
 
 

University of Birmingham

Poly(Pentafluorophenyl Methacrylate)-Based Nano-
Objects Developed by Photo-PISA as Scaffolds for
Post-Polymerization Functionalization
Couturaud, Benoit; Georgiou, Panagiotis G; Varlas, Spyridon; Jones, Joseph R; Arno, Maria
C; Foster, Jeffrey C; O'Reilly, Rachel K
DOI:
10.1002/marc.201800460

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Couturaud, B, Georgiou, PG, Varlas, S, Jones, JR, Arno, MC, Foster, JC & O'Reilly, RK 2018,
'Poly(Pentafluorophenyl Methacrylate)-Based Nano-Objects Developed by Photo-PISA as Scaffolds for Post-
Polymerization Functionalization', Macromolecular Rapid Communications, pp. e1800460.
https://doi.org/10.1002/marc.201800460

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 25/10/2018

"This is the peer reviewed version of the following article: Couturaud et al., Poly(Pentafluorophenyl Methacrylate)‐Based Nano‐Objects
Developed by Photo‐PISA as Scaffolds for Post‐Polymerization Functionalization, Macromolecules Rapid Communications, 2018 which has
been published in final form at https://doi.org/10.1002/marc.201800460 . This article may be used for non-commercial purposes in
accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1002/marc.201800460
https://doi.org/10.1002/marc.201800460
https://birmingham.elsevierpure.com/en/publications/87e7ed1d-b7f3-44b0-b8d3-220c77190a4a


    

 - 1 - 

Communication 

 

Poly(Pentafluorophenyl methacrylate)-based Nano-Objects Developed by 

Photo-PISA as Scaffolds for Post-Polymerization Functionalization 

Benoit Couturaud,† Panagiotis G. Georgiou,† Spyridon Varlas, Joseph R. Jones, Maria C. Arno, 

Jeffrey C. Foster and Rachel K. O’Reilly*  

––––––––– 

 

Dr. B. Couturaud, Mr P.G. Georgiou, Mr. S. Varlas, Dr. J. R. Jones, Dr. M.C. Arno, Dr. J.C. 

Foster and Prof. R.K. O’Reilly  

School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK 

E-mail: R.OReilly@bham.ac.uk 

Mr P.G. Georgiou 

Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK 
† These authors contributed equally to this work. 

––––––––– 

 

The preparation of a functional fluorine-containing block copolymer using reversible addition-

fragmentation chain-transfer (RAFT) dispersion polymerization in DMSO as a 

“platform/scaffold” is explored. The nanostructures, comprised of poly(ethyleneglycol)-b-

poly(pentafluorophenyl methacrylate) (PEG-b-P(PFMA)), were formulated via photo-initiated 

polymerization-induced self-assembly (PISA) followed by post-polymerization modification 

using different primary amines. A combination of light scattering and microscopy techniques 

were used to characterize the resulting morphologies. It was found that upon varying the degree 

of polymerization (DP) of the core-forming block of PFMA, only uniform spheres (with 

textured surfaces) were obtained. These nanostructures were subsequently modified by cross-

linking using a non-responsive and a redox-responsive diamine, thus imparting stability to the 

particles in water. In response to intracellular glutathione (GSH) concentration, destabilization 

of the micelles occurred as evidenced by dynamic light scattering (DLS). The well-defined size, 

inherent reactivity of the nanoparticles towards nucleophiles, and GSH-responsiveness of the 

nanospheres makes them ideal scaffolds for drug delivery to intracellular compartments with 

reductive environments. 
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TOC graphic: 

 

Preparation of poly(ethylene glycol)-b-poly(pentafluorophenyl methacrylate) (PEG-b-

PPFMA) diblock copolymer nano-objects via photo-initiated (405 nm irradiation) 

polymerization-induced self-assembly in DMSO at 37°C, followed by cross-linking reactions 

using either ethylenediamine (non-responsive) or cystamine (GSH-responsive) for transfer into 

aqueous media. 

 

1. Introduction  

Polymer-based stimuli-responsive materials have been the subject of significant and sustained 

research owing to their potential for a range of applications, e.g., drug delivery, sensing, smart 

coatings.[1] Much effort has been devoted to the development of systems that are responsive to 

biological changes such as pH,[2,3] temperature,[4] redox activity,[5–9] or enzyme levels.[10–12] For 

this purpose, thiol-disulfide chemistry is of considerable interest, as it confers covalent 

stabilization of structures through reversible cross-linking. Furthermore, elevated glutathione 

(GSH) concentration in the intracellular compartments can disassemble disulfide cross-linked 

nanoparticles. These properties make disulfide cross-linked particles highly interesting 

scaffolds for the delivery of therapeutics into target cells.[13] 

Polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain-

transfer (RAFT) polymerization has emerged as a promising technique for the preparation of 

polymer assemblies, under dispersion or emulsion polymerization conditions, with controlled 
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sizes and morphologies.[14] A wide range of “nano-objects”, including spherical micelles, 

worm-like micelles and vesicles, can be efficiently prepared by in situ chain-extension of the 

solvophilic macro-chain transfer agent (macro-CTA) with a solvophobic block in either polar 

or non-polar solvents at high solids content (up to 50% w/w).[15,16] 

Despite its robustness and versatility, PISA is limited by the fact that only a relatively small 

class of core-forming monomers and solvents have been reported so far. As a result, the 

discovery of new monomers and solvents suitable for PISA is of great interest. Recent reports 

have focused on using (semi)-fluorinated methacrylate for RAFT PISA dispersion 

polymerizations.[17–21] Fluorinated (or semi-fluorinated) methacrylates have many interesting 

properties such as low refractive index and intrinsic hydrophobicity with applications in 19F-

NMR imaging and coatings.[22–24] In addition, based on the length of the side-chain of the 

monomers, fluorinated methacrylate-derived polymers have tuneable hydrophilicity. Notably, 

fluorinated methacrylate monomers are soluble in organic solvents, such as alcohols and 

toluene, while their corresponding polymers are not. As such, these conditions meet the criteria 

of the monomers to undergo PISA.[18] Pentafluorophenyl methacrylate (PFMA) is an activated 

ester monomer developed and studied extensively by Theato and coworkers.[25–29] PFMA based 

polymers have been extensively used to react with functional amine compounds and to 

introduce functional side-groups into linear polymer molecules with high yield.[30,31] 

Furthermore, a few examples of self-assembly behavour of PPFMA blocks have also been 

reported.[32–35] In this work, the PFMA activated esters have been reacted with functional amino 

compounds, giving rise to a series of responsive nanoparticles in high yield, that are well-

defined. 

Herein, functional block copolymer “nano-objects” have been developed via photo-PISA based 

on poly(ethyleneglycol)113-b-poly(pentafluorophenyl methacryalte)x (PEG113-b-P(PFMA)x) in 

DMSO. Block copolymer nanospheres with DPPFMA = 200 were used as precursors to prepare 

responsive nanoparticles (Scheme 1). The nanoparticles were stabilized using a disulfide-
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containing cross-linker to prepare thiol-functional nanospheres that can undergo GSH-triggered 

simultaneous disassembly. In the present work, we report the first example of using PFMA as 

the core-forming block for RAFT-mediated PISA conducted in DMSO. In addition, the 

reactivity and versatility of the resulting polymeric PPFMA active ester-based platform towards 

post-polymerization modification with different diamines (ethylenediamine and cystamine) 

was investigated.  

 

Scheme 1. Schematic illustration of the preparation of poly(ethylene glycol)113-b-

poly(pentafluorophenyl methacrylate)200 diblock copolymer nano-objects (10 wt%) via photo-

initiated (405 nm irradiation) polymerization-induced self-assembly in DMSO at 37°C (M1), 

followed by cross-linking reactions using either ethylenediamine or cystamine (P1 and P2, 

respectively) for transfer into aqueous media. 

 

2. Results and Discussion 

In order to conduct dispersion PISA, conditions should be chosen such that the monomer is 

soluble prior to polymerization. However, as the polymerization progresses, the resulting 

polymer should undergo a solubility transition and becomes insoluble. We noted that our initial 

attempts to prepare PPFMA homopolymers in DMSO via RAFT resulted in macroscopic 

precipitation. We thus reasoned that as PFMA monomer is readily soluble in DMSO at 

concentrations in excess of 20 wt%, polymerization of PFMA in DMSO appeared promising 
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for PISA. Alcohols could potentially be used as alternative solvents for PISA of PFMA, but 

were avoided due to possibility of PFMA alcoholysis and the biocompatible nature of DMSO. 

To conduct photo-PISA using PFMA, polymerizations were carried out in anhydrous DMSO 

(≥99.9%) to avoid hydrolysis of the monomer, in the presence of a PEG113-mCTA under visible-

light irradiation (405 nm). This resulted in the formation of block copolymers that possessed a 

stabilizing PEG block and an insoluble PPFMA block (Figure S1). A kinetic experiment for 

PEG113-b-P(PFMA)200 was conducted to assess the controlled behaviour of the polymerization. 

As shown in Figure S2A, RAFT polymerization of PFMA in DMSO followed a first order 

kinetic profile. Importantly, the kinetic plot exhibited a change in slope at ca. 0.6 h. This 

characteristic feature of a PISA reaction indicates the onset of self-assembly.[15] SEC analysis 

of the polymerization revealed bimodal distributions, with two populations assigned to the 

growing block copolymer and the macro-CTA. At first glance, the vast quantity of un-

consumed macro-CTA seemed to suggest that the re-initation efficiency of the polymerization 

was poor. However, previous reports of fluorinated block copolymers have attributed this 

bimodal distribution to over-exaggeration of the peak corresponding to the macro-CTA due to 

the low refractive indices of fluorinated polymers.[36] The final PEG113-b-P(PFMA)200 

copolymer obtained had a Mn = 63.6 kg/mol and ÐM = 1.2, as determined by SEC analysis 

(Figure S2B). 

Photo-polymerization of PFMA in DMSO mediated by PEG113-mCTA resulted in the formation 

of nanoparticles via PISA. Nanoparticle formation was evidenced by the onset of turbidity 

within the polymerization solution. To evaluate the assemblies that arose from the PISA 

process, the particles were characterized by transmission electron microscopy (TEM), atomic 

force microscopy (AFM) and light scattering techniques. Figures 1A, S3 and S4 demonstrate 

that PISA in DMSO using DPPFMA = 200 resulted in the formation of spherical particles, M1, 

with an average diameter of 320 nm. The spherical particles were extremenly uniform in size 

(PD = 0.06 from DLS) and appeared to possess rough surface topologies that were visible by 
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both dry-state TEM and AFM analysis. Estimated parameters for the particles’ size distribution 

(PSD) by DLS were found to be in excellent agreement with those estimated by construction 

of a histogram via inspection and counting of particles in the TEM images (Figure 1A). 

Furthermore, as shown in Table S1 and Figure S4, the synthesis of PEG113-b-PPFMAx block 

copolymers with different DPs and various total solids content, solely resulted in the formation 

of spherical particles of similar characteristics. 

SLS analysis for M1 was used to further confirm the observed particle morphology by 

exploiting the size of the particles relative to the laser wavelength and the narrow PSD. For the 

particles in DMSO, analysis of SLS data gave the following estimates: Mw = 1.1 ± 0.2 × 109 

Da; ⟨RG⟩z = 139.4 ± 4.4 × 10-9 m and ⟨RH⟩z = 178.1 ± 7.6 × 10-9 m (see SI for further details). 

In the absence of any further information, the ratio ⟨RG⟩z/⟨RH⟩z = 0.783 would usually be taken 

to indicate the particles were likely to be homogeneous (the theoretical value is RG / RH = 0.775). 

However, given that the empirical estimate was based upon small angle scattering data only, 

we sought to verify this result using the whole data set by comparison to the theoretical form 

factor for a spherical particle of this size. Taking into account the assumptions we would make 

to calculate the form factor and the scale of the error at large angles, we judged that we would 

be able to differentiate between a homogeneous sphere and a sphere containing an aqueous 

cavity with confidence. However, despite their capacious size, the SLS data also indicated that 

the nanoparticles were most likely to be solid spheres with no internal cavity, as shown in Figure 

S10. By comparing Mw for the particle to the estimated molecular weight of the polymer these 

assemblies were also found to possess large aggregation numbers of ~ 2 × 104. 
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Figure 1. (A) PEG113-b-PPFMA200 particles in DMSO (M1), (B) cross-linked particles using 

ethylenediamine after transition in DI water (P1) and (C) cross-linked particles using cystamine 

after transition in DI water (P2). (I) Intensity-weighted size distributions of particles obtained 

by DLS, along with the average Dh and PD values (the error shows the standard deviation from 

5 repeat measurements), (II) representative dry-state TEM images of purified particles, stained 

with 1 wt%  uranyl acetate and (III) histograms of particles’ size distribution measured from 

particle counting analysis from TEM images. In each case at least 100 particles were analysed. 

 

When M1 particles were transitioned into water, either via a solvent-switch method or by drying 

the particle solutions and re-suspending them in H2O, aggregation was observed which led to 

macroscopic precipitation. Given the high glass transition temperature (Tg ca. 125 °C)[37] and 

hydrophobicity of PPFMA, it is unlikely that this aggregation occurs via a unimer exchange 

mechanism. Rather, we supposed that the particles aggregate via a fusion mechanism, leading 
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to the formation of large particles and subsequently to precipitation. To stabilize the particles 

in H2O, we adopted a cross-linking strategy which took advantage of the inherent reactivity of 

the pendent activated esters of PPFMA. Prior to transitioning the particles into H2O, the 

polymer solutions were treated with diamines, ethylenediamine (EDA) (P1) or cystamine (P2), 

to form amide cross-links in the nanoparticles. Cross-linking was conducted immediately 

following PISA using 2 eq. of diamine and 4 eq. of triethylamine (TEA) (in respect to PEG113-

b-PPFMA200 block copolymer) as a catalyst at 50 °C for 15 h. During this process, amide bond 

formation occurred via reaction between the cross-linking agents and the activated ester bonds. 

A cross-linking efficiency of 90% was measured via FTIR spectroscopic analysis for EDA, 

while a slightly lower cross-linking efficiency of 88% was achieved using cystamine (Figure 

S6). FTIR confirmed the absence of pentafluorophenyl ester at 1780 cm-1 (carbonyl group) and 

the appearance of new signal at 1650 cm-1 that can be attributed to amide bond formation (C=O). 

Additionally, due to the presence of TEA, the remaining unreacted pentafluoro esters were 

hydrolysed to give poly(methacrylic acid) (Figure S5B), resulting in the formation of stabilized 

nanoparticles with partially hydrophilic cores. The hydrolysis reaction was confirmed as a result 

of the absence of any fluorine signals in the 19F NMR spectrum of the cross-linked particles 

(Figure S5C); and the appearance of a new C=O vibration (1755 cm-1) in the IR spectra of both 

cross-linked samples which could be assigned to the newly-formed carboxylic acids (Figure 

S6). Cross-linking was also confirmed by DLS analysis in THF, a good solvent for both blocks. 

Under these conditions, the un-crosslinked M1 particles dissolved completely into unimers. In 

contrast, the cross-linked P1 and P2 particles remained intact, and possessed an average 

diameter that was larger than that measured prior to cross-linking due to swelling of the particles 

by the solvent (Figure S7). 

It is important to note that the cross-linking reactions were conducted on the preformed 

assemblies, so it was not expected to alter their morphology or aggregation number. Indeed, as 

confirmed by light scattering, TEM and AFM analysis (Figures S8 and S9), the size and 
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morphology of the nanoparticles remained consistent after cross-linking, when using both the 

permanent EDA and responsive cystamine cross-linker. Following cross-linking, the 

nanoparticles were purified by repeated centrifugation/re-suspension cycles in DMSO and 

subsequently H2O. For two different samples of cross-linked particles in water (P1 and P2), 

light scattering data was recorded in the same way as described before to allow comparison 

between form factors recorded for the particle before and after cross-linking and solvent-switch 

and to investigate whether any internal structural changes occurring over the course of these 

processes. As shown in Figure S10, in both cases the resulting estimate for the external radius 

of the sphere fell within the 95% confidence interval associated with the estimated value in 

DMSO; again, each sample was judged to be homogeneous spheres and if an aqueous inner 

cavity was present then its volume would account for less than 3% of the total particle volume. 

Nanoparticles cross-linked with cystamine were proposed to possess redox responsiveness due 

to the presence of disulfide bonds within the cross-links. Disulfide linkages can be reduced by 

biologically-relevant thiols such as cysteine and GSH. Upon reduction, the responsive  particles 

were expected to break down into their constituent polymers, whilst the non-responsive cross-

linked particles were not expected to change. To assess the response of the nanoparticles to a 

reducing environment, a sample of the 2 cross-linked purified particles were treated with 

different concentrations of GSH in PBS buffer. DLS was then employed to monitor the changes 

in size of the particles over time. 
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Figure 2. (A) Z-Average diameter and PD values of EDA cross-linked P1 particles using as a 

function of [GSH] = 10 μM and 10 mM (B) Z-Average diameter and PD values of cystamine 

cross-linked P2 particles as a function of [GSH] = 10 μM and 10 mM (insets show dry-state 

TEM images of P1 and P2 after 5 days of treatment with 10 mM GSH). 

 

As shown in Figure 2, P2 nanoparticles containing cystamine cross-links treated with 10 µM 

GSH remained stable over a period of >5 h. No significant changes in Z-average size or PD 

was observed during this time. When the particles were exposed to a higher concentration of 

reducing agent ([GSH] = 10 mM, concentration similar to the cytoplasmic environment of 

cancerous cells), a dramatic increase in size and PD was observed that occurred immediately 

upon treatment with GSH. This size increase corresponds to an initial swelling of the particles, 

over further time, the particles gradually degraded (Figure 2B inset). Similar behaviour has also 

been reported in the literature.[6,38] In stark contrast, EDA cross-linked P1 particles did not 

respond to either concentration of GSH over the timescale of the experiment, this is to be 

expected as EDA does not contain a disulfide bond; therefore, treatment with GSH yielded no 

apparent response.  
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Finally, the cytotoxicity of the two cross-linked polymeric nanoparticles was evaluated on A549 

cells (human lung cancer fibroblasts). As shown in Figure 3, a viability of > 90% was observed 

for cells incubated with either P1 or P2 for 72 h, demonstrating the high cytocompatibility of 

the materials. 

 

Figure 3. A549 cells viability upon incubation with increasing concentration of P1 or P2 for 

72 h. Viability is expressed as percentage of control (0 mg/mL of polymers). Results are 

expressed as value ± standard deviation (n = 3). 

 

3. Conclusions  

In this work, we report the synthesis of a diblock fluorine-containing copolymer “nano-objects”, 

prepared by photo-initiated RAFT PISA in DMSO. A combination of light scattering and 

microscopy techniques were used to characterize the resulting morphologies, showing that by 

varying the DP of the core-forming block of PFMA, only homogenous textured spheres could 

be obtained. Subsequently, the presence of the pentafluorophenyl ester groups was exploited to 

attach amino compounds to yield cross-linked polymeric “nano-objects” in aqueous solutions 

with high efficiency. The morphological characterization of the cross-linked particles also 

showed that the morphologies were retained during the post-polymerization modification 

process. Disassembly of the disulphide cross-linked nanoparticles occurred in the presence of 

intracellular concentrations of GSH. Finally, cytotoxicity experiments were carried out to 
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demonstrate the cytocompatibility of the cross-linked material, which is particularly important, 

for the realization of further biomedical applications. This method represents a facile, 

straightforward approach for the generation of new functional and responsive polymers which 

may be promising candidates as drug delivery vehicles. 
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