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ABSTRACT 13 

The molecular networks plant cells evolved to tune their development in response to the 14 

environment are becoming increasingly well understood. Much less is known about how 15 

these programs function within the multicellular context of organs, and the impact this 16 

spatial embedding has on emergent decision-making. To address these questions, 17 

organ scale information processing may be viewed as a distributed computation. This 18 

perspective provides the opportunity to investigate whether the computational control 19 

principles identified in engineered information processing systems also apply to plant 20 

development. Examples of distributed computing underlying plant development are 21 

presented, and support the presence of shared mechanisms of information processing 22 

across these domains. The co-investigation of computation across plant biology and 23 

computer science can provide novel insight into the principles of plant development and 24 

suggest novel algorithms for use in distributed computing.  25 

 26 

 27 

  28 
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Genetic networks and plant development 29 

The development of plants is intricately linked to their environment [1]. The ability to 30 

respond to, remember, and predict the environment enhances adaptive fitness [2, 3]. 31 

Constraints in plant motility increase the selective pressures leading to the emergence 32 

of these traits. 33 

Plants perceive a wide variety of external signals including gravity, temperature, 34 

external gas composition, water abundance, both light quality and intensity, and many 35 

others [4]. Receptors and sensory systems have been described at a molecular level for 36 

most of these signals, which has been achieved through a combination of genetic 37 

screens and biochemical assays [5-8]. While details of these molecular events continue 38 

to be uncovered at increasingly greater detail within cells, how they are embedded and 39 

operate within the multicellular context of plant organs is only beginning to be 40 

understood.  41 

Within complex tissues, different cell types have distinct gene expression profiles [9], 42 

conferring both unique identity and function [10]. Examples of individual cell types 43 

controlling organ-level responses through the control of hormone responses have been 44 

provided, including gibberellin-mediated root elongation [11], root growth towards water 45 

[12], and leaf expansion [13]. These examples demonstrate a division of labour in 46 

hormone response across cell types, while the functional significance of this 47 

compartmentalization is less clear. The impact spatially embedding gene expression 48 

programs across the multicellular context of plant organs has on the control of plant 49 

development remains a knowledge gap. The mechanisms by which plants process 50 

information may only be partially explained by molecular level networks alone.  51 

In this Opinion, the impact of embedding genetic networks into multicellular organs on 52 

environmental information processing is examined. By viewing organs as distributed 53 

information processing systems, we may begin to understand the relative contribution of 54 

genetic and cellular networks in plant development. Experimental evidence supporting 55 

the use of this framework is provided, and enables an enhanced understanding of 56 

environmental information processing at the cellular level within plant organs. 57 

 58 

Environmental information processing and developmental transitions in plants 59 
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Behaviour in plants is manifest at the level of morphological and developmental 60 

changes [14]. Two of the most important transitions in the plant life cycle include the 61 

termination of seed dormancy, and induction of flowering [15, 16]. These determine 62 

where and when plants are established, and the time they reproduce, respectively. The 63 

timing of these decisions is intricately linked to the environment to optimize plant fitness.  64 

Genetic programs that mediate the timing of developmental transitions in response to 65 

environmental inputs have been uncovered previously [17, 18]. This detailed 66 

understanding of genetically-encoded components and their interactions that underpin 67 

environmental information processing has provided a step-change in our understanding 68 

of plant development at the molecular scale.  69 

The ability of the constituent cells of plant organs to collectively process environmental 70 

information represents an additional level of complexity present in multicellular 71 

organisms. To better understand the integrated nature of the organ scale, a 72 

computational perspective of information processing in plant organs may be useful. In 73 

considering this approach, it is important to note that computers are not limited to the 74 

modern incarnation of hardware with which we are most familiar [19], but rather 75 

represent a broader class of information processing systems which includes diverse 76 

biological media [20]. 77 

 78 

A computational perspective of plant development 79 

By viewing plants as information processing systems, we can apply the associated 80 

formalized language to describe the distinct aspects of this process: 81 

Inputs are the environmental signals that plants perceive from the environment that 82 

have relevant developmental consequences.  83 

Outputs can be developmental transitions, such as that from vegetative growth to the 84 

commencement of reproduction (flowering), or the termination of seed dormancy and 85 

induction of germination. This is a system level property emerging from the collective 86 

behaviour of cell populations, as opposed to the activities of individual cells. 87 

The notion of a genetic program is term broadly used in scientific literature (see 88 

Glossary). This represents the genetically-encoded molecular components and their 89 

interactions that mediate plant development and responses to the environment. In the 90 
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context of information processing in this analogy, genetic programs are the software 91 

plants employ. It is at this molecular level within individual cells that we currently have 92 

the greatest level of understanding. 93 

In order to run software, a hardware substrate is required. A single cell is sufficient to 94 

provide the necessary hardware. In the context of multicellular plants, cells do not 95 

operate in isolation, and their hardware includes the collection of cells that make up 96 

organs.  97 

The body plan of the plant organ is therefore the multicellular template upon which 98 

molecular processes take place. Algorithms encoded by the genome to perform 99 

calculations act within the constraints provided by these cellular templates. Genetically-100 

encoded patterning processes create cell arrangements [21, 22], and are often distinct 101 

from those that process environmental information.  102 

 103 

Plant organs as distributed information processing systems 104 

An innovation in computational information processing system architecture is that of 105 

“distributed computation” [23]. Rather than having a single Central Processing Unit 106 

(CPU) perform all calculations, tasks are distributed across a series of interconnected 107 

processors that individually perform calculations and communicate their results to one 108 

another (Fig. 1a). A common goal and final output is achieved by passing messages, 109 

representing the results of their calculations through a process termed “aggregation”, 110 

enabling the integration of individual computational outputs. 111 

There are several advantages to employing a distributed architecture. This strategy 112 

confers robustness to the failure and errors in individual components by having 113 

redundancy through a collective population of interconnected communicating 114 

processors [19, 23]. Computational capacity is also increased by chaining together 115 

multiple identical processors, and aggregating results. This enables the reuse of the 116 

same components, removing the need for the creation of novel designs, in order to 117 

enhance the abilities of a system.  118 

A further advantage of a distributed architecture is increased computational adaptability. 119 

By changing either the rate at which processors communicate their results with one 120 

another, or the circuit (structure of their connections) [24], the outputs of the system can 121 
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be changed. In this way, the same hardware may be used in different ways to generate 122 

a broader spectrum of outputs. 123 

 124 

Distributed cellular architectures in plant organs 125 

As in computational systems, information processing in biology also relies on message 126 

passing [25]. Many systems in biology process information in a distributed manner at 127 

different scales. Individuals in communities can represent the computational units, as in 128 

ant colonies [26, 27] or bacterial colonies [28], to perform calculations that collectively 129 

optimize the completion of tasks. Within tissues, individual cells may contribute towards 130 

the collective processing of information, such as in neuronal systems [29]. 131 

Multicellular plant organs can also be viewed as distributed information processing 132 

systems [14]. Individual cells act as processors running genetically-encoded programs, 133 

and are connected to one another through shared cell walls. Cellular level outputs of 134 

these calculations come in the form of developmentally significant signalling molecules 135 

(e.g. ions, hormones, peptides, mRNAs, miRNAs, proteins), representing the mobile 136 

elements of cellular computation (Fig. 1b). These molecules move to neighbouring cells 137 

by cytoplasmic connections named plasmodesmata (PD) [30], through specific 138 

transporters, or through the intercellular space, termed the apoplast. This in turn leads 139 

to a global output in the form of a developmental transition, and results from the 140 

collective computations of individual cells through collective decision-making (See 141 

Glossary).  142 

Within an organ, computations therefore take place across different scales, including 143 

within cells and across tissues. Outputs from single cells include the developmentally 144 

significant mobile molecular agents mentioned above (Fig. 1c), and organ scale 145 

computation is the emergent decision to undergo tissue scale transitions (Fig. 1d). 146 

Organ scale computation therefore bridges complexity across the molecular and cellular 147 

scales.  148 

The advantages conferred to computational systems by distributed architectures also 149 

apply to plants. Robustness to failure in organs allows for individual cells failing to 150 

perform their function as may happen through herbivory, or defective cellular machinery. 151 
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In such instances, plants are still capable of timing their transitions appropriately owing 152 

to this redundancy, and the loss of an individual cell is not fatal for the organism.  153 

A lattice-like topology of uniform cellular connectivity most closely satisfies robustness 154 

criteria for a spatially constrained system, such as a plant organ [31]. In this 155 

configuration, communication between cells across the system is slower due to the 156 

absence of shortcuts that facilitate connectivity at a distance. As a result, the robust 157 

nature of such a configuration comes at the cost of speed in system-wide information 158 

transfer.  159 

An alternative topology may be one where connectivity is non-uniform, leading to the 160 

emergence of cells which link many other cells together. In this instance, global 161 

communication efficiency is enhanced due to there being fewer steps to be traversed 162 

between all cells in an organ, resulting in faster system-wide communication. This 163 

enhanced transfer rate comes at the cost of robustness, should those select privileged 164 

cells which connect others together undergo a failure. The impact of these contrasting 165 

topologies on collective decision-making in plant organs remains unclear. 166 

Additional advantages to a distributed architecture may also translate to plant organs. 167 

Enhanced computational capacities are conferred to plant organs by being distributed, 168 

and are discussed in more detail below with respect to the timing of both flowering and 169 

seed germination.  170 

 171 

What does it mean to be distributed as a plant? 172 

Plants make sophisticated calculations to optimize the timing of their developmental 173 

transitions in response to the environment. The timescales by which plants make 174 

decisions relative to animals are much slower, and on a comparative basis, may favour 175 

accuracy over speed. In this regard, robustness is more important than runtime. As a 176 

result, plants may not be short of computational capacity, but rather strive towards 177 

achieving precision in the optimization of their fitness. In this sense, the lattice-like 178 

structure of their organs conferring robustness at the cost of speed is well suited to this 179 

class of organism. 180 

Conversely, the ability to transform complex inputs into meaningful outputs, such as the 181 

use of variable temperatures to stimulate flowering [32] and the breaking of seed 182 
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dormancy [33], provide additional adaptive advantages. Increasing computational 183 

capacities in plants therefore lend themselves to enhanced adaptive fitness and the 184 

colonization of novel niches. 185 

Beyond this teleological explanation, there are additional advantages to being 186 

distributed as a plant on a macro scale. If an entire organ is eliminated due to 187 

mechanical or biotic stress, the plant can continue to function. In turn having additional 188 

cells provides additional functional redundancy using the information processing 189 

framework described. 190 

 191 

Cellular level distributed computation in plants 192 

Our understanding of the spatial distribution of genetic programs across plant organs 193 

has been enhanced by recent advances in imaging [34, 35] and computational image 194 

analysis [36]. This has enabled global single cell analyses of organ-scale cell 195 

architecture, and the simultaneous quantification of genetic programs within individual 196 

cells [37]. In this way the spatial distribution and abundance of genetically encoded 197 

components can be quantified in individual cells across whole organs, providing key 198 

insight into the spatial embedding of information processing components. 199 

A role for distributed design in the control of whole plant behaviour has been considered 200 

previously [1, 38]. Below we examine information processing at the cellular level using 201 

this architecture. 202 

 203 

Distributed control of optimized gas exchange in leaves 204 

Decision-making typically involves minimizing the impact of trade-offs to optimize the 205 

timing of choices. In the case of the control of gas exchange in leaves, an optimization 206 

between the exchange of CO2 and loss of water is managed through the control of 207 

stomatal aperture [39]. A challenge in this regard is the co-ordination of the populations 208 

of stomata present across an individual leaf. In a seminal study, the co-ordinated spatial 209 

behaviour of stomatal opening was investigated in cocklebur (Xanthium strumarium) 210 

[40]. Patchy sectors of stomatal behavior was observed across the surface of the leaf in 211 

this species, and likened to a distributed computation. In this regard, localized co-212 
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ordination gave rise to a population level behavior in patches of cells (Figure 2a). The 213 

nature of the mobile aggregation agent in this example remains unknown. 214 

 215 

Optimization in plant decision-making 216 

Two major decisions in the life cycle of plants include the developmental transitions of 217 

the breaking of seed dormancy and induction of flowering [15]. In both cases, an 218 

optimization trading off a balance between speed and accuracy takes place. Being too 219 

slow to transition runs the risk of missing out on favourable environmental conditions 220 

and being outcompeted, while transitioning too early may lead to compromised 221 

individual fitness in unfavourable conditions. In the context of animal behaviour, this 222 

speed accuracy trade-off is referred to as Fitts Law [41].  223 

In the face of variable environmental conditions, optimizing this tradeoff becomes 224 

increasingly challenging. Distributed cellular architectures are used in both the control of 225 

flowering and seed dormancy to optimize the timing of these decisions, as outlined 226 

below. 227 

 228 

Distributed control of flowering time in response to cold 229 

The induction of flowering in many species is initiated by sustained periods of low 230 

temperature, a process termed vernalization. The control of cold-induced flowering in 231 

arabidopsis (Arabidopsis thaliana) is principally controlled by the repressor gene 232 

FLOWERING LOCUS C (FLC) through temperature-mediated epigenetic silencing [3, 233 

42]. Following a critical period of cold, a stable and mitotically heritable silencing occurs, 234 

providing memory storage in this system.  235 

Microscopic examination of the spatial distribution of FLC-silenced cells in response to 236 

cold revealed an all-or-nothing pattern of FLC promoter activity in individual cells [42, 237 

43] (Figure 2b). Each cell is therefore performing a “digital” registration of cold through 238 

their chromatin state. In the context of an organ, this series of integrated distributed 239 

switches provides the possibility for rich behaviours, including both a temperature 240 

averaging mechanism and system robustness, thus increasing the computational 241 

capacity of the system. The mechanism by which the aggregation step is performed has 242 

yet to be demonstrated, and represents a calculation known as the majority problem, 243 
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whereby rules that recognize the state of the majority are invoked [44]. This algorithm in 244 

plants may include a critical message passing algorithm or a spatial averaging 245 

mechanism. Mobile genetic elements controlling flowering time have been described 246 

previously including FLOWERING LOCUS T [45], and provide a plausible mobile agent 247 

mediating this aggregation step. 248 

The use of a single bit epigenetic encoding mechanism represents a minimization of 249 

information content in this system. This removes the need for the production of complex 250 

molecules and the need to discriminate between their molecular concentrations, such 251 

as in thresholding mechanisms [46]. The use of such simplified messages therefore 252 

results in a reduction of energy cost to perform this computation. 253 

 254 

Distributed computation of alternating temperatures in the control of seed 255 

dormancy 256 

The breaking of seed dormancy determines where and when plants are established 257 

[47]. Like in the case of flowering, the input of low temperatures lead to an output in the 258 

form of the breaking of seed dormancy [48]. The antagonistically acting hormones 259 

abscisic acid (ABA) and gibberellic acid (GA) underpin the decision to germinate [49], 260 

and is proposed to follow a ratio-based thresholding mechanism [46, 50].  261 

Microscopic examination of the signaling components for each of these hormones 262 

revealed they are enriched within the cells of the dormant embryo radicle [33]. 263 

Responses to ABA and GA were however not found to be manifest in the same cells, 264 

but did overlap with the synthesis and degradation genes for each of these hormone 265 

metabolic pathways. This represents a distributed architecture whereby spatially 266 

separated response centres control hormone abundance through their feedback onto 267 

hormone metabolism gene expression, and communicate by hormone movement 268 

(Figure 2c). 269 

The presence of mutually inhibiting, spatially separated response centres is also 270 

present in human motor movement decision-making in the form of the basal ganglia-271 

cerebellum-cortex loop [51, 52]. Here it is thought that the spatial separation introduces 272 

a time delay, enabling noisy inputs to be filtered and optimizing decision-making.  273 
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While this topological configuration is shared between both Arabidopsis seeds and the 274 

human brain, seeds do not filter noise from variable temperature inputs, but 275 

preferentially utilize them [53]. The spatial separation of hormone response centres is 276 

required in order for this processing of alternating temperatures to occur [33], 277 

demonstrating the need for the distribution of genetic components across the embryo 278 

body plan to perform this computation. The spatial embedding of this genetic program 279 

across the body plan of the dormant embryo therefore increases the computational 280 

capacity of a dormant Arabidopsis seed.  281 

Recent work has also demonstrated that flowering time is also stimulated by alternating 282 

temperatures [32]. In light of there being greater daily fluctuations in daily temperature in 283 

the autumn and spring, this temperature processing mechanism may provide a means 284 

of predicting the onset of changing seasons. 285 

 286 

Connectionist approaches to information processing 287 

The cells that make up plant organs provide the multicellular templates upon which 288 

information from the environment is processed. Genetically-encoded patterning 289 

processes lead to the construction of these cellular arrangements that shape and 290 

constrain organ function following structure-function relationships [54]. 291 

With a view of a plant organ as a distributed information processing system, the way in 292 

which cells are organized and communicate represents the multicellular circuitry of 293 

information processing.  294 

Networks are a useful means of abstraction, providing a discrete methodology to 295 

understand how interactions between components give rise to system-wide properties 296 

and behaviours [55]. Mapping networks of cells with a view to understanding information 297 

processing has been performed previously in the C. elegans nervous system [56] with a 298 

view to understanding the information processing capacity of the nervous system in this 299 

worm. The topological analysis of this “connectome” of interacting neurons has provided 300 

functional insight into the role of individual cells [57, 58].  301 

Unlike animals, plants lack a nervous systems, but still perform computations using the 302 

cells which make up their organs [59]. Understanding global cellular connectivity in 303 

plants therefore provides the opportunity to understand the principles of communication 304 
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and computation within these organs. Information is aggregated across an organ 305 

following the body plan, making cellular patterning analogous to a circuit. Mapping 306 

cellular connectivity following connectionist approaches therefore provides wiring 307 

diagrams of potential molecular information exchange across plant organs [60].  308 

The use of measures that identify optimized routes of information flow across cellular 309 

interaction networks based on traversing shortest paths was sufficient to predict the bulk 310 

flow of small molecules at single cell resolution in the Arabidopsis hypocotyl [61]. 311 

Specifically, the atrichoblast epidermal cell type lies upon shorter paths then their 312 

neighbouring trichoblast cells, and preferentially transports small molecules [62]. The 313 

use of a connectome in plant organs is therefore capable of predicting global 314 

intercellular communication, and function, at single cell resolution. While the relationship 315 

between cell organization and information processing remains poorly understood, this 316 

provides a discrete framework to further investigate these relationships. 317 

 318 

Intercellular communication dynamics and information processing 319 

In light of intercellular interaction and communication underpinning distributed 320 

computation in plant organs, understanding the topology of these arrangements is 321 

central to revealing the control of their computations. Due to the combination of the 322 

constraints of mechanics and cellular packing, topological complexity in plant organs 323 

constrained, and lattice-like in nature. This is in stark contrast to that of neurons, which 324 

are highly branched and elongated cells that are not subject to these impediments. 325 

Resulting from this are long tailed distributions of the number of neighbours cells have 326 

in the nervous system, which are not observed in plant organ connectomes (Figure 3a). 327 

While cells within plant organs cannot move with respect to one another, they do have 328 

the ability to change whether or not they communicate. The two principal ways in which 329 

plant cells communicate is through transporters, and PD [63]. Transporters can be 330 

present or absent, active or inactive, providing a controllable means of intercellular 331 

communication. PD can also modulate cell-to-cell communication by modulating their 332 

aperture and distribution [64, 65].  333 

PD aperture is dynamically controlled across plant development and in response to 334 

biotic and abiotic stresses [66, 67]. These dynamic changes in functional cellular 335 
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connectivity result in alterations to the cellular circuitry of the organ (Figure 3b). In light 336 

of the limited topologies plants can generate in the creation of their organs, this provides 337 

a means of topologically rewiring intercellular circuitry to dynamically generate new 338 

topologies and novel potential information processing circuits, transcending the 339 

constraints imposed by cellular topology. 340 

This is analogous to specialized distributed computational circuits called Field-341 

Programmable Gate Arrays (FPGAs) [68]. These distributed circuits can be dynamically 342 

re-configured to perform specialized tasks on demand, and are used by exploratory 343 

satellites due to the extended time scales of their lifetimes and unpredictability of the 344 

calculations that may need to be performed once released.  345 

Preliminary evidence for plant organs implementing a similar mechanism as FPGAs to 346 

facilitate an increased palette of responses to the environment has been reported 347 

previously. In the shoot apical meristem (SAM) from both birch and poplar, low 348 

temperatures have been reported to promote PD opening [66, 67]. Subgroups of cells in 349 

the Arabidopsis SAM are also symplastically linked together following day length-350 

mediated flowering signals, leading to the formation of symplastic domains [69]. A 351 

functional role for the reorganization of cellular connectivity in the SAM remains unclear 352 

[70]. A recent study demonstrated a PD-mediated gating mechanism controlling ABA-353 

mediated photoperiodic induction of the SAM in hybrid aspen trees [71]. In this example, 354 

closed PD block growth-promoting signals until the decision to break bud dormancy is 355 

reached, demonstrating a role for intercellular communication in environmental 356 

information processing.  357 

PD aperture dynamics may increase computational complexity, and therefore, 358 

adaptability in plants following the principles of distributed computation. 359 

The second way distributed systems can change outputs is by altering the aggregation 360 

rate. This can also be achieved by altering transporter abundance or activity, or PD 361 

aperture and abundance. Evidence that an aggregation rate can impact the timing of 362 

outputs in plants is provided by the study of Arabidopsis seed dormancy. Increasing the 363 

rate which the ABA and GA response centres communicate by overexpressing the 364 

ABA/GA transporter NPF3 [72] made seeds more sensitive to alternating cold and warm 365 

temperatures [33].  366 
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A role for aggregation rates impacting outputs in biological systems has also been 367 

demonstrated using red harvester ants, where the rate at which workers interact 368 

impacts decision-making with regards to which task an individual performs [73]. This 369 

control principle of engineered distributed computation is therefore transferrable to 370 

multiple biological contexts, enabling the modification of the timing of biological outputs 371 

simply by modulating communication rates and not the underlying program. 372 

PD may be capable of achieving both modes of altering organ scale outputs. The 373 

abundance and aperture of these pores can modulate both aggregation rates and the 374 

symplastic topology of the organ. 375 

 376 

Collective decision-making in plant organs 377 

In plants, a single specialized master cell does not make decisions on behalf of the rest 378 

of an organ [14, 59]. Organ-scale decision-making occurs in a distributed fashion, and 379 

emerges from the collective states of individual cells (see Collective decision-making, 380 

Glossary).  381 

The application of the control principles of distributed computation lends itself nicely to 382 

better understanding how collective decision-making may occur in plants. Individual 383 

cells that make up plant organs perform calculations in a largely asynchronous manner, 384 

such as in the case of FLC cold registration (Figure 2b). A singular collective decision to 385 

commence flowering is thought to be reached when a critical number of cells have FLC 386 

silenced [43]. Given that all cells are not synchronized, and are reaching the end of their 387 

computation at different times (the silencing of FLC), a gap between cellular and organ 388 

scales needs to be bridged in order for flowering to be induced. The algorithm that is 389 

employed to solve this majority voting problem in the SAM has not yet been identified.  390 

The field of biologically-inspired computation makes use of algorithms identified in 391 

natural systems to solve problems in the technological domain [24]. Examples of this 392 

include the development of anti-virus software based on non-self-recognition principles 393 

from the human immune system [74], ant colony behaviour to optimize business [75] 394 

and an algorithm used by Drosophila to categorize smells to perform similarity searches 395 

[76]. Understanding the algorithms utilized by plants in collective decision-making may 396 
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prove useful in the computer science domain, especially in light of the asynchronous 397 

nature of these computations [77].  398 

 399 

Concluding remarks 400 

Understanding the principles of computation in the context of multicellular plant organs 401 

addresses a gap in understanding how molecular interactions scale up to adaptive 402 

behaviours in complex organisms (see Outstanding Questions). A distributed 403 

computation perspective of plant development further enables biological researchers to 404 

engage with the expanding field of computation in biology [78]. Plants are a very well 405 

suited system to investigate and engineer multicellular distributed computation in light of 406 

cellular immobility and the ability to manipulate individual cell types. Collectively this 407 

may lead to the identification of novel algorithms for use in the computational domain 408 

using biology-inspired designs [79]. This perspective can also lead to the development 409 

of the next generation of crop species with enhanced environmental response and 410 

predictive capacities. Knowledge gaps as to how cellular organization and 411 

communication influences the outputs of genetic programs need to be filled before 412 

these complex multicellular systems can be reliably and predictably reprogrammed.  413 

Finally, while statements regarding the “intelligence” of plants remain difficult to make, 414 

information processing provides a well-defined and quantifiable field that is 415 

generalizable across diverse domains, ranging from plant biology to computer science. 416 

 417 
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Figure 1. Comparison of distributed computing architectures in (a) engineered 427 

information processing systems, and (b) multicellular plant tissue. (a) In a computational 428 

configuration, the outputs of computation from individual processors are communicated 429 

to other processors as indicated by arrows. (b) In plant tissue, small molecules which 430 

are generated as the outputs of cellular computation are moved to neighbouring cells, 431 

and in turn influencing their cellular activity. (c) Schematic illustrating single cell 432 

computation and the molecular nature of the outputs. (d) Schematic of organ scale 433 

computation and the output of a developmental transition following collective decision-434 

making. 435 

 436 

Figure 2. Examples of distributed computations in plant organs. (a) Co-ordinated 437 

activity of stomata aperture across a lead surface. Schematic illustrates changes in the 438 

distribution of chlorophyll fluorescence over time with red showing increased and green 439 

decreased signal, indicative of stomatal aperture. Based on [40]. (b) Digital registration 440 

of cold in the cells of the Arabidopsis SAM. The grid represents cells in the SAM and the 441 

presence of a blue dot the activity of the FLC promoter. Following cold exposure, 442 

individual cells either do or do not have promoter activity. Based on [43]. (c) Optical 443 

section of a dormant Arabidopsis embryo indicated the separate cellular locations of 444 

ABA and GA responses. Arrows indicate the movement of both hormones between 445 

response centres. Based on [33].  446 

 447 

Figure 3. Topological features of multicellular assemblies. (a) Comparison of the 448 

relative distribution of degree (number of neighbours a cell has) in each an Arabidopsis 449 

hypocotyl [61] and the C. elegans nervous system [56]. (b) Schematic illustrating 450 

dynamics topological rearrangements in a plant organ. Nodes represent cells and blue 451 

edges physical associations between cells that are communicating. Grey edges 452 

highlight regions of the tissue that are topological isolated from other cells, such as in 453 

the context of symplastic domains. 454 
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