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Abstract 

Calcium fluoro-aluminosilicate (4.5SiO2-3Al2O3-1.5P2O5-3CaO-2CaF2) glasses have 

significant applications in the medical and dental fields. However, due to the biological 

hazard of aluminium in the human body, this study focused on the influence of boron 

substitution for aluminium on the structure and properties of a series of substituted glasses 

and their correlated glass-ceramics. The results indicated that by increasing the amount of 

boron, the density of glasses and their glass-ceramics both decreased, whereas the number 

of bridging oxygens in the glasses increased. The glass transition temperature and the 

crystallization temperature remained almost unchanged for the glasses with a boron 

substitution of less than 25 mol%. Boron formed oxygen bridges in all glasses in the form 

of BO3 triangles and BO4 tetrahedra. Reducing the Al content in glasses, had an effect on 

the morphology and orientation of the fluorapatite crystal phase formed. 

Key words: Boron-Substitution, Calcium fluoro-aluminosilicate glasses, Fluorapatite, 

Mullite 
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1. Introduction 

Fluoride containing calcium aluminosilicate glass can lead to glass ceramics with a 

fluorapatite phase which is a more stable phase compared to hydroxyapatite and can 

enhance bonding strength with the surrounding bone tissue as well as the remineralisation 

process[1]. Freeman et al. [2] reported that calcium fluoro-aluminosilicate glasses are able 

to crystallize into apatite and mullite phases to form apatite-mullite glass-ceramics, which 

showed excellent osteointegration and osteo-conduction properties when implanted in the 

human body. Dumini et al in their recent review provided a comprehensive account of the 

formation of apatite-mullite glass ceramics summarising all the most important findings 

about the apatite-mullite glass systems and glass ceramics [3]. Nearly all the commercially 

available glass used for dental cements is aluminosilicate glass based with some fluorine 

addition. However, long time service of fluoro-aluminosilicate glasses and alumina-

containing glass-ceramics may lead to the release of aluminium ions, causing serious 

hazard to the human body despite some reassuring evidence provided in the literature that 

aluminium is not released to the surrounding tissue [4]. For example, Renard et al. [5] 

reported that in 1994 after bone reconstitution using Ionocem® IONOS-D8031 

Seefeld/Obb, Germany, a glass polyalkenoate cement) a subacute Al myoclonic 

encephalopathy occurred. In the same year, in Belgium, Hantson et al. [6] reported two 

other cases of Al encephalopathy, which both led to death. 

 

Bladed et al. [7] reported that the glass ionomer cements with low aluminium release from 

the unset cement matrix, and the release of aluminium from the set cement restricted the 

mineralization of osteoid and remineralisation of bone. It is expected, that the reduction 

of aluminium contents with a more closely packed glass-network could decrease the 

releasing amount of aluminium ions from the glass. As a glass former, boron trioxide 
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(B2O3) can increase the chemical resistance of the glass and can be a possible substitute 

for aluminium to reduce the aluminium content in glass [8]. As it was known in normal 

glass network, Al normally can form Al-O bonds with oxygen, however, by introducing 

fluorine ions, considerable fractions of network Al-O bonds are replaced by weaker non-

network Al-F bonds [9], indicating that fluorine could disrupt the glass network by 

substituting bridging oxygens with non-bridging fluorines [10,11]. Stamboulis et al. [12] 

reported that Si-F-Ca(n) species were clearly present in fluoro-aluminosilicate glasses, 

with the general composition of 4.5SiO2-3Al2O3-1.5P2O5-(5-x)CaO-xCaF2, where x 

equals to 0-3. Therefore, fluorine ions may increase the possibility of boron to replace 

aluminium ions in the glass network with the formation of B–O bonds thus changing the 

type of the crystallization phase in a fluoro-aluminosilicate ceramic. 

 

This study focuses on the effect of boron substitution for aluminium on the structure of 

fluoro-aluminosilicate glasses and glass ceramics. 

 

2. Materials and methods 

2.1 Preparation of materials 

The molar composition of calcium fluoro-aluminosilicate glasses are shown below 

in Table1. Powders of silicon dioxide (SiO2, Sigma-Aldrich, purum p.a. powder), 

aluminium oxide (Al2O3, Sigma-Aldrich, puriss powder), phosphorus pentoxide (P2O5, 

Sigma-Aldrich, puriss powder), calcium fluoride (CaF2, Sigma-Aldrich, natural powder), 

boron oxide (B2O3, Sigma-Aldrich, 99%(after heating)), and calcium carbonate (CaCO3, 

Sigma-Aldrich, BioXtra) were firstly mixed by hand-shake for 30 min, and then 

transferred to a platinum rhodium (Pt, 5% Rh) crucible. The crucible was then placed into 

an electric furnace (EHF 17/3, Lenton, UK) under a temperature of 1450 ºC for 1.5 h. The 
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glass melt was then water quenched to prevent phase separation and crystallisation. All of 

the glasses were finally milled using a gyro mill to very fine particles (<45 μm) [13].  

 

2.2 Crystallisation of FB0, FB25 and FB50 glasses 

Three glass compositions FB0, FB25 and FB50 were selected for crystallisation 

studies. 2 g of glass powder (<45 μm) were pressed into a die to produce test tablets for 

the heat treatment. The tablets were then placed to a platinum crucible in an electric 

furnace (EHF 17/3, Lenton, UK). The samples were first heated to 700 °C with a heating 

rate of 10 °C /min, held for 1 h for nucleation, and then heated up to 1100 ° C at the same 

heating rate, holding for 1 h for crystallisation and finally furnace cooling to room 

temperature. 

 

2.3 Characterisation of glasses and glass-ceramics 

The thermal transitions of glasses were analysed using differential scanning calorimetry 

(Netzsch 404C DSC) along with pairs of matched platinum-rhodium crucibles. Every 

sample powder was weighed to around 20 mg for each run. The samples were firstly 

heated to 1200 ºC with a heating rate of 10 ºC /min and then air cooled. The glass transition 

(Tg) and peak crystallisation temperatures (Tp) were identified.  

 

Thermogravimetric analysis (TGA) is normally used to test the weight change of materials 

at different temperatures, which was usually used to measure the weight loss of the 

material during heat-treatment. In this experiment, a TGA (Netzsch 404C STA) was used 

with the pairs of matched platinum-rhodium crucibles, and all the tests were carried out 

under a dry argon environment at a heating rate of 10 ºC /min. 
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The densities of all samples were identified using an AccuPyc II 1340 Series Helium 

Pycnometer. The gas pycnometry uses a glass displacement method to test the sample 

volume. The glass weight was 1 g. In order to calculate the density of the glasses and 

glass-ceramics, an average of 10 consecutive measurements was taken. The oxygen 

density (OD) of each glass was calculated by using the following equation: 

glassofweightmolecular

glasstheinoxygensofmolesofNo
DOD

.
    (Equation 1) 

where D is the density of the glass measured by the helium pycnometer. 

 

The glasses were further characterised by Fourier Transform Infrared Spectroscopy (FTIR, 

Spectrum2000, PerkinElmer, USA). A 1:100 wt ratio between the sample and potassium 

bromide (KBr) was used to obtain the spectra. The background of the test trace was always 

taken by using a control sample of KBr prior to each measurement. A diffuse reflectance 

accessory was used to obtain a spectrum from 400–4000 cm-1 wavenumbers with the 

resolution of 4 cm-1 and 100/min number of scans. 

 

The glass-ceramics were also characterised by X-ray diffraction using a continuous scan 

between 2θ = 10° and 90°, with a step size of 2θ = 0.0200° in a Philips analytical X-Pert 

XRD at the University of Birmingham with a Cu Ka, at 40 kV and 40 mA, and a MAC 

Science Co. Ltd M21X XRD at the University of Science & Technology Beijing with Cu 

Ka, at 40 kV and 130 mA. 

 

11B MAS-NMR analysis was conducted at resonance frequencies of 128.07 MHz, using a 

Bruker ADVANCE 400 III Solid-state NMR spectrometer. The magnetic field was 9.4 T, 

the spinning rates of the samples at the magic angle was 12 KHz. The delay time was 1 s. 
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The reference material used was BF3·OEt2 for 11B. 11B peaks were observed at around 0.5 

ppm and 9 ppm, which are assigned to BO4 tetrahedra and BO3 triangles [14]. 

 

An XL 30 ESEM&EDX FEG scanning electron microscope operated at 20 kV was used 

to investigate the morphology changes of the glasses under different heat treatment 

temperatures. Energy Dispersive Spectrometer (EDS) was used to study the composition 

of the different phases. The analysis took place under high-vacuum conditions. Prior to 

characterization all glass-ceramics were etched with 10% HF and the samples were coated 

with carbon using an SB250 coating machine. 

 

3. Results 

3.1 The change of microstructure and property of glass 

3.1.1 Density 

The changes of density in glasses and their glass-ceramics are shown in Figure 1(a). As 

can be seen, the glass without boron substitution had the highest density even after its 

sintering. By increasing the amount of boron substitution, the density of glass decreased 

proportionally from FB0 (2.768 g/cm3) to FB50 (2.695 g/cm3) glass, showing a linear 

relationship between the density and boron molar content in each glass. The oxygen 

density of glasses shown in Figure 1(b) suggested that boron substitution for aluminium 

resulted in increased oxygen density from 0.0709 mol/cm3 to 0.0721 mol/cm3 leading to 

a slightly more compact glass network. 

 

3.1.2 FTIR 

The FTIR spectra for boron-substituted glasses and glass-ceramics are shown in Figure 2. 

As can be seen, from the FB0 to FB25 boron-substituted glasses, the main broad 
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absorption did not change significantly. Only very broad bands appeared in the region 

between 800 and 1200 cm-1 indicating the presence of Si-O(s) stretching vibrations with 

different number of bridging oxygens and P-O bonds [15]. For the boron substituted glass, 

a small peak appeared in the region between 1200 and 1600 cm−1 (marked in the spectra 

by a red rectangular), indicating the presence of B-O stretching vibrations in BO3 units 

[16-20]. However, in the case of the 50 mol% Al containing FB50 glass, some very weak 

peaks appeared at 460 cm-1, 567 cm-1,602 cm-1, 720 cm-1,1038 cm-1,1093 cm-1,1277 cm-1 

and 1400 cm-1 suggesting that the FB50 glass was partially crystallised, with the most 

intense absorption bands at 1038 cm-1 due to the asymmetric stretching vibrations (P-O, v 

3) of phosphate tetrahedra with four non-bridging oxygens (NBOs) (PO4). It is clear, that 

the P-O peak in the FB50 glass ceramic was the result of two bonding vibrations at 602 

and 576 cm-1 corresponding to the O-P-O bending vibrations of phosphate groups (v4) and 

are characteristic of an apatite crystal phase. The peak at 729 cm-1 was associated with the 

presence of Al-O (AlO4)
 [21, 22].  

 

3.1.3 Glass transition and crystallisation temperatures of substituted glasses 

In Figure 3 and Table 2, boron-substituted glasses showed that the glass transition 

temperatures (Tg) of FB0 to FB15 samples appeared in the region from 656 to 647oC. 

With increasing boron substitution to 25 mol%, a significant decrease of Tg was observed 

from 648 ºC (FB15) to 605 ºC (FB25). Meanwhile in the case of FB50, Tg was slightly 

increased due to the partial-crystallisation of the glass during the production of the glass. 

By increasing the amount of boron substitution, the first crystallisation temperature of 

glasses decreased from 741oC (FB0) to 636 oC (FB25). In the case of FB50, the first 

crystallisation temperature was slightly higher. Compared to the first crystallisation 

temperature, the change of the second crystallisation temperature of glasses showed a 
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similar trend. The highest second crystallisation temperature was observed for FB15 and 

was 1089 oC, while in the case of FB25, three crystallisation temperatures were observed. 

It is important to mention, that FB25b did not crystallise during the glass production 

exhibiting the lowest Tg, Tp1, Tp2, and Tp3. It can be observed that there was a decreasing 

tendency in Tp1 and Tp2 by increasing the content of boron substitution for aluminium in 

the glasses. 

 

3.1.4 XRD study of substituted glasses 

Figure 4 shows the main crystal phases observed by X-ray diffraction for FB0, FB25 

and FB50 glasses and glass-ceramics at a heating rate of 10oC/min. It can be clearly seen, 

that FBO and FB25 did not have any peak present in their X-ray diffractograms indicating 

that the glasses were both amorphous. However, FB50 exhibited some sharp peaks 

suggesting clearly formation of fluorapatite (Ca5(PO4)3F). 

 

3.2 The bonding structure and microstrucure of boron-substituted glass-ceramics 

To better understand the effect of boron on the structure of glass-ceramics, 11B MAS–

NMR was used to study the bonding changes before and after crystallization of glasses 

[23]. The results are shown in Table 3 and Figure 5.  

As reported by H. Miyoshi [24], the chemical shift of BO3 species should be around 

8.56 ppm, whereas the chemical shift around 0.9-1.7 ppm is ascribed to the BO4 unit [25].  

11B MAS–NMR spectra showed the appearance of two main peaks at around 0.2-0.8 ppm 

and 9.0-9.5 ppm, which were associated with BO4 and BO3 species, respectively. From 

the 11B MAS–NMR spectra of boron-substituted glasses and glass-ceramics in Figure 5, 

all samples exhibited peaks at 0.5 and 9.0 ppm, assigned to BO4 and BO3 species, 

respectively. There was also no change in the bonding with increasing boron substitution 
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for aluminium, suggesting that the boron atoms were stable in the form of BO4 and BO3 

groups in the glasses. Initially, due to the smaller cation size of boron ion, it was thought 

that boron may have acted as a network former, taking up a four-fold coordination and 

forming BO4 structural units. Boussard-Plédel and Floch reported that a peak at 33 ppm 

in the 19F spectra (0 ppm for C6F6) and a peak at 12 ppm in the 11B (0 ppm for Et2OBF3) 

spectra of a boron oxyfluoride glass corresponded to the resonance position of the 

respective nuclei in the BF3 species present above the glass Tg (320K) [26]. In our case 

however, the glasses did not exhibit the peak at 12 ppm in the 11B MAS-NMR spectra 

suggesting the absence of BF3 species, possibly escaped as a gas during glass preparation. 

A high absorbance between 400 cm−1 and 1400 cm−1was observed in the FTIR 

spectra of glasses shown in Figure 6 indicating mainly the formation of Si-O-Si, Si-O-Al, 

P-O and Al-O bonds. The intensity of the absorption bands centred at 1170 cm-1 increased 

with boron substitution, while the bands shifted from 1097 cm-1 in FB0 to 1170 cm-1 in 

FB50, suggesting the transformation of [SiO1/2O3]
3− to [SiO4]

4− with increasing boron 

substitution for aluminium [27] . The absorption bands centred at 1082 cm-1were 

attributed to the asymmetric stretching vibrations (P-O, ν3) of phosphate tetrahedra, and 

the bands at 977 cm-1, 963 cm-1, and 950 cm-1were attributed to the symmetric stretching 

vibrations of phosphate (ν1) species [21,28]. Two bands at 576 cm-1 and 605 cm-1 were 

attributed to the O-P-O bending vibrations of phosphate (ν4) species, whereas the band 

centred at 450 cm-1 was associated with the phosphate (ν2) bending vibrations [22].  

Besides, the X-ray diffractogramms, shown in Figure 7, suggested that the crystal 

phases present in the boron free FB0GC glass ceramic were fluorapatite (Ca5(PO4)3F) and 

mullite (Al6Si2O13) with a small amount of aluminium phosphate (AlPO4). However, for 

FB25 GC and FB50 GC, the intensity of mullite and aluminium phosphate decreased with 

increasing boron substitution for aluminium as it was expected. In the case of FB50 GC, 
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mullite and aluminium phosphate were only minor crystal phases. Furthermore, the peak 

of the fluorapatite phase did not change much in all boron substituted fluoro-

aluminosilicate glass-ceramics, suggesting that by the addition of boron, no new phases 

appeared. 

The morphology and compositions of boron-substituted glass and glass-ceramics is 

presented in Figure 8 and Table 4. All samples showed the presence of needle-like bright 

phases, surrounded by a dark phase. EDX analysis showed that the needle-like phase 

identified as fluorapatite phase, contained mainly F, P, and Ca, whereas the dark phases, 

contained high amount of O, Al, Si and a small amount of P and were assigned to the 

mixture of mullite and AlPO4 phases. By increasing the boron content, the crystallisation 

of the fluorapatite phase was generally promoted. More importantly, after high amount of 

substitution, e.g. FB25 and FB 50, the growth direction of the needle-like fluorapatite 

crystals changed from random to oriented, in which multiple needle-like crystals with the 

same orientation became one cluster with an average size of around 100m. 

 

4. Discussion 

In this study, a new type of biocompatible glasses were developed by partially substituting 

aluminium by boron. The densities of glasses gradually decreased with increasing boron 

substitution (Table 2, Figure 1). The change in the density of glasses was due to the 

different atomic weight of boron and aluminium atoms, e.g. boron has lighter atomic 

weight (AW = 10.81) than aluminium (AW = 26.98). In addition, the ionic radius of four 

fold-coordinated B(III) (tetrahedral) is 25 pm and the ionic radius of six fold-coordinated 

B(III) (octahedral) is 41 pm, both shorter than the ionic radius of four fold-coordinated 

Al(III) (tetrahedral, 53 pm) and six fold-coordinated Al(III) (octahedral, 67.5 pm). 

Therefore, the replacement of aluminium with boron resulted in a more compacted 
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network with increased density. In this study, a decrease in the density of glasses was 

observed with increasing boron substitution, indicating that the change of the atomic 

weight had a more significant effect on the density of glasses than the ionic radius. A linear 

increase in the oxygen density with increasing boron substitution was observed in Figure 

1b, indicating a closer packed glass network [29, 30]. 

Besides the effect on the density of glasses, boron substitution caused also changes in the 

glass transition and the crystallisation temperatures of glasses (Figure 2 and Table 3). The 

glass transition temperature of glasses decreased with increasing boron substitution. For 

example, in the case of FB0 and FB15 glasses, the glass transition temperature was stable 

and around 650oC. For FB25 glass, however, the glass transition temperature was 

observed at a much lower temperature at 605oC. This observation is in agreement with 

Hill et al [31]. Similarly, the crystallization temperature of glasses decreased with 

increasing boron substitution. For example, the first crystallisation temperature was 

decreased from 741oC (FB0) to 643oC (FB50, partially crystallised), while FB15 and 

FB25 glasses had the highest and the lowest Tp2, respectively. In the case of FB25 glass, 

a third crystallisation peak was observed at 946oC, suggesting that the second 

crystallisation peak separated in two parts: one corresponding to fluorapatite formation, 

and another smaller peak most likely corresponding to the aluminium phosphate formation 

in agreement with Rafferty et al. [32]. The FB50 glass crystallised during glass formation 

evidenced by the X-ray diffractogram shown in Figure 4.  

 

Decreasing the amount of aluminium in the glass composition, had a significant effect on 

the silicate species formation in the glass network. A transformation from [SiO1/2O3]
3− to 

[SiO4]
4− was observed with increasing boron substitution in agreement with the literature 

[27]. A strong effect was observed also in the case of phosphorous containing species. For 
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example, increasing boron substitution resulted in changes in the absorption bands of 

stretching vibrations (P-O, ν3) of phosphate tetrahedral split from one peak at 1082 cm-

1into two peaks at 1045 cm-1and 1097 cm-1, respectively. The change of the proportion of 

chemical elements in the glasses with boron substitution, lead to the formation of different 

crystal phases in the glass-ceramics from the formation of AlPO4, Al6Si2O13 and 

Ca5(PO4)3F in the case of FB0 to the formation of a dominant Ca5(PO4)3F phase and a 

minor Al6Si2O13 phase in the case of F50. Boron, as a glass former was present as BO4 

and BO3 species in all glasses as it can be seen in the FTIR and NMR results shown in 

Figures 2 and 5. 

Due to the lack of a boride based crystal phase, boron could be present in the glass-

ceramics as solid-solution in Ca5(PO4)3F and Al6Si2O13. This could potentially lead to a 

change for example in the hydroxyapatite lattice parameters as evidenced with the shifting 

of the characteristic peaks in the X-ray diffractograms with addition of boron shown in 

Figure 4. A characteristic preferential orientation of fluorapatite crystals was observed by 

SEM shown in Figure 8 when boron addition was larger than 15 mol%. This is very 

difficult to explain with the data presented in this study. However, previous studies on 

apatite-mullite glasses concluded that the main mechanism of crystallisation is amorphous 

separation and nucleation [33]. The addition of boron may have resulted in a decrease of 

the crystallization temperature of the glass. Amorphous phase separation may have been 

occurred [3, 34] and consequently, during crystallisation, fluorapatite crystals would 

preferentially precipitate by heterogeneous nucleation on the pre-existed crystals that as a 

result allowed the formation of needle-like clusters with similar orientation. Hoeland et al 

[35] stated clearly that in the case of a leucite-apatite glass ceramic, the superfast growth 

of fluorapatite crystals, caused by heterogeneous nucleation, could alter the growth 

behaviour and orientation of fluorapatite crystals. Further work is required to understand 
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the role of boron to the growth and orientation of fluorapatite crystals, if it is present as 

solid solution.  

5. Conclusions 

The density of both boron-substituted for glasses and glass-ceramics decreased with 

increasing boron substitution for aluminium. The oxygen density of all substituted glasses 

increased slightly with increasing boron substitution for aluminium, which suggested the 

formation of a more compact glass network. The glass transition temperature remained 

stable in boron-substituted for aluminium glasses when boron substitution was lower than 

25 mol%. Higher amount of boron substitution (>25 mol%) for aluminium lead to a 

decrease of both glass transition and crystallization temperatures, resulting in fluorapatite 

crystallization during the formation of glass network. Boron atoms in the glasses were 

present as BO4 triangles and BO3 tetrahedra. There is no change of morphology for the 

fluorapatite phase in the glass-ceramics when boron substitution was not in excess of 

15mol%. High amount of boron substitution resulted in the change of fluorapatite crystal 

growth behaviour by forming highly oriented clusters as evidenced by SEM. However, 

more work is required to understand the role of boron on the crystallisation mechanism 

and morphology.    
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Figure 1: (a) Density and (b) oxygen density of the fluoro-aluminosilicate glasses. 
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Figure 2: FTIR spectra of boron-substituted fluoro-aluminosilicate glasses. 
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Figure 3: DSC trace of boron-substituted fluoro-aluminosilicate glasses at a heating rate 

of 10oC/min. 
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Figure 4: XRD results of FB0, FB25, and FB50 boron-substituted glasses. 
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Figure 5: 11B MAS-NMR spectra of different boron-substituted (a) glasses and (b) glass-

ceramics. Spinning bands are marked with ●. 
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Figure 6: FTIR spectra of boron-substituted glass-ceramics. 
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Figure 7: X-ray powder diffraction spectra of heat-treated (1100oC), boron-substituted 

fluorine-containing glass-ceramics. The heat-treated FB0 glass spectrum is presented as 

reference material.  = aluminium phosphate, = fluorapatite,  = mullite. 
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Figure 8: SEM morphologies of glass-ceramics, (a) FB0, (b)FB5, (c)FB10, (d)FB15, 

(e)FB25 and (f)FB50. 

 

 

Table 1: Molar composition of boron-substituted fluoro-aluminosilicate glasses. 

Glass code SiO2 Al2O3 P2O5 CaO CaF2 B2O3 

FB0 

FB5 

FB10 

FB15 

FB25 

4.5 

4.5 

4.5 

4.5 

4.5 

3 

2.85 

2.7 

2.55 

2.25 

1.5 

1.5 

1.5 

1.5 

1.5 

3 

3 

3 

3 

3 

2 

2 

2 

2 

2 

0 

0.15 

0.3 

0.45 

0.75 

FB50 4.5 1.5 1.5 3 2 1.5 

  

 

Table 2: DSC analysis data of Tg, Tp1 and Tp2 for all boron-substituted glasses measured 

at a heating rate of 10oC/min (molar %). 

Glass 
Boron  

substitution  
Tg(

oC ) Tp1(
oC ) Tp2(

oC ) Tp3(
oC ) 

FB0 0 653±6 741±12 1053±20 - 

FB5 5 647±6 728±11 977±18 - 

FB10 10 656±5 718±12 1014±18 - 

FB15 15 648±5 704±11 1089±19 - 

FB25 25 605±6 636±10 715±18 946±27 

FB50 50 630±7 643±12 763±17 - 

 

 

Table 3: MAS-NMR spectroscopy on boron-substituted fluoro-aluminosilicate glasses 

and glass-ceramics (11B, ppm). 

Glass FB0 FB5 FB10 FB15 FB25 FB50 

chemical shift - 0.8 ; 9.0 0.8 ; 9.5 0.4 ; 9.5 0.2 ; 9.4 0.2 ; 9.3 

ACCEPTED M
ANUSCRIP

T



 

25 

 

Glass-ceramic FB0     FB25  FB50  

chemical shift - - - - 1.6 ; 7.0 -0.3 ; 7.9 

 

 

 

 

Table 4: Chemical composition of glass-ceramic phases in EDX analysis (±1 at%). 

 

 Si Al Ca P F O 

Bright phase 2.27 2.58 14.38 9.42 11.19 60.15 

Dark phase 16.81 20.20 6.94 3.41 2.48 50.16 
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