
 
 

University of Birmingham

Subclinical reactivation of cytomegalovirus drives
CD4+CD28null T-cell expansion and impaired
immune response to pneumococcal vaccination in
ANCA-associated vasculitis
Chanouzas, Dimitrios; Sagmeister, Michael; Faustini, Sian; Nightingale, Peter; Richter, Alex;
Ferro, Charles; Morgan, Matthew; Moss, Paul; Harper, Lorraine
DOI:
doi.org/10.1093/infdis/jiy493

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Chanouzas, D, Sagmeister, M, Faustini, S, Nightingale, P, Richter, A, Ferro, C, Morgan, M, Moss, P & Harper, L
2018, 'Subclinical reactivation of cytomegalovirus drives CD4+CD28null T-cell expansion and impaired immune
response to pneumococcal vaccination in ANCA-associated vasculitis', The Journal of Infectious Diseases.
https://doi.org/doi.org/10.1093/infdis/jiy493

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/doi.org/10.1093/infdis/jiy493
https://doi.org/doi.org/10.1093/infdis/jiy493
https://birmingham.elsevierpure.com/en/publications/f0169a36-c6d5-44b2-986e-a7bc36ef6f89


CMV Infection and Response to Vaccination  •  JID  2018:XX  (XX XXXX)  •  1

The Journal of Infectious Diseases

Subclinical Reactivation of Cytomegalovirus Drives 
CD4+CD28null T-Cell Expansion and Impaired Immune 
Response to Pneumococcal Vaccination in Antineutrophil 
Cytoplasmic Antibody–Associated Vasculitis
Dimitrios Chanouzas,1,2,  Michael Sagmeister,1,2 Sian Faustini,3 Peter Nightingale,4 Alex Richter,3 Charles J. Ferro,2,4,  Matthew David Morgan,2,5  
Paul Moss,3 and Lorraine Harper2,4,5

1Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, 2Department of Nephrology, University Hospitals Birmingham National 
Health Service Foundation Trust, 3Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, 4Institute of Translational 
Medicine Birmingham, and 5Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom

Background.   Infection is the leading cause of death in antineutrophil cytoplasmic antibody–associated vasculitis (AAV). 
Expansion of CD4+CD28null T cells is associated with increased risk of infection and mortality, but is only present in cytomegalo-
virus (CMV)–seropositive individuals. We hypothesized that subclinical CMV reactivation drives CD4+CD28null T-cell expansion, 
that this is associated with impaired immune response to heterologous antigens, and that antiviral therapy may ameliorate this.

Methods.  In a proof-of-concept open-label clinical trial, 38 CMV-seropositive AAV patients were randomized to receive vala-
cyclovir for 6 months or no intervention. CMV reactivation was measured monthly in plasma and urine. CD4+CD28null T cells were 
enumerated at baseline and at 6 months. At 6 months, 36 patients were vaccinated with a 13-valent pneumococcal vaccine. Serotype-
specific immunoglobulin G was assayed before and 4 weeks postvaccination to calculate the antibody response ratio.

Results.  Valacyclovir treatment suppressed subclinical CMV reactivation and reduced CD4+CD28null T-cell proportion. 
CD4+CD28null T-cell reduction correlated with improved vaccine response, whereas CMV reactivation associated with reduced 
response to vaccination. Furthermore, expansion of CD4+CD28null T cells was associated with a reduction in the functional capacity 
of the CD4 compartment.

Conclusions.  Suppression of CMV may improve the immune response to a T-cell–dependent pneumococcal vaccination in 
patients with AAV, thus offering potential clinical benefit.

Clinical Trials Registration.  NCT01633476.
Keywords.  cytomegalovirus; CD4+CD28null; valacyclovir; pneumococcal vaccination; clinical trial.

 

The antineutrophil cytoplasmic antibody (ANCA)–associated 
vasculitides (AAVs) are autoimmune, inflammatory conditions 
characterized by necrotizing inflammation affecting small to 
medium blood vessels, leading to end organ damage [1]. The 
introduction of successful immunosuppressive regimens for 
inducing disease remission has transformed their management. 
However, patients with AAV continue to experience significant 
excess morbidity and mortality, with infection being the leading 

cause of death [2]. Respiratory infections are very common 
among AAV patients and although pneumococcal vaccination 
is indicated, vaccine responses are suboptimal [3]. In addition, 
impaired vaccine response is a marker of poor immunologic 
function and is independently associated with increased all-
cause mortality [3].

We have previously demonstrated in patients with AAV that 
the expansion of a subset of CD4 T cells that have lost expression 
of the costimulatory molecule CD28 (CD4+CD28null T cells) is 
independently associated with risk of infection and all-cause 
mortality [4]. CD4+CD28null T cells are proinflammatory and 
expand under inflammatory conditions [4–6]. Furthermore, 
this expansion is associated with a reduction in naive CD4 
T cells [4], suggesting a consequent diminished ability of the 
immune system to respond to new antigenic challenges. Loss of 
CD28 suggests repeated exposure to a persistent antigen [7] and 
we, and others, have demonstrated that significant expansion 
of CD4+CD28null T cells occurs exclusively in cytomegalovirus 
(CMV)–seropositive individuals [4, 8–11]. CMV infection itself 
has been linked to impaired immune response to heterologous 
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antigens [12–15] and has been implicated as a driver of the 
observed age-associated decline in immune function in the 
general population [12, 16–19].

We hypothesized that subclinical asymptomatic reactiva-
tion of CMV drives expansion of CD4+CD28null T cells in AAV 
and that this is associated with impaired immune response 
to heterologous antigens. Furthermore, we postulated that 
antiviral therapy might act to ameliorate this effect, offering 
potential clinical benefit. To investigate this, we conducted a 
proof-of-concept open-label clinical trial of valacyclovir ther-
apy in CMV-seropositive AAV patients in remission and vacci-
nated patients at the end of treatment with a T-cell–dependent 
13-valent pneumococcal conjugate vaccine (PCV13).

MATERIALS AND METHODS

Thirty-eight CMV-seropositive patients with AAV in sta-
ble remission were recruited from the vasculitis clinic at 
University Hospitals Birmingham (UHB) National Health 
Service Foundation Trust (Birmingham, United Kingdom) 
and participated in a single-center, proof-of-concept, open-la-
bel, randomized clinical trial of oral valacyclovir vs standard 
care (no anti-CMV treatment) (ClinicalTrials.gov identifier 
NCT01633476). The study was approved by the Research Ethics 
Committee of Yorkshire and The Humber, United Kingdom. 
The trial study protocol has been published previously [20]. 
Written informed consent was obtained from all participants.

Clinical Trial

The trial was designed to determine the safety and efficacy of 
valacyclovir-induced CMV suppression in AAV and to investi-
gate whether prevention of subclinical CMV reactivation limits 
expansion of CD4+CD28null T cells.

Patients were eligible for inclusion if they had a documented 
diagnosis of AAV, were in stable remission for at least 6 months, 
on maintenance immunosuppression with no more than 1 
agent in addition to prednisolone (prednisolone dose ≤5 mg), 
and were CMV seropositive (anti-CMV immunoglobulin G 
[IgG] detected in blood). Exclusion criteria were estimated glo-
merular filtration rate <15 mL/minute/1.73m2, B-cell–depleting 
therapy within 12  months or T-cell–depleting therapy within 
6 months, presence of other chronic infection (human immu-
nodeficiency virus, hepatitis B virus, hepatitis C virus, tuber-
culosis), or treatment with anti-CMV therapies within the 
previous month.

Between 1 August 2013 and 28 February 2016, eligible patients 
were randomized (1:1) to receive 6 months of oral valacyclovir 
(2 g 4 times a day; dose adjusted according to creatinine clear-
ance), or no additional therapy, and followed up for an addi-
tional 6 months. Block randomization by CD4+CD28null T-cell 
percentage (<40% or ≥40%) was used (Primary Care Clinical 
Research and Trials Unit, Birmingham, United Kingdom). The 
randomization used mixed blocks of random size not known 

to the investigators. Although patients and investigators were 
not blinded, laboratory staff undertaking the CMV quanti-
tative polymerase chain reaction (qPCR) assay that informed 
the primary outcome were blinded to treatment allocation. An 
interim safety analysis was undertaken after 10 patients com-
pleted treatment.

The clinical trial primary outcome was time to first CMV 
reactivation in blood or urine (defined as ≥200 viral copies/
mL) within 6 months of randomization. Reactivation episodes 
detected at baseline prior to treatment commencement were not 
included in this analysis. Secondary outcomes were change in 
CD4+CD28null T-cell proportion from baseline to end of treat-
ment, change in soluble markers of inflammation from baseline 
to end of treatment, and number of adverse events.

Vaccination and Immunological Measure of Response

At 6 months, 36 of 38 AAV patients (18 treated/18 controls) were 
vaccinated with a T-cell–dependent PCV13 (0.5 mL; Prevnar, 
Pfizer) as per clinical recommendations [21]. Participants 
had not received pneumococcal vaccination in the preceding 
5 years. Blood was drawn prior to vaccination and 4 weeks post-
vaccination to determine serotype-specific anti-IgG titer for 12 
pneumococcal serotypes contained in PCV13 (serotypes 1, 3, 
4, 5, 6b, 7f, 9v, 14, 18c, 19a, 19f, 23f) using a multiplex assay 
quality assured externally by the United Kingdom National 
External Quality Assessment Service [22]. Serum was separated 
from blood by centrifugation and cryopreserved at –80°C until 
analysis. Because a protective level of serum antibody has not 
been strictly defined and may differ among serotypes, we used 
the antibody response ratio (ARR) as a measure of immune 
response to vaccination as previously employed by others [23]. 
ARR was calculated (antibody titer at 4 weeks postvaccination 
/ antibody titer prior to vaccination), and mean ARR (sum of 
ARR in all serotypes assessed / number of serotypes) was uti-
lized as a single measure of immune response.

Blood Collection

Plasma was isolated by centrifugation and cryopreserved at 
–80°C. Peripheral blood mononuclear cells (PBMCs) were iso-
lated from heparinized blood by density gradient centrifugation 
and used immediately in stimulation experiments with staph-
ylococcal enterotoxin B (SEB) to identify cytokine-producing 
T cells.

Cells for flow cytometry experiments were acquired on a BD 
LSRII Flow Cytometer and analyzed using FACSDiva version 8.0 
software (BD). Monoclonal antibodies used for flow cytometry 
experiments, and gating strategies are shown in Supplementary 
Table 1 and Supplementary Figures 1 and 2).

Enumeration of Peripheral Blood CD4+CD28null T Cells

Whole blood was stained with anti-CD3, anti-CD4, and 
anti-CD28 monoclonal antibodies to determine CD4+CD28null 
T-cell percentage. Quality control was achieved by using a 
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positive control (Cytofix CD4 Positive Control, Cytomark) with 
a validated acceptance range for CD3+CD4+ percentage, and 
a fluorescence-minus-1 control to aid CD28 gating. Absolute 
counts were determined by adding counting beads (CytoCount, 
Dako) prior to acquisition as previously described [20].

PBMC Stimulation

To identify cytokine-producing T cells following activation, 
5  ×  105–1  ×  106 PBMCs were resuspended in supplemented 
medium (RPMI, 10% sterile filtered heat-inactivated fetal calf 
serum [Sigma-Aldrich], 1% penicillin/streptomycin [Thermo 
Fisher Scientific]) overnight for 16 hours at 37°C, 5% car-
bon dioxide, in the presence of monensin (2 μM). Cells were 
co-cultured with saturating amounts of anti-CD154 monoclo-
nal antibody conjugated to phycoerythrin  (Ebioscience) and 
stimulated with SEB (0.2 μg/mL; Sigma-Aldrich) to assess CD4 
T-cell functional capacity. Unstimulated cells served as con-
trols. Following overnight incubation, cells were stained with 
fixable viability dye eFluor-506 (Ebioscience), then costained 
with saturating amounts of anti-CD3, anti-CD4, and anti-CD28 
monoclonal antibodies for 30 minutes at 4°C, washed with flow 
cytometry buffer, fixed, and permeabilized using an intracellu-
lar flow cytometry staining kit (Ebioscience) according to the 
manufacturer’s instructions. Cells were then stained with anti–
interferon gamma (IFN-γ), anti–tumor necrosis factor alpha 
(TNF-α), and anti–interleukin 2 (IL-2) monoclonal antibodies. 
The ability of IFN-γ–positive SEB-responsive cells to coproduce 
TNF-α, IL-2, and CD154 was evaluated as a measure of CD4 
T-cell functional capacity.

CMV Viral Load Quantification

Plasma and urine samples from clinical trial patients were ana-
lyzed at monthly intervals until the end of the study (month 
12) by the UHB Virology Laboratory using a clinically validated 
CMV DNA qPCR assay (RealTime CMV, Abbott). The lower 
limit of quantification was 200 viral copies/mL.

Measurement of Soluble Markers of Inflammation

Soluble markers of inflammation (IL-2, TNF-α, IFN-γ, inter-
leukin 10, interleukin 17A, interleukin 6, and high-sensitiv-
ity C-reactive protein [hs-CRP]) were measured in plasma by 
Luminex array (ProcartaPlex, Ebioscience) according to the 
manufacturer’s instructions and read on a Bio-Rad Luminex 
200 instrument (Bio-Rad, Hercules).

Anti-CMV IgG Titer Determination

Plasma anti-CMV IgG titer was assayed using an enzyme-linked 
immunosorbent assay as previously described [24].

Statistical Analysis

Correlations were assessed with Spearman rank correlation. 
All clinical trial analyses were performed on an intention-to-
treat principle. Time to first reactivation was compared between 

control and treatment groups by constructing Kaplan–Meier 
plots; Gehan–Breslow–Wilcoxon test was used to report hazard 
ratio and 95% confidence interval (CI). Secondary and explor-
atory outcome data were analyzed using paired t tests. As the 
ratios of paired values for CD4+CD28null T cells and plasma 
markers of inflammation were expected to be more consistent 
than the differences, paired ratio t tests were used. Change in 
anti-CMV IgG titer over the study period was analyzed using 
a post hoc test for linear trend to evaluate change over time 
(expressed as slope). Between-group comparisons were per-
formed using the Mann–Whitney U or χ2 tests with Fisher exact 
test where appropriate. Analyses were undertaken using SPSS 
Statistics version 21 (IBM Corporation) and GraphPad Prism 
version 5 software and were 2-tailed; P value <.05 was consid-
ered significant.

RESULTS

Baseline characteristics of study participants are shown in 
Table 1.

Subclinical CMV Reactivation Drives the Expansion of 

CD4+CD28null T-Cells and This Is Limited by Antiviral Therapy

To determine whether subclinical CMV reactivation drives the 
expansion of CD4+CD28null T cells and if this can be reversed 
with antiviral therapy, 38 CMV-seropositive AAV patients in 
stable remission were randomized to 6  months of oral vala-
cyclovir (n = 19) or no additional treatment (n = 19) (Table 1 
and Figure 1). Valacyclovir was well tolerated. Gastrointestinal 
adverse events were more common in treated patients as 
expected (Supplementary Table 2), but were mild and transient 
in nature. Valacyclovir treatment was discontinued in 1 patient 
who developed an episode of acute kidney injury, but renal 
function returned to baseline upon cessation of the drug. There 
were no AAV disease relapses during the study.

Valacyclovir treatment completely suppressed CMV reacti-
vation. During the 6-month treatment period, viral reactivation 
was observed in 4 patients in the control group (21.1%) but not 
observed in the treatment group (hazard ratio, 8.2 [95% CI, 
1.1–59.1; P = .037; Figure 2A). One episode of reactivation was 
detected in a patient from the control group and 1 episode in a 
patient from the treatment group at the baseline visit prior to 
commencement of valacyclovir (Figure 2A). These 2 episodes 
were not included in the primary outcome analysis. Following 
the end of the treatment period, CMV reactivation was detected 
in 3 patients within the treatment group (Figure 2A). All CMV 
reactivation episodes were asymptomatic and only detected 
in urine.

At the end of the treatment period, there was a –23% (95% 
CI, –38.9% to –3.0%; P = .029; paired ratio t test) reduction in 
the percentage of CD4+CD28null T cells in valacyclovir-treated 
patients compared with baseline. No significant change in the 
percentage of CD4+CD28null T cells was seen in the control 
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group (–5.4% [95% CI, –18.6% to 11.0%]; P = .449; paired ratio 
t test; Figure 2B). Analysis with absolute CD4+CD28null T-cell 
counts revealed a reduction in the absolute CD4+CD28null T-cell 

count in treated patients (–27.0% [95% CI, –42.6% to –7.1%]; 
P  =  .013) and, again, no change in the control group (–6.6% 
[95% CI, –25.0% to 16.3%]; P =  .523). This indicates that the 

200 Patients
assessed for eligibility 

50 Excluded

49 Declined to participate
1 Had family emergency

19 Analyzed

0 Excluded from analysis

0 Lost to follow-up
2 Discontinued intervention*

19 Allocated to treatment group 
19 Received allocated intervention

2 Lost to follow-up
(after month 6)†

19 Allocated to control group

19 Analyzed

2 Excluded from anti-CMV IgG titer
exploratory outcome analysis

Allocation

Analysis

Follow-up

38 Randomized

Enrollment

88 Met eligibility
criteria

Figure 1.   Clinical trial flowchart. *One patient electively stopped taking the study drug within 1 month of commencement. One patient developed an episode of acute 
kidney injury that led to discontinuation of valacyclovir within 1 month. Both patients completed subsequent trial visits fully, although the study drug was not restarted. †Two 
patients in the control group declined to attend visits following the initial 6-month period. Abbreviations: CMV, cytomegalovirus; IgG, immunoglobulin G.

Table 1.  Participant Baseline Characteristics

Characteristic Treatment Arm (n = 19) Control Arm (n = 19) P Valuea

Age, y, median (IQR) 69.0 (60.9–75.0) 67.0 (64.1–75.7) .530

Sex, male:female 12:7 13:6 .732

ANCA specificity, PR3:MPO 12:6b 15:4 .476

AAV disease chronicity, y, median (IQR) 7.3 (2.8–11.5) 5.8 (3.2–11.4) .930

Renal function (eGFR), mL/min/1.73m2, mean (SD) 53 (22) 59 (18) .339

uACR, mg/mmol, median (IQR) 1.8 (0.8–6.8) 4.4 (1.8–7.5) .148

Steroids, No. (%) 13 (68.4) 15 (78.9) .714

MMF, No. (%) 5 (26.3) 5 (26.3) 1.000

Azathioprine, No. (%) 6 (31.6) 8 (42.1) .501

No current immunosuppression, No. (%) 2 (10.5) 1 (5.3) 1.000

CD4+CD28null % at prerandomization visit, median (IQR) 10.9 (2.5–15.8) 19.1 (7.5–25.1) .102

Immunosuppressive treatment refers to number and percentage of patients on the respective immunosuppressive agent at the time of study entry. Maintenance immunosuppression 
dosage: prednisolone 5 mg once a day; MMF 250–500 mg twice a day; azathioprine 1.5–2.0 mg/kg/day.

Abbreviations: AAV, antineutrophil cytoplasmic antibody–associated vasculitis; ANCA, antineutrophil cytoplasmic antibody; eGFR, estimated glomerular filtration rate; IQR, interquartile 
range; MMF, mycophenolate mofetil; MPO, myeloperoxidase; PR3, proteinase 3; SD, standard deviation; uACR, urine albumin-to-creatinine ratio.
aComparison between treatment and control arms.
bOne patient was ANCA negative.
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CD4+CD28null T-cell percentage reduction seen in valacyclo-
vir-treated patients reflected a true reduction in CD4+CD28null 
T cells rather than changes in other CD4 lymphocyte subsets.

A reduction in the plasma levels of IL-2 and IFN-γ, cytokines 
known to be produced by CD4+CD28null T cells, occurred only 
in treated patients (Supplementary Table 2). In addition, there 

was a delayed but persistent reduction in the anti-CMV IgG 
titer in valacyclovir-treated patients (slope –1.31; P < .001) but 
not in controls (slope 0.218; P = .521) (Figure 2C).

To confirm the impact of subclinical CMV reactivation on 
the expansion of CD4+CD28null T cells, a post hoc analysis was 
carried out in control patients to investigate the relationship 
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Figure 2.  Subclinical cytomegalovirus (CMV) reactivation drives the expansion of CD4+CD28null T cells, and antiviral therapy limits this expansion. A, Time to first CMV reac-
tivation in treatment (n = 19, dashed) vs control (n = 19, solid) groups (hazard ratio, 8.2; 95% confidence interval [CI], 1.1–59.1; P = .037) and reactivation episodes in treated 
(dashed) and control (solid) patients during the course of the study. On the second plot, each line represents a single patient; the end of the treatment period is indicated by 
a dashed vertical line at month 6. B, There was a significant reduction in CD4+CD28null T-cell percentage and absolute count from baseline (M0) to end of treatment (M6) in 
treated patients. There was no change in controls. Bars show mean with 95% CI. C, Proportionate change in anti-CMV immunoglobulin G (IgG) titer during the course of the 
study. There was a significant reduction in anti-CMV IgG titer in treated patients (dashed line; slope –1.305; P < .001). There was no significant change in controls (solid line; 
slope 0.218; P = .521). D, Control patients (n = 19) with CMV reactivation had an increase in CD4+CD28null T cells during the course of the study compared to patients with no 
reactivation. Bars show medians. Abbreviations: CMV, cytomegalovirus; IgG, immunoglobulin G; M0, baseline; M6, month 6.
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between change in the percentage of CD4+CD28null T cells and 
episodes of viral reactivation. Control patients who had at least 
1 episode of CMV reactivation had an increase in the percent-
age of CD4+CD28null T cells compared to those who did not 
reactivate (1.2% [interquartile range {IQR}, –0.7% to 2.5%] vs 
–1.3% [IQR, –6.9 to 0.6]; P = .037; Figure 2D). Furthermore, the 
increase in CD4+CD28null T-cell percentage correlated with the 
number of reactivation episodes (ρ = 0.523; P = .022).

Subclinical CMV Reactivation and Consequent Expansion 

of CD4+CD28null T-Cells Is Associated With Impaired Immune 

Response to Pneumococcal Vaccination

To determine whether subclinical reactivation of CMV and 
the consequent expansion of the CD4+CD28null T-cell subset 
is linked to reduced response to heterologous antigens, 36 of 
the 38 trial patients (18 treated, 18 controls) were vaccinated 
with a T-cell–dependent PCV13 at the end of the valacyclo-
vir treatment period. Analysis of prevaccination and 4-week 
postvaccination serotype-specific IgG titers revealed a statisti-
cally significant increase in all pneumococcal serotypes across 
the entire patient group, with the exception of serotype 14 
(Supplementary Figure 3).

Patients with evidence of subclinical CMV reactivation 
during the 6  months preceding vaccination had a signifi-
cantly suppressed immune response to PCV13 (ARR) across 

all pneumococcal serotypes analyzed, compared to individu-
als with no CMV reactivation (Figure 3A). Similarly, individ-
uals with subclinical CMV reactivation exhibited a markedly 
lower mean ARR compared to those with no reactivation (1.1 
[IQR, 1.0–1.6] vs 3.6 [IQR, 1.4–6.4]; P = .009; Figure 3B).

At the end of valacyclovir treatment, the size of the 
CD4+CD28null T-cell expansion immediately prior to vacci-
nation with PCV13 was inversely correlated with the anti-
body response (mean ARR, ρ = –0.373; P =  .025; Figure 4A). 
Furthermore, reduction in CD4+CD28null T cells was asso-
ciated with better immune response to PCV13; change in 
CD4+CD28null T-cell percentage from baseline to end of treat-
ment was inversely correlated with mean ARR (ρ  =  –0.371; 
P  =  .026) (Figure  4B). Mean ARR was not associated with 
patient age, sex, renal function, hs-CRP, immunosuppression, 
or the humoral immune response to CMV (anti-CMV IgG 
titer) (data not shown).

To further investigate the relationship between the size of the 
CD4+CD28null T-cell expansion and PCV13 response, we cat-
egorized patients according to prevaccination CD4+CD28null 
T-cell percentage (<2%, 2%–10%, >10%). The cutoff of <2% 
identified patients with a low impact of CMV on the immune 
system and was based on previous observations that accumu-
lation of CD4+CD28null T cells >2% is not seen among CMV-
seronegative individuals [4, 25]. All patients who had at least 
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1 episode of subclinical CMV reactivation during the treat-
ment period had a CD4+CD28null T-cell percentage >10%. 
A  CD4+CD28null T-cell percentage >10% therefore identified 
patients with a high impact of CMV on the immune system, 
whereas a CD4+CD28null T-cell percentage between 2% and 
10% identified those with a moderate impact. We observed 
a graded immune response in individual serotype ARR 
(Figure  4C), as well as mean ARR (Figure  4D), across the 3 
categories. Individuals with large expansions of CD4+CD28null 
T cells (>10%) had the lowest mean ARR, whereas those with 
reduced CD4+CD28null T-cell expansions (<2%) exhibited the 
highest mean ARR (Figure 4D).

Expansion of the CD4+CD28null T-Cell Subset Is Associated With 

Reduced Functional Capacity of the CD4 Compartment

Given that PCV13 is a T-cell–dependent pneumococcal vac-
cine, we next sought to determine whether expansion of the 
CD4+CD28null T-cell subset is associated with reduced func-
tional capacity of the CD4 compartment. To address this, 
PBMCs were stimulated with a superantigen (SEB) immediately 
prior to PCV13 vaccination. SEB-responsive CD4 T cells were 
identified by IFN-γ expression. Functional capacity was then 
evaluated by assessing for coexpression of the activation marker 
CD154 and cytokines TNF-α and IL-2 on SEB-responsive CD4 
T cells.
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Increasing CD4+CD28null T-cell percentage was strongly 
correlated with a reduction in the proportion of multifunc-
tional (CD154+TNF-α+IL2+) SEB-responsive CD4+ T cells 
(ρ = –0.663; P < .001; Figure 5A). In keeping with these find-
ings, SEB-responsive CD4+ T cells from individuals with large 
CD4+CD28null T-cell expansions (>10%) were less likely to 
coexpress either TNF-α, IL-2, or CD154, compared to cells 
from individuals with moderately sized (2%–10%) or small 
(<2%) expansions, in a graded fashion (Figure 5B). The same 
relationship was observed when multifunctional capacity was 
assessed. SEB-responsive CD4+ T cells from patients with large 
CD4+CD28null T-cell expansions were more likely to be single or 
double functioning and less likely to be triple or multifunction-
ing compared to cells from individuals with moderately sized or 
small expansions (Figure 5C).

Taken together, these data indicate that increasing 
CD4+CD28null T-cell expansion is associated with a progressive 
decline in functional capacity within the CD4 compartment 

as a whole. Moreover, the proportion of multifunctional 
(CD154+TNF-α+IL2+) cells within the SEB-responsive CD4 
compartment was positively correlated with the antibody 
response to PCV13 (ρ = 0.345; P = .040; Figure 5D), suggesting 
that reduction in functional capacity of the CD4 compartment 
may underlie the observed association between CD4+CD28null 
T-cell expansion and reduced immune response to heterolo-
gous antigens.

DISCUSSION

In this proof-of-concept study, we demonstrate that subclini-
cal reactivation of CMV drives expansion of the CD4+CD28null 
T-cell subset that has previously been associated with increased 
risk of infection and mortality in AAV. We show that CMV 
reactivation and consequent expansion of CD4+CD28null T cells 
are associated with impaired immune response to a T-cell–
dependent PCV13, and that antiviral therapy safely suppresses 
subclinical reactivation of CMV and limits the expansion 
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of CD4+CD28null T cells. Moreover, our findings show that 
reduction of CD4+CD28null T cells is associated with improved 
immune response to pneumococcal vaccination, suggesting 
that suppression of CMV may have important therapeutic ben-
efit in AAV, in improving the immune response to heterologous 
antigens. This is of significant clinical relevance, as infection 
represents a leading cause of death in patients with AAV and 
the immune response to vaccination is currently suboptimal.

CMV-specific T cells in healthy individuals fluctuate over 
time, suggesting a degree of ongoing subclinical CMV reac-
tivation [26, 27]. In our study, subclinical CMV reactivation 
was completely suppressed by valacyclovir. After cessation of 
treatment, CMV DNA was again detected in the urine of some 
patients, suggesting that such episodes represent subclinical 
viral reactivation rather than viral DNA from uroepithelial cells 
that might have come into contact with latent virus. We found 
that subclinical CMV reactivation occurred in more than a 
quarter of AAV patients in remission over 12 months, indicating 
that CMV reactivation is a frequent event in these patients. It is 
anticipated that viral reactivation will be even higher during the 
acute phase of the disease, at a time when patients are exposed 
to intensive immunosuppressive therapy and heightened sys-
temic inflammation [28]. In keeping with this, we have pre-
viously observed that the proportion of CD4+CD28null T cells 
increases during the first year in patients with AAV [4]. Taken 
together with our current findings, this suggests a heightened 
degree of subclinical CMV reactivation during this time.

CMV is increasingly recognized as one of the most immuno-
dominant infections encountered by the human immune sys-
tem. The virus profoundly modulates the immune system with 
up to 10% of the CD4 and 40% of the CD8 compartments being 
comprised of CMV-specific T cells [29, 30]. Previous studies in 
the general population have suggested that this CMV-induced 
“memory inflation” is associated with suppression of the mem-
ory response to heterologous antigens such as Epstein-Barr virus 
[14] and influenza viruses [31]. Our in vitro studies suggest that 
expansion of the memory response to CMV, represented by the 
CD4+CD28null T-cell subset, is associated with a progressive 
decline in the functional capacity of the CD4 compartment. 
Moreover, the proportion of multifunctional CD4 T cells was 
found to correlate with the immune response to pneumococcal 
vaccination. CD4 T-cell help is essential for B-cell clonal expan-
sion and antibody synthesis [32]. Hence, reduced functional 
capacity of the CD4 compartment is likely to represent one of 
the mechanisms by which CMV infection leads to the observed 
impaired immunity to heterologous antigens, particularly in the 
context of a T-cell–dependent pneumococcal vaccine.

Our study has certain limitations. We did not achieve our 
recruitment target of 50 patients for the clinical trial, due to 
fewer patients being eligible for inclusion in the trial than orig-
inally anticipated. Nevertheless, valacyclovir treatment com-
pletely suppressed subclinical CMV reactivation and reduced 

CD4+CD28null T-cell expansion in treated patients. We assessed 
CMV reactivation on a monthly basis. It is possible that reac-
tivation episodes occurring in the intervening period may 
have been missed; however, the likelihood of this would be 
expected to be equally distributed between the treatment and 
control groups. There was a nonsignificant difference in base-
line CD4+CD28null T-cell percentage between the 2 groups. 
To account for this, paired ratio t test analysis of change in 
CD4+CD28null T cells examined differences in the ratios of 
paired values rather than absolute difference. Due to practical 
considerations, our study was open-label. However, laboratory 
staff analyzing samples comprising primary outcome data were 
blind to treatment allocation.

The results presented here support a mechanism whereby 
CMV infection reduces the immune response to heterologous 
antigens in patients with AAV. Our findings suggest that this 
is mediated by subclinical reactivation of the virus and conse-
quent expansion of the CD4+CD28null T-cell subset that is asso-
ciated with a reduction in the overall functional capacity of the 
CD4 compartment. Importantly, suppression of CMV reactiva-
tion with antiviral therapy limits CD4+CD28null T-cell expan-
sion, and this in turn is associated with improved response to a 
T-cell–dependent pneumococcal vaccine.

Our findings provide proof of principle for the potential 
benefit of CMV suppression in AAV and support the design of 
larger studies to determine the frequency of subclinical reacti-
vation of CMV during the more active phase of the disease, and 
to investigate the potential for CMV suppression to improve the 
immune response to vaccination and reduce risk of infection, 
the leading cause of death in AAV.
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