

�^�
+ 12. �4+ −U12o k8�f� + 148�fmn��

+ p!��
�^� �� − 12 	��|�� 8��(��) (13) 

 

The work of non-conservative forces comprises external and damping forces:  

 

 t��� =Uo �(�)	8���
+ p!��

�^� −Uo (8R �	8���
+ p!��

�^�  (14) 

 �(�) is an externally applied force and ( is the structural viscous damping coefficient. We 

may hereby apply the extended Hamilton’s principle:  
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 ℋ = o >� − >s + >t�� = 0��
�|  (15) 

 

where >(⋅)  is the variational operator. This leads to the following equation of motion for 

the �–th	 beam segment: 

 

 

/�8= � + (8R � + 
���P8�fff + 8�fff8�f� + 8�f8�ff�Qf − �� k8�ff + 328�f�8�ffn
+ . k8�ff + 328�f�8�ffn �4+ −U12o k8�f� + 148�fmn��

+ p!��
�^� � = �(�) (16) 

 

and the corresponding boundary conditions (coupled via continuity constraints at !� = ��):   

 

 

!� = 0:  8�(0) = 8�f(0) = 0 

(17) !� = ��	and	!� = ��:  

8�f(��) = 8�f(��) = 0 8�(��) = 8�(��) ��8= �(��) = 
���w8�fff(��) + 8�fff(��)x + 	��|�� 8�(��) 
!� = 0:  8�(0) = 8�f(0) = 0 

 

Equations (16) and (17) describe the spatiotemporal response of the harvester for open 

circuit. For a closed circuit the system of equations is complemented by Kirchoff’s 2
nd

 law 

and the additional electromagnetic dissipation of the mechanical response:  
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/�8= � + (8R � − >@(!� − ��)9w8�(��)x� + 
���P8�fff + 8�fff8�f� +8�f8�ff�Qf− �� k8�ff + 328�f�8�ffn
+ . k8�ff + 328�f�8�ffn �4+ −U12o k8�f� + 148�fmn��

+ p!��
�^� � = �(�) 

 ���R + ($� + $�)� + 9w8�(��)x8R �(��) = 0 

(18) 

 

Note that the electromagnetic damping applies only to the � = 1 segment and the Dirac-

delta function concentrates its action at the position of the vibrating magnet, !� = ��.  

 

2.3 Modal frequencies and mode shapes 

The performance of the proposed design relies on the effective tuning of its natural 

frequency to the expected frequency range of the host vibrations. It is therefore paramount 

to quantify the variation of the first modal frequency of the assembly and the corresponding 

mode shape with rotational speed variation. The harvester is divided into two segments, 

coupled by continuity constraints at ! = ��. Equations (17) and (18) are linearised and 

solved separately to acquire the frequency equations. Superimposing the boundary 

conditions and the continuity constraint leads to a single frequency equation, which is 

solved numerically. Linearising Eq. (18) and neglecting non-conservative work leads to: 

 

 /�8= � + 
���8�ffff − ��8�ff + .4+8�ff = 0, � = 1,2 (19) 

 

We shall consider only the first mode of the beam and thus 8�(!�, �) = ��(!�)1(�)	may be 

assumed, whereas 1= = −E��1 (see [14] for instance). Then, Eq. (19) becomes:  

 

 
���D�ffff − (�� − .4+)D�ff−/�E��D� = 0, � = 1,2 (20) 

 

The above differential equation accepts solutions of the following form: 
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 D�(!�) = �� cos 3�,�!� + �� cosh 3),�!� + �� sin 3�,�!� + �� sinh 3),�!� , � = 1,2 (21) 

 

where 3�,� and 3),� are parameters given by:  

 

 

3�,� = �−�� +e4
���/�E�� + ���2
��� , � = 1,2 

3),� = ��� +e4
���/�E�� + ���2
��� , � = 1,2 

(22) 

 

Utilizing the boundary conditions at !� = 0 and !� = 0, Eq. (21) becomes:  

 

 D�(!�) = ��(cos 3�,�!� − cosh 3),�!�) + ��(sin 3�,�!� − sinh 3),�!�), � = 1,2 (23) 

 

and the continuity constraint: 8�f(��) = 8�f(��) = 0, further simplifies this expression with:  

 

 �� = ��(3�,� sin 3�,��� + 3),� sinh 3�,���)3�,�(cos 3�,��� − cosh 3�,���) , � = 1,2 (24) 

 

Using the first mode generalised response, the remaining boundary condition that regards 

forces in the transverse direction becomes:  

 

 ��E��D�(��) + 
���wD�fff(��) + D�fff(��)x + 	��|�� D�(��) = 0 (25) 

 

Substituting Eq. (22)–(24) into Eq. (25) and into the continuity constraint for the deflection 

at !� = ��: D�(��) = D�(��), leads to a 2 × 2 linear matrix equation with respect to �� , � = 1, 2. The matrix equation has non-trivial solutions only when the 2 × 2 coefficient 
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matrix has a non-zero determinant, which is the final equation with respect to E� that is 

numerically solved to compute the first modal frequency. Afterwards, the unknown 

coefficients ��  are computed by imposing the normalisation condition on top of the 

deflection continuity constraint at !� = ��: D�(��) = D�(��). 
 

 o /�D���|
+ p!� +o /�D����

+ p!� +��D��(��) = 1 (26) 

 

The analysis so far has allowed an accurate estimation of the influence of the different axial 

loads that the two segments of the beams are exposed to. Moreover, the vibrating magnet 

can be positioned at an arbitrary point !�, which additionally influences the mode shapes of 

the assembly. Previous literature has hitherto disregarded the effect of the changing mode 

shapes, which can potentially lead to significant errors when the rotational speeds are 

relatively high. Fast rotations lead to parabolically increasing axial forces that determine the 

mode shapes to a great extent and consequently, the modal frequencies. A case study is 

considered to show the mode shape variation with respect to the rotational speed of the 

assembly. The assumed parameters are listed in Table 1. 

 

Parameter Value 


� 400 GPa 

'� 0.02 m 

�� 203 10
6
 m 

B 7810 kg/m
3
 

� 0.075 m 

�� 0.04 m 

�� 0.108 kg 

�� 0.0243 kg 

. 8.942 10
3
 N/m 
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4+ 0.00313 m 

Table 1. Parameters considered in the numerical case study. 

 

Fig. 3 shows the first mode shape for static conditions and three rotational speeds: 1800, 

3600 and 6000 rpm. Clearly, there is a distinguished variation of the mode shape when the 

rotational speed is increasing. The effect of this variation is even more substantial when 

calculating the modal frequency (with participation of the first and second spatial partial 

derivatives of the mode shape): 

 

 

E�� = o _����D�ff� + (�� − .4+)D�f�a�|
+ p!� +o _����D�ff� + (�� − .4+)D�f�a��

+ p!�
− ��|�� D��(��) (27) 

 

 

Figure 3 

 

Neglecting the dependence of mode shapes on the rotational speed can lead to 

miscalculation of the modal frequency when fast rotations are considered. Past literature 

has largely neglected the effect of varying mode shapes onto potential tuning mechanisms. 

Usually, a trial function [22],[27] or a constant mode shape [20],[21],[25] was chosen to 

represent the mode shape of a thin beam for all rotational speeds. Therefore, the magnified 

influence of the axially acting centrifugal forces on a fast rotating beam, have been 

misrepresented in previous models. To highlight the importance of accurately including the 

expressions for the mode shapes, the herein described procedure for computing the 

system’s modes is applied to the previous case study and the resultant modal frequency is 

compared against the result of a simplified approach. The simplified approach assumes that 

the mode shape of the beam is fixed for all rotational speeds (equal to the static mode 

shape of zero rotational velocity). Thus, the frequency is computed by changing the 

magnitude of the axial force only. 

 

 

Figure 4 

 

Fig. 4 shows that when the host rotor runs at relatively high speeds the variation of the 

mode shapes should be accounted for. Even though the error does not exceed 10%, one 
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should consider that self-tuned harvesters normally operate based on maintaining linear 

resonance over the tunable range. Overestimation of the harvester’s natural frequency by 

the observed error may lead to substantial frequency mismatch and to severe reduction of 

the extractable electrical power when linear resonance is sought. Therefore, it is shown that 

accurate expressions for the mode shapes should be used for high rotational speeds. 

 

3 SELF-TUNING 

The harvester is self-tuned such that the first modal frequency follows the expected 

vibration frequency along a range of rotational speeds. Normally, the frequency of torsional 

vibrations in rotating systems is proportional to the rotational speed. For example, 4-

cylinder IC engines generate (predominantly) 2
nd

 order torsional oscillations on the vehicle’s 

powertrain. In this scenario, one would aim at designing the harvester such that its modal 

frequency is twice the rotational speed. 

The modal characteristics of the herein proposed harvester depend on typical parameters 

for Euler-Bernoulli beams, such as the geometry ('�, ��, �) and material properties (B, 
�, ��). 

Additionally, the axial forces that tune the assembly’s frequency depend on the position and 

weight of the vibrating magnet, ��, ��, that of the far-end mass, �,��, and on the preload, �"�# = .4+. In given applications, the total lumped mass, �� = �� +��, and the assembly 

size are usually dictated by collateral constraints. Hence, the analysis would be more 

interesting with respect to non-dimensional parameters. In this section, parametric studies 

are conducted on the distribution of mass, ��/��, on the relative positioning of the 

magnet, ��/�, and on the magnitude of the preload, �"�#, to show the variation of the 

tuning mechanism and the consequent design options. 

The above parameters are varied independently from each other in Fig. 5 – Fig. 7, and the 

resulting variation of the modal frequency is plotted. The presented graphs are generated 

for the parameters of Table 1, except for the independently varied parameter on each 

graph. Fig. 5 depicts the variation of the modal frequency with changing the distribution of 

mass. At relatively low speeds, frequencies undergo a minor adjustment; however, at higher 

speeds where the axial centrifugal forces are stronger, the curve is substantially varied in an 

almost linear fashion. Concentrating mass at the far end of the beams leads to a higher 

slope of the frequency curve. This is due to the higher intensity of the centrifugal force that 

acts on ��, as opposed to ��. Comparing the variation of the slope in Fig. 5 with that in Fig. 

6 and Fig. 7, we note that the distribution of mass is much more effective than the position 

of �� or the preload in adjusting the slope of the frequency curve. Therefore, the first step 
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in tuning the harvester to the identified order of vibrations (1x, 2x the rotational speed) is to 

adjust the distribution of mass such that the slope of the modal frequency curve approaches 

the slope of the torsional vibrations frequency. On the other hand, changing the position of 

the magnet, shown in Fig. 6, leaves the slope unaffected. Nevertheless, ��/� introduces an 

almost uniform offset of the curve along the vertical axis. This attribute can be used to move 

the curve to the desired frequency values without mistuning the slope of the curve. 

 

 

Figure 5 

 

 

Figure 6 

 

Finally, the influence of applying a compressive preload at the far-end of the beams (!� = 0) 

is considered in Fig. 7. Note that when the harvester is not rotating (0� = 0) the applied 

load may lead to buckling of the beams, if the preload is greater than the critical buckling 

load. As a matter of fact, the last case in Fig. 7 (�"�# =80 N) corresponds to a buckled 

harvester. This is why the depicted frequency curve has its origin just after 800 rpm. Of 

course, buckled beams can be also subject to oscillatory response, but the slope of the curve 

in the buckled range would be negative and, as such, of no use for the herein 

considerations. Besides, several rotor applications operate over a minimum speed (e.g. 

internal combustion engines work above the idling speed). The preload is more prominent 

in the lower speed range, where the mass distribution could not have a strong influence. At 

the same time, both the curve slope and the modal frequency values at the higher speed 

range are almost unaffected by the preload. Therefore, the applied preload can be used as 

the third step in tuning the harvester at lower speeds, where the previously examined 

parameters were unable of doing so. 

 

 

Figure 7 

 

3.1 Case studies 

The above presented procedure for designing the harvester such that its modal frequency is 

passively tuned to the frequency of vibrations is demonstrated. In rotor applications, 

torsional vibrations are typically manifested at multiples of the main rotor speed. In this 

section, three case studies are considered for the dominant order of the vibrations using the 
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parameters of Table 2; namely, 1 ×, 1.5 × and 2 × the rotational speed (0�). The first modal 

frequency is computed across a wide range of operating speeds (0 - 6000 rpm) and it is 

compared against the frequency of the vibrations. Ideally, the two curves shown in each of 

Fig. 8 - Fig. 10 should coincide to achieve perfect self-tuning. Even though not strictly 

necessary, the total mass of the tuning elements (��) is kept constant for all three case 

studies. This is to demonstrate the flexibility of the design to target different orders of 

vibration frequencies via minor configuration adjustments of the mass distribution, the 

vibrating magnet position and the applied preload. A comprehensive parameter 

optimisation process might well lead to successful self-tuning. 

 

Parameter Value 


� 400 GPa 

'� 0.02 m 

�� 203 10
6
 μm 

B 7810 kg/m^3 

� 0.058 m 

�� 0.182 kg 

. 8.942 10
3
 N/m 

�� 1.31 T 

�� 75.6 10
-3

 H 

$� 93 Ohms 

$� 100 Ohms 

ℎ�  0.015 m 

�	 0.045 m 

��  0.036 m 

�� 1300 turns 
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��,�� 0.029 kg 

Table 2. Parameters considered in the numerical case studies shown in Fig. 8 – Fig. 10. 

 

Fig. 8 shows the results for the first case study that considers 1 × 0� rotational vibrations. 

The slope of the vibrations frequency with increasing 0� is relatively gentle and so, following 

the parametric analysis in Fig. 5, most of the mass is kept with the vibrating magnet 

(��/�� = 81.86%). Furthermore, the magnet is positioned exactly at the midspan of the 

beams to offset the self-tuned modal frequency to the lowest possible range. Last, a 

considerable preload is applied, yet lower than the critical buckling load, to adjust the lower 

speed range. Note that the slopes of the two curves in Fig. 8 are almost equal, which is the 

envisaged target. Since the modal frequency increases with a rate similar to the excitation 

frequency, the same response amplitude can be maintained across the examined frequency 

range. Therefore, resonant or near-resonance response can be sustained for any 

operational speed within the considered limits, leading to broadband energy harvesting. 

 

 

Figure 8 

 

 

Figure 9 

 

A similar procedure can be applied for 1.5 ×	0� and 2 × 0�  vibrations, as shown in Fig. 9 

and Fig. 10. The computed frequencies in Fig. 9 have simia lar pattern with the previous 

results in Fig. 8. The slope of the vibrations frequency is steeper and therefore, the mass is 

distributed more evenly (��/�� = 65.93%), but the position of the magnet is the same as 

before, whereas the preload has slightly been increased to 62N. Fig. 10, however, exhibits a 

qualitatively different picture. A steeper slope (2 × 0�) requires more inertia placed at the 

far-end of the beams (��/�� = 52.19%), and the preload has been increased to 85 N, 

which is higher than the critical buckling load. Therefore, at low speeds including the static 

case the beams are buckled. As the rotational speed increases, higher centrifugal loads are 

exerted onto the system and consequently, the beams return to a pre-buckling shape above 

900 rpm. We note that the achieved self-tuning in Fig. 10 is almost ideal, since the modal 

frequency almost coincides with the excitation frequency for the examined speed range. 

 

 

Figure 10 
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4 NUMERICAL CASE STUDIES 

The time history of the system’s mechanical response and electrical output can be 

computed by solving the equation of motion (18). Assuming that the response is dominated 

by the first mode, 8� = D�(!�)1(�), multiplying by D�(!�) and integrating over each 

segment’s domain, the differential equation for each segment becomes: 

 

 

o /�D����
+ p!�	1= 	+ o (D����

+ p!�	1R − o >@(!� − ��)D�9wD�(��)1x���
+ 	p!�

+o w
���D�D�ffff − (�� − .4+)D�D�ffx	p!�	1��
+ 	

+ o �
���D�PD�fffD�f� + D�fD�ff�Qf − 32 (�� − .4+)D�D�f�D�ff��
+

− .D�D�ffU12o D�f���
+ p!��

�^� � p!� 	1g = o D��(�)��
+ p!� , � = 1,2 

 ���R + ($� + $�)� + 9wD�(��)1xD�(��)1R = 0 

(28) 

 

Applying integration by parts where applicable leads to:  

 

 

o /�D����
+ p!�	1= 	+ o (D����

+ p!�	1R − o >@(!� − ��)D�9wD�(��)1x���
+ 	p!�

+o _
���D�ff� − (�� − .4+)D�f�a	p!� 	1��
+ 	

+ o �2
���D�f�D�ff� + 12 (�� − .4+)D�fm��
+

+ .D�f�U12o D�f���
+ p!��

�^� � p!�	1g = o D��(�)��
+ p!� 

 ���R + ($� + $�)� + 9wD�(��)1xD�(��)1R = 0 

(29) 

 

Adding the equations for the two segments, � = 1, 2 and utilizing the normalisation 

condition (26) and the frequency equation (27), the equation of motion in generalised 

coordinates becomes:  
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	1= 	+ ()	1R − D�(��)9wD�(��)1x� + E��1 + ;1g = ,) 

 ���R + ($� + $�)� + 9wD�(��)1xD�(��)1R = 0 

(30) 

 

where 

 

 

() =Uo (D����
+ p!��

�^�  

; = Uo �2
���D�f�D�ff� + 12 (�� − .4+)D�fm + .D�f�U12o D�f���
+ p!��

�^� ���
+

�
�^�  

,) =Uo D��(�)��
+ p!��

�^�  

(31) 

 

Note that the response of the harvester will also be subject to the effect of the nonlinear 

stiffness coefficient, ;. It is assumed that the harvester is to be used as an attachment to a 

larger host structure. Therefore, the type of forcing that the harvester will be subject to can 

reasonably be assumed as a base excitation ( =̀ is the input vibrations of the mounting shaft):  

 

 ,) = <= ���D�(��) +Uo D�/���
+ p!��

�^� � (32) 

 

The case studies of the previous section for the vibrations of the three different speed 

orders are extended with computation of the response time history, via Runge-Kutta 

numerical integration of Eq. (30) – (32). The analysis is focused on the magnet’s transverse 

velocity and on the voltage generated. Moreover, the corresponding time history of the 

power output is shown, as well as the axial displacement of the far-end support to confirm 

its negligible magnitude. The parameters used in the simulations for the beams, the masses 

and the coil are shown in Table 2, whereas the tuning parameters are varying as in Section 

3. It is assumed that �� is not fully magnetic, but rather an assembly of magnets with non-

magnetic mounting parts with mass ��,��. 

The time histories presented in Fig. 11 – Fig. 13 verify the expected broadband character of 

the harvester’s output. In all case studies, the magnet’s velocity retains almost constant 

amplitudes for all the examined speeds. This is also consistent with the voltage induced at 
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the closed circuit ends of the coil, which also demonstrates a relative insensitivity to the 

rotor speed. It is also noted that the axial displacement of the harvester remains at 

considerably low values (below 0.6 mm for all cases), which validates the initial assumption 

of negligible nonlinear inertia. The results of Fig. 13 also show that when the modal 

frequency curves from Section 3 (Fig. 8 - Fig. 10) cross the examined vibrations frequency 

curve, an increase of the output is observed that corresponds to perfect resonance. This is 

observed in all the time histories in Fig. 13 at about 1800 rpm. Cross-correlating with Fig. 10, 

it is verified that this resonance occurs due to the perfect match of the tuned frequency to 

the instantaneous vibration frequency. Nevertheless, in this case as well, the amplitudes of 

the voltage output and the corresponding power delivered to the load are retained within a 

considerable range. For example, the voltage output in Fig. 13(b) is above 2.5 V for every 

speed above 1500 rpm. This corresponds to significantly broad response spectrum of about 

75 Hz. Effectively the proposed harvester can operate without the known bandwidth 

limitations that linear and, to some extent, nonlinear energy harvesters suffer from. The 

numerical results have demonstrated the capability of establishing nearly purely broadband 

output. 

 

 

Figure 11 

 

 

Figure 12 

 

 

Figure 13 

 

4.1 Comparison against a cantilever beam harvester 

The proposed concept for harvesting energy from torsional vibrations was shown to offer a 

substantial degree of flexibility for self-tuning to the dominant frequency of oscillations. 

More importantly, the concept promises effective tuning for a wide speed range of the 

housing rotor, including relatively high speeds. This is a noteworthy step forward for 

rotational vibration energy harvesting. In particular, the majority of existing self-tuned 

harvesters have been following the generic layout of a cantilever beam with a tip mass, 

utilizing axial gyroscopic forces acting on the tip mass to introduce self-tuning. Here, the 

performance of the proposed harvester for the case of 1 × 0� vibrations will be compared 
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against a variety of cantilever beam designs to demonstrate its potential to improve the 

performance of existing self-tuned harvesters. 

The cantilever beam counterpart follows similar dynamics with the proposed harvester, with 

a few – yet crucial – differences. It is modelled using clamped-free boundary conditions 

instead of the hybrid boundary conditions shown in Fig. 1. Moreover, the mass is 

concentrated at the tip of the harvester. The self-tuning mechanism of the cantilever 

harvester can be adjusted by varying the tip mass weight and the cantilever length, both 

intended to alter the magnitude of centrifugal forces in order to induce an appropriate slope 

to the modal frequency curve. The axial force can also be adjusted by offsetting the root of 

the beam to a radius 2, even though this may have an adverse impact on the size of the 

device and the required installation space. Therefore, a similar analysis can be applied using 

only the � = 1 segment of the beams and modifying the boundary conditions in Eq. (17) 

accordingly, leading to a modified version of Eq. (27), where . is omitted and mode shape D� corresponds to that of a cantilever beam:  

 

 E�,�� = o _����D�ff� + ��|D�f�a�|
+ p!� − ��|�� D��(��) (33) 

 

For the purpose of comparing the tuning capability of the two concepts the total size of the 

examined case studies is kept equal, � = 0.058 m. When the cantilever length �� is varied, 

the difference with respect to � is introduced as offset, 2 = � − ��. Fig. 14 and Fig. 15 show 

the frequency curve of the proposed harvester as taken from Fig. 8, along with the 

considered frequency of oscillations at 1 × 0�. These curves are compared against E�,�	 for 

selected variations of the cantilever beam harvester. In particular, the cases shown in Fig. 14 

correspond to �� = 0.182 kg and varying	��, whereas the curves of Fig. 15 are calculated 

for ��=0.018 m and varying ��. It is evident from both figures that the cantilever beam 

harvester is limited on the slope that its modal frequency can follow with increasing speed, 

which results to reduced capability in adjusting the modal frequency of the harvester to the 

frequency of oscillations. On the other hand, the proposed concept can tune itself almost to 

an ideal frequency match regardless of the magnitude of the rotational speed, subject to the 

necessary optimisation. 

 

 

Figure 14 
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Figure 15 

 

The restrictions in the performance of the cantilever beam harvester are fundamentally 

related to Eq. (33) and specifically to the second term of its right-hand-side. The first term in 

the integrand controls the constant part of the cantilever’s modal frequency and the passive 

tuning is achieved by the combination of the second term that results from the tensile 

centrifugal force, ���, and the last term in Eq. (33). Intuitively, in order to increase the slope 

of E�,�	with increasing 0�, one would attempt to increase the axial centrifugal forces 

through �� and ��. Apart from the uniform reduction that higher inertia and length will 

cause to the modal frequency, the effect of the tensile load in the integral in Eq. (33) is 

counteracted by the last term in this equation that behaves as a negative virtual spring. This 

term corresponds to the transverse load acting on the tip mass due to the changing direction 

of the centrifugal force, as the cantilever tip mass vibrates. These opposing terms are both 

dependent on the centrifugal force (specifically on the product ��:�), and as a result, an 

increasing rotational speed would affect them in the same way. Especially for larger 

rotational speeds where the magnitude of the integral is dominated by :�, there is only a 

narrow potential for self-tuning. Note that this is valid both for “small” and “large” vibrations 

of the magnets. Therefore, the cantilever beam harvester is subject to a relatively low limit 

for the achievable slope, especially when high rotational speeds are considered.  

In contrast, the concept proposed in Fig. 1 can overcome this limitation due to the presence 

of a non-vibrating tuning mass, without requiring increased inertia or space, and without 

needing structural elements to be replaced (e.g. beam thickness, width, material, etc.). By 

cross-examination of Eq. (33) with the proposed harvester’s modal frequency in Eq. (27), one 

could notice that the terms responsible for tuning are augmented by the centrifugal force of 

the tuning mass, ��, inherent to both �� and ��. Since the tuning mass is not vibrating in the 

transverse direction, there is no tangential component of the centrifugal force, which 

disrupts the tuning in the cantilever example. Even though the last term in Eq.(33) is still 

present in Eq. (27), its negative action is overcome by the terms that depend only on ��, 

entering the formula through both �� and ��. Hence, the tuning mechanism attains a much 

higher potential for self-tuning. 

To complete this analysis, time histories of the magnet’s velocity and voltage are shown in 

Fig. 16 for the two juxtaposed concepts. For the cantilever beam counterpart, the case 

shown in Fig. 14 for �� = 18 mm is selected. The numerically computed time histories show 

that the cantilever beam concept exhibits a nearly regular resonance, whereas the proposed 

concept demonstrates an almost purely broadband output. Even though the resonant 
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response of the cantilever beam leads to higher peak voltage output due to the whole mass 

participating in electromagnetic interactions, this only occurs for a narrow frequency 

window, which in real-life applications with variable rotor speeds would be insufficient. 

 

 

Figure 16 

 

5 CONCLUSIONS 

A novel concept for harvesting energy from torsional vibrations in rotor applications has 

been proposed. The dominant frequencies of typical torsional oscillations are proportional 

to the main rotor speed. The proposed concept utilizes centrifugal forces acting radially on a 

novel layout of thin beams to adjust the modal frequency of the harvester to the frequency 

of oscillations. The novelty lies in the distribution of harvester’s inertia and in the 

introduction of a preload to overcome restrictions of existing harvester concepts. In 

particular, the presented concept uses a tuning mass at the outer support of the beams, 

which adjusts the self-tuning mechanism without affecting the vibrating inertia, and 

consequently avoiding adverse effects on the modal frequency. The preload has been 

shown to be useful for tuning the harvester to the lower speed range. The adopted self-

tuning mechanism can offer high flexibility in adjusting a master design to a specific 

application (where torsional vibrations may follow different speed orders) without 

structural alterations (e.g. geometry and material of the beams). Numerical case studies for 

1 x, 1.5 x and 2 x rotational speed orders were conducted. The studies showed the 

effectiveness of the self-tuned harvester to adjust its frequency to the expected order, 

whereas numerically computed time histories demonstrated its advantages in terms of the 

nearly purely broadband voltage and power output observed in a considerably wide 

frequency range. The proposed concept was also juxtaposed to a widely employed self-

tuned harvester, based on a cantilever beam with a tip mass. The latter is limited mainly by 

the lateral components of the centrifugal forces, which effectively oppose the stiffening 

outcome of the tension imparted on the beams, leaving only the option of structural 

alterations to tune the cantilever harvester. However, the necessary corresponding 

downsizing of the beam thickness is incompatible with high rotor speeds from a material 

strength viewpoint. This limitation has been shown to be overcome by the proposed 

concept. Introduction of two independent parameters: the weight of the tuning mass and 

the magnitude of the preload allow greater flexibility in the design, leading to nearly 

constant voltage output within typical speeds of variable speed rotors. 
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Fig. 1. Sketch of the proposed electromagnetic rotational energy harvester. 

 

 

Fig. 2. Sketch of a magnet moving along the axis of a coil of wire. 
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Fig. 3. Mode shapes of the beams for different rotational speeds. Case study computed for 

the parameter values listed in Table 1. 
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Fig. 4. Comparison of computing the harvester’s first modal frequency using the herein 

described approach (–––––––) and assuming a fixed mode shape (– – – –), for the 

parameters of Table 1. 
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Fig. 5. Variation of the harvester’s first modal frequency E� with increasing rotational 

speed 0� for a different distribution of mass ��/��, and the parameters of Table 1. 
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Fig. 6. Variation of the harvester’s first modal frequency E� with increasing rotational 

speed 0� for a different positioning of the vibrating magnet ��/�, and the parameters of 

Table 1. 
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Fig. 7. Variation of the harvester’s first modal frequency E� with increasing rotational 

speed 0� for different preloads �"�#, and the parameters of Table 1. 

 

Fig. 8. Modal frequency of the self-tuned harvester for the first case study (1 ×	0�) using 

the parameters of Table 2 and:	�� = 0.149 kg, �� = 	0.182 kg, �� = 0.5�, �"�# = 60 N. 
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Fig. 9.  Modal frequency of the self-tuned harvester for the second case study (1.5 × 0�) 

using the parameters of Table 2 and:	�� = 0.12 kg, �� = 	0.182 kg, �� = 0.5�, �"�# = 62 

N. 
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Fig. 10. Modal frequency of the self-tuned harvester for the third case study (2 ×	0�) using 

the parameters of Table 2 and:	�� = 0.095 kg, �� = 	0.182 kg, �� = 0.5�, �"�# = 85 N. 
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Fig. 11.  Time history of the harvester response to 1 G 0� vibrations by numerically 

integrating Eqs (30) – (32), using the parameters listed in Table 2 and �� 5 0.149 kg, 

�� 5 	0.182 kg, �� 5 0.5�, �"�# 5 60 N; (a) deflection of the vibrating magnet ��; (b) 

velocity of the vibrating magnet ��; (c) Voltage induced to the coil; (d) axial displacement of 

the beams’ far-end support; (e) power delivered to the external electrical load $�. 
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Fig. 12.  Time history of the harvester response to 1.5 G 0� vibrations by numerically 

integrating Eqs (30) – (32), using the parameters listed in Table 2 and �� 5 0.120 kg, 

�� 5 	0.182 kg, �� 5 0.5�, �"�# 5 62 N; (a) deflection of the vibrating magnet ��; (b) 

velocity of the vibrating magnet ��; (c) Voltage induced to the coil; (d) axial displacement of 

the beams’ far-end support; (e) power delivered to the external electrical load $�. 
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Fig. 13.  Time history of the harvester response to 2 G 0� vibrations by numerically 

integrating Eqs (30) – (32), using the parameters listed in Table 2 and �� 5 0.095 kg, 

�� 5 	0.182 kg, �� 5 0.5�, �"�# 5 85 N; (a) deflection of the vibrating magnet ��; (b) 

velocity of the vibrating magnet ��; (c) Voltage induced to the coil; (d) axial displacement of 

the beams’ far-end support; (e) power delivered to the external electrical load $�. 
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Fig. 14.  Comparison of E� against E�,� for selected cantilever beam cases of �� 5 0.182 kg 

and varying ��, with the remaining parameters drawn from Table 2. 
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Fig. 15. Comparison of E� against E�,� for selected cantilever beam cases of �� 5 18 mm 

and varying ��, with the remaining parameters drawn from Table 2. 
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Fig. 16.  Velocity and voltage time histories for the proposed concept and the cantilever 

beam counterpart for 1 G 0�. Results for the proposed concept are re-plotted from Fig. 11 

for comparison purposes whereas the cantilever beam results correspond to �� 5 18 mm in 

Fig. 14. 


