

University of Birmingham

Scalability of an Eulerian-Lagrangian large-eddy
simulation solver with hybrid MPI/OpenMP
parallelisation
Ouro, Pablo; Fraga, Bruno; Lopez, Unai; Stoesser, Thorsten

DOI:
10.1016/j.compfluid.2018.10.013

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Ouro, P, Fraga, B, Lopez, U & Stoesser, T 2019, 'Scalability of an Eulerian-Lagrangian large-eddy simulation
solver with hybrid MPI/OpenMP parallelisation', Computers & Fluids, vol. 179, pp. 123-136.
https://doi.org/10.1016/j.compfluid.2018.10.013

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 14/11/2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.1016/j.compfluid.2018.10.013
https://doi.org/10.1016/j.compfluid.2018.10.013
https://birmingham.elsevierpure.com/en/publications/0568ca55-5113-43f9-b595-33771105d7f5

Computers and Fluids 179 (2019) 123–136

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Scalability of an Eulerian-Lagrangian large-eddy simulation solver with

hybrid MPI/OpenMP parallelisation

Pablo Ouro

a , ∗, Bruño Fraga

b , Unai Lopez-Novoa

c , Thorsten Stoesser a

a Hydro-environmental Research Centre, Cardiff School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
b School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
c Data Innovation Research Institute, Cardiff University The Parade, Cardiff CF24 3AA UK

a r t i c l e i n f o

Article history:

Received 22 March 2018

Revised 19 September 2018

Accepted 9 October 2018

Available online 10 October 2018

Keywords:

Hybrid MPI/OpenMP

Eulerian-Lagrangian

Large-eddy simulation

Immersed boundary method

Multiphase flows

High performance computing

a b s t r a c t

Eulerian-Lagrangian approaches capable of accurately reproducing complex fluid flows are becoming

more and more popular due to the increasing availability and capacity of High Performance Comput-

ing facilities. However, the parallelisation of the Lagrangian part of such methods is challenging when

a large number of Lagrangian markers are employed. In this study, a hybrid MPI/OpenMP parallelisa-

tion strategy is presented and implemented in a finite difference based large-eddy simulation code fea-

turing the immersed boundary method which generally employs a large number of Lagrangian mark-

ers. A master-scattering-gathering strategy is used to deal with the handling of the Lagrangian markers

and OpenMP is employed to distribute their computational load across several CPU threads. A classical

domain-decomposition-based MPI approach is used to carry out the Eulerian, fixed-mesh fluid calcula-

tions. The results demonstrate that by using an effective combination of MPI and OpenMP the code can

outperform a pure MPI parallelisation approach by up to 20%. Outcomes from this paper are of interest

to various Eulerian-Lagrangian applications including the immersed boundary method, discrete element

method or Lagrangian particle tracking.

© 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

s

t

D

(

b

o

D

q

[

e

t

v

p

p

l

t

h

m

o

C

M

M

G

p

[

L

c

s

p

c

a

o

o

[

n

h

0

. Introduction

The constant evolution of High Performance Computing (HPC)

ystems has accelerated the development of sophisticated Compu-

ational Fluid Dynamics (CFD) codes. This has facilitated expensive

irect Numerical Simulations (DNS) and Large-Eddy Simulations

LES) of turbulent flows at low to moderately high Reynolds num-

ers in complex geometries in the fields of aeronautics, bio-flows

r hydro-environmental engineering [1–3] . Recent applications of

NS and LES include complex multiphase flows which often re-

uire adopting Eulerian-Eulerian frameworks, e.g. scalar transport

4] or free-surface flows [5] ; or Eulerian-Lagrangian frameworks,

.g. fluid-structure interaction [6] or air-gas interaction [7] . Most of

he cited computations were performed at a reduced scale and for

alidation purposes demonstrating the methods’ adequacy to re-

roduce the relevant physics. There is a fast-growing interest in ap-

lying these advanced eddy-resolving techniques to real-life prob-

ems, which means that the range of spatial and temporal scales

o be resolved increases by one or several orders of magnitude and
ence these computations become extremely expensive.

∗ Corresponding author.

E-mail address: ourobarbap@cardiff.ac.uk (P. Ouro).

i

c

ttps://doi.org/10.1016/j.compfluid.2018.10.013

045-7930/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article u
What follows is that CFD codes must not only be portable to

odern HPC hardware, but also scalable to hundreds of thousands

f processors. The main strategies to parallelise and scale modern

FD codes most commonly used are: distributed memory through

essage Passing Interface (MPI), shared memory through Open

ulti-Processing (OpenMP) or a combination of both. Alternatively,

raphics Processing Units (GPUs) can be employed to speedup

articular portions of code and its application to CFD is growing

8] . To date, MPI is the most used protocol to compute DNS and

ES in parallel using mesh-based methods. It allows to divide the

omputational domain into smaller sub-domains and to solve the

ame code on basis of the Single Program Multiple Data (SPMD)

aradigm. The key to an efficient MPI parallelisation strategy is the

ommunication between sub-domains as the information exchange

cross their interfaces must ensure the coherence and continuity

f the simulation [9] . On the other hand, the efficient computation

f particle-based methods is frequently performed using OpenMP

10] . Complementary to pure MPI or OpenMP codes, their combi-

ation can provide an outstanding increase in code performance as

t allows to specifically tackle the code’s bottleneck.

Hybrid parallelisation techniques are becoming key to effi-

iently perform simulations in many CFD fields such as Smoothed
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.compfluid.2018.10.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.10.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ourobarbap@cardiff.ac.uk
https://doi.org/10.1016/j.compfluid.2018.10.013
http://creativecommons.org/licenses/by/4.0/

124 P. Ouro et al. / Computers and Fluids 179 (2019) 123–136

Fig. 1. 2D sketch of a distribution of Lagrangian points in an Eulerian staggered

grid for a body represented by the immersed boundary method.

f

f

∇

w

i

f

s

w

i

f

l

o

g

S

a

I

m

a

a

f

t

r

a

m

l

l

u

2

f

H

s

s

l

f

t

Particle Hydrodynamics (SPH) whose applicability is somewhat

limited by the number of Lagrangian particles due to their in-

herent expensive computations, e.g. neighbour searching. Novel

hybrid techniques are under development in order to enhance

its computational efficiency, such as an MPI/CUDA scheme pre-

sented by Dominguez et al. [11] , which improved load-balancing.

In a similar fashion, the most efficient way to parallelise Dis-

crete Element Methods (DEM) depends on the homogeneity of

the particles’ distribution. Gopalakrishnan et al. [12] presented

good performance results for a pure MPI implementation of the

open-source DEM code MFIX. A similar approach was followed

by Yang et al. [13] achieving good scalability results in simula-

tions with more than 10 6 particles. Liu et al. [14] implemented

multi-threading in MFIX showing that a hybrid MPI/OpenMP code

could overcome load-balancing problems outperforming the MPI

scheme when 5.2 · 10 6 particles were simulated. Additionally, Am-

ritkar et al. [15] showed that for several DEM applications pure

OpenMP can be notably faster than MPI especially when a reduced

number of processes were used in the simulations.

Yakubov et al. [16] adopted a hybrid MPI/OpenMP strategy in

an Euler-Lagrange framework to simulate the flow around an airfoil

where bubbles were injected into the cavitation areas, and results

proved this scheme features good performance. Shi et al. [17] stud-

ied in detail the performance differences between pure MPI and

hybrid MPI/OpenMP implementations of a DNS code with applica-

tion to Taylor-Couette flows. They found that a mixed scheme has

many benefits in reducing inter-node communications which is key

to scale to hundreds or thousands of cores. Similar results were

obtained by Guo et al. [18] for the finite element model Fluidity

achieving better performance using a hybrid scheme compared to

pure MPI due to lower communication overheads.

Overall the development of hybrid MPI/OpenMP parallelisation

strategies is of interest to many CFD research areas: in DNS and

LES of single-phase flows the main aim is to reduce inter-node

communications between hundreds-to-thousands of cores, or in

multiphase flow applications in which load-balancing problems

due to Lagrangian computations (e.g. interpolation functions recon-

struction or neighbour searching algorithm) need to be overcome.

In the research reported here a refined hybrid MPI/OpenMP par-

allelisation strategy is implemented in the open-source LES-based

code Hydro3D. The code features coarse-grained MPI parallelisa-

tion the efficiency of which is studied first for the lid-driven cav-

ity test-case. The performance of the hybrid strategy is then eval-

uated by comparing MPI/OpenMP to pure MPI computations for

two Eulerian-Lagrangian fluid-structure interaction test-problems

for which the Lagrangian part of the solution is a known bottle-

neck to the overall speed of the code.

The paper is organised as follows: the governing equations for

fluid flow and the immersed boundary method are described in

Section 2 . Section 3 presents the hybrid parallelisation strategy.

Section 4 presents the performance results comparing pure MPI

and hybrid MPI/OpenMP schemes for the multiphase applications.

A discussion based on the overall results towards the application

of the hybrid parallelisation approach within Eulerian-Lagrangian

applications is presented in Section 5 together with the main con-

clusions from this study.

2. Numerical framework

Hydro3D is an in-house open-source [19] large-eddy simula-

tion code that has been well-validated in a number of hydro-

environmental engineering flows such as compound channels [20] ,

contact tanks [21–23] , free-surface flows [24–27] , aeronautical en-

gineering applications such as flow around pitching airfoils [28] or

geophysical flows [29,30] .
Hydro3D efficiently solves the filtered Navier–Stokes equations

or unsteady, incompressible, viscous flows solved in an Eulerian

rame reading,

 · u = 0 (1)

∂ u

∂t
= −∇ p − u · ∇ u + ν∇

2 u − ∇ τ + f (2)

here u (x, t) represents the velocity field, p (x, t) is the pressure, ν
s the kinematic viscosity of the fluid, and f (x, t) is a volume force

rom a source external to the fluid, e.g. Lagrangian particles. The

ub-grid scale stress (SGS) tensor, τ , can be calculated in Hydro3D

ith the Smagorinsky [31] or the Wall-Adapted Local Eddy viscos-

ty (WALE) [32] SGS models. Here the latter is adopted as it is pre-

erred when dealing with moving boundaries as it implicitly calcu-

ates the SGS viscosity near solid boundaries [6,9] .

Hydro3D is based on finite differences with staggered storage

f the three velocity components on three rectangular Cartesian

rids and the storage of the pressure in their respective cell centre.

econd- and fourth-order Central Differences Schemes (CDS) are

vailable to approximate convective and diffusive velocity fluxes.

n this research, second-order CDS is adopted as the direct forcing

ethod used to resolve moving boundaries is also second-order

ccurate [33] .

Hydro3D employs a refined direct forcing Immersed Bound-

ry (IB) and Lagrangian Particle Tracking (LPT) methods to per-

orm simulations of Eulerian-Lagrangian flow problems, allowing

he simulation of moving bodies or particles inside a fixed Eule-

ian fluid domain. Fig. 1 depicts a fixed Cartesian rectangular grid

s the Eulerian together with an unstructured Lagrangian domain

oving at a given Lagrangian velocity. As depicted in this figure,

ower-case variables (here coordinates, velocities and pressure) be-

ong to the Eulerian framework whereas upper-case variables are

sed in the Lagrangian framework.

.1. Time integration

The advancement in time of the governing equations is per-

ormed using the fractional-step method [34] . This adopts the

elmholtz decomposition to calculate the velocity field from a

olenoidal and an irrotational vector fields obtained throughout

everal steps. The first is to predict the non-divergence free ve-

ocity, ˜ u (x, t), from the explicit computation of convection and dif-

usion terms using a low-storage third-order Runge-Kutta scheme

ogether with pressure values from the previous time step as,

˜ u − u

l−1

�t
= αl ν∇

2 u

l−1 − αl ∇p l−1 − αl [u (∇ · u)] l−1

− βl [u (∇ · u)] l−2 (3)

P. Ouro et al. / Computers and Fluids 179 (2019) 123–136 125

w

v

t

t

o

t

E

l

S

u

t

u

u

c

∇

c

a

∇

f

t

u

N

t

n

[

n

c

s

2

r

fl

t

u

p

i

t

o

t

t

c

p

t

c

f

p

u

m

e

m

r

m

n

U

H

g

t

i

e

p

d

i

F

T

m

i

I

s

v

p

s

p

s

i

[

U

T

g

fl

r

f

H

t

w

i

p

m

g

c

e

t

f

t

c

b

i

f

t

2

[

t
here l = 1,2,3 is the Runge-Kutta sub-step for which l = 1 denotes

alues from the previous time step t − 1 , and αl and β l stand as

he Runge-Kutta coefficients with values: αl = βl = 1/3, 1/6, 1/2.

In Eulerian-Lagrangian simulations using the IB method, the ex-

ernal forces are represented by the forcing term f in the r.h.s

f Eq. (2) , which is used to correct the predicted velocity ˜ u ob-

aining the updated intermediate velocity ˜ u

∗(x, t) as indicated in

q. (4) . This source term f enforces the fluid to have the solid ve-

ocity at its location fulfilling the no-slip equation as explained in

ection 2.2 .

˜ ∗ = ˜ u + f �t (4)

A projection scalar function ˜ p is obtained in Eq. (5) resolving

he Poisson pressure equation, which in Hydro3D is accomplished

sing an iterative multi-grid technique. This equation is iterated

ntil the predicted intermediate velocity field ˜ u

∗ satisfies the in-

ompressiblity condition.

2 ˜ p =

∇ · ˜ u

∗

�t
(5)

Here, the corrected velocity field satisfies the divergence-free

ondition once Eq. (6) achieves a residual lower than a set toler-

nce ε often set to a value ≤ 10 −7 .

 · ˜ u

∗ ≤ ε (6)

The predicted velocity field ˜ u

∗ is projected onto the divergence-

ree field following Eq. (7) to obtain the solution velocity field at

he current step u

t (x, t).

t = ˜ u

∗ − �t∇ ̃

 p (7)

ote the latter velocity field differs from that obtained right af-

er the Lagrangian correction ˜ u

∗
, i.e. the final flow velocity is

ot exactly that enforced by the solid in Eq. (4) . Cristallo et al.

35] showed that the error associated to this step can be deemed

egligible. Finally, the pressure field at the current time step, p t , is

alculated in Eq. (8) resulting from the value at the previous time

tep p t−1 and ˜ p field.

p t = p t−1 +

˜ p − ν�t

2

∇

2 ˜ p (8)

.2. Immersed boundary method

The IB method in Hydro3D was successfully validated in a se-

ies of applications ranging from fluid-structure interaction [36] ,

ow around pitching airfoils [28] , multi-chamber tanks [23] , tidal

urbines [6,37] and geophysical flows [38] . The numerical method

sed to accomplish fluid-structure interaction is a refined version

resented in Kara et al. [36] based on the direct forcing IB method

ntroduced by Fadlun et al. [39] and refined by Uhlmann [33] . In

his approach, the immersed solid is comprised by a collection

f N L Lagrangian forcing points conforming the targeted geome-

ry (Fig. 1), which directly enforce a no-slip boundary condition at

heir location through the forcing term f .

The direct forcing method follows a multi-step predictor-

orrector procedure which is detailed in the following. First, the

redicted Eulerian velocities ˜ u , calculated according to Eq. (3) , are

ransferred to the closest Lagrangian markers. This procedure is ac-

omplished using interpolation functions which can feature a dif-

erent number of neighbours depending on their stencil, i.e. sup-

ort width. Hereinafter n e stands for the number of Eulerian cells

sed to transfer the information to each neighbouring Lagrangian

arker, the total number of Eulerian cells and Lagrangian mark-

rs are N e and N L respectively, and n L is the number of Lagrangian

arkers used to interpolate solid quantities to the closest Eule-

ian cells. Therefore, the interpolated Lagrangian velocity U at the
L
arker L is obtained interpolating ˜ u from its n e closest Eulerian

eighbours as,

 L =

n e ∑

i =1

˜ u i · δ(x i − X L) · �x i , L = 1 , . . . , N L (9)

ere x i and X L are the coordinates of the Eulerian cell i and La-

rangian marker L , respectively, and �x i = �x i �x j �x k represents

he volume of an Eulerian cell. The second step of the direct forc-

ng method is to compute the force F L each Lagrangian marker ex-

rts on the fluid to satisfy the no-slip condition at the marker’s

osition [33] . This force term results as the difference between the

esired (or forced) marker velocity, U

∗
L , and the interpolated veloc-

ty from the fluid U L , calculated as,

 L =

U

∗
L − U L

�t
, L = 1 , . . . , N L (10)

he forced velocity U

∗
L is computed depending on the solid body

ovement pattern, and there are three different possible scenar-

os. Firstly, when the body is static the forced velocity is zero.

n case the body moves as a reaction to the fluid action, a fluid-

tructure interaction algorithm is needed to compute the forced

elocity, which results from the time rate-of-change of the marker

osition as indicated in Eq. (11) [36,40] . The last case is when the

olid body is moving with a prescribed velocity and pattern which

ermits a straightforward calculation of its coordinates at any time,

uch as the cases of vertical axis turbines rotating at fixed veloc-

ties or pitching airfoils oscillating at a given reduced frequency

6,28] .

∗
L =

∂ X L

∂t
(11)

he third step constitutes the backwards procedure where the La-

rangian force F L is transferred to all the Eulerian cells in the

uid domain affected by Lagrangian particles obtaining the Eule-

ian force f as,

 i =

n L ∑

L =1

F L · δ(X L − x i) · �V L , i = 1 , . . . , N e (12)

ere the interpolation of F L from the closest n L Lagrangian markers

o each fluid cell adopts the delta functions values from the for-

ards step, Eq. (9) . This implies performing the neighbour search-

ng just in the forwards step which is the most computationally ex-

ensive operation in the direct forcing method when dealing with

oving boundaries.

Note that the forwards interpolation (from Eulerian to La-

rangian) uses the fluid cell volume �x i while the backwards pro-

ess adopts the volume assigned to each of the Lagrangian mark-

rs �V L , as represented in Fig. 1 . The direct forcing method needs

o satisfy mass and torque conservation requiring the force trans-

erred to all fluid cells (N e) in the backwards procedure equals the

otal force exerted by the solid markers (N L). This condition is indi-

ated in Eq. (13) which implies the same total force is interpolated

etween frameworks.

N e ∑

i =1

f i · δ(x i − X L) · �x i =

N L ∑

L =1

F L · δ(X L − x i) · �V L (13)

Delta functions based on discrete kernels do not directly sat-

sfy the partition of unity condition [41] and this condition is then

ulfilled whenever the volume of each solid marker approximated

hat of a fluid cell, i.e. �V L ≈ �x i .

.3. Reconstruction of interpolation functions

Delta functions [42–44] or Moving Least Squares (MLS)

41,45] are commonly used to reconstruct the interpolation func-

ions used in the direct forcing method framework. To date, the

126 P. Ouro et al. / Computers and Fluids 179 (2019) 123–136

Fig. 2. (a) Kernel functions adopted to reconstruct the interpolating delta and (b) regions over which forces are transferred between Eulerian and Lagrangian frameworks.

a

c

fi

m

g

f

e

f

e

t

c

d

t

p

g

c

f

o

3

i

u

t

c

t

w

L

r

n

v

E

e

3

t

t

p

E

a

g

e

a

l

c

s

m
use of delta functions in IB applications is more frequent than MLS

and thus adopted herein. Note that these two techniques have a

similar computational expense as the most time-consuming oper-

ation in the interpolation procedure is the neighbour searching,

which is accomplished in both methods. Therefore performance

results obtained here for the delta functions can be extrapolated

to MLS. Delta functions δ are calculated as a result of three one-

dimensional kernels φ as,

δ

(
x i − X L

�x i

)
=

1

�x i

φ

(
x i − X i L

�x i

)
φ

(
x j − X j L

�x j

)
φ

(
x k − X k L

�x k

)
(14)

The kernel functions of φ3 by Roma et al. [44] , φ4 by Peskin

[43] , and φ∗
4

by Yang et al. [42] as a function of the normalised

grid spacing h = (x i − X L) / �x i read,

φ3 (h) =

⎧ ⎨

⎩

1
3
(1 +

√ −3 h

2 + 1)) , if | h | < 0 . 5 .

1
6

(
5 − 3 | h | − √

−3(1 − | h |) 2 + 1

)
, if 0.5 ≤ | h | < 1 . 5 .

0 , if | h | ≥ 1 . 5 .

(15)

φ4 (h) =

⎧ ⎪ ⎨

⎪ ⎩

1
8
(3 − 2 | h | +

√

1 + 4 | h | − 4 h

2)) , if | h | < 1 . 0 .

1
8

(
5 − 2 | h | − √

−7 + 12 | h | − 4 h

2

)
, if 1.0 ≤ | h | < 2 . 0 .

0 , if | h | ≥ 2 . 0 .

(16)

φ∗
4 (h) =

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

3
8

+

π
32

− h 2

4
, if | h | < 0 . 5 .

1
4

+

1 −| h |
8

√

−2 + 8 | h | − 4 h

2

− 1
8

arcsin

(√

2 (| h | − 1)
)
, if 0.5 ≤ | h | < 1 . 5 .

17
16

− π
64

− 3 | h |
4

+

r 2

8
+

| h |−2
16 √

−14 + 16 | h | − 4 h

2

+

1
16

arcsin

(√

2 (| h | − 2)
)
, if 1.5 ≤ | h | < 2 . 5 .

0 , if | h | ≥ 2 . 5 .

(17)

Fig. 2 a shows the support width of these kernels utilising

between 3 and 5 neighbours in each direction yielding a to-

tal number of neighbours, n e , of 27, 64 and 125, respectively.

Fig. 2 b depicts how the interpolation area is distributed in

a two-dimensional plane (bounded by solid, dashed or dotted

lines, respectively) increasing with the kernel width. Yang et al.

[42] showed that a larger number of neighbours reduces the non-

physical force oscillations during the variable exchange procedures.

Nevertheless, the improvement of the interpolations results in ad-

ditional computational load that is directly proportional to the

number of neighbours used.

The computational overhead of the IB method is relatively low

if Lagrangian markers are static because the interpolation functions
re constructed only once at the first time step. However, it in-

reases significantly for moving bodies, especially in DNS/LES as

ne grids are required and a solid body can comprise thousands of

arkers. Searching for the closest fluid cells in the vicinity of La-

rangian markers is the most time-consuming operation due to the

act that the staggered storage of the three components of velocity

ntails operations on three different grids, i.e. three interpolation

unctions for each marker needs to be computed. Hence, two rel-

vant computational aspects in the present efficient implementa-

ion of the IB method are: (1) delta functions and indices of the

losest neighbours to each Lagrangian marker are computed only

uring the forwards interpolation and stored to be used during

he backwards interpolation avoiding a second neighbour searching

rocess, i.e. δ(X L − x i) = δ(x i − X L) ; and (2) a master-scattering-

athering technique (explained in Section 3.2) is developed to effi-

iently deal with moving Lagrangian particles that travel along dif-

erent sub-domains and computed by different processes through-

ut the simulation.

. Parallelisation strategy

Large eddy simulations require sufficiently fine grids to explic-

tly resolve the large-scale turbulence in the flow [1,46] , which

sually implies an enormous computational load especially when

he Reynolds number is relatively high. Hydro3D features a Lo-

al Mesh Refinement (LMR) methodology that allows refining

he fluid mesh in certain areas of interest or of steep gradients

hile using coarser grids away from them. The implementation of

MR in Hydro3D is detailed in [9] and allows performing high-

esolution LES with a reasonable amount of MPI processes. The

ext Section 3.1 details the way that the Eulerian field is di-

ided and mapped using pure MPI, and Section 3.2 focuses on the

ulerian-Lagrangian computation using a new hybrid MPI/OpenMP

nvironment.

.1. Eulerian field parallelisation using MPI

In most LES and DNS the solution of the Poisson pressure equa-

ion often constitutes the most time-consuming operation within

he fractional-step method. The concept of the coarse-grained MPI

arallelisation is used to divide the computational domain of the

ulerian field into sub-domains or blocks and execute them in par-

llel using multiple processing units by means of the Single Pro-

ram Multiple Data (SPMD). These blocks are assigned to differ-

nt MPI ranks and communication is accomplished via MPI oper-

tions. The blocks overlap at their boundaries by one or several

ayers of ghost cells (or halos) through which information is ex-

hanged. Fig. 3 depicts an example of four sub-domains with a

olid body in two of them. Each sub-domain overlaps with its im-

ediate neighbours through two layers of ghost cells and the in-

P. Ouro et al. / Computers and Fluids 179 (2019) 123–136 127

Fig. 3. A fluid domain composed of 4 sub-domains with communication via 2-layer overlapping ghost cells.

Fig. 4. Schematic representation of the time advancement procedure using 8 physical threads with MPI processes 2 and 5 spawning 3 OpenMP threads.

f

t

p

t

u

b

3

b

m

M

a

g

2

s

i

a

p

b

c

L

p

t

t

a

t

t

e

t

m

g

c

m

i

i

t

i

i

p

e

p

t

e

c

c

e

r

t

n

h

t

c

M

c

a
ormation stored in these cells is exchanged, guaranteeing a con-

inuous Eulerian field across domain interfaces. This is a standard

arallelisation approach for block-structured grids and increases

he calculation speed of the solution of the Poisson equation when

sing a multigrid solver because a big matrix solution problem is

roken down into many small sub-problems [47] .

.2. Hybrid MPI/OpenMP strategy

The use of Eulerian-Lagrangian methods featuring a large num-

er of Lagrangian markers in a relatively confined Eulerian do-

ain [6,7,28,37,48] calls for a parallelisation strategy beyond pure

PI, as most likely Lagrangian markers are not equally distributed

mongst the Eulerian sub-domains. For instance, in Fig. 3 the La-

rangian markers comprising the airfoil are all located in domains

 and 3 and consequently there is a greater computational effort

olving the flow in these domains than in domains 0 and 1. Adopt-

ng a parallelisation strategy that combines MPI and OpenMP aims

t taking advantage of the benefits of each technique [49–51] . The

roposed hybrid scheme in the Eulerian-Lagrangian solver com-

ines a coarse-grained message-passing parallelism in the Eulerian

alculations with a fine-grained multi-thread parallelism for the

agrangian calculations [52] .

A global layout of the proposed hybrid approach using as exam-

le 4 MPI processes with 2 of them spawning 3 OpenMP threads

o fork the Lagrangian calculations is depicted in Fig. 4 . Firstly,

he predicted Eulerian velocities are calculated by each MPI rank

ccording to Eq. (9) . The next step, denoted as ”particle alloca-

ion”, concerns the distribution of the Lagrangian points among

he different MPI processes. This is accomplished with a strat-
gy combining the ”master-slave” concept from Uhlmann [53] with

he ”scattering-and-gathering” strategy from Wang et al. [54] . The

aster processor (hereinafter referred to as master) gathers the

eneral information from all the Lagrangian markers, e.g. their

oordinates. Based on these data, the master calculates for each

arker in which sub-domain i is located and the MPI process that

s assigned to deal with it, and also generates a vector X L i with the

ndices of the markers contained within the sub-domain i . The lat-

er is distributed via SCATTER together with the integer n L i that

ndicates the number of markers within the sub-domain i . Depend-

ng on whether the marker moves (dynamic) or is static (fixed) the

article allocation and scattering-and-gathering are performed at

very time step or just once at the first one, respectively.

The computation of the IB method equations (Eqs. (9) –(12)) is

erformed by all MPI processes whose assigned sub-domains con-

ain Lagrangian markers. This differs from Wang et al.’s [54] strat-

gy in which only the master deals with these equations ex-

hanging the Lagrangian velocities and forces via MPI communi-

ations with the other MPI processes once resolved. This is an

fficient strategy whenever the number of Lagrangian points is

elatively small as the communication of large arrays can lead

o significant overheads. In the present cases there is a great

umber of markers causing an important load-unbalancing and

ence the proposed alternative strategy adding multi-threading to

he ”master-scattering-gathering” strategy aims at improving the

ode’s speedup by (i) reducing inter-node communication between

PI processes, and (ii) improving the locality of the IB method

omputations. No MPI calls are made within the OpenMP par-

llelised loops, which simplifies the present implementation and

128 P. Ouro et al. / Computers and Fluids 179 (2019) 123–136

Fig. 5. Schematic distribution of 38 MPI processes on 4 SMP nodes for which 12 MPI processes spawn 2 OpenMP threads.

w

t

s

w

e

t

g

a

t

p

c

t

1

b

(

I

a

4

i

f

t

d

R

s

n

s

r

t

w

p

w

m

t

i

b

d

t

m

(

R

i

o

5

b

t

e

1
avoids some of the drawbacks associated with such hybrid paral-

lelisation schemes [49,55] .

After performing the Lagrangian forcing correction on the Eule-

rian field via Eq. (12) , an inverse operation sending the Lagrangian

forces from the processors to the master is performed via GATHER .

The latter is needed when the Lagrangian forces are physically

meaningful, such as in the analysis of tidal turbines [6,37] . The

final step is to compute the remaining Eulerian variables of the

scalar ˜ p correcting the final velocity u

t and pressure p t fields using

Eqs. (5) –(8) .

In many hybrid MPI/OpenMP applications the distribution of

MPI/OpenMP threads is homogeneous, while in our implementa-

tion not every MPI process spawns OpenMP threads. This adds

certain flexibility in the hybrid scheme especially when allocating

cores dedicated to either MPI or OpenMP within the same node to

reduce inter-node communications [49] . Fig. 5 shows a schematic

core distribution for 38 MPI tasks among 4 nodes from which 12

ranks uses 2 threads. Different distributions among the processes

are combined with nodes dedicated to pure MPI processes, mixed

use of pure MPI and hybrid MPI/OpenMP, and exclusively dedicated

to hybrid MPI/OpenMP.

In order to ensure a correct sequential mapping of the pro-

cesses to the compute cores in the mixed MPI/OpenMP scheme,

it is necessary to tune the launch configuration of the code

in the job scheduler. Considering Slurm as scheduler, the envi-

ronment variable SLURM _ TASKS _ PER _ NODE is set in the batch

script to indicate ensure those MPI processes spawning additional

OpenMP threads are placed on the same nodes, which can be also

shared with those running pure MPI processes. For instance, in

the SMP-style (a sequential) assignation of the resources for the

scenario depicted in Fig. 5 , the environment variable would be

SLURM _ TASKS _ PER _ NODE =

′ 16 (x1) , 12 (x1) , 8 (x1) , 2 (x1) ′ , in the

value which is a list of comma-separated items of set as A (xB)

with A denoting the number of MPI processes on B consecutive

nodes. This value would Hence, 16 MPI processes are assigned to

the first compute node, 12 MPI processes to the second one leav-

ing room for two of them (MPI processes 26 and 27) to spawn an

additional OpenMP thread each, 8 MPI processes to the third node,

leaving room for all allowing them to spawn an additional OpenMP

thread each, and the remaining MPI processes (36 and 37) to the

last node. Note this feature is not exclusive of Slurm as the pro-

posed hybrid parallelisation scheme of Hydro3D could be adopted

with other schedulers, e.g. PBS, and without the need for adminis-

trative privileges.

4. Parallel performance assessment

This section presents the scalability study of Hydro3D for three

different flow problems. The first one is a lid-driven cavity flow

case and the other two are high-resolution large-eddy simulations

of complex flows of engineering interest [6,28] . The parallelisation

speedup S n is evaluated as,

S n =

T 0
T

(18)

n
here T 0 corresponds to the wall-time or runtime obtained with

he configuration using the lowest number of cores and T n corre-

ponds to the runtime when using n cores. The runtime is obtained

ith the MPI _ WTIME () directive from time-averaging 200 time steps

xecuted under fully developed flow conditions, which are enough

o obtain representative runtime values as there is an almost negli-

ible difference in computing time among these time steps. Gener-

tion of input/output files (e.g. IB method forces) is omitted during

he simulations in order to focus the analysis on the flow solver

erformance.

All simulations are carried out on a cluster of the Super-

omputing Wales 1 project hosting 128 nodes, each with 2 In-

el Xeon E5-2670 (Sandy Bridge) processors and 64GB (DDR3-

600Mhz ECC SDR) RAM. Nodes are interconnected with an Infini-

and (Connect2-X) 4x QDR/PCIe gen2 16x network infrastructure

40Gbps HS/LL QDR, 1.2 μs latency). The code was compiled with

ntel Fortran compiler version 16.0 using −O2 − AVX − qopenmp flags

nd linked with Intel MPI library version 5.1.

.1. Lid-driven cavity flow

Firstly, the scalability of the MPI parallelisation is analysed us-

ng the lid-driven cavity flow [56] , a common benchmark case used

or testing incompressible flow solvers [57] . Here a similar setup

o that by Wang et al. [54] is adopted. The domain is a three-

imensional cube the sides of which are equal to one and the

eynolds number is set to 400. A Dirichlet boundary condition is

et at the top lid with an imposed velocity of (u, v , w) = (1 , 0 , 0) ,

o-slip conditions are used at the bottom, west and east walls and

lip conditions are adopted on the north and south walls. The grid

esolution is uniform in the whole domain with an even distribu-

ion of Eulerian cells per processor. The time step is set variable

ith a CFL value of 0.5 in all cases.

The resulting flow field obtained with the mesh resolution com-

rising 160 grid cells along each spatial direction is shown in Fig. 6

ith the contour plot of u-velocity at a transversal plane along the

id-width of the domain. Profiles of u- and w-velocities confirm

he accuracy of Hydro3D to predict the flow developed in the cav-

ty achieving a good match with those of Ghia et al. [56] . Scala-

ility of the code is assessed for three grid-resolutions using five

ifferent number of cores, namely 1, 8, 64, 125 and 512 (512 is

he largest number of cores available on the cluster). Details of

esh resolution (�x i), number of divisions along each direction

 n i = 1 / �x i) and total number of cells (N e) are provided in Table 1 .

esults of the code’s speedup are presented in Fig. 7 a demonstrat-

ng that Hydro3D features a good strong scalability for all grid res-

lutions (and especially for the finest mesh n i = 320) except when

12 CPUs are used in cases 1 and 2, i.e. those with the least num-

er of grid cells.

As mentioned before the most expensive computation at every

ime step in LES solvers is the solution of the Poisson pressure

quation (Eq. (10)). Fig. 7 b shows that in the present cases com-
Supercomputing Wales homepage: http://www.supercomputing.wales .

http://www.supercomputing.wales

P. Ouro et al. / Computers and Fluids 179 (2019) 123–136 129

Fig. 6. Velocity field and validation of the coarse-grid lid-driven cavity flow using data of Ghia et al. [56] .

Fig. 7. Lid-driven cavity flow case results. (a) Speedup obtained for the different resolutions using up to 512 cores and (b) runtime associated with the pressure solver (blank

symbols) and total time step (filled symbols).

Table 1

Details of mesh resolution, number of divi-

sions per spatial direction and total number

of fluid cells for the three scenarios used in

the lid-driven cavity flow.

Case �x i n i N e

1 0.00625 160 4.096 · 10 6

2 0.0 050 0 200 8.0 0 0 · 10 6

3 0.003125 320 32.768 · 10 6

p

t

u

r

m

4

d

T

u

a

e

b

[

v

Table 2

Details of the mesh resolutions tested, number of Eulerian cells in the

fluid domain, Lagrangian markers conforming the airfoil shape, sub-

domains and sub-domains hosting Lagrangian markers.

Case Mesh �x /c N e N L N d N dLm

1.a M1 0.0125 13.32 · 10 6 186,240 57 24

1.b M1 0.0125 13.32 · 10 6 186,240 114 48

1.c M1 0.0125 13.32 · 10 6 186,240 171 72

2.a M2 0.0100 52.59 · 10 6 357,0 0 0 114 48

2.b M2 0.0100 52.59 · 10 6 357,0 0 0 171 72

b

b

o

s

i

7

w

t

b

s

d

t

m

w

a

[
uting the pressure solver always takes more than 50% of the to-

al time and for those cases using less than 8 tasks this increases

p to 70%. Overall, good strong scalability is obtained as the mean

untime needed to compute the pressure equation decreases al-

ost linearly when increasing the number of cores.

.2. Simulation of a vertical axis tidal turbine

This section assesses the parallelisation performance of Hy-

ro3D for the simulation of the flow past a Vertical Axis Tidal

urbine (VATT). In contrast to the lid-driven cavity flow, this sim-

lation requires the computation of moving Lagrangian markers

nd the hybrid MPI/OpenMP parallelisation approach of the code is

mployed. The accuracy of these simulations using the immersed

oundary method was successfully validated in previous works

6,58] .

The turbine operates in a hydraulic flume with an incoming

elocity U of 2.3m/s and comprises three cambered NACA 0018
0
lades with a chord length of c = 0 . 032 m. The radius of the tur-

ine is R = 2 . 73 c and it rotates at an imposed rotational speed

f 52.57 rad / s attaining a tip speed ratio of 2, i.e. the tangential

peed of the blades is twice the incoming flow velocity. The result-

ng Reynolds number based on the blade’s chord is Re c = cU 0 /ν =
3 , 600 . The flume’s cross-section measures 32 c by 18 c in stream-

ise and transversal directions, and these dimensions are kept in

he computational domain while extending vertically 2 c . The tur-

ine centre is x = 10 c away from the inlet and centered in the

panwise direction. The mesh resolution is uniform in x - and y -

irections, i.e. �x = �y, while it is doubled in the normal direc-

ion. The kernel function φ4 is used in the immersed boundary

ethod [6,58] .

The efficiency of the hybrid parallelisation strategy is tested

ith two different mesh resolutions, namely M1 and M2, which

re chosen based on the mesh convergence study of Ouro et al.

6] . Table 2 details the mesh configurations regarding the nor-

130 P. Ouro et al. / Computers and Fluids 179 (2019) 123–136

Fig. 8. Zoom-in of the Eulerian sub-domains distribution and the VATT blades with contour of the normalised time-averaged streamwise velocity. The LMR levels are also

indicated.

c

s

s

O

m

2

t

M

t

o

3

t

s

w

P

o

s

fi

m

w

i

i

m

a

H

t

b

t

t

φ

s

t

w

m

w

l

O

1

o
malised grid resolution (�x / c), number of Eulerian cells in the en-

tire fluid domain (N e), Lagrangian markers comprising the turbine

(N L), number of domains (N d) and number of domains hosting La-

grangian markers (N dLm

).

Fig. 8 shows a zoom-in of the fluid domain of the horizontal

plane at z/c = 1 with contours of normalised mean streamwise ve-

locity. The domain is divided into 57 sub-domains in the x - y plane,

meaning that the code runs 57 MPI processes when using one ver-

tical layer of sub-domains, whilst 114 and 171 MPI processes are

used when adopting two or three layers in the vertical, respec-

tively. The turbine blades move within the finest LMR level but

only 24 of the 36 sub-domains deal with Lagrangian markers dur-

ing the simulation, which means that 24 MPI processes can require

to spawn OpenMP threads.

The scalability of the scheme is assessed for 57, 114 and

171number of sub-domains for the coarse resolution (M1) while

for the fine resolution (M2) only 114 and 171number of sub-

domains are used. Each case is tested with a pure MPI configu-

ration (meaning that no additional OpenMP thread is spawned),

and using the hybrid MPI/OpenMP scheme with 2 and 3 OpenMP

threads for those MPI processes computing IB markers, i.e. each

MPI process spawns 1 or 2 additional OpenMP threads. The pro-

cedure to determine the processes computing the IB bodies is

straightforward when the body moves with a prescribed motion,

e.g. a circular movement described by a VATT, and for this case

the sub-domains requiring multi-threading are the ones enclosed

within the blue boundary in Fig. 8 .

Results of runtime and speedup obtained with the pure MPI

and hybrid MPI/OpenMP schemes on the VATT simulations are pre-

sented in Fig. 9 . Note that the OpenMP Dynamic schedule directive

with chunk size of 50 is used as this gave the best performance

according to the test described in Appendix A . For case 1.a, using 1

and 2 additional OpenMP threads reduces the time to compute the

IB method by 43% and 55% respectively, which diminish the over-

all time to 25% and 32%. Nonetheless, the configuration using 105

threads (57 MPI processes with 48 additional OpenMP threads) in

case 1.a takes longer to run than using 114 MPI processes with no

OpenMP in case 1.b. Note that having two vertical domains reduces

the number of Eulerian cells used in the neighbour searching, thus

the computation of the IB method also benefits from a larger do-

main partitioning.

For case 1.b, using 114 MPI tasks with 2 additional OpenMP

threads (162 cores in total) the hybrid scheme outperforms by 12%

the results obtained with the pure MPI with 171 cores. In view of

these runtimes, the effectiveness of the hybrid scheme is deemed
 n
onditioned by the time spent solving the Poisson equation, as

hown in Table 3 . For the finer mesh resolution, M2, similar re-

ults are obtained. In case 2.a, executing the code with 2 additional

penMP threads drops by 42% the time spent computing the IB

ethod leading to a smaller runtime than that obtained for case

.b with 171 MPI processes.

The speedup obtained with every hybrid configuration relative

o the pure MPI scenario is presented in Fig. 9 c and d for meshes

1 and M2, respectively. The average speedup gained to compute

he IB method with 1 additional thread is about 1.7, which in terms

f speedup based on the total runtime is 1.3. However, when using

 threads the speedup increases up to about 2.2 and 1.4 related

o the IB method and total runtime per time step. Note that the

lope of the speedup curves related to the total runtime flattens

hen adopting 3 threads as a result of the time spent solving the

oisson equation again becoming the most expensive computation

ver the IB method.

The percentage of time spent on the different stages of the LES

olver to advance the simulation in time for the pure MPI con-

gurations is summarised in Table 3 . It is appreciated that the IB

ethod consumes from 48% to almost 60% of the computing time

hilst resolving the Poisson equation takes about 30–38%, which

ndicates that the IB method arises as the code bottleneck. This

s noticeable when increasing from 114 to 171 cores, i.e. 1.5 times

ore resources, runtime time drops by 14% and 21% for cases 1

nd 2 respectively.

ybrid MPI/OpenMP performance for different kernel functions

In the direct forcing IB method the accuracy and smoothness of

he interpolation can be improved increasing the number of neigh-

ours [42] . However, this is not free-of-charge and brings addi-

ional computational overhead due to a larger number of opera-

ions in the neighbour searching. Here, three delta functions φ3 ,

4 and φ∗
4 are examined which use 27, 64 and 125 neighbours re-

pectively. Fig. 10 presents the mean runtime per time step and

hat corresponding to the IB method with mesh M1. For all cases

ith pure MPI configuration the computing time spent on the IB

ethod increases about 1.8 times using φ4 and 3.4 times using φ∗
4

hen compared to the runtime obtained with φ3 , which uses the

east number neighbours in the interpolation.

The runtime obtained with 114 MPI processes and 1 additional

penMP thread (162 cores in total) using φ∗
4

and φ4 is 22% and

2% lower, respectively, than that with 171 MPI processes with-

ut OpenMP threads. In the case of φ3 , the hybrid scheme does

ot outperform the pure MPI performance as the resolution of the

P. Ouro et al. / Computers and Fluids 179 (2019) 123–136 131

Fig. 9. Physical average runtime spent computing the IB method and total time per time step for meshes M1 (a) and M2 (b). Speedup in the code’s performance regarding

the IB method computations and the total time per time step for meshes M1 (c) and M2 (d).

Table 3

Percentage of the mean runtime spent on computing convection-diffusion, pressure equa-

tion, IB method, and average time (in seconds) per time step for the pure MPI configura-

tions.

Case N d Convection-diffusion Pressure IB method Mean time step (s)

1.a 57 10.80 % 28.41% 59.14% 6.02

1.b 114 11.05% 38.66% 48.26% 3.44

1.c 171 10.98% 38.18% 48.65% 2.96

2.a 114 9.13 % 34.71% 53.80% 12.10

2.b 171 9.55 % 35.62% 52.75% 9.63

Fig. 10. Comparison of the mean (a) total time step runtime and (b) runtime computing the IB method using different kernels.

132 P. Ouro et al. / Computers and Fluids 179 (2019) 123–136

Table 4

Values of speedup in the IB method calculation, speedup based on the aver-

age time per time step and parallel efficiency.

Case N d N omp N threads T IB / T Press S IB n S time _ step
n E n

φ3

1.a 57 2 81 0.743 1.559 1.187 0.835

1.b 114 2 162 0.520 1.441 1.170 0.823

1.c 171 2 243 0.523 1.402 1.126 0.792

2.a 57 3 105 0.596 1.941 1.227 0.693

2.b 114 3 210 0.440 1.645 1.214 0.659

2.c 171 3 315 0.4 4 4 1.635 1.161 0.630

φ4

1.a 57 2 81 1.187 1.754 1.341 0.943

1.b 114 2 162 0.789 1.518 1.216 0.855

1.c 171 2 243 0.766 1.756 1.316 0.926

2.a 57 3 105 0.936 2.225 1.483 0.805

2.b 114 3 210 0.624 2.0 0 0 1.308 0.710

2.c 171 3 315 0.607 2.215 1.410 0.765

φ∗
4

1.a 57 2 81 2.304 1.838 1.508 1.061

1.b 114 2 162 1.417 1.778 1.421 1.0 0 0

1.c 171 2 243 1.364 1.794 1.402 0.987

2.a 57 3 105 1.690 2.463 1.777 0.965

2.b 114 3 210 1.053 2.393 1.635 0.888

2.c 171 3 315 1.005 2.447 1.619 0.879

Fig. 11. Contours of normalised streamwise velocity contours and flow streamlines

around the pitching NACA 0012 at a) α = 15 . 88 ◦ ↑ and b) 15.92 °↓ .

r

a

t

r

t

b

r

a

o

e

c

f

l

I

c

w

s

0

a

α

w

a

t

a

t

t

d

d

s

t

a

v

a

f

f

b

v

a

Poisson equation is constantly more time-consuming than the IB

method. An effective measure of multi-threading performance is

through parallel efficiency evaluated as,

E n =

nT n

mT m

(19)

which compares the runtime obtained with n and m number

of cores. Details of the different hybrid configurations with their

speedup and parallel efficiency calculated in reference to the re-

spective pure MPI configurations are given in Table 4 , together

with the ratio between time computing the IB method (T IB) and

pressure solver (T Press) for the different kernel functions. N omp rep-

resents the number of additional OpenMP threads and N threads the

total number of threads, summing the ones running MPI processes

and OpenMP threads.

The performance of adding multi-threading improves for φ∗
4 as

speedup values based on the total time step are above 1.4 for all

cases using 2 threads and 1.6 when using 3 threads. This is also

reflected in good parallel efficiency values being approx. 1.0 and

0.88 for 2 and 3 threads, respectively. Values of E n for φ4 de-

crease to a range between 0.85 and 0.94 when using 2 threads

and from 0.71 to 0.80 for 3 threads. Speedup results for φ3 are

relatively low (< 1.2) as the computational load of the IB method

compared to that of Poisson pressure equation, i.e. T IB / T Press is con-

stantly lower than 0.75. The resulting parallel efficiency shows val-

ues mostly over 0.80 for 2 OpenMP threads while dropping to 0.60

for 3 threads. Results suggest that it should be borne in mind the

balance between the higher-order kernels being more accurate, e.g.

φ∗
4 , and their computational expense.

Overall good parallel efficiency is obtained with the hybrid

MPI/OpenMP scheme whenever the ratio T IB / T Press is greater than

one, which seems a good indicator of whether extra computational

resources should be added to pure MPI (T IB / T Press < 1) or multi-

threading (T IB / T Press > 1).

4.3. Simulation of a pitching airfoil under dynamic stall

The simulation of pitching airfoils undergoing dynamic stall is

of interest to many fields, as it is a key phenomenon in the aero-

dynamics of helicopters, micro-aerial vehicles or wind and tidal

turbines. Despite its relevance in such variety of flows, the un-

derstanding of the dynamic stall is still not complete due to its
emarkably complex nature depending on a large number of flow

nd kinematic variables, e.g. flow or pitching conditions [59] .

In the simulation of pitching airfoils, the velocity gradients over

he airfoil surfaces need to be well-resolved in order to accu-

ately capture flow phenomena such as flow separation, laminar-

o-turbulent boundary layer transition during upstroke motion, or

oundary layer reattachment during pitch down. Therefore, eddy-

esolving approaches, such as LES, provided with very fine meshes

re required to obtain trustworthy results. The computational load

f simulating these moving bodies is notably high mainly due to

xtra computations to re-allocate variables when body-fitted or

himera methods are used [60] or to re-construct the interpolation

unctions using the immersed boundary method [28] .

Here the hybrid parallelisation scheme is tested in the simu-

ation of a NACA 0012 [61] under a pitching motion using the

B method with kernel function φ4 and whose accuracy was suc-

essfully proven in Ouro et al. [28] . In the present case an airfoil

ith chord length c = 0 . 15 m oscillates sinusoidally with a con-

tant pitching frequency (ω) around its gravity centre located at

.25 c away from the leading edge. The angle described by the solid

t any time is calculated as,

(t) = α0 + �α · sin (ωt) (20)

here α0 is the pre-set angle with value 10 °, �α is the angle

mplitude equal to 6 °, and ω is the oscillation frequency equal

o 0.32rad/s. The resulting maximum and minimum pitch angles

re 16 ° and 4 °, respectively. Fig. 11 shows the flow developed over

he moving airfoil at α = 15 . 88 ◦ ↑ and 15.92 °↓ . Fig. 11 a represents

he last stage of the upstroke motion with the leading edge vortex

ominating the flow over the airfoil’s suction side also observed

uring the experiments [61] . This energetic large-scale structure is

hed once the airfoil achieves its maximum angle of attack and a

railing edge vortex is then generated as observed in Fig. 11 b.

The performance of the hybrid MPI/OpenMP scheme is tested

gainst pure MPI runs using two grid resolutions. Details are pro-

ided in Table 5 together with total number of Eulerian cells N e

nd Lagrangian markers N L . Mesh P1 features 320 markers uni-

ormly distributed over both pressure and suction sides of the air-

oil while 400 markers are adopted in mesh P2. These are selected

ased on the mesh sensitivity study performed in [28] that pro-

ided an accurate resolution of the flow. The grid is uniform in x-

nd y-directions while in the spanwise direction it is �z = 2�x .

P. Ouro et al. / Computers and Fluids 179 (2019) 123–136 133

Fig. 12. Distribution of the different resolution levels on the mesh used for the pitching airfoil simulations. Red contour bounds the sub-domains requiring OpenMP threads.

Fig. 13. Performance of the hybrid MPI/OpenMP parallelisation on the pitching airfoil simulations.

Table 5

Details of the mesh resolutions used for the pitching airfoil simulations.

Case Mesh �x /c N e N L N d N dLm

1.a P1 0.003125 8.0 · 10 6 235,040 38 12

1.b P1 0.003125 8.0 · 10 6 235,040 76 24

2.a P2 0.0 0250 0 10.14 · 10 6 364,224 38 12

2.b P2 0.0 0250 0 10.14 · 10 6 364,224 76 24

d

l

t

n

I

r

m

d

I

a

i

p

b

r

d

g

r

m

a

t

a
Four levels of LMR are adopted to construct the fluid mesh as

epicted in Fig. 12 with the airfoil embedded within the finest

evel. This allows to reduce the total number of fluid cells required

o perform these fine-grid simulations with a relatively affordable

umber of computational resources. The sub-domains dealing with

B markers that may require multi-threading are indicated by the

ed boundary in Fig. 12 . Analogously to the VATT case, the fluid
esh P1 comprises a single layer of sub-domains in the spanwise

irection, so up to 12 MPI processes can spawn OpenMP threads.

n mesh P2 this number is doubled as two domains are distributed

long the spanwise direction. Note the Dynamic OpenMP schedul-

ng directive with chunk size of 50 is used as it obtained the best

erformance results in Appendix A .

Fig. 13 presents the performance comparison between the hy-

rid MPI/OpenMP and pure MPI parallelisation schemes with mean

untime and speedup values for meshes P1 and P2. Adding an ad-

itional OpenMP thread to the MPI processes computing the La-

rangian markers in the 38 sub-domain configuration results in a

eduction of the runtime from 4.9s to 3.4s, about a 30% of the total

ean time step. This achieves an almost perfect parallel efficiency

s 31% more cores are added. The hybrid scheme takes 3.4s per

ime step compared to 3.11s from the 78 pure MPI setup, i.e. needs

bout 9% more time to compute each time step but with 36% less

134 P. Ouro et al. / Computers and Fluids 179 (2019) 123–136

Table 6

Values of speedup in the IB method calculation, speedup based on the aver-

age time per time step and parallel efficiency for the pitching airfoil simu-

lations.

Case N d N omp N threads T IB / T Press S IB n S time _ step
n E n

1.a 38 2 50 1.351 1.824 1.429 1.086

1.b 76 2 100 1.003 1.611 1.245 0.954

2.a 38 3 62 0.981 2.502 1.656 1.015

2.b 76 3 124 0.835 1.948 1.353 0.829

a

m

b

m

L

o

t

b

t

a

t

a

o

s

f

w

e

v

b

s

s

t

t

a

l

f

L

M

A

E

s

l

c

p

v

G

(

A

s

t

c

T

s
number of cores. Furthermore, the hybrid scheme in case 1.a with

3 OpenMP threads (62 cores in total) outperforms case 1.b with 78

MPI processes being the latter 5% faster using 20% less computa-

tional resources.

Analogous results are obtained for mesh P2 with the hy-

brid scheme using 50 cores (38 MPI processes and 12 additional

OpenMP threads) performing similarly to 78 pure MPI cores and

becoming faster when 2 additional OpenMP threads (N dLm

= 24)

are adopted. Fig. 13 c and d show that the hybrid MPI/OpenMP fea-

tures a good weak scalability, as similar speedup is achieved be-

tween meshes P1 and P2 comparing analogous hybrid configura-

tions.

Results of the relative time computing the IB method and pres-

sure solver, speedup related to the IB method and total time step,

and parallel efficiency are presented in Table 6 . For cases 1.a with

2 and 3 threads, the ratio T IB / T Press is consistently almost equal to

or above 1.0 identifying the IB method as the code’s bottleneck,

and consequently the parallel efficiency for these cases is over 1.0

proving the feasibility of the multi-threading scheme. For case 1.b,

the relative time spent on the IB method reduces attaining an E n
of 0.954 using 2 and 0.829 using 3 threads as the IB method com-

putation becomes faster than computing the pressure equation, i.e.

the Lagrangian part is not the code bottleneck after 2 additional

threads are used.

It is noteworthy that Ouro et al. [28] performed almost 30 0,0 0 0

iterations to simulate four full cycles of a pitching airfoil albeit

their flow and kinematic conditions were different to the present

case. The computational load of their LES was equivalent to 38,0 0 0

CPU hours using a pure MPI scheme with 76 cores. In view of the

present results, a hybrid scheme with 38 MPI processes and 2 ad-

ditional OpenMP threads would lead to approx. 22% lower compu-

tational cost as the total number of cores is 62 (38 MPI processes +
24 additional OpenMP threads) and the average runtime per time

step reduces from 4.58s to 4,37s, i.e 5% less. An even better perfor-

mance improvement could be achieved for those cases with large

stencil kernels, e.g. φ∗
4

.

5. Conclusions

A hybrid MPI/OpenMP parallelisation methodology designed for

Eulerian-Lagrangian simulations using the in-house code Hydro3D

has been presented and applied to a series of benchmark cases.

The hybrid scheme features multi-threading capabilities by means

of OpenMP that has been added to an already existing MPI coarse-

grained parallelisation approach. OpenMP has been included into

a complex master-scattering-gathering strategy which targets the

load imbalance of executing the Lagrangian computations and ef-

ficiently solves the movement of dynamic bodies across Eulerian

sub-domains during the simulation.

In this work, the performance of the enhanced code has been

assessed for three different flow problems. The first one comprises

various lid-driven cavity flow simulations with up to 512 CPUs

which demonstrate the excellent scalability of the pure MPI par-

allelisation of Hydro3D. Next, the efficiency of the hybrid strat-

egy has been assessed for two challenging fluid-structure inter-
ction problems in which the Lagrangian-framework-based im-

ersed boundary method is employed to simulate a moving solid

ody. The mixed parallelisation strategy outperforms the perfor-

ance of pure MPI schemes in those cases in which the load from

agrangian computations is considerably larger than the Eulerian

nes, and here mainly the solution of the Poisson pressure equa-

ion requires most of the resources. It has been shown that the hy-

rid MPI/OpenMP scheme achieves a reduction of approx. 20% of

he computational cost needed for the simulation of the pitching

irfoil due to a larger computational load of the Lagrangian part

han in the case of the turbine. This performance increase can have

 notable impact in many CFD fields considering the huge expense

f most LES or DNS applications allowing to carry out a certain

imulation in a shorter time using less computational resources.

The hybrid MPI/OpenMP scheme was further analysed for dif-

erent kernel functions used in the immersed boundary method,

hich showed that the relative performance of the mixed strat-

gy improves when the number is larger. Good parallel efficiency

alues close to the unity are reported when 64 and 125 neigh-

ours were adopted in the interpolations. The OpenMP paralleli-

ation was further refined using Dynamic scheduling with chunk

ize of 50 which performed best with a speedup of 1.3–1.4 times

he default Static directive.

The presented test-cases used the standard direct forcing equa-

ions without additional fluid-structure interaction algorithm, such

s the ones use for deformable bodies, which require to solve a

arger number of equations meaning they can benefit even more

rom the proposed hybrid strategy. Multiphase techniques, such as

agrangian particle tracking, can also take advantage of the mixed

PI/OpenMP strategy which will be analysed in the future.

cknowledgements

This research was partially funded by EPSRC under the grant

P/K502819/1 and information on the data underpinning the re-

ults presented here can found at Cardiff University data cata-

ogue at DOI: 10.17035/d.2017.0033982819. The simulations were

arried out in the facilities of the Supercomputing Wales, a project

artly funded by the European Regional Development Fund (ERDF)

ia Welsh Government. The authors would like to thank Thomas

reen, from the Advance Research Computing at Cardiff University

ARCCA) for his generous advice.

ppendix A. Analysis of scheduling directives

OpenMP allows the developer to control the way threads are

cheduled and assigned to physical cores. The scheduling of the

hreads can have a significant impact on the performance of the

ode, as it directly affects the way that memory is accessed [62] .

he impact of the following OpenMP directives is assessed:

Static : the number of chunks the loop is split into is equal to

the number of threads. This is the default schedule directive.

Dynamic : the iterations from the loop are divided in chunks of

n -size. By default n is 1 but can be modified. This schedule

works with a first-come first-served basis.

Guided : similar to Dynamic but the specified n -size chunk cor-

responds to the largest piece of work. Thereafter, the new

chunk size is approximately equal to the iterations left in

the loop divided by the number of threads. This exponential

decreasing of the chunk size makes Guided to have fewer

synchronizations than Dynamic but adds an extra computa-

tional cost due to communication and distribution.

The performance of these OpenMP scheduling policies are as-

essed for the VATT configuration with case 1.b using 2 and 3

https://doi.org/10.13039/501100000266
https://doi.org/10.13039/501100008530

P. Ouro et al. / Computers and Fluids 179 (2019) 123–136 135

Fig. A.1. Comparison of the relative speedup computing the IB method (S IB) and total time step (S total) using different schedule directives in OpenMP with 2 and 3 threads.

t

v

a

T

a

u

C

m

o

f

t

e

f

i

c

T

M

w

r

R

[

[

[

[

[

[

[

[

[

[

[

[

[

hreads. Results are presented in Fig. A.1 comparing the speedup

alues relative to the IB method S IB and total time step S total which

re calculated based on the runtime obtained the Static directive.

he greatest speedup is achieved with the Dynamic directive using

 chunk size larger or equal to 50 with S IB = 1.6 and S total = 1.25

sing 2 threads, and S IB = 2.25 and S total = 2.35 using 3 threads.

hunk sizes between 50 and 20 0 0 achieve a significant perfor-

ance increase with any thread number, while a larger chunk size

f 50 0 0 experiences a decrease in speedup, being this noticeable

or 3 threads. The Guided directive provides better performance

han Static but lower than that achieved with Dynamic.

The speedup obtained with the Dynamic directive and chunks

qual or larger than 50 are remarkable, suggesting that the per-

ormance of multi-threading in the hybrid paralellisation scheme

s somewhat compromised by the scheduling directives. This be-

omes more relevant when a large number of threads are used.

herefore, the improved speedup obtained in case 1.b using 114

PI processes and 2 additional OpenMP threads over the pure MPI

ith 171 processes could be only achievable using the Dynamic di-

ective with chunk sizes of 50–200.

eferences

[1] Stoesser T. Large-eddy simulation in hydraulics: Quo Vadis? J Hydraulic Res

2014;52(4):441–52. doi: 10.1080/00221686.2014.944227 .
[2] Sotiropoulos F. Hydraulics in the era of exponentially growing comput-

ing power. J Hydraulic Res 2015;53(5):547–60. doi: 10.1080/00221686.2015.

1119210 .
[3] Rodi W. Turbulence modeling and simulation in hydraulics: a historical review.

J Hydraul Eng 2017;143(5):1–20. doi: 10.1061/(ASCE)HY.1943-790 0.0 0 01288 .
[4] Constantinescu G. LE Of shallow mixing interfaces: a review. Environ Fluid

Mech 2014;14(5):971–96. doi: 10.1007/s10652- 013- 9303- 6 .
[5] Xie Z. A two-phase flow model for three-dimensional breaking waves over

complex topography. Proc R Soc A 2015;471(2180). doi: 10.1098/rspa.2015.0101 .

[6] Ouro P, Stoesser T. An immersed boundary-based large-eddy simulation ap-
proach to predict the performance of vertical axis tidal turbines. Comput Flu-

ids 2017;152:74–87. doi: 10.1016/j.compfluid.2017.04.003 .
[7] Fraga B, Stoesser T, Lai CC, Socolofsky SA. A LES-based EulerianLagrangian ap-

proach to predict the dynamics of bubble plumes. Ocean Modell 2016;97:27–
36. doi: 10.1016/j.ocemod.2015.11.005 .

[8] Tutkun B, Edis FO. An implementation of the direct-forcing immersed bound-

ary method using GPU power. Eng Appl Comput Fluid Mech 2017;11(1):15–29.
doi: 10.1080/19942060.2016.1236749 .

[9] Cevheri M, McSherry R, Stoesser T. A local mesh refinement approach
for large-eddy simulations of turbulent flows. Int J Numer Methods Fluids

2016;82:261–85. doi: 10.1002/fld.421 .
[10] Valero-Lara P, Igual FD, Prieto-Matías M, Pinelli A, Favier J. Accelerating fluid-

solid simulations (Lattice-Boltzmann & Immersed-Boundary) on heterogeneous

architectures. J Comput Sci 2015;10:249–61. doi: 10.1016/j.jocs.2015.07.002 .
[11] Domínguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD, Gómez-Gesteira M.

New multi-GPU implementation for smoothed particle hydrodynamics on het-
erogeneous clusters. Comput Phys Commun 2013;184(8):1848–60. doi: 10.1016/

j.cpc.2013.03.008 .
[12] Gopalakrishnan P, Tafti D. Development of parallel DEM for the open source

code MFIX. Powder Technol 2013;235:33–41. doi: 10.1016/j.powtec.2012.09.006 .
[13] Yang S, Luo K, Fang M, Zhang K, Fan J. Parallel CFD-DEM modeling of the hy-

drodynamics in a lab-scale double slot-rectangular spouted bed with a parti-

tion plate. Chem Eng J 2014;236:158–70. doi: 10.1016/j.cej.2013.09.082 .
[14] Liu H, Tafti DK, Li T. Hybrid parallelism in MFIX CFD-DEM using OpenMP. Pow-

der Technol 2014;259:22–9. doi: 10.1016/j.powtec.2014.03.047 .
[15] Amritkar A, Deb S, Tafti D. Efficient parallel CFD-DEM simulations using

openmp. J Comput Phys 2014;256:501–19. doi: 10.1016/j.jcp.2013.09.007 .
[16] Yakubov S, Cankurt B, Abdel-Maksoud M, Rung T. Hybrid MPI/OpenMP paral-

lelization of an euler-lagrange approach to cavitation modelling. Computers &
Fluids 2013;80(1):365–71. doi: 10.1016/j.compfluid.2012.01.020 .

[17] Shi L, Rampp M, Hof B, Avila M. A hybrid MPI-Openmp parallel implemen-

tation for pseudospectral simulations with application to taylor-Couette flow.
Comput Fluids 2015;106:1–11. doi: 10.1016/j.compfluid.2014.09.021 .

[18] Guo X, Lange M, Gorman G, Mitchell L, Weiland M. Developing a scal-
able hybrid MPI/OpenMP unstructured finite element model. Comput Fluids

2015;110:227–34. doi: 10.1016/j.compfluid.2014.09.007 .
[19] Ouro P., Stoesser T., Fraga B., Lopez-Novoa U.. Hydro3D. 2018. doi: 10.5281/

zenodo.1200187 .

20] Kara S, Stoesser T, Sturm TW. Turbulence statistics in compound channels with
deep and shallow overbank flows. J Hydraulic Res 2012;50(5):482–93. doi: 10.

1080/00221686.2012.724194 .
[21] Kim D, Kim DI, Kim JH, Stoesser T. Large eddy simulation of flow and tracer

transport in multichamber ozone contactors. J Environ Eng 2010;136:22–31.
doi: 10.1061/(ASCE)EE.1943-7870.0 0 0 0118 .

22] Kim D, Stoesser T, Kim JH. The effect of baffle spacing on hydrodynamics and
solute transport in serpentine contact tanks. J Hydraulic Res 2013;51(5):558–

68. doi: 10.1080/00221686.2013.777681 .

23] Ouro P, Fraga B, Viti N, Angeloudis A, Stoesser T, Gualtieri C. Instantaneous
transport of a passive scalar in a turbulent separated flow. Environ Fluid Mech

2018;18(2):487–513. doi: 10.1007/s10652- 017- 9567- 3 .
[24] Kara S, Kara MC, Stoesser T, Sturm TW. Free-Surface versus rigid-Lid LES

computations for bridge-Abutment flow. J Hydraul Eng 2015;141(9):04015019.
doi: 10.1061/(ASCE)HY.1943-790 0.0 0 01028 .

25] Kara S, Stoesser T, Sturm TW, Mulahasan S. Flow dynamics through a sub-

merged bridge opening with overtopping. J Hydraulic Res 2015;53(2):186–95.
doi: 10.1080/00221686.2014.967821 .

26] McSherry RJ, Chua KV, Stoesser T. Large eddy simulation of free-surface flows.
J Hydrodyn Ser-B 2017;29(1):1–12. doi: 10.1016/S1001- 6058(16)60712- 6 .

[27] Chua KV , Fraga B , Stoesser T , Hong S , Sturm TW . Free surface flow through
bridge openings in an asymmetrical compound channel. Submitted to, Under

review in J Hydraulic Eng 2018 .

28] Ouro P, Stoesser T, Ramirez L. Effect of blade cambering on dynamic stall in
view of designing vertical axis turbines. ASME J Fluids Eng 2018;140(6):061104.

doi: 10.1115/1.4039235 .
29] Bomminayuni S, Stoesser T. Turbulence statistics in an open-Channel flow

over a rough bed. J Hydraul Eng 2011;137(11):1347–58. doi: 10.1061/(ASCE)HY.
1943-790 0.0 0 0 0454 .

30] Liu Y, Stoesser T, Fang H, Papanicolaou A, Tsakiris AG. Turbulent flow over

an array of boulders placed on a rough, permeable bed. Comput Fluids
2017;158:120–32. doi: 10.1016/j.compfluid.2017.05.023 .

[31] Smagorinsky J. General circulation experiments with the primitive equations.
Mon Weather Rev 1963;91(3):99–164. doi: 10.1175/1520-0493(1963)091 < 0099:

GCEWTP 〉 2.3.CO;2 .
32] Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of

the velocity gradient tensor. Flow Turbul Combust 1999;62(3):183–200. doi: 10.

1023/A:10 099954260 01 .
[33] Uhlmann M. An immersed boundary method with direct forcing for the sim-

ulation of particulate flows. J Comput Phys 2005;209(2):448–76. doi: 10.1016/j.
jcp.2005.03.017 .

34] Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comput
1968;22(104):745–62. doi: 10.1090/S0025- 5718- 1968- 0242392- 2 .

[35] Cristallo A, Verzicco R. Combined immersed boundary/large-Eddy-Simulations

of incompressible three dimensional complex flows. Flow Turbul Combust
2006;77:3–26. doi: 10.1007/s10494- 006- 9034- 6 .

36] Kara MC, Stoesser T, McSherry R. Calculation of fluidstructure inter-
action: methods, refinements, applications. Proc ICE Eng Comput Mech

2015;168(2):59–78. doi: 10.1680/eacm.15.0 0 010 .
[37] Ouro P, Harrold M, Stoesser T, Bromley P. Hydrodynamic loadings on a hori-

zontal axis tidal turbine prototype. J Fluids Struct 2017;71:78–95. doi: 10.1016/
j.jfluidstructs.2017.03.009 .

38] Ouro P, Wilson CAME, Evans P, Angeloudis A. Large-eddy simulation of shal-

low turbulent wakes behind a conical island. Phys Fluids 2017;29(12):126601.
doi: 10.1063/1.5004028 .

39] Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J. Combined immersed-Boundary
finite-Difference methods for three-Dimensional complex flow simulations. J

Comput Phys 20 0 0;161(1):35–60. doi: 10.10 06/jcph.20 0 0.6484 .

https://doi.org/10.1080/00221686.2014.944227
https://doi.org/10.1080/00221686.2015.1119210
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001288
https://doi.org/10.1007/s10652-013-9303-6
https://doi.org/10.1098/rspa.2015.0101
https://doi.org/10.1016/j.compfluid.2017.04.003
https://doi.org/10.1016/j.ocemod.2015.11.005
https://doi.org/10.1080/19942060.2016.1236749
https://doi.org/10.1002/fld.421
https://doi.org/10.1016/j.jocs.2015.07.002
https://doi.org/10.1016/j.cpc.2013.03.008
https://doi.org/10.1016/j.powtec.2012.09.006
https://doi.org/10.1016/j.cej.2013.09.082
https://doi.org/10.1016/j.powtec.2014.03.047
https://doi.org/10.1016/j.jcp.2013.09.007
https://doi.org/10.1016/j.compfluid.2012.01.020
https://doi.org/10.1016/j.compfluid.2014.09.021
https://doi.org/10.1016/j.compfluid.2014.09.007
https://doi.org/10.1109/TNNLS.2017.2728639
https://doi.org/10.1080/00221686.2012.724194
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000118
https://doi.org/10.1080/00221686.2013.777681
https://doi.org/10.1007/s10652-017-9567-3
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001028
https://doi.org/10.1080/00221686.2014.967821
https://doi.org/10.1016/S1001-6058(16)60712-6
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0026
https://doi.org/10.1115/1.4039235
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000454
https://doi.org/10.1016/j.compfluid.2017.05.023
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1023/A:1009995426001
https://doi.org/10.1016/j.jcp.2005.03.017
https://doi.org/10.1090/S0025-5718-1968-0242392-2
https://doi.org/10.1007/s10494-006-9034-6
https://doi.org/10.1680/eacm.15.00010
https://doi.org/10.1016/j.jfluidstructs.2017.03.009
https://doi.org/10.1063/1.5004028
https://doi.org/10.1006/jcph.2000.6484

136 P. Ouro et al. / Computers and Fluids 179 (2019) 123–136

[40] Yang J, Stern F. A non-iterative direct forcing immersed boundary method
for strongly-coupled fluidsolid interactions. J Comput Phys 2015;295:779–804.

doi: 10.1016/j.jcp.2015.04.040 .
[41] Ouro P, Cea L, Ramírez L, Nogueira X. An immersed boundary method for un-

structured meshes in depth averaged shallow water models. Int J Numer Meth-
ods Fluids 2016;81(11):672–88. doi: 10.1002/fld.4201 .

[42] Yang X, Zhang X, Li Z, He G. A smoothing technique for discrete delta functions
with application to immersed boundary method in moving boundary simula-

tions. J Comput Phys 2009;228(20):7821–36. doi: 10.1016/j.jcp.2009.07.023 .

[43] Peskin CS. The immersed boundary method. Acta Numerica 2002;11:479–517.
doi: 10.1017/S09624929020 0 0 077 .

[44] Roma AM, Peskin CS, Berger MJ. An adaptive version of the immersed bound-
ary method. J Comput Phys 1999;153(2):509–34. doi: 10.1006/jcph.1999.6293 .

[45] Vanella M, Balaras E. A moving-least-squares reconstruction for embedded-
boundary formulations. J Comput Phys 2009;228(18):6617–28. doi: 10.1016/j.

jcp.20 09.06.0 03 .

[46] Rodi W , Constantinescu G , Stoesser T . Large-Eddy simulation in hydraulics. CRC
Press; 2013. ISBN 978-0-203-79757-0 .

[47] Versteeg H , Malalasekera W . An introduction to computational fluid dynamics.
2nd ed. Pearson Prentice Hall; 2007 .

[48] Fraga B, Stoesser T. Influence of bubble size, diffuser width, and flow rate on
the integral behavior of bubble plumes. J Geophys Res 2016;121(6):3887–904.

doi: 10.1002/2015JC011381 .

[49] Rabenseifner R, Hager G, Jost G, Keller R. Hybrid MPI and OpenMP parallel
programming MPI + OpenMP and other models on clusters of SMP nodes. In:

17th Euromicro International Conference on Parallel, Distributed and Network
based Processing. IEEE; 2009. p. 427–36. doi: 10.1109/PDP.2009.43 .

[50] Smith L , Bull M . Development of mixed mode MPI/OpenMP applications. Sci
Program 2001;9:83–98 .

[51] He Y, Ding CHQ. MPI and OpenMP paradigms on cluster of SMP architectures:

the vacancy tracking algorithm for multi-dimensional array transposition. In:
ACM/IEEE SC 20 02 Conference; 20 02. ISBN 0-7695-1524-X. https://doi.org/10.

1109/SC.2002.10065 .
[52] Ouro P. Large eddy simulation of tidal turbines. Phd thesis. Cardiff University,
United Kingdom; 2017. 10.5281/zenodo.1340658 .

[53] Uhlmann M . Simulation of particulate flows on multi-processor machines with
distributed memory. Technical Report. May. Madrid. Spain: Department of

Combustibles Fosiles, CIEMAT; 2003 .
[54] Wang S, He G, Zhang X. Parallel computing strategy for a flow solver based on

immersed boundary method and discrete stream-function formulation. Com-
put Fluids 2013;88(8):210–24. doi: 10.1016/j.compfluid.2013.09.001 .

[55] Aversa R, Di Martino B, Rak M, Venticinque S, Villano U. Performance predic-

tion through simulation of a hybrid MPI/OpenMP application. Parallel Comput
2005;31:1013–33. doi: 10.1016/j.parco.20 05.03.0 09 .

[56] Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow us-
ing the Navier-Stokes equations and a multigrid method. J Comput Phys

1982;48(3):387–411. doi: 10.1016/0 021-9991(82)90 058-4 .
[57] Ramírez L, Foulquié C, Nogueira X, Khelladi S, Chassaing J-C, Colominas I. New

high-resolution-preserving sliding mesh techniques for higher-order finite vol-

ume schemes. Comput Fluids 2015;118:114–30. doi: 10.1016/j.compfluid.2015.
06.008 .

[58] Ouro P , Stoesser T . Wake generated downstream of a vertical axis tidal turbine.
In: 12th European Wave and Tidal Energy Conference (EWTEC). Cork, Ireland;

2017 .
[59] Choudhry A, Leknys R, Arjomandi M, Kelso R. An insight into the dynamic

stall lift characteristics. Exp Therm Fluid Sci 2014;58:188–208. doi: 10.1016/j.

expthermflusci.2014.07.006 .
[60] Ramírez L, Nogueira X, Ouro P, Navarrina F, Khelladi S, Colominas I. A higher-

order chimera method for finite volume schemes. Arch Comput Methods Eng
2018;25(3):691–706. doi: 10.1007/s11831- 017- 9213- 8 .

[61] Lee T, Su Y. Surface pressures developed on an airfoil undergoing heaving and
pitching motion. ASME J Fluids Eng 2015;137(5):1–11. doi: 10.1115/1.4029443 .

[62] Zhang Y , Burcea M , Cheng V . An adaptative OpenMP loop scheduler for hyper-

threaded SMPs. In: PDCS-2004: International Conference on Parallel and Dis-
tributed Computing Systems; 2004 .

https://doi.org/10.1016/j.jcp.2015.04.040
https://doi.org/10.1002/fld.4201
https://doi.org/10.1016/j.jcp.2009.07.023
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1006/jcph.1999.6293
https://doi.org/10.1016/j.jcp.2009.06.003
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0046
https://doi.org/10.1002/2015JC011381
https://doi.org/10.1109/PDP.2009.43
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0049
https://doi.org/10.1109/SC.2002.10065
https://doi.org/10.5281/zenodo.1340658
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0052
https://doi.org/10.1016/j.compfluid.2013.09.001
https://doi.org/10.1016/j.parco.2005.03.009
https://doi.org/10.1016/0021-9991(82)90058-4
https://doi.org/10.1016/j.compfluid.2015.06.008
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0057
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0057
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0057
https://doi.org/10.1016/j.expthermflusci.2014.07.006
https://doi.org/10.1007/s11831-017-9213-8
https://doi.org/10.1115/1.4029443
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0061
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0061
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0061
http://refhub.elsevier.com/S0045-7930(18)30742-4/sbref0061

	Scalability of an Eulerian-Lagrangian large-eddy simulation solver with hybrid MPI/OpenMP parallelisation
	1 Introduction
	2 Numerical framework
	2.1 Time integration
	2.2 Immersed boundary method
	2.3 Reconstruction of interpolation functions

	3 Parallelisation strategy
	3.1 Eulerian field parallelisation using MPI
	3.2 Hybrid MPI/OpenMP strategy

	4 Parallel performance assessment
	4.1 Lid-driven cavity flow
	4.2 Simulation of a vertical axis tidal turbine
	 Hybrid MPI/OpenMP performance for different kernel functions

	4.3 Simulation of a pitching airfoil under dynamic stall

	5 Conclusions
	 Acknowledgements
	Appendix A Analysis of scheduling directives
	 References

