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Abstract 

The machining and polishing of silicon can damage its surface. Therefore, the 

investigation of electric performance of processed surface is of paramount importance for 

understanding and improving the utilization of silicon components with nanoscale crystal 

defects. In this study, conductivity of nanoscratches on silicon surface was investigated by 

conductive atomic force microscope. Compared to original silicon surface (without any 

treatment), electrical breakover at low bias voltage could be detected on mechanically scratched 

area of silicon surface with crystal defects, and the current increased with the voltage. In 

contrast, no obvious current was found on defect-free scratch created by tribochemical removal. 

The conductivity could also be observed on a friction-induced protrusive hillock created at high 

speed, but not on a hillock created at low speed that is constructed by amorphous silicon. 

Further analysis showed that lattice distortions could facilitate easy electron flow and 

contributed significantly to the conductivity of a mechanical scratch on silicon surface; however, 

amorphous layer hardly contributed to the conductivity, which was also supported by high 

resolution transmission electron microscope analysis. As a result, the relation between the 

electrical performance and microstructures was experimentally established. These findings 

shed new light on subtle mechanism of defect-dependent conductivity, and also provide a rapid 

and nondestructive method for detecting surface defects. 
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Monocrystalline silicon (Si) presents excellent electrical and mechanical properties, and 

services as a fundamental semiconductor material in modern technological applications, such 

as integrated circuits (IC), micro/nanomechanical systems (MEMS/NEMES), photovoltaic 

devices, and so on.1,2 It is of great importance to obtain silicon wafers with smooth surface by 

material removing processes such as machining, cutting and milling from nanoscale to 

macroscale.3-5 However, the manufacturing can usually result in the destructions of silicon 

surface and subsurface.6,7 Such damage significantly influences the mechanical and electrical 

properties of silicon, and can even degrade the performance of devices engineered using it.8 

In the past years, extensive research efforts have been focused on revealing the 

deformation mechanism of materials or controlling damages during scratch and indentation 

tests; 9 - 12  however, limited research has been devoted to the detection of electronical 

performances of damaged silicon surface or structures that play unexpected role in affecting the 

properties of component employed. It has been proven that several types of silicon crystals, 

such as amorphous silicon (a-Si), Si-II (-Sn), and Si-XII/Si-III (or R8/BC8) phases, can be 

created by the indentation, and the critical pressures for the formation of these phases can be 

predicted accurately by simulations.12-14 Some phases were also detected after scratching.15,16 

These crystal defects can lead to the change in physical and chemical performance, such as 

transmission of infrared light and selective etching in alkali-based solutions.17-19 The change 

in the conductivity was also detected on the indented area on Si(100) surface, and it was 

speculated that high current sites corresponded directly to Si-III and/or Si-XII phases toward 

the indent edge.20,21 

Owing to the combination of shear and stress in scratching, significant difference is 

noticed in damage formation between the indentation and scratch tests. For example, low 

applied contact pressure can hardly lead to the plastic deformation of silicon during indentation, 

but can cause obvious surface damage or crystal deformation during scratching.16 Owing to the 

mixed chemical and physical interactions at the sliding interface, multiple silicon crystals can 

be produced by scratching,15,16,22 and it remains difficult to differentiate among the contribution 

of some crystal phases, such as amorphous layer and other crystal distortions, toward the 

conductivity change on silicon surface. Although the formation of amorphous silicon structure 

is suggested to be a main contributor to the conductivity increase of a mechanical scratch on 

silicon surface at a given bias voltage,23 detailed analysis is still required to support the state. 

By far, the relation between the electrical performance and microstructures has not been 

experimentally established, and further study toward revealing the mechanistic approach for 

the nanoscratching-induced conductivity change of silicon still lacks and highly desirable. On 
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the other hand, the detection of surface/subsurface defects at nanoscale is significantly 

important for understanding and improving the utilization of silicon components with crystal 

defects. Although high resolution transmission electron microscope (HRTEM) shows robust 

ability in observing crystal lattice on the cross section of processed surface, it depends on 

focused ion beam (FIB) milling of specimen surface and thus causes destruction of the 

surface.16 Chemical etching can usually result in local damages of processed area, and the 

etching agent can cause surface pollution. Therefore, a rapid, cost effective, and nondestructive 

method is highly desirable for detecting damages at nanoscale on monocrystalline silicon. 

In the present study, the electrical breakover of a surface scratch on silicon was 

investigated by conductive atomic force microscope (CAFM). For comparison, the conductivity 

of defect-free structures and friction-induced protrusive hillocks was also detected. The 

mechanism for the breakover on mechanically scratched area was further proposed based on 

HRTEM study. Finally, the application of conductivity characterization was also demonstrated 

in detecting surface damage of silicon. 

B-doped Si(100) wafers (MEMC Electronic Materials, Inc., USA) with a resistivity of 10 

Ω·cm were used for scratch production and conductivity test using an atomic force microscope 

(AFM; E-Sweep, Hitachi Instruments Inc., Japan). The surface root-mean-square (RMS) 

roughness of the silicon wafers was measured to be about 0.1 nm over the area of 1 μm × 1 μm 

by AFM. The samples were ultrasonically cleaned with acetone, ethanol, and deionized water 

successively for 3 min to remove surface contaminations. A home-built micro/nano-scratching 

device was employed for producing mechanical scratches on silicon surface under temperature 

of ~25 C and relative humidity of ~55%. A conical diamond tip with the tip radius R of about 

10 µm was used for scratching under normal load Fn ranging from 5 to 20 mN. A PtIr-coated 

conductive AFM probe (SCM-PIC, Bruker Corporation, USA) with the nominal tip radius R of 

20 nm was used to characterize sample conductivity in vacuum (~1 Pa) by conductive AFM 

(CAFM). For comparison, CAFM tests were also performed on protrusive hillocks produced 

using a diamond tip (R = 0.5 µm) under different sliding velocities (10-1000 µm/s) and on 

defect-free grooves produced using a SiO2 tip (R = 1 µm). To prevent the generation of 

displacement current resulting from high scanning speed, the scanning speed of 0.6 μm/s was 

set as the optimized speed in the present study for conductivity detection.24 Negative bias 

voltage of -0.5 V to -3.0 V was applied to the scratch to avoid the anodic oxidation of the 

scanned area on silicon surface. 

The surface topography and current image of the scratch produced under different loads 
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from 5 to 20 mN are shown in Fig. 1(a). The cross-section profiles of the topography exhibit 

that the depth of the V-shaped scratch increases from 15 to 250 nm with applied loads. The 

current images indicate that obvious electrical breakover signals are detected on the scratches; 

however, no conductivity is observed on the original silicon surface under the given test. No 

obvious changes in the corresponding maximum current are found under different scratching 

depth at the same voltage of -2.0 V (Fig. 1(b)). Nonetheless, the increase in the bias voltage 

from -0.5 V to -3.0 V can lead to obvious increase of the current from the same scratch (Fig. 

1(c)). Moreover, the discontinuity of current was detected on the scratch, in particular, for the 

one produced under high load, which may be ascribed to the different types of deformation 

beneath the scratch. It is noteworthy that micro cracks can facilitate the breakover on silicon 

surface. Under the applied load of 20 mN, obvious current signal was detected on the cracks 

besides the scratch as marked by arrows in Figs. 1(a) and (b).  

 

FIG. 1. Conductivity detection of nanoscratches on silicon surface in vacuum: (a) Topographies 

and (b) corresponding current images of scratches created under different normal loads (5, 10, 

15 and 20 mN). For obtaining the current images in (b), the applied bias voltage is -2.0 V. (c) 

Current images of the scratch created under 10 mN, and the voltage is -0.5, -1.0, -2.0 and -3.0 

V, respectively. The corresponding cross-section profiles were obtained from the AFM 

topographies or current images, and shown in the figures with the same scale. 
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By friction-induced tribochemical removal or tribochemistry-induced selective etching, 

defect-free grooves can be produced on silicon surface, without any crystal defects underneath 

the removed area.17,25 The defect-free scratch with the depth of ~3 nm was fabricated on Si(100) 

surface using a SiO2 tip by tribochemical removal, and a groove of ~60 nm was also prepared 

by tribochemistry-induced selective etching, as shown in Fig. 2(a). After characterization by 

CAFM, hardly any difference in conductivity could be observed between the scratch and the 

original silicon surface under the bias voltage of -2.0 V, as shown in Fig. 2(b). Therefore, 

combining CAFM investigations on the mechanical and defect-free scratches revealed that the 

subsurface damage induced by scratching could result in local conductivity on the scratch. 

 

FIG. 2. Conductivity detection of (a,b) defect-free grooves and (c,d) protrusive hillocks on 

silicon. (a) Topographies of defect-free grooves created by tribochemical removal using a SiO2 

tip and by tribochemistry-induced selective etching. (c) Topographies of friction-induced 

protrusive hillocks produced under sliding speed of 10 μm/s and 1000 μm/s, respectively. (b) 

and (d) show the corresponding current images detected from the above mentioned grooves, 

and the bias voltage for conductivity detection is -2.0 V. The corresponding cross-section 

profiles are also shown in the images. 

 

For further comparison, some protrusive hillocks were produced on silicon surface by 

scratching using a diamond tip under the Hertz contact pressure estimated lower than the 

hardness of silicon (~11 GPa).16,22 In the present study, different protrusive hillocks were 

produced on silicon under different sliding speeds and then detected by CAFM (Fig. 2). The 

results indicated that the conductivity measured from the hillock on silicon increased with the 

sliding speed for the hillock production.16 Under the sliding speed of 10 μm/s, although the 
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hillock was the highest in this study, hardly any conductivity could be detected as shown in 

Figs. 2(c) and 2(d).. In contrast, obvious conductivity was observed on the hillock produced at 

1000 μm/s although its height was ~1 nm (Fig. 2c). 

 

FIG. 3. TEM detection of the cross sections of different scratches and hillocks on silicon surface: 

(a) Mechanical scratch created using a diamond tip under an applied load Fn of 20 mN in air, 

(b) A defect-free scratch created using a SiO2 tip (R = 1 µm) under reciprocating scratching 

cycles of 100 and Fn = 3 µN, (c) A protrusive hillock created using a diamond tip at 10 µm/s, 

and (d) A protrusive hillock created using a diamond tip at 1000 µm/s. The marked area by 

dotted frame in the inset was magnified below for every image. 

 

Fig. 3 shows HRTEM characterization of the cross sections of different scratches and 

hillocks on silicon surface. Severe lattice sliding and mixed lattice distortions were observed 

on the cross section of the groove generated by mechanical removal (Fig. 3(a)); however, no 

obvious lattice defect could be found on the groove created using a SiO2 tip through 

tribochemical removal (Fig. 3(b)). For the hillock produced under low slinging speed (10 µm/s), 

amorphous silicon with slight stacking faults constituted the main composition (Fig. 3(c). In 

contrast, intensive dislocations, stacking faults, and slip lines were found below the hillock 

produced under high slinging speed (1000 µm/s). Combined results of the conductive tests of 

the mechanical scratches, defect-free grooves, and protrusive hillocks constructed by 

(a) 

(c) (d)

(b)
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amorphous or severe distortions indicate that the friction-induced amorphous layer has no 

contribution to the conductivity of silicon scratch; however, crystal distortions contribute 

significantly to the conductivity of the mechanical scratch. 

As a result, the mechanism of electrical breakover in the mechanical scratch can be 

ascribed to the formation of new lattice structures beneath. It has been reported that some phases 

can lead to a narrow band gap compared to doped monocrystalline silicon. For example, Si-IV 

behaves like a semiconductor with an intermediate (~1 eV) band gap.26 Based on the present 

results, it can be hereby speculated that the existence of dislocations, stacking faults, and slip 

lines easily facilitate the electron flow compared to bulk silicon and amorphous silicon. 

Moreover, it was also deduced that the residual stress existing in the deformed part could reduce 

the critical energy for carrier transportation, which could facilitate more carriers passing 

through the stressed area.27,28 Therefore, when the AFM tip scans on the bulk silicon surface, 

few electrons can get through the crystal region due to the limited electron holes in the doped 

silicon at low bias voltage, as shown in Fig. 4(a). In contrast, the lattice distortions are expected 

to provide a low circulation barrier for electron pass, and the electricity can circulate through it 

easily when the tip scans on the groove with crystal distortions (Fig. 4(b)). In addition, crystal 

distortions and micro cracks can result in unsaturated bonds with respect to the bulk structure, 

and the unsaturated bonds are speculated to be the channels for promoting electron flow. 

However, some theoretical simulations maybe still required for further revealing the nature of 

the electrical breakover in the mechanical scratch with crystal damages. 

 

FIG. 4. The schematic illustration of the conductivity of (a) bulk silicon and (b) a scratch on 

silicon. 

 

The change in the conductivity can be applied for detecting defects on silicon surface as 

well as gallium arsenide (GaAs) surface. Fig. 5(a) demonstrates that when Si(100) surface was 

polished with the slurry containing SiC particles, some scratches were formed. Obvious current 

signal could be observed for the mechanical scratches, indicating severe lattice damages 

Mechanical scratch
CAFM tip 

Sample stage 

Si 

A A 
(a) (b) 
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beneath (Fig. 5(b)). Mechanical scratches on other silicon planes, such as Si(110) and Si(111), 

and GaAs wafer could also be differentiated by CAFM. It was highlighted that micro cracks 

could facilitate the conductivity of silicon surface, as shown in Figs. 1(a) and (b). Such a method 

can help monitor and optimize the surface quality of silicon during its manufacturing processes. 

Moreover, the present study may shed new light on understanding the electrical performance 

of silicon components with crystal defects as well as micro/nano-cracks, and it seems that 

amorphization should be avoided in silicon processing. However, it is still difficult to 

differentiate a given silicon phase, such as Si-II, Si-III, or Si-XII/Si-XIII, because the formation 

of each one of these phases can be hardly controlled accurately by indentations or scratch at the 

present stage. 

 

FIG. 5. Detection of surface defects on silicon after being polished with the slurry containing 

SiC particles: (a) AFM topography and (b) the corresponding current image. 

 

In this study, electrical breakover was observed on a mechanical scratch on 

monocrystalline silicon at low bias voltage by CAFM. Comparative analysis indicated that the 

change in conductivity could not be found on a friction-induced hillock with amorphous 

structure or on a defect-free scratch. It was also deduced that lattice distortions including 

dislocations, stacking faults, and slips easily facilitated the electron flow compared to bulk 

silicon and amorphous silicon, and contributed significantly to the conductivity of a mechanical 

scratch on silicon. The proposed study provides alternative approach for rapid and 

nondestructive detection of crystal damages on silicon, and sheds new light on understanding 

the electrical performance of silicon components with crystal defects as well as micro/nano-

cracks. 

This work was supported by the National Natural Science Foundation of China (Grant No. 

51775462). 
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