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Abstract 10 

Cell mechanical behaviour is increasingly recognised as a central biophysical parameter in cancer and 11 

stem cell research, and methods of investigating their mechanical behaviour are therefore needed.  12 

We have developed a novel qualitative method based on quantitative phase imaging which is 13 

capable of investigating cell mechanical behaviour in real-time at cellular resolution using Optical 14 

Coherence Phase Microscopy (OCPM), and stimulating the cells non-invasively using hydrostatic 15 

pressure. The method was exemplified to distinguish between cells with distinct mechanical 16 

properties, and transient change induced by cytochalasin D.  17 

We showed the potential of qualitative phase imaging to detect nanoscale intracellular displacement 18 

induced by varying hydrostatic pressure in microfluidic channels, reflecting cell mechanical 19 

behaviour. Further physical modelling is required to yield quantitative mechanical properties. 20 

Keywords: optical coherence phase microscopy, mechanical behaviour, real-time monitoring, 21 

hydrostatic pressure, phase imaging 22 

1. Introduction 23 

There are more than fifteen cancer deaths per minute globally [1], with over 90% of cancer deaths 24 

caused by metastasis [2]. Metastasis is known to alter the mechanical behaviour of cells from the 25 

nanoscopic to macroscopic scales [3], with metastatic potential increasing as cell stiffness decreases 26 

[4 - 7], and nanoscale features of synthetic surfaces have been shown to influence cell behaviour [8].  27 

Similarly, stem cells are vitally important in regenerative and therapeutic medicine due to their self-28 

renewal and differentiation abilities. Mechanical stimuli have been shown to have a major role in 29 

regulating stem cell behaviour, with differentiation controlled by the stiffness of the substrate where 30 

stem cells attach, through a mechanosensitive process [9]. Therefore, there is a clear need to 31 

investigate the mechanical behaviour of cancer cells and stem cells as well as their response to 32 

various mechanical stimuli.  33 

Clinicians have used manual palpation of suspect tissues as a qualitative diagnostic tool for 34 

centuries. It is, however, subjective, and carried out on the macroscopic scale. Non-invasive imaging 35 

techniques such as ultrasound and Magnetic Resonance Imaging (MRI) elastography have translated 36 

to the clinic [10, 11], however both lack the spatial resolution to be used on the cellular scale. The 37 

measurement of mechanical behaviour on the nano- and microscopic scale has used techniques 38 

such as atomic force microscopy (AFM), optical tweezers, and optical coherence elastography (OCE) 39 
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[12, 13]. These do, however, suffer from drawbacks for single cell characterisation in that they use 40 

contact loading or are unable to assess cellular mechanics in a 3D microenvironment.  41 

AFM is one of the most common techniques currently available to assess cell mechanics [14-16]. It 42 

uses a cantilever and tip to determine quantitative cell mechanical properties, achieving high 43 

resolution and mechanical sensitivity, but is inherently invasive, and as a surface-based technique it 44 

cannot investigate intracellular mechanical properties or when cells are cultured in a 3D 45 

environment.  46 

OCT is a low-coherence interferometry based imaging technique which uses the optical scattering 47 

properties of a sample in a manner analogous to ultrasound to create either a 2-D or 3-D image 48 

which shows structural features at the micrometer scale [17-19]. OCE is an extension of OCT which 49 

maps the mechanical properties of tissue by detecting the depth-resolved deformation produced as 50 

a result of compression [13, 20-22]. OCE is comparable to palpation in that a force is applied to the 51 

sample under investigation and the resulting displacement tracked [3].  To date, OCE systems 52 

typically achieve a depth of focus of 0.5 – 3 mm and A-scan rate greater than 20 kHz [13, 22].  53 

Quantitative phase imaging (QPI) is an optical microscopy technique [23, 24] which uses the phase 54 

contrast of a sample to improve upon intrinsic contrast imaging. The shift in optical path length 55 

(OPL) created by the sample is measured quantitatively at the nanometre scale. It is a powerful 56 

label-free tool which has been used to investigate the biophysics of red blood cells [25, 26], cell 57 

growth [27], and track microbial motility [28]. 58 

Combining OCT with high transverse resolution confocal microscopy results in optical coherence 59 

microscopy (OCM), achieving sub-micron resolution imaging with high dynamic range and sensitivity, 60 

allowing for 3D cellular imaging. OCM further extends to Optical Coherence Phase Microscopy 61 

(OCPM), a quantitative phase imaging method, to measure the phase changes and cross-sectional 62 

depth information from a sample. It is sensitive to sub-micrometer changes in OPL, and achieves 63 

high spatial resolution. It is therefore an ideal candidate for monitoring displacements. OCPM has 64 

been used to characterise nanoscale cellular dynamics in live cells [29], and has been shown to 65 

measure cell viability based on intracellular optical fluctuations [30, 31].  66 

In this study, we aimed to propose a method for the contact-less assessment of cell mechanical 67 

behaviour in vitro that will allow further longitudinal studies without damaging the cells or 68 

compromising cell culture sterility.  Therefore, we described a novel method based on a standard 69 

commercial OCT that can measure the relative cell mechanical response to hydrostatic pressure non-70 

invasively and in real-time. This method will be easily translatable to any Fourier-domain OCT and 71 

with some modifications to most of the QPI methods.  72 

 73 

 74 

2. Materials and Methods 75 

 76 

2.1 Cell culture 77 

Breast cancer cells (MCF-7) and mouse fibroblasts (3T3) were used in this study to provide two 78 

lineages with distinct mechanical properties. Both were cultured in Dulbecco's Modified Eagle 79 

Medium (DMEM) with 10% foetal bovine serum, 1% L-glutamine and 1% Penicillin-Streptomycin. 80 

Cells were incubated at 370C and 5% CO2 and were passaged every 3 days. Cells were dissociated 81 



 

using trypsin-EDTA and transferred to microfluidic channels (microslide IV, Ibidi) 24 hours prior to 82 

experimentation. We used adherent cells lines that attached to the bottom substrate of the 83 

channels. 84 

 85 

2.2 Hydrostatic Force 86 

In this study, we modulated the hydrostatic pressure in microfluidic channels to induce a hydrostatic 87 

force on adherent cells attaching at bottom surface of the channels to produce a non-contact force 88 

similar to previous work [32]. In this work, we used controlled cyclic square wave pressure, instead 89 

of a pressure column. We generated a change in hydrostatic pressure in the microfluidics channels 90 

by altering the air pressure in a fluid container (falcon, 50mL), connected through a Tygon (Saint-91 

Gobain, France) tube to microfluidic channels (microslide IV, Ibidi). 92 

In first approximation, we can consider the cells as half-spheres attached to an incompressible solid 93 

substrate (see figure 1). Pressure and force are transmitted equally to all directions, and on figure 1 94 

we will have equal forces on the right and left side of the cell, with no net horizontal hydrostatic 95 

component. Whereas there will be a net vertical force, Fv, at the top of the cell proportional to the 96 

projected area. For a cell of radius r, we have: 97 

 98 

𝐹𝑣 = (∆𝑃 + 𝜌𝑔ℎ)(𝜋𝑟2) + 𝜌𝑔𝑉𝑤  (1) 99 

 100 

Where ΔP is the applied pressure change above the atmospheric pressure, is the water density 101 

(1000 kgm-3), h the height of the water column, and g the gravitational acceleration (9.81 ms-2). Vw is 102 

the volume of water on top of the cell starting from the cell top. It can be written as the difference 103 

between the cell volume and the volume of an imaginary rectangular box surrounding the cell.  104 

𝑉𝑤 = 8𝑟3 − (4/6)𝜋𝑟2  (2) 105 

Typically for a cell of radius 20 m and ΔP=1000 N.m-2 (10 mbar) we calculated a net vertical force of 106 

1.2 µN. However the actual cross-sectional area of a cell is much lower as attachment to the 107 

substrate is made through adhesion focal point. This could lead to acting net vertical force an order 108 

of magnitude lower, i.e. in the nano-Newton range. 109 

In this study, MCF-7 and 3T3 cells were exposed to cyclic mechanical stimuli in the form of square 110 

wave hydrostatic pressure from a microfluidic pressure pump (AF1, Elveflow, France), inside a 111 

microfluidic channel with pressure ranging from 1000 Nm-2 to 20000 Nm-2 with frequencies ranging 112 

from 80-300 mHz. It was ensured that no air bubbles were present in the sample medium by 113 

allowing a flow of media through the microchannel before sealing with a Luer lock plug (Elveflow, 114 

France).  115 

 116 

2.3 Optical coherence phase microscopy 117 

Experimental setup 118 

The OCPM system was based around a commercial Thorlabs Callisto optical coherence tomography 119 

(OCT) system, as shown in figure 2.  The superluminescent light source was centred at 930 nm with a 120 

full width half maximum (FWHM) of 90 nm, with an axial resolution of 5um in water. The scanning 121 



 

rate is 1.2KHz; which was order of magnitude lower than state of the art OCT used for OCE. The light 122 

source was output to a FC/APC fibre, which is the guided with an F280APC-B collimating lens 123 

(Thorlabs, NJ, USA). The light path is then directed by galvanometers which control the image 124 

acquisition, and finally is coupled into the side port of a Leica DMIRE2 microscope. The system is 125 

built in a common path configuration to improve the phase stability [33]. Using a beamsplitter 126 

(Thorlabs, NJ, USA), the brightfield image of the sample was collected digitally using a CMOS camera 127 

(Thorlabs, NJ, USA). A full list of components can be found in section 6.  128 

The acquired spectra were then processed as described in figure 3. First, the average background 129 

was removed, then the signal is resampled in k-space. The modulation of the spectra, collected at a 130 

spatial location xi,yi, encodes the in-depth location (zi) of the scattering particles, which are retrieved 131 

by zero-padding of the signal and fast Fourier transform. This forms the A-scan at the location (xi,yi) 132 

and the real part [35] of the complex signal is compressed on a log scale to give a depth-dependent 133 

intensity profile; while the phase at each depth zi of the OCT signal is retrieved from the argument.    134 

 135 

2.4 Quantifying intracellular displacement due to cyclic hydroforce 136 

A 4D data cube (256x256x512x96 in x, y, z, t pixels) was captured with an acquisition frequency of 137 

1,200 A-scans, or (x, z) scans, per second to sample the varying phase over time. A quantitative 138 

measurement of the change in phase was calculated as the differing phase between successive B-139 

scans. A quantitative measurement of the change in phase was calculated as the differing phase 140 

between successive B-scans. Therefore, the phase was unwrapped along the time-dimension and 141 

not spatially. This was implemented directly with the Matlab (Mathworks) function unwrap. 142 

 The phase difference was then converted into displacement, d, through the following equation: 143 

𝑑 =
∆𝛷𝜆0

4𝜋𝑛
     (3) 144 

Where; n is the refractive index, λ0 is the central wavelength and ΔΦ is the phase difference 145 

between adjacent B scans. In OCPM, the phase stability is defined as the square root of the phase 146 

variance, which is inversely related to the SNR [34]. With a theoretical SNR of 83 db in air, the system 147 

had a theoretical phase stability of 7×10−5 Radians[34]. In liquid medium, the SNR was measured as 148 

35 dB corresponding to a phase resolution of 0.01 radian [34]. 149 

For rectangular input pressure, the relative displacement of each pixel, Δd, was then determined 150 

through the equation: 151 

𝛥𝑑 = 2 ∗ 𝛥𝛷 𝑅𝑀𝑆(𝑥, 𝑦)
𝜆0

4𝜋𝑛
  (4) 152 

Where; ΔΦRMS(x, y) is the root mean squared (RMS) phase change at each pixel as a result of the 153 

induced displacement. This gives us a qualitative measurement of the cell mechanical behaviour in 154 

response to hydrostatic pressure.  155 

Our experimental set-up achieves a scan rate adequate for acquiring the mechanical behaviour of 156 

cultured cells. Whilst the scan rate used in our system is lower than the current state of the art, this 157 

method is easily translatable to other systems where a higher rate could be used.  158 

2.5 Assessing whole cell response 159 

 160 



 

To assess the whole cell mechanical qualitative behaviour we plotted the distribution of the root 161 

mean squared phase for all pixels within the cell, and analysed their distribution. Pixels belonging to 162 

a cell were determined by first, manually removing the first strong reflections associated with the 163 

plastic substrate, and then using an intensity-based mask to delineate the cells.   164 

 165 

2.5 Cellscale Microsquisher® 166 

In order to confirm an appropriate optical phantom for the OCPM set-up, 6% (w/v) agarose beads 167 

(Agarose bead technology, Madrid, Spain) of diameter 150 μm to 350 μm were subjected to parallel 168 

plate compression in a water bath at a strain rate of 2.5 μms-1 using the Cell Scale Microsquisher® 169 

and results recorded in the associated Squisherjoy software. A 1 mm compression plate was 170 

attached to a 235 µm microbeam. The force vs displacement data was then converted into stress vs 171 

strain data, with the associated curve used to obtain a linear regression line from which the elasticity 172 

was calculated at 10% nominal compression of the sphere. 173 

Theory 174 

Force vs displacement data was converted to stress vs strain using a modified Hertz model [36] as 175 

described below.  176 

𝛷 = 𝑐𝑜𝑠−1(
𝑅−𝛿

𝑅
)    (5) 177 

𝑎 = (𝑅 − 𝛿)𝑡𝑎𝑛𝛷    (6) 178 

𝑓(𝑎) =
2(1+𝑣)𝑅2

(𝑎2+4𝑅2)3/2
+

1−𝑣2

(𝑎2+4𝑅2)1/2
 (7) 179 

𝐸 =
3(1−𝑣2)𝐹

4𝛿𝑎
−

𝑓(𝑎)𝐹

𝜋𝛿
   (8) 180 

Where; F is the applied force, R is the sphere radius, δ is the displacement, ν the Poisson’s ratio (0.5) 181 

and E the Young’s Modulus. 182 

 183 

3. Results and Discussion 184 

In this paper, we presented an optical coherence elastography method in which the novelty relied 185 

mostly on the way the mechanical forces were realised in a non-contact way to allow live cell 186 

measurement, and on the associated signal processing techniques. We demonstrated, and 187 

exemplified for single pixels in figure 7, that this method created intracellular displacements within 188 

the cells that were directly coupled to the input mechanical stimuli, and that they were correlated to 189 

transient changes in cell mechanical properties after addition of cytochalasin D, and that they could 190 

distinguish two exemplar cell line extensively studied for their mechanical properties. The proposed 191 

optical set-up was based on a commercial OCT engine (Callisto, Thorlabs) with relatively low 192 

specification when compared to recent advances in the field [] , and could therefore translated easily 193 

to higher specifications OCT systems and with some small modification to most of the QPI 194 

techniques.  195 

Figure 5 (a) shows the stress-strain curve of 6% agarose beads (Agarose bead technology, Madrid, 196 

Spain) acquired from plate to plate compression tests using the Cell Scale Microsquisher system, 197 

shown in (b). This was converted from force-displacement to stress strain using the modified Hertz 198 



 

model described in section 2.5. The mean Young’s modulus was determined to be 834 Pa ± 45 Pa at 199 

10% nominal compression of the bead. Single beads of varying diameter from 150-350 µm were 200 

tested in a water bath. This helped us to confirm that the mechanical properties of agarose beads 201 

were in the same order of magnitude as of biological cells that typically range in the 1 kPa region [5]. 202 

They were therefore a well calibrated test sample to test the new methods based on OCPM. 203 

In figure 6 we report the mean intensity map (a) and phase response (b)-(d) of agarose beads of size 204 

150-350 µm, measured using the novel OCPM system. The period of a 100 mbar hydrostatic 205 

pressure was varied, with the phase response to 4 s, 6 s, and 12 s cycles shown in figure 6 (b), (c), 206 

and (d) respectively at one pixel of the bead. The change in the time varying phase response 207 

correlated directly to the change in pressure cycle. This demonstrated that OCPM could monitor 208 

nanoscale displacements induced by hydrostatic pressure in materials with mechanical properties 209 

comparable to biological cells; and could therefore be used to map the relative mechanical 210 

properties of cells in a non-invasive and real-time manner.  211 

We then used the OCPM system to measure the mechanical behaviour of MCF-7 cells in response to 212 

varying hydrostatic pressure (figure 7), where we plot the response of a single pixel of the cell under 213 

test. Here we show a bright field image of the MCF-7 cells in (a) with the corresponding OCPM en-214 

face image and OCPM B-scan or ‘cell profile’ in figure 7 (b) and (c). Cyclic stress was successfully 215 

applied directly to cells within the microfluidic chip and the corresponding displacement was 216 

recorded in real-time at the nanometre scale for each pixel of the cell (see figure 7 (d)-(k)). A change 217 

in amplitude and/or frequency of the stimuli was translated to a corresponding cell response. In (d), 218 

(e) and (f) the amplitude was varied, with the phase response of a single pixel within the cell to 0, 219 

100, and 200mbar cycles of 6s shown respectively. Here we see a clear change in the phase response 220 

which is directly proportional to the change in stimulus. Intra-cellular variability gives rise to some 221 

variation in the amplitude of the response, however the proportional correspondence of the 222 

response cycle to the hydrostatic pressure cycle is clear. 223 

In (g), (h) and (i) we show the phase response to a variation in the period of the cyclic stress. The 224 

response to 4, 6, and 12s cycles at an amplitude of 200mbar are shown here. Again, we can see that 225 

the response clearly correlates to the change in stimulus. 226 

We then looked at the ability of the system to monitor the relative biomechanical properties of cells 227 

known to be of different stiffness. In (j) we show the phase response of MCF-7 cells to 50mbar of 228 

pressure with a 6s period. We then exposed the cells to 10µM cytocalasin-D, an actin polymerisation 229 

inhibitor known to reduce cell stiffness [37], for 180 minutes prior to recording the phase response 230 

in (k). We can see an increased response here, indicating that the cells were indeed softer after the 231 

addition of Cytochalasin-D. We then calculated the mean RMS of the phase signal in (l) for all pixels 232 

of the cell. This gives a quantitative comparison of the relative cell response which confirms that the 233 

cells were indeed significantly softer as expected after exposure to the drug (p<0.01), demonstrating 234 

the potential of OCPM combined with hydrostatic pressure to monitor non-destructively and in real-235 

time cell mechanical behaviour. 236 

In figure 8 we compare two cell lines with distinctly different mechanical properties. We compare 237 

the properties of 3T3 cells with MCF-7 cells. 3T3 cells have previously been described as stiffer that 238 

MCF-7 in [4]. In (a) we show an en-face image of MCF-7 cells, and of 3T3 in (d). Interferences 239 

between the reflections from the cell membrane and the glass surface generates “spatial” coherent 240 

interference fringes in intensity when the cell thickness is below the coherence gate (<5µm in this 241 

case), hence the banding effect observed in (d). These fringes was however not detrimental to our 242 

method as phase differences were calculated along the time dimension (successive B scans), and not 243 



 

adjacent pixels. We show B-scans, or ‘cell profiles’ of MCF-7 and 3T3 in (b) and (e) respectively, and 244 

the corresponding mechanical contrast maps of relative displacement in (c) and (f), where the 245 

relative displacement increases as the map moves to yellow.  246 

This map is quantified in (g) and (h) where we plot the relative displacement for all pixels in the cell 247 

on a histogram. It is quite clear from this that the mean displacement of the MCF-7 cells is much 248 

greater than that of the 3T3, showing a marked difference in the relative displacement between 249 

different cell lines. The high level of mean displacement recorded for MCF-7 cells indicates a soft 250 

cell, with the low mean displacement if 3T3 indicating a stiffer cell. This data agrees with the figures 251 

previously reported in literature, which state that 3T3 cells are stiffer [38, 4].  252 

This evidence indicates that this novel non-destructive method is capable of providing a qualitative 253 

description of cell mechanical behaviour, and map of mechanical contrast. Qualitative mechanical 254 

contrast has been shown as a clinically relevant method in [39-44]. 255 

 256 

4. Conclusions 257 

We have described a new qualitative method, based on the principles of quantitative phase imaging, 258 

to monitor in real-time and non-destructively the mechanical behaviour of cells in monolayers that is 259 

directly translatable to the study of the mechanical behaviour of cancer cells and of the stem cell 260 

niche. This method is also easily translatable to in vivo imaging.  261 

We have monitored cell response to cyclic hydrostatic pressure. Nanoscale intracellular 262 

displacements were recorded as a function of pressure and can be directly related to the 263 

biomechanical properties of cells. Differences were observed in relative strain rates between the cell 264 

lines under investigation. Further physical modelling will be required to yield quantitative 265 

mechanical properties.  266 

 267 
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 378 

Figure 1: Resulting hydrostatic force induced on adherent cells above a substrate 379 

 380 

 381 

 382 

 383 

Figure 2: OCPM set-up for qualitative measurement of cell mechanical properties: SMF, single mode fibre; CL, collimating 384 
lens; SM, scanning mirrors; SL, scanning lens; BS, beam splitter; TL, tube lens; MC, microchannel. 385 

 386 



 

 387 

Figure 3: Digital processing of acquired OCPM spectra to retrieve intensity image and phase information at each pixel. 388 

 389 

 390 

Figure 4: Relative displacement induced by hydrostatic pressure measured as a change in phase. 1) Imaging system 2) Cyclic 391 
hydrostatic pressure is applied to cells which are cultured on a clear, reflective surface, which results in a change in the 392 

phase signal. 393 



 

 394 

Figure 5: Mechanical properties of 6% agarose beads: Representative stress- strain curve of 350 µm bead (a), and 395 
compression testing in a water bath at strain rate of 2.5 µms

-1
 (b). 396 

 397 

Figure 6: a) OCPM cross section of agarose beads, b-d) response to hydrostatic pressure of 4 s, 6 s, 12 s cycles with 100 398 
mbar amplitude. 399 



 

 400 

Figure 7: Bright field image (a), OCPM en-face (b), and OCPM ‘cell profile’ (c) of MCF-7 cells. Cell response at 0, 100, 200 401 
mbar amplitude (d, e, f) with a 6 s cycle, and for various hydrostatic pressure period, 4 s, 6 s,12 s cycles with 200 mbar 402 

amplitude (g, h, i), and (j) Typical cell response before drug addition (6 s, 50 mbar) and after addition of 10 µM 403 
Cytochalasin-D (k). (l) Mean response (N=242 pixels) shows significant (p<0.01) increase in cell response. Phase value was 404 

taken at a representative pixel rather than the same pixel location within the cell. 405 



 

 406 

Figure 8: OCPM en-face live imaging of MCF-7 cells (a) and 3T3 cells (d) with typical OCPM cross-section, ‘cell profile’, (b) 407 
and (e) and associated relative cell displacement induced by hydrostatic pressure (c) and (f). Heterogeneity in intracellular 408 

displacement was found in histograms of displacement (g, h) with a marked difference between 3T3 and MCF-7 which 409 
suggested 3T3 being stiffer. 410 
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