UNIVERSITYOF
BIRMINGHAM

iversit}/]ofBirmin am
esearch at Birmingham

Clustering Dycom: An Online Cross-Company
Software Effort Estimation Study

MINKU, L.; HOU, S.

DOI:
10.1145/3127005.3127007

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

MINKU, L & HOU, S 2017, Clustering Dycom: An Online Cross-Company Software Effort Estimation Study. in
Proceedings of the 13th International Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE). ACM/IEEE, Toronto, Canada, pp. 12-21. https://doi.org/10.1145/3127005.3127007

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 09/11/2018

doi>10.1145/3127005.3127007

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1145/3127005.3127007
https://doi.org/10.1145/3127005.3127007
https://birmingham.elsevierpure.com/en/publications/68ddeec9-3cee-4489-a367-2a15dc6f55e1

Clustering Dycom

An Online Cross-Company Software Effort Estimation Study

Leandro L. Minku
Department of Informatics, University of Leicester
University Road
Leicester LE1 7RH, UK
leandro.minku@leicester.ac.uk

ABSTRACT

Background: Software Effort Estimation (SEE) can be formulated
as an online learning problem, where new projects are completed
over time and may become available for training. In this scenario,
a Cross-Company (CC) SEE approach called Dycom can drastically
reduce the number of Within-Company (WC) projects needed for
training, saving the high cost of collecting such training projects.
However, Dycom relies on splitting CC projects into different sub-
sets in order to create its CC models. Such splitting can have a
significant impact on Dycom’s predictive performance.

Aims: This paper investigates whether clustering methods can be
used to help finding good CC splits for Dycom.

Method: Dycom is extended to use clustering methods for creating
the CC subsets. Three different clustering methods are investi-
gated, namely Hierarchical Clustering, K-Means, and Expectation-
Maximisation. Clustering Dycom is compared against the origi-
nal Dycom with CC subsets of different sizes, based on four SEE
databases. A baseline WC model is also included in the analysis.
Results: Clustering Dycom with K-Means can potentially help to
split the CC projects, managing to achieve similar or better pre-
dictive performance than Dycom. However, K-Means still requires
the number of CC subsets to be pre-defined, and a poor choice can
negatively affect predictive performance. EM enables Dycom to
automatically set the number of CC subsets while still maintaining
or improving predictive performance with respect to the baseline
WC model. Clustering Dycom with Hierarchical Clustering did not
offer significant advantage in terms of predictive performance.
Conclusion: Clustering methods can be an effective way to auto-
matically generate Dycom’s CC subsets.

CCS CONCEPTS

« Software and its engineering — Software creation and man-
agement; - Computing methodologies — Supervised learn-
ing by regression; Transfer learning; Lifelong machine learn-
ing; Online learning settings; Ensemble methods;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PROMISE , November 8, 2017, Toronto, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5305-2/17/11...$15.00
https://doi.org/10.1145/3127005.3127007

Siging Hou
Computer, Electrical and Mathematical Sciences and
Engineering Division, King Abdullah University of Science
and Technology
Thuwal 23955-6900, Saudi Arabia
siging.hou@kaust.edu.sa

KEYWORDS

Software effort estimation, cross-company learning, concept drift,
online learning, ensembles

ACM Reference format:

Leandro L. Minku and Siqing Hou. 2017. Clustering Dycom. In Proceedings
of PROMISE , Toronto, Canada, November 8, 2017, 10 pages.
https://doi.org/10.1145/3127005.3127007

1 INTRODUCTION

Software Effort Estimation (SEE) is the process of estimating the
effort required to develop a software project. The use of machine
learning approaches for creating SEE models based on data describ-
ing completed projects has been studied for many years [5, 7, 15].
The process of creating such SEE models faces several challenges,
such as the heterogeneity of software projects and the high cost as-
sociated to collecting Within-Company (WC) projects for training
SEE models. These challenges can hinder the resulting SEE model’s
predictive performance.

However, SEE models could form useful tools to help experts
with performing and/or re-thinking their estimations, which in turn
can be used to inform many important project decisions, such as
project bidding, requirements selection, task allocation, etc. There-
fore, many studies have been attempting to tackle such challenges
in order to improve the predictive performance of SEE models and
facilitate their use. In particular, several studies have investigated
the use of Cross-Company (CC) projects to reduce the cost of col-
lecting WC projects for training SEE models [17, 26, 36].

The different processes and environments underlying different
companies render CC projects potentially heterogeneous with re-
spect to the projects being estimated [30], requiring solutions to
tackle heterogeneity. Therefore, several studies proposed ways to
tackle heterogeneity in CC SEE [20, 22, 26, 35, 36]. In particular, the
approach Dycom [35] managed to drastically reduce the number
of WC projects used for training while maintaining or slightly im-
proving predictive performance in comparison with WC models.
Dycom is the only approach able achieve that while treating the
online learning nature of the SEE problem, i.e., the fact that new
projects arrive over time and that SEE models must be able to adapt
to changes that could otherwise affect their suitability.

In order to use CC projects for SEE, Dycom splits the CC projects
into different subsets according to their productivity. Specifically,
pre-defined productivity thresholds are used to decide the number
of CC subsets and their composing projects. As each subset contains
projects within the same productivity range, each subset is expected

https://doi.org/10.1145/3127005.3127007
https://doi.org/10.1145/3127005.3127007

PROMISE , November 8, 2017, Toronto, Canada

to contain projects that are more homogeneous to each other. These
subsets are thus used to create different CC SEE models. Mapping
functions are then learned to dynamically map the estimations
given by the CC models to estimations reflecting the current context
(in particular, the relationship between project input attributes and
effort) of a given company. These mapping functions are learned
by using a small number of WC projects received over time.
However, the CC splits can have a significant impact on Dycom’s
predictive performance [31], and it is unclear how to best split the
CC projects into different subsets. This paper aims at investigating
whether clustering methods can be used to help finding good CC
splits for Dycom. The following research questions are answered:

RQ1 Can clustering methods help to improve Dycom’s predictive
performance? Which ones?

RQ2 Can clustering methods facilitate the creation of CC splits
by automatically deciding not only the content, but also the
number of CC subsets? Which ones?

In order to answer these questions, Dycom is extended to use
clustering methods for splitting the CC projects. The new approach
is called Clustering Dycom. Three different clustering methods
are investigated, namely Hierarchical Clustering, K-Means and
Expectation-Maximisation (EM). The analysis reveals that K-Means
can potentially help to split the CC projects. Its best and worst case
predictive performances were similar or better than those obtained
by the original Dycom (RQ1). However, K-Means requires the num-
ber of CC subsets to be pre-defined. A poor choice can cause the
predictive performance to become worse than that of a baseline WC
model. EM enables Dycom to automatically set the number of CC
splits, while still maintaining or improving predictive performance
with respect to the baseline WC model (RQ2). Clustering Dycom
with Hierarchical Clustering did not offer significant advantage in
terms of predictive performance over the original Dycom.

This paper is further organised as follows. Section 2 explains
related work. Section 3 explains the original Dycom. Section 4
explains how to use Dycom with clustering methods. Section 5
explains the databases used in the study. Section 6 explains the
experimental setup used to answer the RQs. Section 9 discusses
threats to validity. Sections 7 and 8 present the analysis to answer
RQ1 and RQ2, respectively. Section 10 presents the conclusions and
future work.

2 RELATED WORK

This section discusses related work on CC SEE and on tackling
heterogeneity in SEE. Many studies have investigated the predictive
performance of CC versus WC SEE models. A systematic literature
review published by Kitchenham et al. [17] found ten studies, seven
of which were independent. Three of these concluded that the
predictive performance of CC and WC models was similar, whereas
the other four concluded that the predictive performance of CC
models was worse. McDonell and Shepperd [24] also performed
a systematic literature review to investigate whether CC models
have similar predictive performance to WC models, and found
no strong evidence in support of either type of model. Ordinary
least squares regression, stepwise regression, robust regression,
regression trees and k-nearest neighbours were among the machine
learning approaches investigated.

Leandro L. Minku and Siqing Hou

Several of these studies used CC projects in an attempt to com-
pletely eliminate the need for WC projects [17, 24] . They compared
WC models against models created only with projects from other
companies (e.g., [6, 44]). Some other studies used both CC and WC
projects in at least part of the procedure of building SEE models
[14, 16, 23]. For example, Lefley and Shepperd [23] trained SEE
models with both CC and WC projects, in an attempt to overcome
the small number of WC projects [23].

Both systematic reviews mention that the level of heterogeneity
of the single-company being estimated may vary and influence the
WC models’ performance. This has influenced more recent studies
that use local learning approaches to deal with the heterogeneity
of WC and CC projects. For example, Kocaguneli et al. [20] used a
tree-based filtering mechanism, obtaining very encouraging results.
Models trained solely with different types of projects (or projects
from different centres of a company) from the ones being estimated
obtained overall similar performance to models trained on projects
of the same type (or from the same centre). Turhan and Mendes [42]
investigated the use of a filtering mechanism based on k-nearest
neighbours, obtaining very encouraging results in the area of web
effort estimation. Specifically, filtered stepwise regression CC mod-
els achieved similar performance to WC models in seven out of
eight data sets, and worse performance in only one data set.

Menzies et al. [25] proposed to cluster WC+CC projects using a
method called WHERE, which splits projects according to the input
attributes of highest variability. Prediction rules are then created
for each cluster based on a method called WHICH. Given a certain
cluster, its neighbouring cluster with the lowest required efforts
was referred to as the envied cluster. When making predictions for
WC projects belonging to a cluster, rules created using only the
CC projects from the envied cluster were better than rules created
using only the WC projects from the envied cluster. So, the authors
recommended to cluster WC+CC projects, but to learn rules using
solely the CC projects from the envied cluster. This study was in
the context of both SEE and software defect prediction, but this

particular conclusion was based only on the defect prediction data.
Other studies also investigated the use of clustering methods to

tackle heterogeneity. For example, Huang et al. [12] investigated
K-Means and Scheffe’s method to cluster CC projects based on their
input attributes. An ordinary least squares model was created for
each cluster. When estimating a new project, the cluster to which
this project belongs is determined and its corresponding SEE model
is used for performing the estimation. The predictive performance
obtained using clustering was similar to that obtained without clus-
tering. Gallego et al. [10] partitioned CC projects into different
subsets based on certain input attributes of interest. Each of the
partitions was then further clustered using EM. Linear or exponen-
tial regression models were created for each cluster. Predictions
were made in a similar way to Huang et al. [12]’s method. The au-
thors concluded that clustering can improve predictive performance,
even though no statistical tests were used in this comparison. These
methods were evaluated for making predictions for CC projects,
i.e., no WC data set was used in these studies.

It is important to note that, even though CC/WC projects could
be considered as potentially more/less heterogeneous with respect
to the projects being estimated, WC projects may also be heteroge-
neous. Therefore, the terms CC/WC should not be considered as

Clustering Dycom

synonyms of heterogeneous/homogeneous [30], and the possible
heterogeneity of WC projects should be tackled. Menzies et al. [21]
and Minku and Yao [34] investigated the use of tree-based SEE
models to tackle heterogeneity in general, i.e., not restricted to
CC projects. Other local approaches such as k-nearest neighbours
[2, 40] could also be seen as tackling heterogeneity.

The studies above did not take into account the fact that SEE
is an online learning problem, where new projects need to be pre-
dicted over time, and changes suffered by the company may affect
the quality of existing SEE models [33, 36]. With that in mind, Dy-
namic Cross-company Learning (DCL) [33, 36] creates an ensemble
of WC and CC models and dynamically identifies which of them is
currently beneficial for SEE. The beneficial models are emphasised
when the ensemble is asked to estimate a new WC project. This ap-
proach managed to improve predictive performance in comparison
with a WC model. However, DCL can only benefit from CC projects
when they match the current WC context reasonably well. It still
requires a fair amount of WC projects to achieve good performance
during the periods when the CC models are not beneficial.

Kocaguneli et al.[22] investigated a tree-based filtering mecha-
nism called TEAK [21] to tackle heterogeneity. This mechanism
creates trees to represent training projects and provide effort esti-
mations. CC or WC training projects corresponding to sub-trees
of high variance are assumed to be detrimental and filtered out.
Besides investigating TEAK for CC web effort estimation, Koca-
guneli et al. [22] also investigated its ability to transfer knowledge
from the past to the present in conventional WC SEE. The approach
managed to obtain similar performance when using only training
projects from the same time period as the project being estimated,
and when using a mix of training projects from the same and differ-
ent time periods. However, similar to DCL [33, 36], this approach
still relies on a good number of projects from the same time period
to be available for the process of generating the SEE model.

The approach Dycom [35] has been proposed to overcome this
limitation. Similar to DCL, it maintains an ensemble of WC and CC
models. However, instead of just identifying which past WC or CC
models are more beneficial, it maps the estimations given by the CC
models to the WC context. In this way, it can significantly reduce
the number of WC projects needed for training while maintaining
or slightly improving predictive performance in comparison with a
WC model. However, Dycom requires CC projects to be split into
different subsets to create its CC models, and the choice of CC split
can significantly affect Dycom’s predictive performance. Therefore,
it would be desirable to have a method to facilitate the splitting
process. As explained in section 1, this paper aims to investigate
whether clustering methods can help with that. Section 3 explains
Dycom in more detail.

3 DYCOM

Dycom (a.k.a. Dynamic Cross-company Mapped Model Learning)
is an SEE online learning approach based on the observation that
there is a relationship between the SEE context of a certain company
and other companies. Minku and Yao [35] formalise the relationship
between two companies C4 and Cp as follows:

fa(x) = ga(fB(x)) 1

PROMISE , November 8, 2017, Toronto, Canada

where C4 is the company in which we are interested; Cp is another
company (or a subset of this other company); f4 and fg are the true
functions providing C4’s and Cp’s required efforts, respectively;
gBA is a function that maps the effort from Cp’s context to C4’s
context; and x = [x1,x2,- - - , X,] are the input attributes describing
a software project. The functions f4, fp and gg4 can be of any type.
An illustrative example where f4(x) = gpa(fB(x)) = 1.2 - fg(x)
can be found in [35].

Given equation 1, the task of learning an SEE model for a com-
pany C4 can involve the task of learning the relationship between
C4 and other companies. Therefore, Dycom uses CC training pro-
jects to learn one or more CC models, and uses a very limited
number of WC training projects to learn a function that maps the
estimations given by each CC model to estimations in the WC
context. It is hoped that the task of learning the mapping func-
tions is less difficult than the task of learning a whole WC model
based solely on the WC training projects, as this would consider-
ably reduce the amount of WC projects required for learning. As
summarised by Minku et al. [32], Dycom works as follows.

CC training projects: Dycom uses CC training projects that
are available beforehand. In [35], they were split into M different
training subsets Cp;, 1 < i < M, of similar size based on productiv-
ity thresholds. For example, if the productivity of the CC training
projects in terms of effort (in person-months) divided by size varies
from 3 to 38, one may wish to separate these projects into three
subsets, one containing projects with productivity below 8, one
containing projects with productivity between 8 and 16, and one
for projects with productivity higher than 16, if these productivity
thresholds lead to subsets containing a similar number of projects.
Each subset Cp; is considered as a separate CC training set. The rea-
son for splitting CC projects will be explained later in the paragraph
on mapping functions. Note that we use the term CC loosely herein.
For example, projects from different departments within the same
company could be considered as CC projects if such departments
employ largely different practices.

CC SEE models: Each of the M CC training sets is used to create
a different CC model fB,- (1<i<M).

WC training projects: Dycom considers that the WC projects
arrive in order of completion, i.e., online. In particular, it considers
that one WC project arrives at each time step. WC projects that
arrive at every p (p > 1) time steps contain both information on
their input attributes and actual effort. All remaining WC projects
contain only the information on the input attributes, whereas their
actual effort, which is more difficult and costly to collect [19], is
missing. So, even though an effort estimation is required for all WC
projects, only a few of them (those arriving at time steps multiple
of p) can be used as training projects.

Mapping functions: Whenever a new WC training project ar-
rives, each model fB i is asked to perform an SEE. Each SEE is then
used to create a mapping training example (fB i(x),y). A mapping
function gp; 4 that receives estimations fBi (x) in the context of Cp;
as input and maps them to estimations in the context of C4 is trained
with the mapping training example. Dycom considers that the rela-
tionship formalised in equation 1 can be modelled reasonably well
by linear functions of the format jBiA(fBi(x)) = fBi(x) - b; when
different subsets containing relatively more similar CC training

PROMISE , November 8, 2017, Toronto, Canada

projects are considered separately. This is the reason to split CC
training projects into different subsets.

Learning a function of the format ,‘?BiA(fBi(X)) = fBi(x) - b is
equivalent to learning the factor b;. This is done using equation 2:

1, if no mapping training example has been received yet

- / Jif (fB i(x),y) is the first mapping training example
bi=1 fpi(x)
Ir- = y + (1=1Ir) - b;j, otherwise.
fBi(x)

@)
where (fB i(x), y) is the mapping training example being learnt, Ir
(0 < Ir < 1) is a pre-defined smoothing factor and the factor b;
in the right side of the equation is the previous value of b;. This
equation enables the mapping function to dynamically adapt to
potential changes affecting software effort over time. For a more
detailed explanation of this equation, we refer the reader to [35].

WC SEE model: Whenever a new WC training project arrives,
it is used to train a WC model fWA- This model is not expected to
perform very well, because it will be trained on a limited number of
projects. However, its effort estimations may be helpful when used
in an ensemble together with the mapped estimations, given that
ensembles have been showing to improve SEE considerably [33,
34, 36]. It is also worth noting that, despite being potentially more
homogeneus than CC projects, the WC projects could possibly also
present a significant level of heterogeneity. In order to tackle this
heterogeneity, it is recommended to use Dycom with WC models
that are local approaches, such as decision trees [34].

Dycom’s SEEs: Both the mapped models §p;a (fBi) and the WC
model fWA can provide an SEE in the WC context when required.
The SEE given by Dycom is the weighted average of these M + 1
estimations:

A A/I A A
Fa) = | > wai - goia(fi(0) | + ww, fir,),)
i=1
where the weights wg; and wyy, represent how much we trust
each of the models, are positive and sum to one. So, Dycom uses
an ensemble of mapped and WC SEE models.

Weights: The weights are initialised so that they have the same
value for all models being used in the ensemble and are updated as
as follows: whenever a new WC training project is made available,
the model which provided the lowest absolute error is considered
to be the winner and the others are the losers. The losers have their
weights multiplied by a pre-defined parameter f (0 < § < 1), and
then all weights are normalised in order to sum up to one.

Dycom’s pseudocode can be found in [35], and is omitted from
here due to space limitations.

4 CLUSTERING DYCOM

CC projects could potentially be split into different CC subsets
based on clustering algorithms, rather than pre-defined productivity
thresholds. For that, each cluster of CC projects can be considered
as a CC subset. We will refer to this approach as Clustering Dycom.
Clustering Dycom offers potential advantages over pre-defined
productivity thresholds. Clustering algorithms could automatically

Leandro L. Minku and Siqing Hou

find out which CC projects are most similar to each other and
group them together. In this way, project managers using Cluster-
ing Dycom would not need to analyse the CC projects and their
productivity in order to determine good thresholds to be used. A
good clustering algorithm may be able to further boost Dycom’s
predictive performance, or avoid low predictive performance result-
ing from poor thresholds. Moreover, certain clustering algorithms
may be able to automatically decide the number of CC subsets to be
used. This would further facilitate the use of Dycom, as the number
of CC subsets would not need to be chosen beforehand.

Different features can be used to describe training projects for
clustering. We investigate three different sets of clustering features:

e Productivity, measured by effort divided by size. We investi-
gate productivity because the original Dycom achieved good
results when splitting CC projects based on productivity
thresholds.

e Size and effort. Together, size and effort represent the pro-
ductivity associated to a project. However, two projects with
similar productivities could still have very different sizes.
Given that size is an important factor for estimating effort
[36], we investigate the use of clustering based on the size
and effort of projects.

o All project input and output attributes. We have investigated
the use of all attributes of a project to check whether a more
detailed characterisation of projects could lead to better re-
sults than using only size and effort or productivity.

Please note that it is ok to use the effort as (part of) a feature for
clustering, because (1) clustering is applied only to the CC training
projects, and (2) Dycom does not require to determine the cluster
to which a project being estimated belongs.

Three different clustering methods were investigated: Hierarchi-
cal Clustering, K-Means, and EM. These three clustering methods,
as well as the reasons for choosing them for the investigation, are
explained below.

4.1 Hierarchical Clustering

Hierarchical clustering methods [37] build a hierarchy of clusters by
putting together projects that are similar to each other. In this work,
we have used an agglomerative hierarchical method. This method
uses a bottom-up approach in which each project is considered to
be a cluster in the lowest level of the hierarchy. Then, at each step
of the algorithm, the two clusters that are closest to each other
are merged together. In the end of the procedure, a single cluster
containing all the projects is created. In order to use the clusters
provided by this method, the level of the hierarchy corresponding
to the desired number M of CC subsets is chosen.

Different ways to measure the similarity between clusters can be
used. In this work, the distance between two clusters is defined as
the Manhattan distance between the two most distant projects, one
from each cluster. The Manhattan distance between two projects
x1 and x» is defined as Zle |x1; — x2;|, where F is the number
of clustering features, and x1; and xy; represent the ith feature
of projects x1 and x, respectively. If a given feature i is nominal,
|x1; — x2i] is set to 1 if x1; and x3; have different values, and to 0
otherwise. As the Manhattan distance is affected by the scale of the
features, all numeric features are normalised to be within [0, 1].

Clustering Dycom

This clustering method has been chosen because hierarchical SEE
models have obtained promising results for tackling heterogeneity
[21, 34]. It also has the advantage of being a deterministic method,
i.e., it will always retrieve the same clusters when the same projects
and features are used.

4.2 K-Means

K-Means [37] is an iterative clustering method that tries to minimise
the distance of the projects to their cluster centres. It first randomly
assigns projects to a pre-defined number k of clusters, where k
equals to the desired number M of CC subsets to be generated.
Then, in each iteration, projects are reassigned to the clusters with
the closest centres, and the clusters centres are re-computed. This
iterative procedure is typically halted when projects stop moving
between clusters, or when a maximum number of iterations is
reached. Similar to hierarchical clustering, Manhattan distance has
been used as the distance measure.

This clustering method has been chosen because it is one of the
most popular and well known clustering methods in the literature.

4.3 EM

EM [4] is a density-based clustering method. It assumes that the
projects belonging to each cluster are drawn from a specific distri-
bution. Therefore, this method tries to identify the clusters and their
probability distributions. Given a number of clusters M, EM first
randomly assigns random values for the parameters 6; of the prob-
ability distributions associated to each cluster C;. It then performs
two steps: expectation and maximisation. In the expectation step,
the posterior probability p(C;j|x) that a given project x belongs to
a given cluster C; is estimated based on the current parameters of
the probability distributions. In the maximisation step, the parame-
ters that maximise the log likelihood of the projects In p(x|0) are
calculated (note that p(Cj|x) is used to compute that) and used to
replace the previous parameters. The algorithm iterates through the
expectation and maximisation steps until a stopping criterion is met.
This could be when a pre-defined maximum number of iterations
is reached, or when the the changes in the log likelihood In p(x|6)
become smaller than a threshold. The distributions are assumed
to be Gaussian for numeric features, whereas discrete estimators
(i.e., frequency counts) are used to characterise the distribution of
nominal features.

This algorithm can automatically determine the number of clus-
ters by using 10-fold cross-validation on the CC training projects
being clustered. This is done through the following procedure [11]:

(1) The number of clusters (which is equal to the number M of
CC subsets) is set to 1.

(2) The CC training projects are divided randomly into 10 folds.

(3) EM is performed 10 times using the 10 folds in the usual
cross-validation way. Specifically, in each time, a different
fold is used to compute the log likelihood and the remaining
folds are used for clustering.

(4) The log likelihood is averaged over all 10 results.

(5) The process above is repeated by increasing the number of
clusters by 1 while improvements in the log likelihood are
observed. If no improvements are observed, the procedure

PROMISE , November 8, 2017, Toronto, Canada

stops and retrieves the number of clusters with the maximum
log likelihood so far.

If there are less than 10 projects, the number of folds is set to the
number of projects in order to perform cross-validation.

This algorithm has been chosen because of its potentially useful
procedure to automatically determine the number of clusters.

5 DATABASES

The databases used in the experiments to answer the RQs outlined
in section 1 are the same as the ones used in Dycom’s original
paper [35]. Part of their descriptions is transcribed here to make
this paper more self-contained. The key difference between the use
of these databases in Dycom’s original [35] and current paper is
that the former fixed the CC subsets based on specific thresholds.
The current paper will investigate different CC splits, as explained
in sections 4 and 6.

Five different databases were used: KitchenMax, CocNasaCoc81,
ISBSG2000, ISBSG2001 and ISBSG. These include both data sets de-
rived from the former PROMISE Repository [27] (now SEACRAFT
Repository [28]) and the ISBSG Repository [13]. Each database
contains a WC data set and a CC data set.

5.1 KitchenMax

The database KitchenMax is composed of Kitchenham! and Max-
well?, which are two SEE data sets available from the SEACRAFT
Repository [28]. Kitchenham’s detailed description can be found in
[18]. It comprises 145 maintenance and development projects un-
dertaken between 1994 and 1998 by a single software development
company. Maxwell’s detailed description can be found in [38]. It
contains 62 projects from one of the biggest commercial banks in
Finland, covering the years 1985 to 1993 and both in-house and out-
sourced development. In order to make these data sets compatible, a
single input attribute (functional size) was used. Still, Maxwell uses
functional size, whereas Kitchenham uses adjusted functional size.
An appropriate mapping function should be able to overcome this
problem. There were no functional size attribute values missing.
The output attribute is the effort in person-hours.

Kitchenham was considered as the WC data, and was sorted
according to the actual start date plus the duration. This sorting
corresponds to the exact completion order of the projects. Maxwell’s
projects were considered as the CC projects. Figure 1a shows the
productivity of the CC projects in terms of effort divided by size,
which is used by the original Dycom to create the CC subsets.

5.2 CocNasaCoc81

The database CocNasaCoc81 is composed of Cocomo Nasa and
Cocomo 81, which are two SEE data sets available from the former
PROMISE Repository [27]. Cocomo Nasa contains 60 Nasa pro-
jects from 1980s-1990s and Cocomo 81 consists of the 63 projects
analysed by Boehm to develop the software cost estimation model
COCOMO [5] first published in 1981. Both data sets contain 16 in-
put attributes (15 cost drivers [5] and number of lines of code) and
one output attribute (software effort in person-months). Cocomo
81 contains an additional input attribute (development type) not

Uhttps://doi.org/10.5281/zenodo.268457
Zhttps://doi.org/10.5281/zenodo.268461

https://doi.org/10.5281/zenodo.268457
https://doi.org/10.5281/zenodo.268461

PROMISE , November 8, 2017, Toronto, Canada

Leandro L. Minku and Siqing Hou

40 60 200 200 400
50
30 150 150 300
40
20 30 100 100 200
" il m u . .
0 i
0 ||||||""""”l"""”“ 0 __...........||||||||IIIIII|||""””””l"l”" o o 0
Hocuuohmﬂgm ﬁﬁgﬁagmﬁa ﬁmmhmammﬁ
1 11 21 31 41 51 61 1 11 21 31 41 51 61 = R SeAS8 SERAERIN
(a) KitchenMax (b) CocNasaCoc81 (c) ISBSG2000 (d) ISBSG2001 (e) ISBSG

Figure 1: CC projects’ productivities (effort divided by size is shown in the y-axis). Projects are sorted from the most productive

to the least productive.

present in Cocomo Nasa, which was thus removed. These data sets
contain no missing values.

Cocomo Nasa’s projects were considered as the WC and Cocomo
81’s as the CC projects. The productivity of the CC projects is shown
in figure 1b. Cocomo Nasa provides no information on whether
the projects are sorted in chronological order. The original order
of the Cocomo Nasa projects was preserved in order to simulate a
given WC projects chronology scenario. Even though this may not
be the true chronological order, it is still useful to evaluate whether
approaches are able to make use of mapped CC models when/if
they are beneficial. Therefore, this is adequate for the purpose of
answering the RQs outlined in section 1.

5.3 ISBSG Databases

Three SEE databases were derived from ISBSG [13] Release 10,
which contains software project information from several compa-
nies. Information on which projects belong to a single company
for composing a WC data set has been provided to us upon request.
The databases are:

e ISBSG2000 — 119 WC projects implemented after the year
2000 and 168 CC projects implemented up to the end of 2000.
e ISBSG2001 — 69 WC projects implemented after the year
2001 and 224 CC projects implemented up to the end of 2001.
o ISBSG - no date restriction to the 187 WC and 826 CC pro-
jects, meaning that CC projects with implementation date
more recent than WC projects are allowed. This database
simulates the case where some other companies are likely

to be be more evolved than the single company analysed.
Information on how these databases were preprocessed can be
found in [33] and is not included here due to space limitations. Four
input attributes (development type, language type, development
platform and functional size) and one output attribute (software
effort in person-hours) were used. The WC projects were sorted
based on the implementation date to compose a stream of incoming
projects. Figures 1c, 1d and 1e show the productivities of the CC

projects of these databases.

6 EXPERIMENTAL SETUP

In order to answer the RQs outlined in section 1, Clustering Dy-
com was compared against the original Dycom with different CC
splits. A baseline WC approach was also used to complement the
analysis. The experiments followed the experimental setup from
the paper proposing Dycom [35]. In particular, Regression Trees
(RTs) were used as Dycom’s base learners. As explained in [35], RTs

were chosen because they have shown competitive performance in
comparison with several other SEE approaches [34]. They are also
local approaches, which can help dealing with the heterogeneity
within each data set. The approaches used to answer the RQs are
explained over the next three paragraphs.

Dycom: Dycom was used with RTs as the CC and WC models
with p = 10, i.e., a new WC training project was provided only at
every 10 time steps. So, Dycom uses only 10% of the WC projects for
training, as in [35]. Whenever a new WC training project was made
available, the WC RT used by Dycom was rebuilt from scratch using
all WC training projects so far. Minku and Yao [35] suggested that
the CC splits are created in such a way that different CC subsets
have similar size. Therefore, different CC splits were created in
the following way [31]. Given a desired number M of CC subsets,
productivity thresholds were set to the values that lead to M CC
subsets with the same number of projects. Least productive CC
subsets may have one project less than the most productive CC
subsets if the total number of CC projects is not a multiple of M.
The experiments used the RT implementation REPTree provided by
WEKA [11], where splits are created so as to minimise the variance
of the output attributes of the training projects in the nodes.

Clustering Dycom: In order to provide a fair comparison with
Dycom, Clustering Dycom also used RTs as the CC and WC models
with p = 10. The experiments used the WEKA [11] implementation
of the clustering methods.

RT: RTs were created to reflect WC online learning, forming a
baseline for the analysis, as in [35]. Whenever a new WC training
project was provided, the current RT was discarded and a new RT
was trained on all projects so far. This approach considers that all
WC completed projects have their true effort known, i.e., every time
step receives a WC training project. Therefore, it uses ten times
more WC training projects than Dycom and Clustering Dycom.

The parameters of all approaches were set to the same values
as in previous work [35], except for the number M of CC subsets,
and the clustering parameters. Dycom and Clustering Dycom were
run with six different values M = {1,---, 6} in order to answer
RQ1 and RQ2, except for Clustering Dycom with EM, which auto-
matically determines an appropriate value for M. The clustering
parameters, which were not needed in [35], were set so as to run the
methods described in section 4. The stopping criteria for K-Means
and EM were set to the same default value of 500 iterations, and
EM’s minimum standard deviation was set to the default value of
1.0E-6. The use of default values avoids giving an unfair advantage
to Clustering Dycom over Dycom in the experiments. Future work

Clustering Dycom

will investigate whether Clustering Dycom’s performance could
be improved further by fine tuning the clustering parameters. Dy-
com’s and RT’s parameters from [35] were the following. Dycom’s
parameter was set to the default value of 0.5. Dycom’s parameter
Ir was set to 0.1 after some preliminary investigation with 0.1 and
0.05. The parameters used with each RT were the ones more likely
to obtain good results in previous work [34]: minimum total weight
of 1 for the instances in a leaf, and minimum proportion of the
variance on all the data that need to be present at a node in order
for splitting to be performed 0.0001.

As in [35], at each time step, effort estimations given for the
next ten WC projects were performed and evaluated. None of these
projects were used for training before being used for evaluation.
In this work, Mean Absolute Error (MAE) and Standardised Accu-
racy (SA) were used to evaluate the estimations. The equations to
calculate MAE and SA are the following: MAE = % ZL 19 — yil,
and SA = (1 — MAE/MAE; gyess) - 100, where T is the number of
projects used for evaluating the performance, y; is the actual effort
for the project i, §j; is the estimated effort for project i, MAE is
the MAE of the approach being evaluated, and MAEgyess is the
MAE of 1000 runs of random guess. Random guess is defined as
sampling uniformly at random the true effort over all the WC pro-
jects received up to the current time step. Therefore, it has access
to the same number of WC training projects as RT, which is 10
times higher than the number of WC projects used by Dycom and
Clustering Dycom.

MAE has been recommended by Shepperd and McDonell [39]
for being unbiased towards under or overestimations. SA is an
unbiased measure that allows for interpretability — it is viewed as
the ratio of how much better an approach is than random guess
[39]. So, it can be used to give a better idea of the magnitude of the
differences in performance. Mean Magnitude of the Relative Error
(MMRE) and percentage of predictions within 25% of the actual
value (PRED(25)) were not used because they are biased towards
underestimations [39] and could lead to misleading conclusions.
The comparisons involving MAE are supported by Wilcoxon Sign-
Rank tests with Holm-Bonferroni corrections at the overall level of
significance of 0.05, and A12 [43], which is one of the measures of
effect size recommended by Arcuri and Briand [3]. Both Wilcoxon
and A12 are non-parametric. As suggested by Vargha and Delaney
[43], A12 of 0.50 indicates no difference, up to 0.56 indicates a small
difference, up to 0.64 indicates medium difference and over 0.71
indicates large difference. Wilcoxon and A12 have not been used for
comparing SA because SA is an interpretable equivalent of MAE.

Dycom and Clustering Dycom with Hierarchical Clustering were
run a single time for each data set, as they are deterministic when
using deterministic RTs. Clustering Dycom with K-Means and EM
were run 30 times, and the MAE obtained at each time step was
averaged across these 30 runs.

7 THE IMPACT OF CLUSTERING DYCOM ON
PREDICTIVE PERFORMANCE

This section investigates if the use of clustering methods could help
to create CC splits that lead to better predictive performance (RQ1).
For that, the predictive performance obtained by Clustering Dycom
with the 3 different clustering methods explained in section 4 is
analysed and compared with Dycom and the baseline RT.

PROMISE , November 8, 2017, Toronto, Canada

Each clustering method was analysed when using three differ-
ent sets of project features (productivity, size and effort, and all
attributes), as explained in section 4. The MAEs obtained when us-
ing size and effort, and when using all attributes, were worse than
those obtained by using productivity in most cases. This further
supports the fact that Dycom achieved good results when splitting
CC projects based on productivity in [35]. Therefore, this section
concentrates on the analysis of Clustering Dycom based on produc-
tivity. The results obtained with size and effort, and all attributes,
are omitted due to space constraints.

Table 1 shows the results achieved by productivity-based Cluster-
ing Dycom, Dycom and the baseline RT. For Clustering Dycom with
Hierarchical Clustering and K-Means, and for Dycom, the results
correspond to the number M* of CC subsets which achieved the top
ranked MAE. For EM, the number of CC subsets was determined
automatically (see section 4.3). RT does not use CC projects.

The statistical tests found no significant difference between the
MAE of Dycom and Clustering Dycom with Hierarchical Clustering
for KitchenMax, CocNasaCoc81 and ISBSG2001. For ISBSG2000 and
ISBSG, significant difference was found. Even though Clustering
Dycom’s MAE was better than Dycom’s for ISBSG2000, the A12
of the difference was small (0.53). Clustering Dycom’s MAE was
worse than Dycom’s for ISBSG and A12 was medium-large (-0.69).
So, the best MAE achieved by Hierarchical Clustering is similar or
worse than that of Dycom. EM’s results were also similar or worse
than those of Dycom, with A12 varying from small to medium.

According to the MAEs and statistical tests, Clustering Dycom
with K-Means obtained better MAE than Dycom for CocNasaCoc81.
A12 was medium-large (0.70) and the difference in SA was of 21.55
units. Such difference has considerably large magnitude, and is
thus likely to have an effect in practice. For the other databases,
no significant difference was found. Therefore, Clustering Dycom
with K-Means was able to maintain or improve Dycom’s MAE. This
suggests that grouping together projects in terms of the distance
of their productivities could potentially be a helpful alternative to
the original Dycom. Therefore, we investigate the results obtained
with K-Means further.

Table 2 shows the results obtained when using K-Means with
k € {1,---,6} and RT. The MAEs and statistical tests show that
the top ranked Ms always obtained significantly better MAE than
the RTs. The corresponding A12s varied from medium to large and
differences in SA varied from 7.07 to 33.75, being very considerable
and likely to have an effect in practice. Therefore, Clustering Dycom
with K-Means can drastically reduce the number of WC training
projects, while significantly improving predictive performance.

However, similar to the original Dycom [31], the number of CC
subsets M can significantly affect Clustering Dycom with K-Means.
A poor choice of M can lead to significantly worse MAE than the top
ranked M, as shown by the statistical tests from table 2. The A12s of
such differences varied from small to very large. Moreover, a poor
choice of M could lead to worse results than the baseline RT. For
instance, Clustering Dycom with K-Means led to significantly worse
MAE than RT when using M = 3 for CocNasaCoc81 and M = 1 for
ISBSG (p-values of 2.99E-09 and 6.09E-12, respectively), with very
large differences in SA. Therefore, using K-Means involves some
risk in terms of predictive performance.

PROMISE , November 8, 2017, Toronto, Canada

Table 1: Results obtained by productivity-based Clustering
Dycom, RT, and Dycom.

Leandro L. Minku and Siqing Hou

Table 2: Results obtained by Clustering Dycom with K-
Means based on productivity, and RT.

Approach / | Database MAE | SA P-value | A12 M | MAE | SA P-value | A12
M* 1 | 2176 | 37.75 | - -
Hierar./ 6 | KitchenMax 2163 | 38.13 | 6.72E-01 | -0.52 2 2443 | 30.13 | 8.87E-06 | 0.62
Hierar. / 5 CocNasaCoc81 | 224 53.15 | 2.04E-01 | 0.60 3 2269 | 35.11 | 3.26E-02 | 0.55
Hierar. /3 | ISBSG2000 2146 | 50.94 | 3.35E-03 | 0.53 KitchenMax 4 2278 | 34.85 | 1.89E-01 | 0.55
Hierar./ 6 | ISBSG2001 2344 | 43.01 | 6.89E-01 | -0.52 5 2269 | 35.10 | 2.66E-01 | 0.54
Hierar./ 6 | ISBSG 4137 | 31.71 | 1.35E-14 | -0.69 6 2249 | 35.68 | 5.02E-01 | 0.53
K-means / 1| KitchenMax 2176 | 37.75 | 1.13E-01 | -0.51 RT | 2441 | 30.18 | 3.50E-16 | 0.60
K-means / 2| CocNasaCoc81 | 158 66.89 | 8.03E-05 | 0.70 1 541 -13.31 | 3.37E-09 | 0.81
K-means / 6 | ISBSG2000 2094 | 52.12 | 6.69E-01 | 0.51 2 158 66.89 | - -
K-means / 6 | ISBSG2001 2315 | 43.70 | 1.60E-01 | 0.51 3 818 -71.13 | 7.56E-10 | 0.99
K-means / 3| ISBSG 2826 | 53.36 | 9.34E-01 | 0.51 CocNasaCoc81 4 675 -41.33 | 7.56E-10 | 0.99
EM/2 KitchenMax 2333 | 33.27 | 2.26E-06 | -0.61 5 598 -25.06 | 7.56E-10 | 0.98
EM/2 CocNasaCoc81 | 308 35.57 | 2.30E-02 | -0.64 6 612 -28.19 | 7.56E-10 | 0.99
EM/3 ISBSG2000 2256 | 48.42 | 5.05E-01 | -0.51 RT | 319 33.14 | 7.16E-07 | 0.66
EM/ 4 ISBSG2001 2640 | 35.82 | 7.66E-07 | -0.58 1 2789 | 36.24 | 3.95E-14 | 0.70
EM/5 ISBSG 2937 | 51.53 | 2.78E-03 | -0.53 2 2342 | 46.44 | 1.37E-02 | 0.55
RT KitchenMax 2441 | 30.18 | 3.01E-11 | 0.62 3 2124 | 51.43 | 7.31E-01 | 0.51
RT CocNasaCoc81 | 319 33.14 | 1.41E-01 | 0.52 ISBSG2000 4 2372 | 45.76 | 1.48E-08 | 0.57
RT ISBSG2000 2753 | 37.05 | 1.11E-05 | 0.62 5 2201 | 49.67 | 1.69E-02 | 0.51
RT ISBSG2001 3622 | 11.93 | 1.83E-07 | 0.76 6 2094 | 52.12 | - -
RT ISBSG 3253 | 46.29 | 6.37E-06 | 0.58 RT | 2753 | 37.05 | 1.06E-06 | 0.65
Dycom /6 | KitchenMax 2165 | 38.06 | - - 1 2435 | 40.80 | 8.43E-03 | 0.55
Dycom /2 | CocNasaCoc81 | 261 4534 | - - 2 2663 | 35.25 | 1.71E-06 | 0.61
Dycom /6 | ISBSG2000 2215 | 49.35 | - - 3 2749 | 33.16 | 7.37E-07 | 0.58
Dycom /4 | ISBSG2001 2353 | 42.79 | - - ISBSG2001 4 2483 | 39.61 | 8.53E-02 | 0.53
Dycom /3 | ISBSG 2806 | 53.69 | - - 5 2353 | 42.79 | 2.58E-01 | -0.50
M* is the number of CC subsets with the best ranked MAE, except for EM, 6 2315 | 4370 | - —
where M* is the median of the number of clusters automatically set by EM RT | 3622 | 11.93 6.76E-09 | 0.77
across 30 runs. The p-values are the results of the Wilcoxon Sign Rank tests 1 4961 | 18.11 | 2.14E-27 | 0.72
to compare each approach’s MAE against Dycom’s. P-values highlighted in 2 3695 | 39.01 | 1.83E-14 | 0.64
yellow (light grey) represent statistically significant difference at the overall 3 2826 | 5336 | - -
level of significance of 0.05, when using Holm-Bonferroni corrections consid- ISBSG 4 2921 | 51.78 | 3.09E-04 | 0.53
ering the 5 comparisons made for a given approach. Positive A12 (or absolute 5 2916 | 51.87 | 2.18E-08 | 0.53
values of negative A12) represent the probability that the corresponding 6 4145 | 31.58 | 5.54E-27 | 0.70
approach has better (worse) MAE than Dycom. RT | 3254 | 46.29 | 2.02E-07 | 0.59

Still, the worst MAEs obtained by Clustering Dycom with K-
Means were similar or better than those obtained by the original
Dycom. The results of the statistical tests and A12s to support this
analysis are shown in table 3. When Clustering Dycom obtained sig-
nificantly better MAE than Dycom (ISBSG2001 and ISBSG), A12 was
medium and the differences in SA were of 9.97 and 15.02 units, be-
ing of considerable magnitude. Therefore, even though the number
of clusters can affect the MAE achieved with K-Means, Clustering
Dycom with K-means could be considered as a safer method than
the original Dycom in the case of a poor choice of M.

In summary, this section shows that K-Means can help to cre-
ate CC splits that lead to better predictive performance, giving a
positive answer to RQ1.

8 THE EFFECT OF AUTOMATICALLY
DETERMINING THE NUMBER M OF CC
SUBSETS

K-Means obtained encouraging results in terms of predictive per-
formance, as shown in section 7. However, a poor choice of the

The column M indicates the number of CC subsets for Clustering Dycom
with K-Means, or the baseline RT approach. The top and bottom ranked
MAE:s for each database are highlighted in lime (light grey) and orange
(dark grey), respectively. The p-values are the results of the Wilcoxon Sign
Rank tests to compare the MAE of each configuration/approach against the
top ranked one. P-values highlighted in yellow (light grey) represent statis-
tically significant difference at the overall level of significance of 0.05, when
using Holm-Bonferroni corrections considering the 6 comparisons made
for a given database. A12 represents the probability that the corresponding
approach has worse MAE than the top ranked one.

number M of CC subsets could lead to worse MAE than the baseline
RT. Choosing the right M for Clustering Dycom with K-Means may
not be an easy task. Therefore, this section investigates whether
clustering methods can facilitate the creation of the CC splits by
automatically deciding not only the content, but also the number
of CC subsets (RQ2).

The clustering method EM can automatically decide the number
of clusters, as explained in section 4. We have seen in section 7
that the MAE obtained by EM was similar or worse than the MAE

Clustering Dycom

Table 3: A12 and p-values of Wilcoxon Sign-Rank tests
for comparing the MAEs obtained by Clustering Dycom
with K-Means and Dycom, using the bottom ranked M.

Database P-value A12
KitchenMax 2.99E-01 0.52
CocNasaCoc81 | 4.78E-01 0.52
ISBSG2000 6.95E-01 -0.53
ISBSG2001 1.07E-07 0.57
ISBSG 2.50E-05 0.57

P-values in yellow (light grey) indicate statistically significant difference
at the overall level of 0.05 with Holm-Bonferroni corrections considering
the 5 comparisons made.

Table 4: A12 and p-values of Wilcoxon Sign-Rank tests

for comparing the MAEs obtained by RT and Clustering
Dycom with EM.

Database P-value A12
KitchenMax 1.31E-01 0.52
CocNasaCoc81 | 9.81E-01 -0.57
ISBSG2000 6.46E-05 0.62
ISBSG2001 7.61E-06 0.70
ISBSG 2.49E-04 0.55

P-values in yellow (light grey) indicate statistically significant difference
at the overall level of 0.05 with Holm-Bonferroni corrections considering
the 5 comparisons made.

obtained by the original Dycom with its best number of CC subsets.
However, this clustering method may still be a good option if it
offers less risk than K-Means, i.e., if its MAE is no worse than that
of the baseline RT. That is because this would mean that Clustering
Dycom with EM can drastically reduce the number of WC train-
ing projects needed to be collected, while at least maintaining the
predictive performance obtained by a WC model.

Table 4 shows the results of the comparison between the MAE of
Clustering Dycom with EM and the MAE of the baseline RT. No sig-
nificant difference was found for KitchenMax and CocNasaCoc81.
For the other databases, Clustering Dycom obtained significantly
better MAE than RT. A12s were 0.62 (medium), 0.70 (medium-large)
and 0.55 (small-medium) for ISBSG2000, ISBSG2001 and ISBSG,
respectively. The differences in SA were 11.37, 23.89 and 5.24, re-
spectively. These differences are of considerable magnitude.

Therefore, when using Clustering Dycom with EM, it is possible
to drastically reduce the number of WC training projects, while
maintaining or even improving MAE. This means that EM can
not only facilitate the creation of the CC subsets by deciding their
content, but also their number, giving a positive answer to RQ2.

9 THREATS TO VALIDITY

The experiments used the same databases and use mostly the same
setup as Dycom’s original paper [35]. Therefore, they have sim-
ilar threats to validity as follows. When using machine learning
approaches, it is important that the approaches being compared
use fair parameter choices in comparison to each other in order to
address internal validity [29, 41]. In this paper, both the RTs used
as WC learners and within Dycom and Clustering Dycom used the
same parameters, which were the ones more likely to obtain good
results in the literature [34]. (Clustering) Dycom has two extra

PROMISE , November 8, 2017, Toronto, Canada

parameters (f and Ir) which were set to the same values for all
databases used in this study, i.e., they were not fine tuned for each
database and therefore should not lead to an unfair advantage to
(Clustering) Dycom. The number M of CC subsets was varied from
1 to 6 to answer the RQs. The other parameters of the clustering
methods were set to default values in order not to give Clustering
Dycom an unfair advantage over Dycom or the baseline RTs.

ISBSG, ISBSG2000 and ISBSG2001 have an overlap of projects.
Therefore, these databases are not independent. However, in online
learning, the conclusions that may be obtained with different num-
bers of preceding and following projects can be very different [36].
For example, as will be shown in section 7, Hierarchical Clustering
with 6 clusters appeared to be good for ISBSG2000, but led to poor
results for ISBSG. Therefore, it is important to include all versions of
the ISBSG database in the analysis, as in previous work [33, 35, 36].

In order to address construct validity, this study used MAE. This
is a measure unbiased towards over or underestimations, and has
been recommended for SEE studies [39]. SA [39] was also used in
order to give a better idea of the magnitude of the differences in
performance and the impact that they are likely to have in prac-
tice. Wilcoxon Sign-Rank statistical tests with Holm-Bonferroni
corrections were used to check the statistical significance of the
differences in terms of MAE. Effect size A12 was used to support
the comparison, as it is independent of the number of observations
in the groups being compared.

Besides never using a WC project for training before using it
for testing, we used five databases to handle external validity. Four
databases with known WC chronological order were used in the
evaluation. Even though the WC chronological order is unknown
for the other database (CocNasaCoc81), it can still be used to evalu-
ate whether (Clustering) Dycom is able to successfully make use of
CC models, contributing to the generalisation of our results. For
ISBSG, some future CC projects were used to simulate the case
where it is known that some other companies are likely to be more
evolved than the single company being analysed. The use of sim-
ulation or synthetic data is common practice in online learning
studies [8]. Obtaining additional databases for this study is difficult
due to our need for non-proprietary data sets with information
on which projects belong to a single-company among the projects
of a cross-company data set. However, the databases used in this
study can be made available through SEACRAFT [28] and ISBSG
[13]. So, researchers and companies willing to use Dycom could use
the same CC data sets used in this study. Future work should also
investigate Dycom with other base learners, clustering methods,
input attributes and clustering features.

As in [35, 36], CC data were considered as fixed CC datasets. As
shown in [36], such fixed CC datasets can be useful for prolonged
periods of time. So, Clustering Dycom as investigated here is appli-
cable in practice. If the weights of all CC mapped models become
too low for a prolonged period of time, this may be an indication
that Dycom needs to be re-built with updated CC datasets. Future
work should investigate a more streamlined approach to update
CC models.

10 CONCLUSIONS

Dycom is a promising approach for SEE. It is able to reduce the
amount of WC training projects required for training SEE models

PROMISE , November 8, 2017, Toronto, Canada

while maintaining or improving the predictive performance of a
corresponding WC approach. However, its good predictive perfor-
mance depends on the choice of a CC split to create its CC models.
A poor choice can lead to worse predictive performance than WC
approaches. Therefore, this paper investigated whether clustering
methods can help to create good CC splits for use with Dycom.

Three different clustering methods were investigated. Among
them, K-Means was able to improve predictive performance over
the original Dycom strategy for creating the CC splits (RQ1). How-
ever, the predictive performance obtained when using K-Means
depends on the prior choice of a suitable number M of CC subsets.
A poor choice can still lead to worse predictive performance than a
baseline WC approach. Even though EM did not achieve so good
predictive performance as Clustering Dycom with K-Means with
the best M, it can automatically determine the number of CC sub-
sets while maintaining or improving the predictive performance of
a corresponding baseline WC approach (RQ2).

Therefore, if the company has the necessary machine learning
expertise and an initial set of WC training projects that is large
enough to tune Dycom’s parameters, we recommend to use Clus-
tering Dycom with K-Means in order to boost Dycom’s predictive
performance. Otherwise, we recommend to use Clustering Dycom
with EM, in order to avoid the risk of obtaining worse results than
a WC approach.

This work has several possible future research directions. In
particular, other clustering methods, base learners, project input
attributes, project features for clustering, parameter values [41] and
(automated) tuning procedures [1, 9] could be investigated, besides
the proposal of a more streamlined approach to update CC models.

ACKNOWLEDGEMENTS

Part of this work has been conducted during Siqing Hou’s internship
at the University of Birmingham (UK).

REFERENCES

[1] A.Agrawal and T. Menzies. 2017. “Better Data” is Better than “Better Data Miners”
(Benefits of Tuning SMOTE for Defect Prediction). ArXiv preprint arXiv:1705.03697
(2017).

[2] S. Amasaki, Y. Takahara, and T. Yokogawa. 2011. Performance Evaluation of
Windowing Approach on Effort Estimation by Analogy. In IWSM-MENSURA.
Nara, Japan, 188-195.

[3] A. Arcuri and L. Briand. 2011. A Practical Guide for using statistical tests to
assess randomized algorithms in software engineering. In ICSE. 1-10.

[4] C.M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer.

[5] B. Boehm. 1981. Software Engineering Economics. Prentice-Hall, Englewood
Cliffs.

[6] L.C. Briand, T. Langley, and I. Wieczorek. 2000. A Replicated Assessment of
Common Software Cost Estimation Techniques. In ICSE. Como, Italy, 377-386.

[7] K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens. 2012. Data Mining Tech-
niques for Software Effort Estimation: A comparative study. IEEE TSE 38, 2 (2012),
375-397.

[8] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. 2015. Learning in Nonstationary
Environments: A Survey. CIM 10, 4 (2015), 12-25.

[9] W.Fu, T. Menzies, and X. Shen. 2016. Tuning for Software Analytics: is it Really
Necessary? ArXiv preprint arXiv:1609.01759 (2016).

[10] J.J.C. Gallego, D. Rodriguez, M.A. Sicilia, M.G. Rubio, and A.G. Crespo. 2007. Soft-
ware Project Effort Estimation Based on Multiple Parametric Models Generated
Through Data Clustering. JCST 22, 3 (2007), 371-378.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009.
The WEKA Data Mining Software: An update. SIGKDD Explorations 11, 1 (2009),
10-18.

[12] S.-J. Huang, N.-H. Chiu, and Y.-J. Liu. 2008. A comparative evaluation on the
accuracies of software effort estimates from clustered data. IST 50 (2008), 879—
888.

Leandro L. Minku and Siqing Hou

[13] ISBSG. 2011. The International Software Benchmarking Standards Group. (2011).

http://www.isbsg.org

R. Jeffery, M Ruhe, and I. Wieczorek. 2010. A Comparative Study of Two Soft-

ware Development Cost Modeling Techniques Using Multi-Organizational and

Company-Specific Data. IST 42, 14 (2010), 1009-1016.

[15] M. Jergensen and M. Shepperd. 2007. A Systematic Review of Software Develop-
ment Cost Estimation Studies. IEEE TSE 33, 1 (2007), 33-53.

[16] B. Kitchenham and E. Mendes. 2004. A Comparison of Cross-Company and
Within-Company Effort Estimation Models for Web Applications. In METRICS.
Chicago, 348-357.

[17] B.A. Kitchenham, E. Mendes, and G.H. Travassos. 2007. Cross versus Within-
Company Cost Estimation Studies: A Systematic Review. IEEE TSE 33, 5 (2007),
316-329.

[18] B.Kitchenham, S. L.. Pfleeger, B. McColl, and S. Eagan. 2002. An empirical study
of maintenance and development estimation accuracy. JSS 64 (2002), 57-77.

[19] E.Kocaguneli, B. Cukic, T. Menzies, and H. Lu. 2013. Building a Second Opinion:
learning cross-company data. In PROMISE. 12.1-10.

[20] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and J. W. Keung. 2010. When to
Use Data from Other Projects for Effort Estimation. In ASE. Antwerp, Belgium,
321-324.

[21] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung. 2012. Exploiting the
Essential Assumptions of Analogy-Based Effort Estimation. IEEE TSE 38, 2 (2012),
425-438.

[22] E. Kocaguneli, T. Menzies, and E. Mendes. 2015. Transfer Learning in Effort
Estimation. Empirical Software Engineering Journal 20, 3 (2015), 813-843.

[23] M. Lefley and M. Shepperd. 2003. Using Genetic Programming to Improve

Software Effort Estimation Based on General Data Sets. In GECCO, Vol. LNCS

2724. Chicago, 2477-2487.

S. G. McDonell and MJ. Shepperd. 2007. Comparing Local and Global Software

Effort Estimation Models - Reflections on a Systematic Review. In ESEM. Madrid,

401-409.

[25] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, and
T. Zimmerman. 2013. Local vs. Global Lessons for Defect Prediction and Effort
Estimation. IEEE TSE 39, 6 (2013), 822-834.

[26] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, and T.
Zimmermann. 2013. Local vs. Global Lessons for Defect Prediction and Effort
Estimation. IEEE TSE 39, 6 (2013), 822-834.

[27] T. Menzies, R. Krishna, and D. Pryor. 2015. The Promise Repository of Empirical
Software Engineering Data. (2015). http://openscience.us/repo

[28] T. Menzies, R. Krishna, and D. Pryor. 2017. The SEACRAFT Repository of Empir-
ical Software Engineering Data. (2017). tiny.cc/seacraft

[29] T.Menzies and M. Shepperd. 2012. Special Issue on Repeatable Results in Software
Engineering Prediction. Empirical Software Engineering Journal 17 (2012), 1-17.

[30] L. Minku. 2016. On the Terms Within- and Cross-Company in Software Effort
Estimation. In PROMISE. Ciudad Real, Spain, 4.1-4.4.

[31] L.L. Minku. 2017. An Investigation of Dycom’s Sensitivity to Different Cross-
Company Splits. Technical Report. Department of Informatics, University of
Leicester. http://www.cs.le.ac.uk/people/llm11/publications/dycom-cc-splits.pdf

[32] L. Minku, F. Sarro, E. Mendes, and F. Ferrucci. 2015. How to Make Best Use of
Cross-Company Data for Web Effort Estimation?. In ESEM. Bergamo, Italy.

[33] L.L. Minku and X. Yao. 2012. Can Cross-company Data Improve Performance in
Software Effort Estimation?. In PROMISE. Lund, Sweden, 69-78.

[34] L.L. Minku and X. Yao. 2013. Ensembles and Locality: Insight on Improving
Software Effort Estimation. IST 55, 8 (2013), 1512-1528.

[35] L. Minku and X. Yao. 2014. How to Make Best Use of Cross-company Data in
Software Effort Estimation?. In ICSE. Hyderabad, 446-456.

[36] L. Minku and X. Yao. 2017. Which Models of the Past Are Relevant to the
Present? A software effort estimation approach to exploiting useful past models.
Automated Software Engineering Journal 24, 3 (2017), 499-542.

[37] L.Rokach and O. Maimon. 2005. Clustering Methods. Springer, 321-352.

[38] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris. 2005. Software Productivity and
Effort Prediction with Ordinal Regression. IST 47 (2005), 17-29.

[39] M. Shepperd and S. McDonell. 2012. Evaluating Prediction Systems in Software
Project Estimation. IST 54, 8 (2012), 820-827.

[40] M. Shepperd and C. Schofield. 1997. Estimating Software Project Effort Using
Analogies. IEEE TSE 23, 12 (1997), 736-743.

[41] L. Song, L.L. Minku, and X. Yao. 2013. The Impact of Parameter Tuning on
Software Effort Estimation Using Learning Machines. In PROMISE. Baltimore,
USA, Article No. 9, 10p., doi: 10.1145/2499393.2499394.

[42] B.Turhan and E. Mendes. 2014. A Comparison of Cross- versus Single- Company
Effort Prediction Models for Web Projects. In SEAA. Verona, Italy, 285-292.

[43] A.Varghaand H.D. Delaney. 2000. A critique and improvement of the CL common
language effect size statistics of McGraw and Wong. In Journal of Educational
and Behavioral Statistics, Vol. 25. 101-132.

[44] I Wieczorek and M. Ruhe. 2002. How Valuable Is Company-Specific Data Com-
pared to Multi-Company Data for Software Cost Estimation?. In METRICS. Ot-
tawa, 237-246.

[14

[24

http://www.isbsg.org
http://openscience.us/repo
tiny.cc/seacraft
http://www.cs.le.ac.uk/people/llm11/publications/dycom-cc-splits.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Dycom
	4 Clustering Dycom
	4.1 Hierarchical Clustering
	4.2 K-Means
	4.3 EM

	5 Databases
	5.1 KitchenMax
	5.2 CocNasaCoc81
	5.3 ISBSG Databases

	6 Experimental Setup
	7 The Impact of Clustering Dycom on Predictive Performance
	8 The Effect of Automatically Determining the Number M of CC Subsets
	9 Threats to Validity
	10 Conclusions
	References

