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Abstract

Motivation: Function annotations of gene products, and phenotype annotations of genotypes, pro-

vide valuable information about molecular mechanisms that can be utilized by computational

methods to identify functional and phenotypic relatedness, improve our understanding of disease

and pathobiology, and lead to discovery of drug targets. Identifying functions and phenotypes

commonly requires experiments which are time-consuming and expensive to carry out; creating

the annotations additionally requires a curator to make an assertion based on reported evidence.

Support to validate the mutual consistency of functional and phenotype annotations as well as a

computational method to predict phenotypes from function annotations, would greatly improve

the utility of function annotations.

Results: We developed a novel ontology-based method to validate the mutual consistency of func-

tion and phenotype annotations. We apply our method to mouse and human annotations, and

identify several inconsistencies that can be resolved to improve overall annotation quality. We also

apply our method to the rule-based prediction of regulatory phenotypes from functions and dem-

onstrate that we can predict these phenotypes with Fmax of up to 0.647.

Availability and implementation: https://github.com/bio-ontology-research-group/phenogocon

Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction

Although several definitions of what constitutes a phenotype have

been proposed over time, a phenotype can be operationally defined

as an observable characteristic of an organism arising from interac-

tions between the organism’s genotype and the environment

(Johannsen, 1909, 1911). Understanding the molecular and func-

tional basis of phenotypes is an important factor in our understand-

ing of disease mechanisms.

Abnormal phenotypes associated with loss of gene function

provide valuable information for a variety of computational methods,

such as identification of gene-disease associations (Hirschhorn et al.,

2002), protein-protein interactions (Hu et al., 2011; Kahanda et al.,

2015), disease causative variant prioritization (Boudellioua et al., 2017),

finding orthologous genes (Hoehndorf et al., 2011), and drug discovery

(Moffat et al., 2014) and repurposing (Hoehndorf et al., 2014).

Identifying which phenotypes a gene may be associated with is challeng-

ing; even in the case of a complete loss of function of a gene, phenotypes

may be highly variable (de Angelis et al., 2015).

Several consortia and research initiatives aim to systematically

catalog the phenotypes associated with loss of function mutations in

model organisms (Ring et al., 2015), and the experimental results

produced by these initiatives provide valuable information for

understanding gene function (Ring et al., 2015) or their role in

disease (Meehan et al., 2017). In addition to high-throughput phe-

notyping, there are also ongoing efforts to identify genotype–pheno-

type relations from literature (Smith and Eppig, 2015), and to
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record phenotypes observed in a clinical setting which are associated

with particular genotypes (Landrum et al., 2014).

There are several computational methods available for predict-

ing the functions of proteins (Cozzetto et al., 2016; Gong et al.,

2016; Kulmanov et al., 2017). Computational methods for function

prediction have improved in predictive performance and, subse-

quently, in their utility, over recent years (Radivojac et al., 2013).

Consequently, it is a reasonable question to ask whether the same or

similar approaches may also work for phenotypes, i.e. whether we

can build efficient methods to predict phenotypes from genotypes,

and whether these methods can provide information that may be of

clinical utility. While methods for protein function prediction are

maturing, computational methods to predict phenotypes are still in

their infancy.

There are many challenges in predicting phenotypes, both bio-

logically and computationally. From a biological perspective, pre-

dicting the phenotypes that arise from a particular genotype is

challenging due to the complex molecular and physiological interac-

tions that give rise to phenotypes, open-ended environmental influ-

ences and determinants of phenotypes, incomplete penetrance and

resilience of organisms to certain phenotypic manifestations, epigen-

etic regulation not detectable on the level of a genotype, and many

other factors contributing to the variability and heterogeneity of

phenotypes. The impact of pleiotropy and genetic background were

themselves instrumental in motivating the very large scale knockout

mouse project (IKMC), precisely because of the problems intrinsic

to predicting phenotype from genotype (Austin et al., 2004; Tyler

et al., 2016).

From a computational perspective, there are also several add-

itional challenges. First, there is a substantial lack of potential train-

ing data that limits the application of machine learning approaches.

The high variability in phenotypes and their descriptions (Gkoutos

et al., 2005) makes it challenging to identify whether genotypes are

involved in identical or similar phenotypes. There is also a lack of

computationally represented background knowledge necessary to

determine the relationship between phenotypes and their physio-

logical and patho-physiological basis; in particular, there is no com-

putationally accessible, qualitative representation of physiological

interactions in mammals. Furthermore, representation of environ-

mental influences is challenging, partly due to their heterogeneity,

but also failure to capture environmental parameters in many phe-

notyping studies (Beckers et al., 2009; Schofield et al., 2016).

The premise underlying comprehensive phenotyping studies is

that, uniquely, the phenotype of an organism lacking a functioning

copy of a given gene provides definitive information on gene func-

tion; the primary goal of functional genomics. Here, we investigate

the relationship between Gene Ontology (GO) (Ashburner et al.,

2000) functions that are associated with gene products, and pheno-

types associated with a loss of function in these gene products (either

through targeted or random mutation, epigenetic modification or

pharmaceutical effects). Our aim is to identify how much informa-

tion functions of gene products carry about the phenotypes in which

these gene products are involved. Specifically, we test the hypothesis

that a loss of a regulatory function (i.e. the up- or down-regulation

of some other process) will result in a regulatory phenotype. For ex-

ample, if a protein is (unconditionally) involved in a positive regula-

tion of B cell apoptosis, then a loss of function in that protein

should lead to a phenotype in which the rate of B cell apoptosis is

decreased. We first formalize our assumptions in meta-rules that re-

late axioms in the Web Ontology Language (OWL) (Grau et al.,

2008). We then test how many function–phenotype pairs in the la-

boratory mouse (Mus musculus) and the human (Homo sapiens)

satisfy these rules, how many annotations are consistent with our

hypothesis, and how many annotations are not consistent with out

hypothesis. We investigate some of the inconsistent pairs we iden-

tify, and characterize the reasons for the inconsistency; we find that

they can be a result of incomplete or under-specified contextualiza-

tion of function or phenotype annotations (such as by cell type),

conflicting annotation derived from literature, or a consequence of

inference over the ontology structure.

After validating and characterizing possible inconsistent annota-

tions, we apply our hypothesis predictively and predict regulatory

phenotypes associated with loss of function mutations in 11 987

gene products in the mouse and 15 680 in the human. We validate

our predictions by predicting protein-protein interactions using

phenotype similarity and demonstrate that our rules result in predic-

tions that can reproduce known associations.

2 Materials and methods

2.1 Data sources
We use functional and phenotypic annotations for mouse and

human. We downloaded Gene Ontology (GO) (Ashburner et al.,

2000) annotations from http://geneontology.org/ on December 15,

2017. The file contains 439 128 distinct annotations to 19 452

human gene products, and 376 532 distinct annotations to 24 526

mouse gene products. We use the phenotype annotations for mouse

downloaded from the Mouse Genome Informatics (MGI) (Smith

and Eppig, 2015) database (http://www.informatics.jax.org/down

loads/reports/index.html) on December 5, 2017. We use the

MGI_Gene_Pheno.rpt file which contains phenotypes for non-

conditional loss of function mutations in single genes; the file

contains phenotypes for 11 887 mouse genes and 206 272 distinct

associations between a gene and a Mammalian Phenotype Ontology

(MP) (Smith and Eppig, 2015) class. For human, we downloaded

annotations provided by the Human Phenotype Ontology (HPO)

database (Robinson et al., 2008) on December 5, 2017. We use the

file containing phenotypes from ‘all sources’ and ‘all frequencies’;

the file contains phenotype associations for 3682 human genes and

120 289 distinct associations between human genes and HPO

classes.

For reasoning and processing formal definitions of phenotypes,

we use the multi-species integrated PhenomeNET ontology

(Hoehndorf et al., 2011; Rodrı́guez-Garcı́a et al., 2017). We down-

loaded the latest version of the PhenomeNET ontology from the

AberOWL (Hoehndorf et al., 2015) ontology repository http://aber-

owl.net/ontology/PhenomeNET/. We also downloaded the GO in its

OWL format, released on December 2, 2017, from the AberOWL

ontology repository.

2.2 Filtering GO annotations
To obtain only experimental GO annotations, we filtered all GO

annotations by their evidence codes so that we only retain annota-

tions with an experimental evidence. Specifically, we only keep

annotations with evidence codes EXP, IDA, IPI, IMP, IGI, IEP,

TAS and IC. We removed all annotations which are negated (i.e.

using a NOT qualifier); we also excluded all annotations that are

context specific, i.e. which are explicitly conditional on a particular

environment or other restrictions (such as occurring only in particu-

lar cell types, or tissues, or during certain developmental stages).

After filtering all annotations, our GO annotation set contains

100 336 annotations to 11 987 mouse gene products and 295 357

annotations to 15 680 human gene products. We mapped all protein
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identifiers to MGI identifiers for mouse proteins, and to HUGO

(Yates et al., 2017) standard human gene names.

2.3 Protein–protein interactions
For further validation of our predictions, we use protein-protein

interactions provided by the STRING Database (Szklarczyk et al.,

2015). STRING database uses different data sources such as high

throughput lab experiments, conserved co-expressions, text mined,

computationally predicted interactions and indirect functional asso-

ciations and provide a confidence score for each pair of proteins. We

downloaded all mouse and human protein-protein interactions from

STRING version 10.5 and filtered the interactions by a confidence

score higher or equal to 300. We use the protein.aliases file

provided by the STRING database to map STRING protein identi-

fiers to MGI identifiers (for mouse genes and proteins) and HUGO

gene names (for human genes and proteins).

2.4 Computing semantic similarity
We measure the similarity between sets of MP and HPO classes

by computing Resnik’s pairwise similarity measure using the

PhenomeNET Ontology (Hoehndorf et al., 2011), and using the

Best-Match-Average (BMA) (Pesquita et al., 2009) strategy to com-

bine pairwise similarities into a single similarity score between two

sets of annotations. We use the normalized similarity value as a pre-

diction score for interactions between proteins and compute the area

under the receiver operating characteristic (ROC) curve (Fawcett,

2006) as a quantitative measure of predictive performance.

Resnik’s similarity measure uses the information content (IC).

IC is computed as the probability of occurrence of a class in

annotations:

ICðcÞ ¼ �logðpðcÞÞ

The similarity value between two classes is the IC of the most in-

formative common ancestor (MICA), i.e.:

SimResnikðc1; c2Þ ¼ ICðMICAðc1; c2ÞÞ

For two sets of classes we compute the similarity value between

each pair and use the BMA combination strategy:

SimBMAðA;BÞ

¼
avgc12Aðmaxc22Bðsðc1; c2ÞÞÞ þ avgc12Bðmaxc22Aðsðc1; c2ÞÞÞ

2

where sðx; yÞ ¼ SimResnikðx; yÞ.

2.5 Evaluation metrics
We evaluate predictions of regulatory phenotypes using Fmax meas-

ure which is used in CAFA challenge (Radivojac et al., 2013). The

Fmax measure is a type of similarity measure between predicted and

real annotations which takes ontology structure into account. It is

computed using the following formulas:

priðtÞ ¼
P

pIðp2PiðtÞ^p2TiÞP
pIðp2PiðtÞÞ

(1)

rciðtÞ ¼
P

pIðp2PiðtÞ^p2TiÞP
pIðp2TiÞ

(2)

AvgPrðtÞ ¼ 1

mðtÞ �
XmðtÞ
i¼1

priðtÞ (3)

AvgRcðtÞ ¼ 1

n
�
Xn

i¼1

rciðtÞ (4)

Fmax ¼ max
t

2 � AvgPrðtÞ � AvgRcðtÞ
AvgPrðtÞ þAvgRcðtÞ

� �
(5)

In these measures, p is a phenotype class, PiðtÞ is a set of pre-

dicted classes for a gene i using a threshold t, and Ti is a set of anno-

tated classes for a gene i. Precision is averaged over the genes where

we at least predict one term and m(t) is the total number of such

genes. n is a number of all genes in a evaluation set. We evaluate pre-

dictions for mouse genes with experimental annotations where we

at least make one prediction.

2.6 Predicting protein functions with DeepGO
In order to evaluate our method for predicting phenotypes from

functions for gene products without experimental annotations, we

predicted GO function annotations using the DeepGO function pre-

diction system (Kulmanov et al., 2017). We downloaded SwissProt

reviewed human and mouse protein sequences from the UniProt

database (The UniProt Consortium, 2017) on January 28, 2018.

Initially, our dataset had 16 950 mouse and 20 244 human pro-

teins. To meet the DeepGO requirements and limitations, we filtered

this set of proteins and removed all sequences with ambiguous

amino acid symbols (i.e. B, O, J, U, X and Z); we also removed all

proteins with >1002 amino acids. After filtering, we retained

14 916 mouse and 17 837 human proteins for which we could pre-

dict functions using DeepGO. We mapped UniProt identifiers to

MGI identifiers and HUGO gene names.

2.7 Implementation
We implemented our approach using the OWL API (Horridge and

Bechhofer, 2011) version 4.1.0 and used the Similarity Measures

Library (Harispe et al., 2014) for measuring semantic similarities.

The source code, documentation and data files are freely available at

https://github.com/bio-ontology-research-group/phenogocon.

3 Results

3.1 The correspondence between regulation and

regulatory phenotypes
Our main hypothesis is that there should be a close relationship be-

tween some functions to which gene products are annotated and

some phenotypes. In particular, if a gene product is involved in the

up- or down-regulation of a process P, then a loss-of-function of

that gene product (introduced, for example, through a pathogenic

variant, a targeted mutation, or an epigenetic interference) will usu-

ally lead to a phenotype in which the rate or intensity of P is

decreased or increased.

Specifically, we assume that, if a phenotype is defined as a

change of some biological process (such as an increased or decreased

rate or turnover of the process), then we can annotate the gene prod-

ucts which negatively or positively regulate or contribute to P bio-

logical process with the given phenotype. For example, when a

protein that is normally involved in positive regulation of B cell

apoptotic process (GO: 0002904) is inhibited (for example through

a genetic mutation, or through a small molecule which inhibits the

protein), we would expect the rate with which processes of the type

B cell apoptotic process (GO: 0001783) occur to decrease.

We formalize this hypothesis in the form of rules that assign a

new annotation to a protein with a particular function annotation.

Ontology-based phenotype prediction i859
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Let X be a protein involved in (i.e. annotated with) the function P.

We then implement our hypothesis through the following three

(meta-)rules:

• Increased Function–Decreased Phenotype: If P SubClassOf

‘positively regulates’ some P2, then a loss of function

of X results in the phenotype ‘phenotype of’ some (P2 and

‘has quality’ some ‘decreased quality’).
• Decreased Function–Increased Phenotype: If P SubClassOf

‘negatively regulates’ some P2, then a loss of function of

X results in the phenotype ‘phenotype of’ some (P2 and

‘has quality’ some ‘increased quality’).
• Abnormal Function–Abnormal Phenotype: A loss of function of

X results in the phenotype ‘phenotype of’ some [P and ‘has

quality’ some (‘has modifier’ some abnormal)].

While the first two rules directly implement our hypothesis, the

third rule establishes a correspondence between a loss of GO func-

tion and the resulting phenotype; it is, in a sense, more general than

the previous two rules which establish a correspondence between

regulatory functions and phenotypes. The inverse of the abnormality

rule has previously been used to predict GO functions from pheno-

types (Hoehndorf et al., 2013).

To determine whether a pair of classes in GO and a phenotype

ontology class match our hypothesis and subsequent rules, we use

the formal definitions and axioms that constrain the GO classes and

the classes in phenotype ontologies. Over the past years, many

classes in phenotype ontologies have been formally defined using

definition patterns based on the Entity–Quality (EQ) method

(Gkoutos et al., 2005, 2017; Mungall, 2009). In the EQ method,

phenotypes are decomposed into an entity—either an anatomical en-

tity or a biological process or function—and a quality. We identify

the GO class underlying each phenotype in MP and HPO based on

these EQ-based definition patterns, and we also identify for each

phenotype the direction (i.e. increased or decreased) in which the

process or function is modified. As a result, we obtain, for each

phenotype class in HPO or MP that is based on an abnormal func-

tion or process, a pair of a GO class and a direction (i.e. increased or

decreased) in which the rate of the process is changed. For example,

the class Increased thymocyte apoptosis (MP: 0009541) is defined

using the Entity Thymocyte apoptotic process (GO: 0070242) and

the Quality Increased rate (PATO: 0000912); the Quality is further

constrained by adding the Abnormal (PATO: 0000460) quality (in

order to distinguish the abnormal phenotype from a physiological

increase in thymocyte apoptotic rate). From the definitions we ob-

tain the pair Thymocyte apoptotic process (GO: 0070242) and

Increased as characteristic of the Increased thymocyte apoptosis

phenotype.

In total, there are 1543 classes in MP which are based on GO

processes or functions; of these, 272 classes are increased in rate,

342 classes are decreased in rate and 929 classes are abnormalities

of a process or function. In HPO, 287 phenotype classes are based

on GO processes or functions, of which 17 are increased in rate, 54

are decreased in rate and 216 are abnormalities of a process or

function.

As next step in our workflow, we identify all GO processes that

up- or down-regulate other processes. For this purpose, we use the

Elk OWL reasoner (Kazakov et al., 2012) to query GO for all

equivalent classes of ‘Biological regulation’ and ‘posi-

tively regulates’ some X and ‘Biological regulation’

and ‘negatively regulates’ some X, for all classes X. In total,

we identify 3013 processes that positively regulate another

biological process, and 3043 processes that negatively regulate an-

other biological process.

We then match the processes that are known to up- or down-

regulate other process according to GO and the processes used to de-

fine phenotype classes to find corresponding pairs. In total, we iden-

tify 1570 correspondence rules between GO and phenotype classes

of which 1328 classes are from MP and 242 classes are from HPO.

The complete set of correspondences between a GO class and

phenotype class is available on our project website. We use the cor-

respondences between regulatory phenotypes and GO functions in

two ways: first, we evaluate how many annotations are inconsistent

with these rules, and determine why they are inconsistent; second,

we use these rules to predict phenotypes from GO functions.

3.2 Determining consistency between function

annotations and phenotype annotations
We consider a regulation function annotation and regulatory pheno-

type annotation as consistent if they do not contradict our rules. An

inconsistent pair of annotations is a pair of function and phenotype

annotations which contradict our rules (i.e. the function annotation

is to the up- or down-regulation of a process and the phenotype of

the loss of function is an increased or decreased rate of that process).

We generated 423 GO–phenotype pairs that could represent an in-

consistency; of these 423 pairs, 398 pairs are GO–MP classes and 25

pairs are GO–HPO classes.

We determine whether the function and phenotype annotations

in the Mouse Genome Informatics (MGI) (Smith and Eppig, 2015)

model organism database are consistent with our hypothesis, and

whether the function annotations for human proteins provided by

UniProt (The UniProt Consortium, 2017) and the phenotypes asso-

ciated with these proteins provided by the HPO database (Robinson

et al., 2008; Köhler et al., 2017) are consistent. In the first instance,

and to identify only unambiguously matching pairs, we ignore infer-

ences over the ontology and consider only exactly matching pheno-

types, i.e. only the annotations in which the direct annotation to the

phenotype matches our rule. We find 105 function–phenotype anno-

tation pairs for mouse and one annotation for human which are in-

consistent according to our set of inconsistent pairs.

We manually analyzed some of the annotations we tagged as in-

consistent with our rules. In many cases, inconsistency with our

rules may arise from conflicting GO or phenotype annotations. For

example, folliculin interacting protein 1 (Fnip1, MGI: 2444668) is

annotated with the GO function Positive regulation of B cell

apoptotic process (GO: 0002904), and the loss of function of

Fnip1 is annotated with the phenotype increased B cell apoptosis

(MP: 0008782). Using our rule (Increased Function–Decreased

Phenotype), we flagged this pair of annotations as inconsistent. Both

annotations are asserted based on evidence from the same publica-

tion (Park et al., 2012), which reports a negative regulatory role for

Fnip1 in B cell apoptosis and uses as experimental evidence that B

cell apoptosis is increased in response to metabolic stress in mice

lacking Fnip1 function. The reports in the paper, together with our

rule-based identification of the possible inconsistency, indicates that

the GO annotation of Fnip1 to Positive regulation of B cell apoptot-

ic process may not be correct and should be replaced by an annota-

tion to Negative regulation of B cell apoptotic process.

Another example involved glypican 3 (Gpc3, MGI: 104903),

which is annotated with the function Negative regulation of growth

and the phenotype Postnatal growth retardation. Here, the asserted

annotation to postnatal growth retardation is based on Chiao et al.

(2002). The postnatal growth catch-down and catch-up seen in

i860 M.Kulmanov et al.
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homozygote nulls was subject to extensive analysis in the paper and

the authors conclude that the normal, growth suppressing, function

of Gpc3 is restricted to the embryonic period. The knockout pheno-

type should therefore have been annotated as Increased embryo size,

not Postnatal growth retardation as the closest description to the

phenotype described in the paper.

The complexity of phenotypic annotations is well demonstrated

by the inconsistency we detect for an annotation of the CD28 cell sur-

face receptor. Annotated in GO to Positive regulation of T cell prolif-

eration, the knockout strain phenotype is annotated in MGI to

Increased T cell proliferation (Bour-Jordan et al., 2004). Regulatory T

cells (Tregs; CD4þCD25þ) depend on CD28 for activation and pro-

liferation. Effector T cells are suppressed in non-obese diabetic

(NOD) mice by active Tregs. In the absence of CD28, Tregs do not

proliferate, thereby permitting effector cells to proliferate. This prolif-

eration of effector T cells is reported in the manuscript on which the

phenotype annotation is based, and leads to the phenotype annotation

of the knockout. Formally this is accurate, but the phenotype reported

is dependent on the function of a cell type whose own function is

affected by the loss of CD28 in a different cell. This ‘russian doll’ ef-

fect is likely to be a significant confounder in relating phenotype to

function, particularly at a high level of phenotypic granularity.

We also experimented with extending the scope of our method

and included inferred phenotype annotations (we consider a pheno-

type annotation to phenotype class C as inferred if and only if the

annotation is made to a subclass of C in the phenotype ontology).

This allows us to identify significantly more potentially inconsistent

function–phenotype pairs. We find, for example, the inconsistent

annotation pair in BCL2-associated athanogene 6 (BAG6) between

the GO process Negative regulation of apoptotic process (GO:

0043066) and Decreased apoptosis (MP: 0006043). However, the

directly asserted annotation of BAG6 is to Decreased susceptibility

to neuronal excitotoxicity (MP: 0008236), a subclass of Decreased

apoptosis in MP. While a direct annotation to Decreased apoptosis

would likely have implied that apoptotic processes are, in general,

decreased in rate, an annotation to Decreased susceptibility to neur-

onal excitotoxicity does not have the same implications: apoptotic

processes occurring in neurons under certain conditions are

decreased in rate, but most apoptotic processes are unaffected. Due

to these implications, we do not apply our rules to phenotypes that

are inferred over a phenotype ontology.

3.3 Predicting phenotypes from functions
We can also use our rules to predict phenotypes from function anno-

tations. In this case, we take function annotations of a gene product

as input, and predict a phenotype that satisfies the definition in our

rules. Not all function annotations readily imply a phenotype; there-

fore, we cannot generate phenotype annotations for all proteins. We

generated 78 298 phenotype annotations for 10 041 human genes,

and 61 875 phenotype annotations for 7314 mouse genes. Of the

generated annotations, 116 human gene annotations and 3170

mouse gene annotations are already present in our data while the

remaining predictions are novel. Notably, we predict phenotype

annotations for 1986 genes that have no phenotype annotations at

all in the mouse, and for 7301 genes without any phenotype annota-

tions in the human. Table 1 summarizes our findings.

We evaluate the performance of our predictions using Fmax meas-

ure, which is a main evaluation metric of CAFA (Radivojac et al.,

2013) challenge. The Fmax measure provides a similarity for sets

of annotations which is computed over the ontology structure.

For predictions with experimental GO annotations we use a prediction

score of 1.0. Table 2 provides a summary of the evaluation results.

Phenotype annotations have many applications; in particular, it is

accepted that phenotypes reflect underlying physiological interactions

and networks (Costanzo et al., 2016) and phenotype annotations are

widely used to investigate the molecular basis of diseases (Köhler

et al., 2009; Singleton et al., 2014). To validate our phenotype predic-

tions, we performed a set of experiments that provide an indirect, ex-

ternal validation of our predictions. Specifically, we apply a measure

of semantic similarity to compute the pairwise similarity between phe-

notypes associated with genes, and we use the gene–gene phenotypic

similarity to predict interactions between the genes [combining the

different interaction types aggregated in the STRING database

(Szklarczyk et al., 2015), including genetic interactions and protein–

protein interactions]. We evaluate our performance using a receiver

operating characteristic (ROC) curve (Fawcett, 2006). A ROC curve

is a plot of a classifiers true positive rate as a function of the false posi-

tive rate, and the area under the ROC curve (ROCAUC) is a quantita-

tive measure of a classifier’s performance (Fawcett, 2006). In our

evaluation, we rank pairs of genes based on their phenotype similarity

and treat interacting pairs (according to STRING) as positive instan-

ces and all other pairs as negative instances.

We observe that the performance for predicting interactions

improved even over the performance achieved with the original anno-

tations when using the phenotypes generated by our method.

Performance further improved when merging original and predicted

phenotype annotations, demonstrating that there is significant compli-

mentary information in both (see Table 3 and Figs 1 and 2). We also

observe a significant difference in predictive performance between

human and mouse; this is likely due to different protocols and stand-

ards used in generated both phenotype annotations and function

annotations, as well as the very low number of regulatory phenotype

annotation that are available for human genes and coded through the

HPO. In particular, since human phenotypes in the HPO database

predominantly focus on morphological abnormalities (in contrast to

mouse phenotypes encoded using the MP which balance morpho-

logical and physiological abnormalities), our predictive approach can

generate significant volumes of additional annotations that drastically

improve predictive performance in our indirect evaluation setting.

3.4 Predicting functions, predicting phenotype

annotations
Our method mainly relies on functional annotations of gene prod-

ucts. However, not all genes and gene products have experimental

Table 1. Number of predicted annotations using rules inferred with

ontology structure, and the number of annotations that are already

asserted

Predictions Increased Decreased Abnormal

Mouse

Predicted 61875 11656 4591 45628

Found 42175 370 503 41302

Human

Predicted 78298 18114 9588 50596

Found 13142 6 89 13047

Note: For inferred matches we assume that genotypes are annotated to all

superclasses of their annotated classes and propagate both functional and

phenotypic annotations. For example, if a genotype has the phenotype

Increased B cell apoptosis and application of our rule predicts increased apop-

tosis, we will also consider this as a match.
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functional annotations. Furthermore, the manual annotations

are often derived from mutant phenotypes, thereby limiting the

scope of our approach. However, with the recent advances in meth-

ods for computational prediction of protein functions (Cozzetto

et al., 2016; Gong et al., 2016; Kulmanov et al., 2017; Radivojac

et al., 2013), we can experiment with a two-step process: first,

we predict GO functions for proteins, and, second, we predict

phenotype annotations arising from a loss of function in the protein

using our rules.

We recently developed DeepGO (Kulmanov et al., 2017), a com-

putational method for function prediction which uses a deep neural

network algorithm to predict functions from protein sequence and

(when available) a cross-species interaction network. Using

DeepGO, we can predict functions for gene products with known

amino-acid sequences. From the predicted function, we can predict

phenotype annotations using our rules.

The DeepGO model can only predict annotations to 932 distinct

biological process classes in GO (Kulmanov et al., 2017). Of the

932 classes that DeepGO can predict, 443 classes are covered by our

rules, and 28 classes are negative regulations and 55 classes are posi-

tive regulations. We used DeepGO to predict at least one function

for 14 916 mouse and 17 837 human proteins, and based on them,

we generated phenotype annotations for 13 225 mouse and 14 187

human genes. 6033 mouse genes and 11 570 human genes for which

we predicted phenotypes do not currently have any experimental

phenotype annotations.

We evaluated our predictions using Fmax measure and by predict-

ing interactions from the STRING database, similarly to our evalu-

ation of phenotypes predicted from experimental GO annotations.

For computing Fmax measure, we used the prediction score of

DeepGO annotations as a prediction score for corresponding pheno-

type in our rules. We find that phenotype predictions with DeepGO

annotations for regulatory phenotypes performs better than predic-

tions with experimental GO annotations. Table 2 provides evalu-

ation results with Fmax measure.

Furthermore, we used predicted phenotype annotations for

predicting protein-protein interactions. Figures 1 and 2 show the

performance of predicting interactions in mouse and human, re-

spectively. We find that predicting phenotype annotations based on

DeepGO’s predicted functions allows us to further improve our abil-

ity to predict interactions in humans. For the mouse, however, the

performance of predicting interactions using phenotype annotations

generated from DeepGO’s predicted functions is slightly lower than

predictions based on experimental GO annotations, likely due to

phenotype annotations already being more complete in the mouse.

Table 3 provides a summary of the results.

Table 2. Evaluation of phenotype annotation predictions

Rules Number of genes Fmax

Mouse—Experimental GO Annotations

Increase/Decrease 2137 0.371

Abnormal 6753 0.367

All 6974 0.361

Mouse—DeepGO Annotations

Increase/Decrease 2030 0.424

Abnormal 6956 0.313

All 7675 0.189

Human—Experimental GO Annotations

Increase/Decrease 242 0.356

Abnormal 2453 0.252

All 2492 0.248

Human—DeepGO Annotations

Increase/Decrease 1290 0.647

Abnormal 2891 0.442

All 2891 0.439

Fig. 1. Predicting interactions using predicted phenotypes for mouse. Original

uses asserted phenotype annotations, Predicted uses only predicted pheno-

type annotations, and Merged combine asserted and predicted phenotype

annotations. DeepGO (Predicted) uses only predicted phenotype annotations

based on DeepGO’s predicted GO function annotations, and DeepGO

(Merged) combines them with asserted phenotype annotations

Fig. 2. Predicting interactions using predicted phenotype annotations for

human. Original uses asserted phenotype annotations, Predicted uses only

predicted phenotype annotations, and Merged combine asserted and pre-

dicted phenotype annotations. DeepGO (Predicted) uses only predicted

phenotype annotations based on DeepGO’s predicted GO function annota-

tions, and DeepGO (Merged) combines them with asserted phenotype

annotations
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4 Discussion

4.1 Rules and statistical approaches for predicting

phenotypes
Accurate prediction of the phenotypes of an organism from its geno-

type, and possibly some environmental features, is probably un-

achievable in the foreseeable future. However, some phenotypes

associated with some genes are sufficiently fundamental that they

can be predicted reliably given some basic knowledge about a gene

and the gene products it encodes. We identify three rules that estab-

lish a correspondence between functions of gene products and the

phenotypes that a loss of function in these gene products would en-

tail. The main limitation in applying our rules predictively is the pre-

cision with which function annotations are contextualized, i.e. how

universally a function annotation without any context constraints

should be interpreted. However, we focus on three rules which we

believe to be sufficiently robust to hold universally, almost as a con-

sequence of the definition of the corresponding phenotypes.

There are likely more rules that can be used to reliably predict

phenotypes from functions; some may be as simple as the rules we

propose, while others may require complex combinations of func-

tions, and additional constraints, to be applied. Rule mining techni-

ques (Bodenreider et al., 2005), in particular those that can utilize

axioms and rules in OWL (Lehmann, 2009), could identify more

rules of varying strength and may provide an opportunity to further

extend our approach.

We demonstrated that we could not only apply our rules to ex-

perimentally determined function predictions, but we were also able

to use a function prediction method to predict GO functions, then

apply our rules and predict phenotypes. While this approach already

yields phenotypes that are useful in computational methods (such as

similarity-based prediction of protein–protein interactions), some

technical modifications could further improve the accuracy and

coverage of predicting phenotypes. A main limitation is that both

parts of the method are trained and generated separately; an end-to-

end learning approach in which phenotypes are predicted directly

(and in which the DeepGO model—or another function prediction

method—is used as intermediate, pre-trained part) may further im-

prove the performance as well as coverage of our method.

4.2 Morphological and physiological abnormalities
We found that the performance of our methods is significantly lower

in human proteins compared to mouse proteins. However, the num-

ber of physiological phenotypes in the HPO, i.e. phenotypes that are

defined as an abnormality of a process or function, is much smaller

in the HPO than it is in the MP; while HPO mainly contains mor-

phological and developmental abnormalities, MP has a rich classifi-

cation of abnormal processes.

Our method uses the PhenomeNET ontology (Rodrı́guez-Garcı́a

et al., 2017) for prediction; PhenomeNET integrates the MP and

HPO and therefore predicts many physiological abnormalities for

human proteins which cannot currently be captured using the HPO,

but which could be captured using the MP. We observe that the

under-representation of physiological abnormalities in the HPO

results in a low predictive performance (e.g. Fmax measure) when

comparing against annotations of human proteins, because our

method over-predicts many phenotype annotations. However, our

external validation using prediction of interactions between proteins

demonstrates that our predictions are highly useful and complemen-

tary to the existing phenotype annotations of human proteins; add-

ing our predictions leads to a high increase in ROCAUC when

predicting interactions between proteins. In the future, more human

physiological abnormalities could be added to and defined in the

HPO so that such information can be captured about human genes.

4.3 What do phenotype annotations mean?
Our method can be used both to identify possibly conflicting anno-

tations as well as to suggest phenotypes that may arise from a par-

ticular genotype. One observation from our experiments is that the

meaning of the annotation relation can be different depending on

whether the annotation is asserted or inferred using the ontology

structure. Specifically, there seems to be a difference between anno-

tations to a phenotype such as Increased apoptosis, depending on

whether the annotation is inferred from the ontology hierarchy (as

in the case of an annotation to Increased B cell apoptosis), or

asserted. If the annotation is asserted at the level of the class

Increased apoptosis, we would usually expect all types of apoptosis

processes in the organism to be increased in rate, including apoptosis

of B cells and other specific cell types. However, if the annotation is

to a more specific class, such as increased B cell apoptosis from

which an annotation to Increased apoptosis can be inferred, this no

longer holds true.

We can use OWL to provide the outlines of a data model in

which these considerations are made explicit. Let us assume that X

is annotated with the phenotype P, and, without loss of generality,

that P is defined as an increased rate of process F. There are multiple

different options for formalizing the meaning of this annotation.

The ‘weakest’ form of interpretation (i.e. the form from which the

least amount of information can be derived) would be that an organ-

ism with X (e.g. an organism with a loss of function mutation in X)

would have a part in which at least one process of type F can be

observed to be increased in rate; formally, the organism with X

would be a subclass of has-part some [(inverse occurs-in) some

(F and has-quality some ‘increased rate’)]. A stronger interpretation

could be that all processes of type F occurring in an organism with

X would be increased in rate. In this case, processes of type F that

occur in an organism with X would be come a subclass of things

with increased rate, i.e, (F and occurs-in some X) SubClassOf: has-

quality some ’increased rate’.

From the first interpretation and its formal representation, we

cannot conclude that processes of type F will always, or usually, be

Table 3. Summary of evaluation of prediction phenotype annota-

tions for mouse and human

Method AUC

(original)

AUC

(predicted)

AUC

(merged)

Mouse

Interactions with

experimental

GO annotations

0.667 0.672 0.705

Interactions with

DeepGO

annotations

0.667 0.696 0.694

Human

Interactions with

experimental GO

annotations

0.616 0.749 0.902

Interactions with

DeepGO

annotations

0.616 0.741 0.928

Note: Original uses asserted phenotype annotations, Predicted uses

only predicted phenotype annotations, and Merged combine asserted and

predicted phenotype annotations.
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increased in rate. We can also not infer much information about

subclasses of the phenotype P; we can only infer that the organism

with X would also be annotated to any superclass of P. In the second

case, however, we can infer that X would also be annotated with all

subclasses of P (but not with its superclasses).

To avoid ambiguity in interpretation of phenotype annotations,

it would be beneficial to make their intended meaning clear, in par-

ticular as the inferences that can be drawn from the interpretations

are different. There have already been some efforts to integrate

annotations and ontologies in a single knowledge-based model

(Hoehndorf et al., 2016; Santana da Silva et al., 2017) which can be

used as a formalized data model. Future work on formalizing the

intended meaning of annotations, and the adoption of a semantic

model, would further improve interoperability and reuse of these

annotations and thereby improving their compliance with FAIR

standards (Wilkinson et al. 2016).

5 Conclusions

We have developed a novel rule-based method for predicting pheno-

types from functions. Our approach can be used as a method to val-

idate phenotype annotations in literature-curated databases, and

also to predict phenotypes from a loss of function genotype in a re-

verse genetics manner (Gilchrist and Haughn, 2010). While the pre-

diction of phenotypes from genotypes is going to remain a

challenge, our approach has implications for computational meth-

ods that utilize phenotypes. We demonstrated that the phenotypes

we predict are predictive of interactions; using a multi-step method

in which we first predict protein functions from sequence and then

phenotypes from the functions, we could predict phenotypes for

genes which have not yet been investigated using a reverse genetic

screen. Our approach can therefore extend the scope of phenotype-

based methods, including methods for predicting variants, disease

genes, or candidate drugs, to cover a significantly larger portion of

the mammalian phenome.
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