
 
 

University of Birmingham

A kinetic Monte Carlo study of vacancy diffusion in
non-dilute Ni-Re alloys
Goswami, Kamal Nayan; Mottura, Alessandro

DOI:
10.1016/j.msea.2018.11.064

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Goswami, KN & Mottura, A 2018, 'A kinetic Monte Carlo study of vacancy diffusion in non-dilute Ni-Re alloys',
Materials Science and Engineering A. https://doi.org/10.1016/j.msea.2018.11.064

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 07. May. 2024

https://doi.org/10.1016/j.msea.2018.11.064
https://doi.org/10.1016/j.msea.2018.11.064
https://birmingham.elsevierpure.com/en/publications/28263ac1-9159-4da1-aea1-49de883c409f


A kinetic Monte Carlo study of vacancy diffusion in non-dilute Ni-Re alloys

Kamal Nayan Goswamia, Alessandro Motturaa,∗

aSchool of Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract

The beneficial effect of Re on the creep strengthening properties in single crystal Ni-based superalloys is well known,

albeit understanding the underlying mechanism is still an ongoing area of investigation. The microstructure in these

alloys comprises of cuboids of the hard precipitate phase embedded in a softer matrix phase. At high temperatures,

the glide of creep dislocations is restricted to the matrix only, and dislocation climb is required to get around a

precipitate. Vacancy diffusion is an essential component of dislocation climb and elements like Re which are slow-

diffusing in Ni are expected to affect this phenomenon. In the present work, we aim to study this by calculating the

effect of Re composition on the rate of vacancy diffusion in Ni using kinetic Monte Carlo simulations. First principles

electronic structure calculations based on density functional theory have been used to calculate the thermodynamic and

kinetic parameters in both dilute as well as non-dilute alloys. Results suggest appreciable modification of the vacancy

diffusion coefficients, indicating that the beneficial role of Re in Ni-based superalloys can be largely explained by its

effect on vacancy diffusion.

Keywords: Ni-based superalloys, Re-effect, vacancy diffusion, kinetic Monte Carlo simulations

1. Introduction

Ni-based superalloys represent a class of materials designed to withstand extreme conditions [1]. Their excellent

performance under high temperature creep conditions, amongst others, make them suitable for applications such as

in turbine blades in gas turbine engines used for jet propulsion in civil and military aircrafts. From thermodynamic

considerations, high engine efficiencies are achieved at high operating temperatures and over the past few decades,

the improvements in superalloy technology have raised the temperature capability of the gas turbine engines beyond

1273 K [1]. This has mostly been achieved by altering the chemical composition of these superalloys considerably.

The addition of Re, a rare and expensive metal, in particular was seen to have a strong creep strengthening effect. But

even as the improvement in strength is clearly seen, an understanding of the fundamental mechanism leading to the

observed strengthening is still lacking [2]. High temperature creep is dependent on the rate of vacancy diffusion and

an accepted argument within the superalloys community is that slow diffusing atoms, like Re, slow down the vacancy
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diffusion, leading to the lowering of creep deformation rate [2, 3]. Other important elements like Ta, W and Mo are

also potent strengtheners, albeit to a lesser degree.

Single crystal Ni-based superalloys, simply put are γ-γ′ alloys where γ phase is the random substitutional solid

solution of Ni and γ′ phase is the Ni3Al based ordered phase with a L12 structure [1]. The γ phase forms a continuous

matrix in which cuboidal precipitates of γ′ phase are embedded in a coherent manner with its <001> crystallographic

direction aligned to the <001> crystallographic direction of the γ phase. Re, the subject of the current study, strongly

partitions to the γ phase and has a dramatic effect on improving the creep lives of superalloys [4]. Across a wide

range of temperature and stress combinations in the tertiary creep regime, the deformation in Ni-based superalloys

is restricted to the thin γ channels [1]. The gliding dislocations do not penetrate the γ′ precipitates and hence they

have to climb around them at the γ/γ′ interfaces for deformation to continue. Depending on the microstructure and

the loading direction, the dislocations have to either climb up or down. The upward dislocation climb is associated

with the absorption of vacancies, while the downward dislocation climb is associated with the emission of vacancies

[5]. This creates a simultaneous flux of vacancies from the emitting dislocation cores to absorbing dislocation cores.

Slow diffusing solutes such as Re partitions to the γ phase where it could act as strong hindrances to the diffusion of

vacancies.

Constitutive creep models commonly show that the minimum creep strain rate, ε̇ is proportional to an effective

diffusion factor Deff, which is thought to be strongly influenced by chemistry such as the presence of slow-diffusing

atoms [5, 6].

ε̇ ∝ Deff (1)

However, there is no unique formulation for calculating Deff [7–10]. Our hypothesis is that the vacancy diffusion

coefficient Dv is proportional to the effective diffusion coefficient Deff and hence is an equivalent measure of Deff.

This is because the diffusion of vacancies in the γ matrix in one direction means the simultaneous diffusion of atoms

(predominantly Ni) in the reverse direction. However, it must be kept in mind that vacancies have to diffuse for much

longer distances through the lattice compared to the individual atoms and hence Deff and Dv would differ by orders of

magnitude. Nevertheless, the relative effect of the alloy composition on Dv should be the same as Deff.

Our previous work [11] was based on the use of an analytical model for vacancy diffusion developed by Manning

[12] and indicated that small additions of slow-diffusing atoms in a Ni lattice do not reduce the diffusion rate of vacan-

cies substantially. However, Manning’s model is based on a number of simplifying assumptions which undermine the

validity of the results. On the other hand, Schuwalow et al [13] have calculated the vacancy diffusion coefficients for

solutes in Ni using a combination of first principles calculations and kinetic Monte Carlo simulations. They concluded

that within the dilute limits, interactions between the vacancies and solute atoms were too weak to have a net effect at

the relevant temperatures. But they also suggested that consideration of solute-solute interactions were necessary to

account for the local fluctuations in solute concentration, especially given the partitioning behaviour of solutes within
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the γ-γ′ structure. The present work thus aims at investigating the effect of Re additions in the non-dilute range on the

vacancy diffusion in Ni using kinetic Monte Carlo simulations in an attempt to explain the observed Re-effect as well

as to generate meaningful diffusion data for future alloy design programmes.

2. Methodology

2.1. Kinetic Monte Carlo simulations

Analytical methods for the rigorous calculation of diffusion coefficients in non-dilute alloys cannot be formulated

given the complexity of the problem, however some approximate models do exist in the literature [14–17]. This

problem is solved using the kinetic Monte Carlo (kMC) methods which simulate the dynamical evolution of a system

over time at a particular temperature [18]. The trajectories of the atoms and vacancy as a result of individual diffusive

jumps are tracked throughout the simulation. The rate constant associated with an individual diffusive jump is defined

within the transition state theory as [19]

Γi = ν∗i exp
{
−

∆Em,i

kBT

}
(2)

where ν∗i is the effective frequency associated with the vibration of the atom i in the direction of the vacancy [19] ,

∆Em,i is the migration energy or the activation energy barrier given by the difference between the energy at the saddle

point (activated state) and the starting point of the transition, kB is the Boltzmann constant and T is the absolute

temperature. In kMC simulations, only the diffusive exchange between an atom and a vacancy are treated while the

atomic vibrations about their equilibrium positions are suitably averaged [20, 21]. The algorithm for a kMC simulation

to calculate the diffusion coefficients is described elsewhere [22]. At the end of the desired number of diffusive jumps,

for a kMC simulation cell containing a single vacancy, the vacancy diffusion coefficient Dv is calculated using

Dv =
1
6
∂

∂t

〈
R2

v(t)
〉

(3)

and the solute diffusion coefficient Di using

Di =
xv

xsim
v
×

1
6N

∂

∂t

N∑
i=1

〈[
R2

i (t)
]〉

(4)

where
〈
R2(t)

〉
is the squared displacement of the vacancy (or solute atoms) from the initial state, N is the number of i

atoms, t is the time elapsed, xv is the actual vacancy concentration [11] at temperature = T , while xsim
v is the vacancy

concentration used in the kMC simulation. R2(t) is calculated as

R2(t) = |x(t) − x(0)|2 + |y(t) − y(0)|2 + |z(t) − z(0)|2 (5)

where the values on the right represent the coordinates of the vacancy(or solute atoms) at time = t and time = 0.

The kMC simulation should be run for a sufficiently large number of steps such that the D values converge. To

obtain better statistics, the kMC trajectory is divided over a number of segments and D calculated from the time-

weighted averages of the diffusion coefficients calculated from the various segments [13, 23]. In the case where an
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atom or a vacancy does not perform a true ‘random walk’, its jump is said to be correlated and its correlation factor f

is given as [24],

f =
2
n

〈
R2(t)

〉
a2 (6)

where a is the Ni lattice parameter and n is the number of jumps.

For the case of dilute alloys, only a few activation energy barriers are needed to describe the system. However in

the case of non-dilute alloys, atoms can be arranged in a number of configurations. This means a number of activation

energy barriers corresponding to these atomic configurations need to be calculated, which is difficult. This problem is

made simpler by using the cluster expansion method.

2.2. Cluster Expansion

The cluster expansion can be seen as a generalised Ising Model [25] . The lattice of a binary alloy such as Ni-Re

can be represented using occupation variables (σi) [26–28]. For example, in the present work a value of +1 represents

a Ni atom, while -1 represents a Re atom. The vector of the occupation variables ~σ would then uniquely describe the

configuration of the system. The energy of the alloy E for a configuration ~σ can be expanded using polynomials φα

of σi

E(~σ) = V0 +
∑
α

Vαφα(~σ) (7)

where φα is simply the product of occupation variables belonging to a particular cluster of sites α, i.e. φα =
∏

i∈α σi

. These clusters could be point clusters, pairs, triplets, quadruplets. . . etc. The expansion of this equation to an infinite

number of clusters theoretically should describe the energy exactly. However, the expansion is usually truncated up to

a few clusters which can describe the energy to a reasonable precision. Vα are the effective cluster interaction (ECI)

coefficients and are calculated by fitting energy calculated from first principles for a number of configurations [29].

Thus, from a relatively small first principles dataset, the energy for any given configuration can be cluster expanded

using this technique.

Vacancies can be treated as a perturbation to the binary cluster expansion[30] since their concentration in an alloy

is small even at high temperatures. An effective vacancy formation energy (EVFE) for a vacancy at site i is defined as

[30],

∆Eeff
i = Ev

i (~σ) −
1
2

[
ENi

i (~σ) + ERe
i (~σ)

]
(8)

This EVFE can be parametrised using a local cluster expansion using coefficients which only depend on the local

Ni-Re configuration. Ev
i (~σ) is the desired energy of the alloy with a vacancy and is obtained by rearranging the

Equation 8. ENi
i (~σ) and ERe

i (~σ) are the energies when the vacancy is replaced by a Ni atom or a Re atom, and these

can be calculated from the usual binary cluster expansion.
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The activation energy barriers were also cluster expanded locally using a formalism similar to EVFE. The activa-

tion energy barriers not only depend on the surrounding configuration, but also on the direction of the jump. Hence to

get around this, kinetically resolved activation (KRA) barriers were defined as [31],

∆EKRA = Es −
1
2

(
Ei + E f

)
(9)

where Es is the energy of the activated state (saddle point), while Ei and E f are the energy of the initial state and

the final state (2 end points) of the jump . ∆EKRA is thus independent of the direction of the jump, and can be cluster

expanded locally. Once the KRAs and the energies of the end states are available, the activation energy barriers ∆Em

can be calculated as,

∆Em = Es − Ei = ∆EKRA +
1
2

(
E f − Ei

)
(10)

Thus the cluster expanded energy of the binary alloy, the EVFE and the KRAs together would describe the Ni-Re

system completely. These numbers are then fed into the kMC simulation to calculate the diffusion coefficients in the

non-dilute regime.

2.3. Computational details

All input data were calculated from first principles, using DFT [32, 33] as implemented in the Vienna Ab initio

simulation package (VASP) 5.3.2 [34]. The projector augmented wave (PAW) method [35, 36] was used to describe

the electron-ion interactions, and the generalized gradient approximation (GGA) parameterised by Perdew, Burke and

Ernzerhof [37] was used as EXC. All calculations were performed on 108-atom supercells and were spin-polarized.

The electronic self-consistent loops were stopped when the total energy converged to within 10−6 eV and ionic posi-

tions were relaxed until all forces fell below 10−2 eV/Å. The conjugate-gradient algorithm was used to relax the atoms

in to their instantaneous ground states. A Methfessel-Paxton smearing width [38] of 0.1 eV was used. Calculations

were run using an energy cutoff of 400 eV and 5 × 5 × 5 k-point mesh following the Monkhorst-Pack scheme [39].

The migration barriers were calculated using the ‘climbing image’ nudged elastic band (CI-NEB) method [40, 41]

using a single image. For these calculations, a spring constant value of 5 eV/Å2 was used and only the internal

degrees of freedom of the supercells were relaxed. The supercell size was fixed to the calculated lattice parameter

value for pure Ni, a of 3.52 Å. The total energies change only by about ± 0.03 eV when the supercell volume and

shape relaxations were taken into account. For all other calculations, besides the internal degrees of freedom of the

supercells, the volume and the shape of the supercells were relaxed as well. The effective frequencies were calculated

within the harmonic approximation as supported by VASP and have been presented in our previous work [11]. The

cluster expansion was performed using the CASM code (Cluster-Assisted Statistical Mechanics) developed by the

Van der Ven Research Group at the University of Michigan [27, 28].
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3. Results and Discussion

3.1. Effective cluster interaction coefficients

A primitive fcc cell with configurational degree of freedom was given as the input to generate Ni-Re configura-

tions in the entire binary composition space for maximum 10 atom supercells. 87 fcc supercells with a total of 2146

symmetrically distinct configurations were generated. Among these 2146 configurations, all possible configurations

for supercells containing up to 4 atoms were selected while for bigger supercells, the configurations with Re concen-

tration ≤ 20 at.% were selected. This was done to bias the cluster expansion to predict energies more accurately in the

Ni-rich region. Thus, a total of 144 configurations were selected and their first principles energy was calculated. The

cell volume, shape and all the internal degrees of freedom were relaxed. A 37 × 37 × 37 k-point mesh was used for

the primitive fcc cell. This has the same k-spacing in the reciprocal lattice [42] as a 5 × 5 × 5 k-point mesh for a 108

atom fcc supercell which has been used for CI-NEB calculations in this work. To maintain the same k-spacing, the

k-mesh was automatically adjusted for the different configurations depending on their lattice vectors. The formation

energy per atom Eform of these 144 configurations were calculated according to the equation,

Eform =
ENixRey − xENi − yERe

(x + y)
(11)

where ENixRey is the energy of the configuration NixRey, x and y being the number of Ni and Re atoms respectively.

ENi and ERe are the energy of pure Ni and pure Re (calculated from first principles) used as reference states (see

Table 2). Since all the configurations used in the present work were fcc, the energy for fcc Re was used as the

reference. It must be noted that pure Re exhibits an hcp structure, however, in the Ni-rich regions, Re is expected to be

present in an fcc solution of Ni. Amongst all the 144 configurations considered, the stoichiometric compound Ni4Re

at 20 at.% Re with a D1a structure was the lowest energy configuration with a formation energy of -0.073 eV. This

was similar to the results of Maisel et al [43] and Levy et al [44] who calculated a formation energy of -0.058 eV and

-0.064 eV respectively for Ni4Re from their first principles calculations.

101 of these configurations were used to fit the ECIs for the cluster expansion. Configurations with a formation

energy greater than 0.03 eV were discarded as their formation is less likely energetically. Also, configurations towards

the Ni-rich side were preferred. Specifically, the configurations with a Re concentration greater than 33 at.% were

discarded. This was partly because the concentration of Re in the γ phase even in the third generation of Ni-based

superalloys never goes beyond 10 at.% [45]. It is unlikely that even the local composition in the γ phase due to

statistical fluctuations would go beyond 33 at.%.

Clusters of maximum 3 atoms within a sphere radius of 6 Å were considered in the fitting of the effective cluster

interaction coefficients. This meant a total of 27 possible clusters (1 empty cluster (V0), 1 point cluster (Vα), 5

pair clusters (Vβ) and 20 triplet clusters (Vγ)) were available for fitting the ECIs to the formation energy of the 101

configurations in the dataset. The fitting was done using the ecifit code incorporated within CASM. The ecifit code is

a least squares fitting script combined with an implementation of a genetic algorithm [46] for determining the optimal
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Table 1: The calculated effective cluster interaction coefficients (ECIs)

Clusters ECIs multiplicity ECIs/multiplicity
(meV) (meV)

empty (V0) -59.56 1 -59.56

point (Vα) 286.88 1 286.88

pairs(Vβ)

1 -359.12 6 -59.85
2 -0.97 3 -0.32
3 -92.89 12 -7.74
4 13.12 6 2.19
5 -33.98 12 -2.83

triplets(Vγ)

6 91.40 8 11.42
7 89.35 12 7.45
8 -22.59 8 -2.82
9 77.83 6 12.97

10 128.56 48 2.68
11 -54.52 12 -4.54
12 -11.07 48 -0.23
13 -31.09 24 -1.29

set of clusters to include. Sufficient accuracy was obtained when using a total of 15 clusters. The root mean square

error between first-principles energies and cluster expanded energies for all 101 structures used in the fit was 5.7 meV

per atom. This is a good fit considering the fact that an rms error value of 5.6 meV per atom was obtained by Van der

Ven et al [30] using their ECIs calculated for Al-Li alloys.

Table 1 shows the fitted ECIs for Ni-Re. Five pair clusters (Vβ) include the 1st five nearest neighbour pairs. Eight

triplet clusters (Vγ) have also been included. These pair and triplet clusters have been numbered 1 to 13 and Figure

1 represents these clusters. The empty cluster (V0) is just a constant term used in the fitting while the point cluster

(Vα) is the single atom cluster. Table 1 also shows the multiplicity of these clusters. For example, the pair cluster

number 1 has a multiplicity of 6, meaning there are 6 symmetrically equivalent clusters in different orientations. This

Figure 1: The pair clusters numbered 1 to 5 and triplet clusters numbered 6 to 13 used in the ECI fitting
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Table 2: The first principles energy and energy predicted from cluster expansion of Ni-Re by the CASM code for pure Ni and pure Re

Reference state FP energy (eV) CE predicted energy (eV)

Ni -5.48 -5.45
Re (fcc) -12.34 -13.43

is expected as an atom in an fcc lattice is paired to twelve 1st nearest neighbours, and each of these pairs is shared

by 2 atoms. Hence, the multiplicity is 6. The ECIs/multiplicity have also been calculated as this is more suitable in

our kinetic Monte Carlo code to model the energy of the Ni-Re alloys. As described earlier, an occupation variable

(σi) value of +1 represents a Ni atom, while -1 represents a Re atom. It must be noted that the CASM code cluster

expands the formation energy and not the total configurational energy. One can calculate the formation energy first

from the obtained ECIs, and then the configurational energy can be deduced by rearranging the Equation (11).

Table 2 presents a comparison of the first principles energy and the energy predicted from cluster expansion using

the above ECIs for pure Ni and pure Re (fcc). One can see that the match is very good for Ni, while there is a

deviation of about 1 eV in the case of Re. This can be explained as only Ni-rich configurations were used to fit the

ECIs. Nevertheless, we expect accurate prediction of the configurational energies in the composition range of interest

(< 10 at. % Re). It must be clarified that the first principles energies for pure Ni and Re have been used to calculate

the formation energies in Equation (11).

3.2. Effective vacancy formation energy

A local cluster expansion of the EVFE was done around one vacancy. Unlike the binary cluster expansion, where

supercells of maximum 10 atoms were used, here first principles energy calculations were run on 3×3×3 supercells

to avoid the vacancy-vacancy interaction across the periodic images. 26 different configurations were used and three

calculations were performed on each of them, one with a vacancy at a lattice site (Ev
i (~σ)) and two others with a Ni

(ENi
i (~σ)) and a Re (ERe

i (~σ)) atom each replacing that site. Thus 78 different calculations were performed in total.

Configurations with upto 36 Re atoms (33 at.%) were considered in the calculations. For some of the non-dilute

compositions considered, the ionic relaxation was terminated when the forces fell below 0.02 eV/Å. Also, a 4×4×4

k-mesh was used for these calculations.

The selection of clusters and the fitting of the corresponding ECIs for binary cluster expansion of the configu-

rational energy in Ni-Re was performed using a genetic algorithm as incorporated in the CASM code. However,

the option of local cluster expansion for the prediction of EVFE was not available with CASM. Hence, in this case,

clusters were adopted from the work of Van der Ven et al [30]. Four point clusters (numbered 1 to 4) up to the 4th

nearest neighbour distance, and the 1st nearest neighbour pair (numbered 5) and triplet clusters (numbered 6) around

a vacancy were considered. LECIs corresponding to these clusters were fit using multiple regression and the results

are tabulated in Table 3. It must be noted that the treatment of the cluster expansion is slightly different here, and

instead of considering the occupation variables for all the atoms around a vacancy, the EVFE was fit to the number of
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Table 3: The calculated local effective cluster expansion coefficients (LECIs)

Cluster No. LECIs
(meV)

1 57.14
2 -8.23
3 54.88
4 8.06

5 -54.13

6 131.21

Re atoms, Re pairs and Re triplets around a vacancy. The constant term was set as 10.2413 eV, which was the EVFE

in pure Ni.

3.3. Kinetically resolved activation energy barriers

The kinetically resolved activation barriers were calculated for a number of vacancy pathways with different

atomic environments. On top of the barriers considered for the dilute alloys of Ni-Re [13], other barriers based on

the fourteen-frequency model [15] were considered. The barriers were calculated using the climbing image nudged

elastic band method for the forward and the reverse jumps and the KRA was deduced from the two.

From definition, KRAs are independent of the direction of the jumping atom and they represent the saddle point

energy normalised to the arithmetic mean of the energies of the two end points. Thus the occupation variables defined

for the local cluster expansion for KRAs should be centred about the saddle point, in contrast to the local cluster

expansion of EVFE, where the occupation variables were defined in relation to their distance from the vacancy.

However, the saddle point does not overlap on a lattice site and lies approximately halfway between the jumping atom

and the vacancy. Thus, the set of lattice positions at a certain distance from the jumping atom, and the set of lattice

positions at the same distance from the vacancy are considered equivalent and are clubbed together. For example, the

lattice positions which are 1st nearest neighbours to either the jumping atom or the vacancy are considered equivalent.

For simplification, the kinetic effective cluster interaction coefficients (KECIs) in the present work were fit to

the number of Re atoms around a saddle point instead of considering the occupation variables of all the atoms. It

was assumed that the presence of Re atoms in the combined 1st nearest neighbour shell of the jumping atom and the

vacancy affect the barriers, while those beyond have no role to play. Four different point clusters were included in the

present case. For a Ni atom performing a jump, the KRA was given by,

∆ENi
KRA = 1.08 + 0.108 × N1,1

Re − 0.080 × N1,2
Re − 0.004 × N1,3

Re + 0.022 × N1,4
Re (12)

To explain this, Figure 2 should be referred which shows an fcc {111} plane with an atom (black) about to perform

an exchange with a vacancy. There are a combined total of 18 atoms which are 1st nearest neighbours to either the

atom or the vacancy. N1,1
Re represents the number of Re atoms which are 1st nearest neighbours to both the jumping

9



Figure 2: The fcc {111} plane showing an atom in black next to a vacancy surrounded by other atoms in the 1st nearest neighbour shell. The colour
of these atoms represent their relationship to the black atom and the vacancy. Atoms out of the plane have been shown smaller in size.

atom or the vacancy (blue positions), N1,2
Re represents the number of Re atoms which are 2nd nearest neighbours to

either the jumping atom or the vacancy (yellow positions), N1,3
Re represents the number of Re atoms which are 3rd

nearest neighbours to either the jumping atom or the vacancy (red positions) and N1,4
Re represents the number of Re

atoms which are 4th nearest neighbours to either the jumping atom or the vacancy (green positions). Thus depending

on which of these categories the Re atoms in the 1st nearest neighbour shell belong to, we describe our KRA. If there

are no Re atoms surrounding the jumping Ni atom, the KRA value is 1.08 eV from Equation 12, which is also the

expected energy barrier in pure Ni.

For a Re atom performing a jump, the KRA was given by,

∆ERe
KRA = 1.505 + 0.099 × N1,1

Re + 0.007 × N1,2
Re + 0.007 × N1,3

Re + 0.007 × N1,4
Re (13)

This completes our list of input parameters required for the kinetic Monte Carlo simulation to study the Ni-Re

alloy in the non-dilute regime.

3.4. Kinetic Monte Carlo results

The vacancy diffusion coefficients in non-dilute Ni-Re alloys was calculated using our kMC code. The Ni as well

as the Re diffusion coefficients were also calculated. The code is capable of handling an fcc simulation cell of size ≥

4×4×4 with one vacancy for any desired composition, temperature and duration of kMC simulation. It is noteworthy

that instead of tracking the atomic coordinates throughout the simulation, only the displacements are calculated for

every individual atom and the vacancy from their initial and final position within a kMC segment. The actual vacancy

concentration, xv in pure Ni, corresponding to a ∆Ef,Ni value of 1.44 eV [11] has been used in Equation 4 for simplicity.

The results presented in this chapter have been calculated for 15 × 15 × 15 supercells for five different temperatures

(1173 K - 1573 K).
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Table 4: The calculated total energies and vacancy formation energies in pure Ni, ∆Ef,Ni for different simulation cell sizes

Simulation Energy (eV) Energy/ Energy (eV) ∆Ef,Ni

cell size (w/o vacancy) atom (eV) (with vacancy) (eV)

4 × 4 × 4 -1402.31 -5.48 -1395.56 1.28
10 × 10 × 10 -21911.16 -5.48 -21904.40 1.28
15 × 15 × 15 -73950.15 -5.48 -73943.40 1.27
20 × 20 × 20 -175289.25 -5.48 -175282.49 1.28

3.4.1. Results in pure Ni

The pure Ni energy was calculated as -5.48 eV per atom (pure Re energy was calculated as -13.39 eV per atom)

from the implementation of the cluster expansion in the kMC code. This value was constant and did not vary with

the simulation cell size. However, this is 0.03 eV lower than that calculated by the CASM code (see Table 2). We

believe that this difference was due to the difference in the levels of accuracy used in the two calculations. We used

double precision numbers in our kMC code and used the ECIs (see Table 1) without rounding off any digits. The

vacancy formation energy of 1.28 eV was predicted from a combination of the binary Ni-Re cluster expansion and

EVFE. These numbers have been tabulated for 4 different simulation cell sizes (see Table 4). Also ∆Em,i value for Ni

was 1.08 eV from Equation 12 on KRAs, same as the results from the first principles calculations.

Given that all these numbers were fairly accurate, we calculated Dv in pure Ni by running kMC simulations for

a total of 109 (1 billion) vacancy jumps. A kMC segment length of 10000 jumps matched best with the results of

the analytical formulations. Hence, a segment length of 10000 was used in all the following calculations. It was

concluded that the kMC code works correctly as it was successful in replicating a vacancy correlation factor ≈ 1 in

the case of pure Ni. It means the vacancy did indeed undergo a ‘random walk’ in our kMC simulation.

The Ni self-diffusion coefficient was also calculated and this has been plotted in Figure 3 as a function of temper-

ature. The results completely overlap with our previous results from analytical formulations [11] as well as with the

kMC simulations of Schuwalow et al [13]. Also, a correlation factor of 0.781 [47] was reproduced in pure Ni reaffirm-

ing the validity of the code. The results were within an order of magnitude when compared to the experimental values

obtained by Bakker [48]. Similarly, the solute diffusion coefficient of Re in Ni was also calculated for the dilute case

using a single Re atom in a 15 × 15 × 15 supercell or an equivalent Re concentration of 0.0074 at.%. This has been

shown in Figure 4 and on comparison with Figure 3 it can be seen that Re diffusion coefficient values are approxi-

mately two orders of magnitude lower than Ni self-diffusion coefficient values. The results match very well with the

results from analytical formulations [11, 49] as well as to the kMC results for dilute alloys [13]. The results were an

order of magnitude lower when compared to the experimental interdiffusion coefficients D̃ obtained by Karunaratne

et al [50] in dilute alloys of Re in Ni. To a first approximation, D̃ values converge to the solute diffusion coefficient

values for the case of dilute alloys, however the underlying assumption is that the thermodynamic factor in Darken’s

second equation [51] is equal to unity. Thus differences of an order of magnitude are expected when comparing the

values.
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Figure 3: The Ni self-diffusion coefficient calculated as a function of temperature from the kMC simulations in the present work compared to the
results calculated from analytical formulations by the authors previously [11], the kMC simulations of Schuwalow et al [13] for dilute alloys and
the experimental results of Bakker [48]
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Figure 4: The Re diffusion coefficient in Ni calculated as a function of temperature from the kMC simulations in the present work compared to the
results calculated from analytical formulations by the authors previously [11] and Janotti et al [49], the kMC simulations of Schuwalow et al [13]
for dilute alloys and the experimental results of Karunaratne et al [50]
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Figure 5: Calculated Dv in the non-dilute regime in Ni-Re at 1373 K compared to that obtained using analytical formulations in dilute range[11]

3.4.2. Results in non-dilute Ni-Re alloys

It must be pointed out that the kMC simulations performed in pure Ni only took a few minutes to complete 1

billion vacancy jumps. This was because the energy of the simulation cell and the ∆Em,Ni both remain fixed. However

in the case of non-dilute alloys of Ni-Re, the energy and the ∆Em,i have to be calculated at each step.

kMC simulations were run for the non-dilute Ni-Re alloys for 15 million vacancy jumps. These simulations

running on single processors took 36 hours on an average to complete. The compositions probed were 1 at.%, 2 at.%,

3 at.%, 4 at.%, 5 at.%, 6.25 at. %, 7.5 at.%, 8.75 at. % and 10 at.% Re in binary alloys with Ni. This was because the

concentration of Re in the γ phase even in the third generation of most Ni-based superalloys does not exceed 10 at.%

[45]. Multiple trials were run for each of these compositions for better statistics.

Figure 5 shows the calculated vacancy diffusion coefficients in the non-dilute regime at 1373 K. Several kMC

simulations were run for each composition and the mean Dv was calculated. The variation in the results was small, as

can be seen from the error bars in Figure 5, where the error bars represent the standard deviation from the mean Dv.

A linear trend was observed for the entire composition range. An addition of 10 at.% Re is expected to reduce the

Dv in Ni by 36 %. This is clearly much larger than that predicted by extrapolating the data from our previous work

[11] using Manning’s random alloy model where 10 at.% Re is expected to reduce the Dv in Ni by only 12 % (see

Figure 5).

The same trend was observed at other temperatures albeit the reduction in Dv becomes smaller with increasing

temperature. From the obtained results, Dv can be described using the following equation:

Dv = DNi
v (1 + mxRe) (14)

where Dv is the vacancy diffusion coefficient as a function of Re composition xRe, DNi
v is the vacancy diffusion

coefficient in pure Ni and m is the calculated slope. The values for DNi
v and m have been tabulated in Table 5 for
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Table 5: The vacancy diffusion coefficient in pure Ni and the calculated slope for Dv as a function of temperature

Temperature (K) DNi
v (m2/s) m

1173 7.3E-12 -4.14
1273 1.7E-11 -3.84
1373 3.4E-11 -3.60
1473 6.4E-11 -3.47
1573 1.1E-10 -3.14
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Figure 6: Calculated DNi in the non-dilute regime in Ni-Re at 1373 K

various temperatures.

The diffusion coefficients of Ni and Re were also calculated in the non-dilute regime, besides the vacancy diffusion

coefficients. The results at 1373 K have been shown in Figure 6 and Figure 7 for Ni and Re respectively. The error

bars representing the standard deviation of DNi for the various trials were negligible, while the error bars for DRe were

comparatively larger. This was expected as the number of Ni atoms present in the simulation cells were much larger

as compared to the number of Re atoms, and hence better statistical averages were obtained for the case of DNi. A

deviation from linearity was seen in both DNi as well as DRe as a function of Re composition, however the effect

was more pronounced for DRe. While the DNi values decreased with Re concentration monotonically, the DRe values

stayed almost constant up to about 3 - 4 at.% before decreasing in magnitude. This meant that up to this concentration,

the Re diffusion is not affected by the presence of other Re atoms and that the Re-Re interactions become sizeable

only beyond this concentration.

Empirically, the effect of solute concentration on the self-diffusion coefficient of the solvent and the solute diffusion

coefficient in the non-dilute alloys have been described using formulations similar to Equations 15 and 16 respectively

[15, 16]. For the case of DNi, we have

DNi = Dself
Ni (1 + b1xRe + b2x2

Re + . . . ) (15)
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Figure 7: Calculated DRe in the non-dilute regime in Ni-Re at 1373 K

Table 6: The self-diffusion coefficient in pure Ni and the calculated solvent enhancement factors for DNi as a function of temperature

Temperature (K) Dself
Ni m2/s b1 b2

1173 1.50E-17 -2.22 -9.81
1273 1.06E-16 -2.02 -8.06
1373 5.67E-16 -1.82 -7.67
1473 2.41E-15 -1.68 -6.34
1573 8.51E-15 -1.53 -6.38

where DNi is the Ni diffusion coefficient as a function of Re composition xRe, while Dself
Ni is the self-diffusion

coefficient of Ni, and b1, b2 , . . . are solvent enhancement factors. It has been argued that b1 represents the effect

of isolated solute atoms on Dself
Ni , while b2 represents the effect of paired solute atoms on Dself

Ni and so on [16]. The

term b1 can be described using analytical formulations [15], however no formulation is available for b2 and higher

order terms. Given a deviation from linearity was clearly observed, we have done a parabolic fit of the DNi data and

considered two terms in the Equation 15. These fitting parameters have been tabulated in Table 6.

Similarly for the case of DRe, we have

DRe = Ddilute
Re (1 + B1xRe + B2x2

Re + . . . ) (16)

where DRe is the Re diffusion coefficient as a function of Re composition xRe, while Ddilute
Re represents the Re

diffusion coefficient in Ni for the dilute case, and B1, B2, . . . are solute enhancement factors. The DRe data was also

fit to a parabola and these values have been tabulated in Table 7. The values for DRe at the Re concentration of 1 at.%

were taken as Ddilute
Re in the present case.

3.4.3. Correlation factors

Calculated fv, fNi and fRe values for various Ni-Re compositions at 1373 K have been plotted in Figure 8. The

trend in fv looks similar to that of Dv at 1373 K (see Figure 5). This is expected as Dv is directly proportional to fv
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Table 7: The Re diffusion coefficient in the dilute case and the calculated solute enhancement factors for DRe as a function of temperature

Temperature (K) Ddilute
Re m2/s B1 B2

1173 1.03E-19 0.44 -20.87
1273 1.07E-18 0.73 -23.99
1373 7.82E-18 1.28 -28.95
1473 4.29E-17 1.39 -27.92
1573 1.95E-16 1.40 -27.23
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Figure 8: Calculated correlation factors in the non-dilute regime in Ni-Re at 1373 K

[11]. fv is close to unity for pure Ni, and the value gradually drops with increasing Re concentration. However, the

decrease in fv is more pronounced than that predicted by the Manning’s model [11] which predicted a negligible effect

of Re concentration on fv. An addition of 10 at.% Re brings down the fv to approximately 0.75, implying moderate

correlation effects.

An fNi value of 0.781 was calculated for pure Ni, which matches the value in the literature accurately [47]. The

fNi value decreased linearly with the Re concentration to about 0.62 for 10 at.% Re. This is expected as a reverse

jump after a Ni-vacancy exchange becomes more likely if the Ni atom is surrounded by more Re atoms, given the low

value for the Re-vacancy exchange frequency. As a result, the efficiency of the Ni diffusion is reduced.

In the case of Re, the fRe values could not be calculated up to 5 at.% Re. This is because given the low frequency

for a Re-vacancy exchange owing to the high migration barrier [11], if the Re atoms do not perform a single jump

in an entire kMC segment, the fRe value for that segment becomes undefined, thus giving an error in the overall fRe

value. This becomes less likely with increasing Re concentration, as is seen to be the case beyond 5 at.% Re. This

is in contrast to the calculation of DRe, where the mean of the squared displacement is taken over all the Re atoms in

the system, thus giving a well-defined value even for the case of dilute alloys. The calculated fRe value was 0.995 for

6.25 at.% Re and dropped only to 0.991 for 10 at.% Re. Thus, effectively the Re diffusive jumps were uncorrelated

throughout the investigated composition range, which matches the results from analytical formulations [11].
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3.5. Discussion

Having calculated the vacancy diffusion coefficients in the non-dilute regime for Ni-Re alloys, its application

to a creep model needs to be verified. It must be reiterated that Ni-based superalloys are used in high temperature

applications where creep is the main deformation mechanism. It has been found that the creep strain rate ε̇ is inversely

proportional to the time to rupture tr of the superalloy component. Thus, we have

ε̇ × tr = B (17)

where B is a constant. This is called the Monkman-Grant relationship [1]. Also, from our hypothesis, the vacancy

diffusion coefficient Dv is proportional to the effective diffusion coefficient Deff. Thus using Equation 1, we have

Dv ∝ Deff ∝
1
tr

(18)

We use this relationship to validate the creep results of Blavette et al[52] conducted on two different Ni-based

superalloys, CMSX-2 and PWA 1480 at a temperature of 1123 K and an applied stress of 500 MPa. Re additions

were made to these first generation superalloys at the expense of W partially or completely. The corresponding Re

composition in the γ phase, xRe and time to rupture, tr for these superalloys before and after Re addition have been

tabulated in Table 8. The superalloy samples were heat treated at the same temperature as the creep tests, and hence

the xRe values represent the actual Re composition of the alloy at the creep temperature. Given that all other factors

remain unchanged, the increase in creep lives should be attributed to the change in Dv by the Re addition. Table 9

shows the Dv values calculated in the binary Ni-Re alloys for pure Ni, 3 at.% Re and 4 at.% Re at 1173 K, which

closely resemble the investigated superalloys. The calculated decrease in Dv accounts for about three-fifth of the

decrease in tr−1 in both the cases. This largely explains the origin of the Re-effect in these alloys.

Again, from the calculation of Dv in dilute alloys [11], it was found that W has the same potency as Re as far as

reduction in Dv is concerned. Thus, given that Re additions were made to these alloys at the expense of W, one can

justify the improvement in creep lives to the fact that Re partitioning to the γ phase is stronger than W. Indeed, while

the W concentration in the γ phase of PWA 1480 alloy was 2.15 at.%, on being replaced by Re completely in the PWA

1480+Re alloy, the Re concentration in the γ phase was 3.71 at.%. Thus, the Re-effect should be explained in totality

by its slowing down of the vacancy diffusion together with strong partitioning to the γ phase. It must be pointed out

that validation of our results would require agreement with more creep data on superalloys from a number of sources.

However, it is important to understand that the number of variables in superalloys metallurgy is very large, and hence

availability of creep data where most variables have been kept fixed is limited.

The present study in the non-dilute regime helps to improve our understanding of how Re may affect the creep

properties in these materials. In terms of future work, there are several areas where the present research can be im-

proved upon. The calculation of non-dilute diffusivities should be extended to treat ternary systems, which would

require effective cluster interaction coefficients and kinetically resolved activation barriers fit against a larger dataset.
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Table 8: Re composition in γ phase (xRe) and time to rupture (tr) for some superalloys studied by Blavette et al [52] at 1123 K and 500 MPa

Superalloy xRe tr (hours) % decrease in
(

1
tr

)
CMSX-2 0 382 -

CMSX-2 + Re 0.0287 498 23.3

PWA 1480 0 356 -
PWA 1480 + Re 0.0371 497 28.3

Table 9: Dv corresponding to Re composition in binary Ni-Re alloys at 1173 K calculated in the present work

Alloy xRe Dv (m2/s) % decrease in Dv

Pure Ni 0 7.30E-12 -
Ni-3 at.% Re 0.03 6.32E-12 13.5

Pure Ni 0 7.30E-12 -
Ni-4 at.% Re 0.04 6.11E-12 16.3

Diffusion calculations, especially in the non-dilute regime must also be performed on other alloying elements com-

monly added to Ni-based superalloys. This is desirable in order to get a complete picture of the effect of chemistry on

creep in superalloys.

4. Conclusion

1. The effect of Re additions on diffusional processes in Ni was investigated to explain how Re composition in γ

may affect the climb of dislocations at the γ/γ′ interfaces, with ramifications on creep properties.

2. The results were obtained by performing kinetic Monte Carlo simulations based on data obtained from density

functional theory.

3. Cluster expansion was employed to calculate the total energy of a configuration of atoms while the values of

migration energy barriers were also cluster expanded considering first neighbours only.

4. Results from the non-dilute alloys of Re in Ni suggest that solute-solute interactions have sizeable effects on

vacancy diffusivity.

5. Applying the data from a previous experimental work to a simple creep model, the Re-effect was explained in

terms of its role on diffusional processes in Ni. However, validation with more experimental data is desirable.

Acknowledgements

The authors would like to acknowledge the use of the BlueBEAR high performance computing facility at the

University of Birmingham as well as the MidPlus regional high performance computing facility for the calculations

presented in this manuscript.

18



References

[1] R. C. Reed. The superalloys: fundamentals and applications. Cambridge University Press, 2006.
[2] A. Mottura and R. C. Reed. What is the role of rhenium in single crystal superalloys? MATEC Web of Conferences, 14:01001, 2014.
[3] A. Mottura, M. W. Finnis, and R. C. Reed. On the possibility of rhenium clustering in nickel-based superalloys. Acta Materialia, 60(6-

7):2866–2872, 2012.
[4] A. F. Giamei. Deformation and fracture of advanced anisotropic superalloys. AFOSR Annual Report FR-11009, 1978.
[5] Z. Zhu, H. Basoalto, N. Warnken, and R. C. Reed. A model for the creep deformation behaviour of nickel-based single crystal superalloys.

Acta Materialia, 60(12):4888–4900, 2012.
[6] B. F. Dyson. Microstructure based creep constitutive model for precipitation strengthened alloys: theory and application. Materials Science

and Engineering: A, 25(2):213–220, 2009.
[7] C. Herring. Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics, 21(5):437–445, 1950.
[8] J. Weertman. Creep of indium, lead, and some of their alloys with various metals. Transactions of the American Institute of Mining and

Metallurgical Engineers, 218(2):207–218, 1960.
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