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Abstract 

Wnt signalling is critically involved in the differentiation of human Mesenchymal Stem Cells 

(hMSC). Wnt proteins therefore have considerable therapeutic value, but are expensive and 

difficult to produce. UM206 is a synthetic peptide and ligand for the Wnt receptor Frizzled. 

Attachment of UM206 to magnetic nanoparticles (MNP) enables the ligand-MNP complex to 

be manipulated using magnetic fields, allowing control of Frizzled stimulation. Using this 

approach, Wnt signalling was activated in hMSC which resulted in Frizzled clustering, β-

catenin translocalisation and activation of TCF/LEF responsive transcription. During 

osteogenesis, UM206-MNP initiated localised mineralised matrix formation. Injection and 

magnetic stimulation of UM206-MNP-labelled MSC in ex vivo chick femurs resulted in 

increased mineralisation which acted synergistically with addition of bone morphogenic 

protein 2 (BMP2) releasing micro-particles. As this facilitates external control over signal 

transduction, conjugated MNP technology has applications both as a research tool and for 

regulating tissue formation in clinical cell therapies. 

Key words: Mesenchymal stem cells; Magnetic nanoparticles; Wnt signalling; bone tissue 

engineering 



Background 

Human mesenchymal stem cells (hMSC) are a promising source for autologous cell 

therapies, particularly for orthopaedic tissue engineering [1]. MSC differentiation into 

osteoblasts results from an array of signalling cascades which are triggered by growth factors, 

physical and environmental stimuli which cross-talk with each other. These stimuli alter the 

expression of numerous regulatory factors including Wnt proteins. MSC have been shown to 

express a range of Wnt proteins and receptors and the pathway is a pivotal regulator of hMSC 

fate and osteoblast differentiation [2], [3].  

Wnt signalling pathways have a multitude of effects on cell behaviour including changes to 

polarity and differentiation. The effects are dependent on cell type and Wnt protein context 

[4], [5]. For example activation of canonical signalling has been shown to promote hMSC 

proliferation, preserve multipotency and inhibit differentiation [6], [7]. However over-

expression of the Wnt co-receptor LRP5 and active β-catenin has also been shown to promote 

osteogenic differentiation of hMSC [8]. Recently, we have demonstrated that immobilised 

Wnt molecules influence MSC migration and differentiation in 3D in vitro models [9]. In 

vivo, Wnt3A enhances skeletal progenitor cell proliferation, differentiation and accelerates 

bone repair in Axin2 knockout mice [10].  

Despite the significant role of Wnt in directing tissue formation, its use in vivo for bone repair 

has been limited. This is partly due to the complex and costly production methods required to 

produce pharmacological quantities of bioactive Wnt with the appropriate post-translational 

modifications [11], [12]. Therefore, there is considerable interest in developing synthetic Wnt 

analogues to pharmacologically regulate Wnt signalling for therapeutic use. UM206 is a 

synthetic peptide based on a conserved fragment of Wnt3A and Wnt 5A. UM206 is a specific 

ligand for Frizzled1 and Frizzled2 receptors and is capable of activating canonical Wnt 

signalling depending on its conformation [13]. 



The use of magnetic nanoparticles (MNP) to target cell signalling pathways is an expanding 

research area in biomedical research. Our previous work has demonstrated the efficacy of 

remotely activating Wnt signalling using oscillating magnetic fields with antibody-coated 

MNP targeted against Frizzled2 receptors [14]. The use of magnetite MNP for biomedical 

applications is particularly attractive due to the level of control that can be excised over 

particle shape, size, charge, coating, magnetization and dose [15]. MNP have been used for 

biomedical applications such as control of cell function and positioning in conjunction with 

magnetic fields. This can enable formation of heterotypic co-culture cell layers and complex 

tissue formation [16], [17]. Incorporation of growth factor conjugated magnetite MNP into 

silk fibroin scaffolds has also shown efficacy in bone tissue engineering [18]. From a clinical 

perspective, the translational potential of magnetite based MNP is clear from their current use 

as MRI contrast agents [19]. A detailed review discussing the clinical applications of MNP in 

the context of orthopaedics is provided by Wimpenny et al [20]. We have demonstrated the 

potential applications of MNP in tissue engineering and regenerative medicine by targeting 

other mechanically responsive targets such as the TREK1 ion channel [21], [22], PDGF 

receptors [23] and Integrins [24]. 

In this study, we report on the feasibility of using synthetic peptide-MNP conjugates for 

remote signalling mechano-activation. Initially, we have demonstrated the mechanism of 

Frizzled signal transduction and Wnt pathway activation via UM206-conjugated MNP and 

oscillating magnetic fields in hMSC using reporter systems. The potential use of UM206-

conjugated MNP for directing bone formation remotely was then assessed using in vitro 

monolayer and 3D (ex vivo) foetal chick femur models [25], [26]. The synergistic effects of 

MNP-mediated Wnt activation and BMP2 signalling on bone formation were also 

investigated. The overall aim of this research was to demonstrate that remote activation of 

Wnt signalling pathways in mesenchymal cell progenitors using peptide conjugated MNP can 



regulate remote controlled bone tissue formation. This technique has applications in both in 

vitro basic research and in orthopaedic cell therapies. 

 

Methods  

Cell culture. hMSC were isolated from fresh bone marrow (Lonza) as described in 

supplementary methods. Cells were expanded in basal media (10% FBS, 1% L-glutamine and 

1% penicillin/streptomycin) (Lonza). Media was replaced twice per week and cells P1-5 were 

used in all experiments. Osteogenic media was prepared as described in supplementary 

methods. For Wnt-treated control groups diluted Wnt3A conditioned media collected from 

Wnt3A overexpressing L-M (TK-) cells (LGC standards) was used.  

Transient transfections. hMSC were transiently transfected with a Gaussia Luciferase 

reporter under control of a TCF/LEF promoter as described previously [14] and in 

supplementary methods. 

MNP coating. 250nm SPIO carboxyl functionalised MNP (Micromod) were covalently 

coated with UM206 peptide by carbodiimide activation as described previously [14] (Fig. 1a) 

and in supplementary methods. MNP coating was characterised as described in the 

supplementary methods. 

Cell labelling with MNP. Cells were cultured in reduced serum basal media for 3h prior to 

addition of 25µg MNP/2x10
5
 cells. Cells were incubated with MNP for 1.5h, then washed 

with PBS to remove unbound particles before addition of fresh media (Fig. 1b).     

Magnetic stimulation. Magnetically stimulated groups were treated with ≥25mT magnetic 

fields using an oscillating magnetic force bioreactor (MICA Biosystems) as described 

previously [14] (Fig 1c). Treatment was performed as described in supplementary methods. 



Cell viability staining. Cells were labelled with MNP and treated with magnetic field 

stimulation as described above. After 14 days treatment, cells were washed with PBS then 

stained with a Live/dead assay as described in supplementary methods. 

MTT assay. Cells were labelled with varying doses of L-/C-C-UM206-MNP or uncoated 

(blank) MNP (5μg to 300μg MNP/2x10
5
 cells) or treated with varying doses of linear / cyclic 

UM206 peptide (1-100μg/mL). Magnetic field groups were treated with magnetic field 

stimulation as described above. After 14 days MTT assay was performed as described in 

supplementary methods. 

Immunocytochemistry. MNP labelling of cells, β-catenin and Osteocalcin staining were 

assessed using immunofluorescence as described in supplementary methods. 

Proximity ligation assay. Frizzled receptor clustering was assessed using a proximity ligation 

assay (PLA) (Duolink, Sigma). Cells were seeded onto glass coverslips (1cm
2
) and labelled 

with MNP as described above; magnetically stimulated groups were treated for 3h. Cells 

were fixed with 90% methanol and blocked as above and MNP and Frizzled2 were visualised 

by staining as described in supplementary methods. 

Luciferase reporter assays. Experiments were performed in reduced serum basal media. At 

each time point, media samples were taken and analysed for luciferase activity using a 

luciferase flash assay kit (Thermo Pierce) on a Biotek Synergy 2 plate reader. Luciferase 

activity was normalised to the total protein content of cell lysates. 

Chick femur culture and microinjection. Foetal chick femurs were extracted and treated as 

previously described [22] and in supplementary methods.  

BMP2 microparticle encapsulation. BMP2 microparticles were prepared as previously 

described [22] and in supplementary methods.  

X-ray microtomography. Chick  femurs were analysed using X-ray microtomography (µCT) 

as previously described [22] and in supplementary methods.  



Histology. For in vitro experiments cells were fixed as above, washed with d.H2O, then 

stained as described in supplementary materials. For chick femur experiments femurs were 

fixed in 4% paraformaldehyde for 48h,  stored in PBS, then stained and sectioned as 

described in supplementary methods.     

Immunohistochemistry. Femurs were processed as described in supplementary methods.  

Statistical analysis. All data is presented as means +/- SEM. Statistical significance at 95% 

Confidence level was determined using 1-way ANOVA with post-hoc Tukey tests using 

Mini-tab. μCT data was analysed by 1-way ANOVA with post-hoc Dunnett’s test, all groups 

were compared to the Sham injection (control) group. 

 

Results 

The MNP coating efficiency was first determined using total protein assay and physical 

characterisation. The amount of UM206 conjugated to MNP was estimated by measuring the 

protein content of the MNP coating solutions before and after incubation with activated 

MNP. The protein content of the coating solutions (ie. unbound protein) decreased by 

between 5% and 27% after incubation with the activated MNP (supplementary table 1).  The 

hydrodynamic size and charge of L- / C-C-UM206 functionalised MNP were compared to 

uncoated-MNP. The hydrodynamic size of L- / C-C-UM206-MNP increased to between 332-

345nm respectively, whilst surface charge increased to between -16 to -8mV. In contrast 

uncoated MNP had a hydrodynamic size of 299nm and a surface charge of -20mV 

(supplementary table 2). 

RT-PCR was then used to confirm Frizzled2 expression in hMSC. Frizzled2 was found to be 

stably expressed over 21 days in basal or osteogenic media (Supplementary Fig. 1a). 

Furthermore Frizzled2 expression was found to be unaffected 24h after treatment with L- / C-



C-UM206-MNP (with or without magnetic field treatment) or in response to Wnt-CM as 

shown by qPCR (supplementary fig 1b).  

Cell labelling with L- / C-C-UM206-MNP was then confirmed using immunofluorescence. A 

clear association between cells and MNP was observed after labelling with either MNP type 

(Fig. 2a). The viability and metabolism of hMSC bound with L- / C-C-UM206-MNP and 

exposed to oscillating magnetic fields was then assessed to determine any cytotoxic effects of 

MNP at a dose shown to induce signalling responses in hMSC. Live/Dead staining was used 

to determine intracellular esterase activity and cell membrane integrity 14 days after 

treatment. Cells remain viable after treatment with MNP (L-UM206-MNP or C-C-UM206-

MNP) with or without intermittent magnetic field stimulation (Fig. 2b). Magnetic field 

treatment alone also had no observable effect on cell viability. MTT assay was also used to 

assess changes in cell metabolism after 14 days treatment (Fig 2c). No overall effects were 

observed when cells were treated with MNP (L-UM206-MNP or C-C-UM206-MNP) with or 

without magnetic field stimulation or with magnetic field alone. A dose response study was 

also performed  (supplementary fig. 2). Cells were treated with varying doses of unbound 

Linear or Cyclic peptide (1-100μg/mL) or with varying doses of L-/C-C-UM206-MNP or 

uncoated (blank) MNP (5μg to 300μg/2x105 cells). No overall effect on cell metabolism was 

observed when cells were treated with either MNP or peptide in these dose ranges.  

Next, the effects of L- / C-C UM206-MNP on Wnt signalling were assessed. 

Immunocytochemistry was used to assess nuclear translocation of β-catenin. β-catenin 

mobilisation was enhanced in cells stimulated with Wnt3a-CM and L-UM206-MNP (and to a 

lesser extent with C-C-UM206-MNP), demonstrating that L-UM206-MNP are capable of 

stimulating β-catenin-mediated Wnt signal transduction (Fig 3A). This effect was enhanced 

when cells were treated with L-UM206-MNP and magnetic field oscillation (Fig. 3B). Next, 

the effects of L- / C-C-UM206-MNP on the activity of a Wnt TCF/LEF luciferase reporter 



which was transiently transfected into hMSC was determined. Six hours after magnetic field 

stimulation (or treatment with Wnt3a-CM), reporter activity was increased in all groups 

except for magnetic field only control and cells cultured with Wnt3a-CM and DKK1, a 

negative regulator of Wnt pathway activation (Fig. 3C(i)). DKK1 effectively inhibited 

Wnt3A signal transduction, but had no effect on L-UM206-MNP mediated activation. 

Furthermore, reporter activity was significantly higher when cells were treated with L-

UM206-MNP compared to Wnt3a-CM. At 24h, reporter activity in the control groups 

remained at low levels, whilst Wnt3a-CM significantly increased reporter activity. Reporter 

activity of L-UM206-MNP stimulated cells persisted 24h after application of the magnetic 

stimulus and again was not affected by DKK1. In contrast to L-UM206-MNP, C-C-UM206-

MNP had a negligible effect on Wnt-reporter activity compared to controls over both time-

points (Fig. 3C(ii)). 

The mechanism of Wnt pathway activation by UM206-MNP was probed further using a 

proximity ligation assay to determine the degree of Frizzled receptor clustering in response to 

MNP. A basal level of receptor clustering was observed in non-treated cells. Treatment with 

Wnt3a-CM or magnetic field alone had no observable effect on receptor clustering (Fig 4a). 

In contrast, a noticeable increase in localised receptor clusters was observed in distinct cell 

populations when cells were treated with L-UM206-MNP, indicating that part of the receptor 

signal activation may be due to receptor clustering. A reduced level of receptor clustering 

was observed in response to C-C-UM206-MNP. In contrast control-MNP coated with non-

specific IgG had no effect on receptor clustering (supplementary fig. 3a). Co-localisation 

analysis of MNP and Frizzled2 staining confirmed positive pixel overlap between MNP and 

Frizzled2 receptors in both L-UM206-MNP and C-C-UM206-MNP treated groups with or 

without magnetic field (Fig 4b). The extent of MNP/receptor co-localisation was quantified 

using Manders threshold coefficient which confirmed positive pixel overlap with values 



ranging from 0.31 (C-C-UM206-MNP) to 0.48 (L-UM206-MNP). In contrast negligible 

overlap was observed in IgG-MNP control groups (Manders threshold coefficient =0.025) 

(supplementary fig. 3b).  

The osteogenic response to remote activation of Frizzled2 using L-UM206-MNP was then 

assessed.  MSC labelled with L-UM206-MNP were cultured for 28 days in osteogenic media 

with intermittent magnetic stimulation. We observed that L-UM206-MNP treated cells 

formed localised areas of Collagen (Fig. 5A), calcified matrix (Fig. 5B) and Osteocalcin 

deposition (Fig. 5C) which were less apparent in the non-treated control group. An additive 

effect on localised matrix formation was observed when cells were treated with L-UM206-

MNP with magnetic stimulation. Under our conditions treatment with Wnt3a-CM caused 

increases in collagen synthesis and Osteocalcin production. 

A translational ex vivo foetal chick femur model was then used to investigate the potential 

synergistic effects between a known osteoinductive cue- BMP2 and mechano-activation of 

the Frizzled receptor. Injection of hMSC alone, or in conjunction with BMP2 releasing 

microparticles and/or L-UM206-MNP into the femur resulted in formation of secondary 

mineralisation sites most noticeable in the epiphysis (Fig. 6 A-C). Femurs were subjected to 

μCT analysis to assess changes in bone volume and density (Fig. 6A). Injection of hMSC 

alone led to increases in relative bone collar volume but had no overall effect on bone collar 

density compared to Sham injected control. In contrast, injection of hMSC with BMP2-

releasing microparticles, which provided an initial burst release of 60ng BMP2 followed by 

10ng/day, resulted in an increase in diaphyseal bone collar density but had no overall effect 

on bone collar volume (Fig 6b). Wnt pathway stimulation via L-UM206-MNP also resulted 

in an increase in relative bone collar density but had no overall effect on bone collar volume. 

The largest effects on bone formation were observed when femurs were injected with L-

UM206-MNP labelled MSC along with BMP2 releasing microparticles, which together 



caused an overall significant increase in relative bone collar density. Histological analysis of 

femurs confirmed the presence of secondary calcified mineralisation sites which were 

prevalent in the cell injected groups (with or without BMP2 and L-UM206-MNP) as shown 

by Alizarin red staining (Fig. 6C), whilst negligible mineralisation was observed in the sham 

injected groups. Cell injected groups were also positive for Osteocalcin as shown by 

Immunohistochemistry (Fig. 6C) and evidence of tissue remodelling by increased collagen 

and/or sGAG deposition was observed in all cell and L-UM206-MNP / BMP2 injected 

groups as shown by Alcian blue and Sirius red staining (Fig. 6C). 

  

Discussion 

In this study remote targeting and mechano-stimulation of Frizzled receptors for Wnt 

pathway activation using peptide-conjugated MNP has been demonstrated. It was also shown 

that this approach offers benefits in a bone tissue engineering context where the promotion of 

bone formation was achieved. In this investigation, UM206 peptides were coated onto 

magnetic nanoparticles and used to target MNP to Frizzled receptors at the cell membrane. 

This allowed remote stimulation of Wnt signal transduction by applying an external magnetic 

field to oscillate the particle-receptor complex using forces in the piconewton (pN: 10−12N) 

range as previously calculated [27]. The efficiency of the MNP coating procedure was 

characterised by examining changes in the physical characteristics of coated MNP and by 

monitoring unbound protein content in the coating solution supernatants. MNP 

functionalisation with UM206 peptides resulted in a decrease in free protein and an increase 

in relative particle size and surface charge. This could be attributed to the peptide layer 

conjugated to the MNP surface and is consistent with previous work which also showed 

alterations in MNP properties after functionalisation [14], [28]. Next we examined 

Frizzled2expression levels in MSC. MSC have previously been shown to express a number of 



Wnt ligands and receptors including Frizzled2 [2]. In this study, we also confirmed that MSC 

stably express Frizzled2 in basal or osteogenic media over three weeks. Our results also 

suggest that Frizzled2 expression is not regulated by short term stimulation with UM206-

MNP or exogenous Wnt3a. This is also consistent with previous work which demonstrated 

that Frizzled2 expression is not regulated by Wnt3a in hMSC [29]. The potential cytotoxic 

effects of MNP are an important consideration when developing MNP based tissue 

engineering treatments. Our experiments show that UM206 peptide alone or MNP bound 

UM206 with or without magnetic field stimulation has no obvious cytotoxic effects on hMSC 

at a range of doses. This finding agrees with previous studies which have shown the 

biocompatibility of iron-oxide based MNP in numerous cell types [30], [31], [32], [33], [34].  

Downstream indicators of Wnt pathway activation by UM206-MNP were investigated by 

assessing β-catenin localisation and end-point activation of TCF/LEF responsive signalling. 

Our results demonstrate that L-UM206-MNP (and to a lesser extent C-C-UM206-MNP) were 

capable of initiating nuclear translocation of β-catenin to a similar level as Wnt3a, this is 

comparable to other studies where Wnt has been shown to initiate β-catenin translocalisation 

[35]. In addition, our results demonstrate that L-UM206-MNP elevate downstream TCF/LEF 

expression after 6h which can be maintained up to 24h after treatment. In contrast, Wnt3a 

marginally elevated pathway activity after 6h but peak activity was observed after 24h, which 

suggests that L-UM206-MNP mediated activation may initiate a more rapid downstream 

activation. Interestingly, in contrast with L-UM206-MNP, particles coated with C-C-UM206 

peptide had a negligible effect on Wnt reporter activity and only marginally increased β-

catenin mobilisation. This may be a result of the lower binding affinity of the cyclic peptide 

compared to the linear peptide [13]. It is also possible that conjugation of multiple cyclic 

UM206 ligands to MNP may be inducing steric hindrance which may disrupt receptor 

binding affinity and reduce the signalling activity of the cyclic peptide. 



Our results demonstrated that pathway activation by L-UM206-MNP is not affected by 

DKK1, an inhibitor of the LRP co-receptor involved in canonical pathway activation, 

whereas Wnt3a mediated activation was successfully blocked with DKK1. This indicates that 

LRP is not involved in L-UM206-MNP mediated activation and suggests that MNP stimulate 

Wnt signalling by an alternative mechanism. This observation is in agreement with our 

previous work which has shown that antibody-MNP mediated Wnt pathway activation is also 

independent of LRP receptors [14]. We also employed a PLA assay to assess Frizzled 

receptor clustering as a potential mechanism by which L-UM206-MNP are inducing Wnt 

pathway activation. Our results indicate that L-UM206 (and to some extent C-C-UM206) 

functionalised MNP induce Frizzled2 dimerisation and clustering in distinct cell populations. 

Previous work from Liu et al demonstrated that adherent MSC cultures contain distinct sub-

populations which exhibit high endogenous Wnt signalling activity [36]. It is therefore 

possible that MNP may be inducing receptor clustering in this Wnt receptive population. 

Further work is required to elucidate the phenotype of these cells. Receptor clustering is a 

common mechanism of cell signalling activation and has previously been demonstrated using 

alternate magnetic particle activation systems [37]. Wnt pathway activation by receptor 

clustering has also been demonstrated in Xenopus embryos where Frizzled3 was found to 

form active dimers [38]. In contrast to UM206-MNP, no changes in receptor clustering were 

observed in Wnt3a treated cells. This can be expected as conventional signal activation by 

Wnt occurs through a complex of Wnt, Frizzled and LRP co-receptors and not necessarily 

through Frizzled dimers [39]. The mechano-responsiveness and activation of the Wnt 

pathway has been explored using other approaches. Fluid shear stress or mechanical strain 

using 4-point bending systems have been shown to initiate β-catenin translocation and 

activate TCF reporter systems [40], [41]. It is therefore possible that mechano-stimulation of 



Frizzled receptors using MNP is enough to induce a signalling response. Taken together, our 

results suggest a contrasting activation mechanism between MNP and native Wnt ligands. 

Our results confirm that Wnt pathway activation plays a role in hMSC osteogenesis. Wnt has 

been shown to have both inhibitory and promoting effects on MSC osteogenesis [5]. Our 

recent work utilising immobilised Wnt3a/collagen gel platforms has demonstrated the 

directional and inductive cues of a Wnt bound platform where MSCs located proximal to the 

Wnt signal maintain stem cell marker expression whilst migrated cells located distally to the 

Wnt signal display an osteogenic phenotype [9]. These results also agree with previous work, 

for example Wnt3a or GSK-3β inhibitors have been shown to promote MSC proliferation and 

maintain multipotency or promote MSC osteogenesis under certain doses and cellular 

contexts [6], [7], [42], [43]. In our studies intermittent stimulation of hMSC with L-UM206-

MNP over 28 days resulted in localised collagen synthesis, matrix maturation and 

mineralisation indicating a differentiated osteoblast phenotype. In contrast, treatment with 

Wnt3a for 28 days resulted in decreased mineralised matrix formation. This discrepancy 

could be explained by the contrasting dose-response effects of Wnt activation through MNP 

vs native Wnt. Our data suggest that Wnt pathway activation through L-UM206-MNP is a 

transient stimulus which is initially beneficial for hMSC lineage commitment to osteogenesis 

but enables terminal osteoblast differentiation after signal dissipation. Interestingly, this 

observation mirrors the effects of immobilised Wnt3a on MSC proliferation/differentiation 

seen by Lowndes et al [9] and also agrees with the findings of Ling et al [42] and Janeczek et 

al [44] who also showed that a transient Wnt signal is beneficial for hMSC commitment to 

the osteogenic lineage but withdrawal of Wnt is required for terminal osteoblast 

differentiation.  

The interactions between Wnt and other signalling pathways are complex [45]. Here we 

investigated the effects of combining Wnt stimulation via L-UM206-MNP with BMP2 



release from polymer microspheres which have applications in bone tissue engineering [46]. 

In these experiments we used the foetal chick femur, an established model of endochondral 

bone development [47], [48]. In this model, bone formation at the bone collar was increased 

by hMSC injection alone, whilst injection of BMP2 with hMSC or L-UM206-MNP labelled 

hMSC resulted in increases in bone density, indicating a more mature, functional matrix. The 

biggest increases in bone density were seen when L-UM206-MNP labelled MSC were co-

administered with BMP2 microspheres. During bone formation, Wnt and BMP2 have been 

shown to act reciprocally to regulate osteoblast differentiation [49]. Our previous work has 

also demonstrated the anabolic effects of BMP2 releasing microspheres [22]. The link 

between BMP2 and Wnt signalling has also been demonstrated by Vaes et al [50] who found 

that BMP2 signalling resulted in the upregulation of Wnt antagonists in the late phase of 

MSC differentiation. Considerable evidence also exists for the activation of TCF/LEF by 

both BMP/TGF and Wnt during development [51]. Therefore, the ability of L-UM206-MNP 

plus BMP2 to trigger bone formation could be attributed to the reciprocal relationship 

between Wnt and BMP signalling, where L-UM206-MNP act to initially trigger lineage 

commitment whilst BMP2 promotes terminal differentiation. This may explain why a 

combination of L-UM206-MNP and BMP2 resulted in the greatest enhancement of bone 

formation. Further work is required to fully explore the downstream signalling events in 

response to MNP stimulation and to establish the effects of cross-talk between MNP 

mediated Wnt signalling and the BMP pathway on cell signalling and phenotype.   

Using conjugated MNP to activate Wnt signalling may have useful applications as a research 

tool, in drug discovery and is amenable to translation to the clinic. Due to the expense and 

difficulty in preparing recombinant Wnt protein, easily synthesised ligands conjugated to 

magnetic nanoparticles present a viable method for the control of cell signalling and direction 

of cell differentiation. By initialising Wnt-Frizzled signalling in this manner, UM206-MNP 



may be able to over-ride many of the top-level inhibitors of Wnt signalling. Signalling 

activity can also be enhanced or reduced by operating an external magnetic switch, affording 

a degree of external control and temporal regulation of pathway activation. This magnetic 

activation approach has a beneficial impact on bone formation and works in synergy with 

bone promoting growth factors. This combinatorial strategy which utilises Stem cells with 

controlled release of clinically relevant growth factors and remote control over cell signalling 

is particularly attractive due to the relative ease by which this could be administered in the 

clinic in the form of an injectable cell therapy. Although this approach has particular 

relevance in bone tissue engineering for fracture repair, the wider applications of minimally 

invasive injectable cell therapies for tissue engineering are apparent.  
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  Fig. 1. Experimental setup schematic. (A) 250nm SPIO carboxy-dextran functionalised magnetic 

nanoparticles are covalently coated with UM206 peptide by carbodiimide activation (B) Human 

mesenchymal stem cells (hMSC) are then labelled with UM206-functionalised MNP, labelled cells 

can then be stimulated with oscillating magnetic fields. Alternatively, MNP-labelled cells can be 

injected into foetal chick femurs before magnetic field stimulation. (C) Alternating time-varied 

magnetic fields are applied to samples using a bioreactor system consisting of arrays of permanent 

rare earth magnets which situated beneath the samples. 



 

 

 

 

 

 

 

 

A B Fig. 2. Effects of MNP and magnetic field on cell toxicity and viability. (A) Immunofluorescence 

images showing L-UM206-MNP (middle) or C-C-UM206-MNP (right) labelled cells, MNP are shown 

by dextran staining (green). Nuclei are shown by DAPI staining (blue), cell cytoskeleton (red). 

Images representative of n=3, scale bar represents 50μm. (B) Immunofluorescence images 

showing Calcein-AM (Live) and Ethidium homodimer (Dead) staining after treatment with 25μg of 

L-/C-C-UM206-MNP, with and without magnetic field after 14 days. Representative images of n=3 

shown, scale bar represents 100µm. (C) Cell metabolism after treatment with L/C-C-UM206 MNP 

(with or without magnetic field). Average absorbance values are shown, n=3, error bars represent 

SEM. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. L-UM206-MNP activate Wnt signalling. Immunofluorescence images showing β-catenin 

mobilisation 24h after stimulation (A). Addition of Wnt3A-conditioned media (Wnt-CM) or L-

UM206-conjugated MNP resulted in increased nuclear translocation with further increases 

observed upon magnetic field stimulation. Cell nuclei are shown by DAPI staining (middle row). 

Scale bar represents 50µm. End point Wnt signalling was assessed using a TCF/LEF luciferase 

reporter 6h and 24h after treatment (C). Wnt3a-CM increased reporter activity after 6h and 24h 

(significant), and was blocked by Dickkopf-related protein 1 (DKK1). L-UM206-MNP significantly 

increased Wnt reporter activity at both time-points and was not affected by DKK1. L-UM206-

induced reporter activity was also significantly higher than in Wnt3a-CM groups at 6h (C(i)). This 

dataset is part of a larger dataset part of which has been published previously [14]. Treatment 

with C-C-UM206 MNP (C(ii)) had no overall effect on TCF/LEF reporter activity. Error bars 

represent SEM, n=4. * denotes p<0.05, # denotes p>0.05.  



 

 

 

 

 

 

 

 

 

  

Fig. 4. L-UM206-MNP induce Frizzled2 clustering. Frizzled2 receptor clustering was visualised 

using a PLA assay 3h after stimulation (A). Treatment with 25μg of L- / C-C-UM206-MNP (with or 

without magnetic field) resulted in clear increases in receptor clustering, whilst treatment with 

Wnt-CM had no effect. MNP are shown by dextran staining (green), Frizzled2 (red) and cell nuclei 

by DAPI staining (blue). Representative images of n=3 are shown. Scale bar represents 10μm. Co-

localisation analysis of ROI’s was used to determine the extent of MNP overlap with Frizzled2 

clusters (B). Clear regions of co-localisation (indicated by white regions) were observed in cells 

treated with L- / C-C-UM206-MNP (with or without magnetic field). Quantification of pixel overlap 

using Manders threshold coefficient for the MNP channel (tM2) confirmed a positive overlap 

between L- / C-C-UM206-MNP and Frizzled2 clusters. Representative images of n=3 are shown. 

Error represents SEM. 



Fig 5: L-UM206-MNP enhance matrix production. An increase in localised collagen deposition 

(Sirius red) (A), nodule formation (Alizarin red) (B) and Osteocalcin expression (C) was observed 

after treatment with L-UM206-MNP with magnetic field stimulation. Treatment with Wnt-CM 

caused an increase in collagen deposition (A) but a decrease in nodule formation (B), a minor 

increase in Osteocalcin expression (C) was also observed after 28 days. Cell nuclei are shown by 

DAPI staining, Images representative of n=4. Scale bar represents 200μm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. L-UM206-MNP increase bone formation in chick femurs. (A) Injection of BMP2 releasing 

microparticles (and hMSC) led to increased bone volume but not bone density. Injecting L-

UM206-MNP labelled MSC with or without BMP2 resulted in increased bone density, n=8, Error 

bars represent SEM, * represents p<0.05. (B) Whole mount images showing calcium deposition 

(Alizarin red) primarily in the bone collar in all groups. Secondary mineralisation sites were 

observed at the microinjected epiphyseal regions injected with all hMSC groups. Scale bar 

represents 1mm. (C) Histological sections of all hMSC injected groups displayed evidence of the 

formation of secondary mineralisation (Alizarin red) as well as tissue remodelling (Alcian blue & 

Sirius red) and Osteocalcin positive matrix formation in the diaphyseal and epiphyseal injection 

sites of the femurs after 14 days. Representative images of n=8 shown. Scale bar represents 300 

µm (Alizarin red and Alcian blue/Sirius red), 400µm (Osteocalcin).  
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