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Advances	in	the	available	non‐biological	pharmacotherapy	treatment	of	acute	1 
mountain	sickness	and	high	altitude	cerebral	and	pulmonary	oedema 2 
 3 
Abstract: 4 
 5 
Introduction 6 

 The physiologic responses on exposure to high altitude are relatively well known, but new 7 

discoveries are still being made, and novel prevention and treatment strategies may arise.  Basic 8 

information has changed little since our previous review in this journal ten years ago, but 9 

considerable more detail on standard therapies, and promising new approaches are now 10 

available.   11 

Areas covered 12 
 13 
The role of pharmacological agents in preventing and treating high altitude illnesses is reviewed. 14 

The authors have drawn on their own experience and that of international experts in this field.  15 

The literature search was concluded in March 2018.  16 

 17 
Expert opinion 18 

Slow ascent remains the primary prevention strategy , and rapid descent for management of 19 

serious altitude illnesses .  Pharmacologic agents are particularly helpful when rapid ascent 20 

cannot be avoided or when rapid descent is not possible.  Acetazolamide remains the drug of 21 

choice for  prophylaxis of acute mountain sickness (AMS); however, evidence indicates that 22 

reduced dosage schemes compared to the current recommendations are warranted.  Calcium 23 

channel blockers and phosphodiesterase inhibitors remain the drugs of choice for management of 24 

high altitude pulmonary oedema.  Dexamethasone should be reserved for the treatment of more 25 

severe cases of altitude illnesses such as cerebral oedema.   26 

 27 

Keywords: acetazolamide, acute mountain sickness, dexamethasone, high altitude, high altitude 28 

cerebral oedema, high altitude pulmonary oedema, nifedipine 29 
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 4 
1. Introduction  5 

The ease of accessing high altitude above 2000 m  presents an opportunity to gain a 6 

greater insight into the acute responses to hypoxia [1, 2].  In this review, advances in the 7 

pharmacologic prevention and treatment of high altitude illnesses are discussed, aiming to: 1) 8 

evaluate currently used pharmacotherapies and 2) consider theoretical pharmacotherapies in light 9 

of new discoveries.  The following databases were searched (inception March 1) for relevant 10 

studies focusing largely on literature produced after 2008: MEDLINE, PubMed, and Embase.  11 

Search strategies utilized a set of keywords (with synonyms and closely related words) specific 12 

to each section herein with additional studies identified by examining the reference list contained 13 

from chosen studies.    14 

The hypobaric hypoxic conditions at altitude elicit distinct temporary and reversible 15 

physiologic responses in lowlanders who have spent a few hours to days at high altitude 16 

(generally over 3,000 m). These repsonses  are predominantly attributed to hypoxemia [3, 4].  17 

The initial physiologic acclimatisation is hyperventilation, which negates reductions in the partial 18 

pressure of oxygen (PO2) but also results in a greater loss of carbon dioxide (CO2) (hypocapnia) 19 

and subsequent respiratory alkalosis [5].  This respiratory alkalosis elicits a renal compensation 20 

response by which the kidneys increase bicarbonate (HCO3
-) excretion and increase hydrogen 21 

(H+) retention, resulting in a secondary metabolic acidosis and a mild diuretic effect [6, 7].  22 

Hypoxia also elicits an increase in sympathetic tone, an increase in blood pressure (BP), and an 23 



 

3 
	

elevation in resting heart rate (HR) [8].   The magnitude of the response to hypoxia varies 1 

considerably between individuals [9].   2 

 3 

2. Pathophysiology of High Altitude Illnesses 4 

Three altitude illnesses and their mechanisms are reviewed: 1) acute mountain sickness 5 

(AMS), 2) high altitude cerebral oedema (HACE), and 3) high altitude pulmonary oedema 6 

(HAPE). 7 

 8 

2.1 Acute Mountain Sickness (AMS)  9 

The clinical presentation of AMS includes; headache, gastrointestinal distress, fatigue, 10 

and dizziness/lightheadedness [10].  The severity of AMS is determined by an overall symptom 11 

score, as an objective measure has yet to be determined.   The maladaptive physiologic responses 12 

to hypoxia among those who present with AMS have been demonstrated and are different from 13 

those who remain free of AMS [11].  The pathophysiology includes: mild fluid retention, 14 

increased sympathetic drive, increased cerebral venous volume, reduced cerebrospinal fluid 15 

absorption, reduced intracranial buffering capacity, and cognitive impairment [12, 13].  16 

Cerebral vasodilation occurs in an attempt to increase oxygenation via an increase in 17 

cerebral blood flow [12].  These elevations are normal in the acute exposure phase , returning to 18 

baseline after a few days at the same altitude [14].  In some individuals, however, these 19 

intracranial dynamics do not return to baseline and progressive increases in intracranial pressure 20 

are exhibited, particularly, if the hypoxemia stimulus is maintained in a progressive and 21 

aggressive ascent [15]. 22 

 23 
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2.2 High Altitude Cerebral Oedema (HACE) 1 

AMS and HACE probably occur along a continuum.  HACE, a type of encephalopathy 2 

with neurological findings, such as, ataxia, altered mental status, and unconsciousness, is 3 

potentially  fatal.  [10].  The causes for the progression of AMS to HACE are unclear; however, 4 

current hypotheses attribute such progression to: 1) disruptions in the blood brain barrier (BBB); 5 

2) intracellular oedema, and 3) venous outflow obstruction [15, 16, 17, 18].   6 

Disruptions in the BBB are multifactorial and include: 1) over production of reactive 7 

oxygen species (ROS); 2) altered cytokine expression, and/or 3) increased vascular endothelial 8 

growth factor (VEGF) [16, 19, 20].  The intracellular oedema aspect of the progression of high 9 

altitude cerebral illness has been demonstrated on MRI scans increases in brain parenchymal 10 

volumes being associated with increasing Lake Louise Scores [21].  Reductions in venous 11 

outflow preceded by an increase in cerebral inflow in response to hypoxia are likely a cause for 12 

the progression of cerebral-related altitude illnesses [21]. Vessel deformation may occur within 13 

various levels within the brain to include the intracranial and extracranial levels; however, more 14 

recent works have demonstrated that vessel deformation at the intracerebral level may be most 15 

closely related to the development and progression of cerebral altitude illnesses [18, 21, 22, 23, 16 

24].  The over expression of corticotropin releasing factor may also be a contributor [25].      17 

 18 

2.3 High Altitude Pulmonary Oedema (HAPE)  19 

Pulmonary arterial pressure (PAP) rises with exposure to altitude, being attributed to 20 

hypoxic pulmonary vasoconstriction (HPV).  An exaggerated elevation in PAP contributes to the 21 

development of alveolar capillary leakage and subsequent development of HAPE [26, 27].  22 

Potential mechanisms include: 1) inflammation, 2) altered alveolar fluid clearance, and/or 3) 23 
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uneven HPV response [26, 27, 28].  Accumulation of lung fluid in response to hypoxia has been 1 

attributed to the downregulation of epithelial sodium channels (ENaC) [29, 30].  Further, greater 2 

endothelin-1 production and reduced exhaled nitic oxide are also apparent in those who develop 3 

HAPE [31, 32, 33, 34].   4 

 5 

3. Established Pharmacotherapies for Prevention and Treatment AMS and HACE 6 

  Pharmacologic strategies are secondary to immediate descent for the treatment of 7 

serious altitude illness (HACE and HAPE).  If available, temporary supplemental O2 to raise 8 

oxygen saturation to >90%, or immersion in a portable hyperbaric chamber, are  effective 9 

treatment strategies Otherwise, the following pharmacologic approaches  should be considered.   10 

 11 

3.1 Carbonic Anhydrase Inhibitors  12 

Carbonic anhydrase inhibitors (CAIs) were one of the first pharmacologic agents used to 13 

prevent AMS by promoting a preemptive and favorable acclimatization response [35].  Renal CA 14 

inhibition, vascular endothelial CA inhibition, erythrocyte CA inhibition, and CNS CA inhibition 15 

appear to be the four primary attributes that are most helpful in the prophylactic treatment of 16 

AMS [36].  Renal CA inhibition stimulates the loss of bicarbonate (HCO3
-) and sodium (Na+) in 17 

the urine and the subsequent retention of H+ and chloride (Cl-), effectively reducing serum pH 18 

and promoting a state of metabolic acidosis that ultimately stimulates ventilation to equilibrate 19 

pH [37, 38].   20 

Vasoregulation is also altered with the administration of CAIs via the alteration of 21 

extracellular pH, as well as, the direct inhibition of CA in vascular smooth muscle [39].  It 22 

should be noted, however, that the peripheral vasculature, pulmonary vasculature, and cerebral 23 
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vasculature respond differently and/or independently in response to certain drugs [40].  For 1 

example, altitude sleep studies have demonstrated the specific influence of CAIs on 2 

cerebrovascular reactivity and the subsequent affect on cerebral blood flow [41, 42].  3 

 4 

3.1.1 Acetazolamide 5 

Acetazolamide (Az) is often  used for prophylaxis of altitude illnesses, increasing 6 

ventilation and  increasing PaO2 [43, 44, 45, 46].  Off-target effects include: aquaporin 7 

inhibition, ROS modulation, heat shock protein-70 (HSP-70) and IL-1 receptor agonist, HIF 8 

modulation, and cAMP regulation [36].  Oral administration of Az is more advantageous than 9 

intravenous (i.v.) administration at altitude due to its easier administration, as well as, the 10 

resultant effects on periodic breathing during sleep at altitude and less reductions in CO2 11 

sensitivity compared with i.v. adminsitration [47, 48]. 12 

Of more recent concern has been the potential negative effect of Az on exercise 13 

performance in hypoxic conditions [49, 50, 51].  The negative effect of Az on performance is 14 

particularly apparent in the most recent study which demonstrates the magnitiude of performance 15 

decrements by qunaitifying reductions in diaphrapm contractility (18  10%) and joint torques 16 

(39  11%) associated with the drug [51].  It is speculated that exercise performance in older 17 

participants may be affected to a greater extent due to reduced renal clearance of Az associated 18 

with age-related declines in kidney function [49].  The mechanism by which Az impairs exercise 19 

performance is unknown, but such effects should be considered when older subjects are using Az 20 

and the maintenance of exercise performance at high altitude is a priority.   21 

The side effects of Az for the specific treatment of altitude illnesses include: paresthesia, 22 

polyuria, rash, dysgeusia, and increased frequency of micturition [36, 52, 53].  While the side 23 
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effects are not uncommon and range in severeity, paresthesia appears to be the most common 1 

[54].   However, such side effects can become severe and appear to relate to increases in dosases 2 

in this way [55].  Therefore, it will be important to establish the most effective minimal dose that 3 

can be used in order to reduce adverse events [55].     4 

A consensus for the time course of administration and dosage of Az has not been met, 5 

although guidelines for such applications do exist [56].  The dose of Az for AMS prophylaxis 6 

has been recommended at 125 mg – 250 mg twice daily (BID), initiating administration the day 7 

prior to altitude exposure; however, recent data suggest pre-treatment with low-dose Az (125 mg 8 

BID) should be initiated 2 days prior to exposure to altitude [52, 53, 57].  Studies concerning the 9 

effective dosage regimens of Az while at altitude provide evidence favouring reductions in 10 

dosage schemes [58, 59, 60].  Even lower dosages of 62.5 mg BID can be as effective in 11 

preventing AMS [59].  Hypoxia and, possibly, additional environmental stressors imposed by 12 

high altitude exposure may alter drug pharmacokinetics, particularly, in drugs such as Az and, 13 

thus, may reduce the clearance of such drugs [61].  Furthermore additional research is warranted 14 

to determine the individualization of Az dosing.    15 

 16 

3.1.2 Methazolamide  17 

Methazolamide (Mtz) may incur less side effects than Az, as it is less bound to plasma 18 

proteins and diffuses more readily into tissues [62].  Comparative studies have demonstrated that 19 

Mtz administration of 150 mg is equally effective as Az in preventing AMS with less paresthesia 20 

[63].  Additionally, Mtz may elicit less performance decrements compared to Az [51].  The 21 

differences in the pharmacodynamics of the drugs and their side effects or maybe responsible for 22 

the disparities among the magnitude of effects elicited. 23 
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Comparative studies of Az and Mtz show that when CA is fully inhibited, different 1 

effects may be a consequence of the off-target effects of the medications [64].  The magnitude of 2 

the hypoxic-ventilatory response is far less with Az than with Mtz [64].  In vitro, Mtz but not Az 3 

activates the gene transcription factor nuclear related factor 2 (Nrf-2), which is responsible for 4 

the upregulation of antioxidant proteins that serve a primary purpose of scavenging reactive 5 

oxygenated species (ROS); however, it is unclear if these effects will translate to the whole 6 

organism [65].  Early speculations of ROS involvement in the development of AMS have been 7 

supported by evidence demonstrating the importance of the balance of ROS production and ROS 8 

scavenging for the prevention of AMS [66].  Thus, it could be argued that the proper 9 

management of ROS with high altitude exposure is critical for the prevention of altitude 10 

illnesses, specifically, in those persons with a genetic profile that is indicative of hyperactive 11 

ROS production.  Further, research is needed in order to evaluate the efficacy of various CAIs 12 

for the prophylactic treatment of altitude illnesses based on genetic profiles and in relation to 13 

ROS production.    14 

 15 

3.1.3 Benzolamide  16 

Benzolamide (Bz) has been compared with Az for prophylactic treatment of AMS [67].  17 

Significantly lower AMS scores were obtained on Bz when compared to Az, particularly at 18 

higher elevations [68].  The effects of Bz and Az at altitude, such as, increased urinary pH and 19 

volume, as well as, increased arterial oxygenation, appear to be similar between the two drugs 20 

[68, 69].   Bz has been shown to have reduced psychomotor effects compared to Az, indicating 21 

that Bz may penetrate the central nervous system (CNS) tissue less than Az.  Furthermore, due to 22 
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its more limited tissue penetrance and near isolated effects on renal CA, Bz elicits fewer CNS-1 

related side effects [38, 68].   2 

 3 

3.2 Corticosteroids  4 

3.2.1 Dexamethasone (Dx)  5 

Recent reviews have highlighted the effects of Dx in its ability to prevent altitude 6 

illnesses, which include: reductions in ROS formation, endogenous antioxidant upregulation, 7 

sympatholysis, improved O2 saturation, alteration of aquaporin expression, and HSP-70 and 8 

adrenomedullin upregulation [36].  However, its use as a prophylactic agent could become 9 

problematic for many reasons.  Unlike Az, Dx does not permit the normal acclimatization 10 

process to transpire.   Additionally, if Dx is used as a prophylactic agent and is then abrubtly 11 

discontinued during ascent, acute illness may set in.  For this reason, its use as a prophylactic 12 

treatment should be avoided when possible, and other drugs should be considered. 13 

The clinical management of HACE is distinctly different.  HACE is a medical emergency 14 

requiring immediate attention, and is known to occur in those whom have already developed 15 

AMS. Early treatment using Dx is the most effective [70].  An initial large dose of Dx is advised, 16 

8 – 10 mg  by intramuscular or oral administration, followed by 4 mg every 6 hours [56].   17 

 18 

3.2.2 Inhaled Budesonide 19 

Conflicting results have been produced concerning the efficacy of inhaled budesonide for  20 

preventing and treating altitude illnesses.  Administration of inhaled budesonide for 3 days prior 21 

to ascent has been effective in preventing AMS in the first 20 hours of HA exposure [71].  22 

However, more recent research shows no significant reductions in AMS with budesonide 23 
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administration at various dosages nor has it shown the ability of budesonide to prevent AMS to 1 

the same degree as Az [72, 73].  Budesonide is a drug that elicits isolated effects on the lung 2 

tissue as opposed to eliciting a systemic effect, thus, its efficacy for the prophylactic treatment of 3 

AMS may be limited. [74]. 4 

 5 

3.3 Diuretics 6 

Abnormal fluid balance has been repeatedly observed in those whom present with AMS 7 

[75, 76].  While a degree of diuresis with hypoxic exposure is considered a normal response, 8 

individuals who develop AMS demonstrate significantly greater fluid retention than those who 9 

do not develop AMS [76].  Such diuresis at high altitude is also related to the ventilatory 10 

response to hypoxia, such that, a blunted ventilatory response may result in a greater degree of 11 

fluid retention and ensuing altitude illness [77, 78, 79, 80, 81].  Furthermore, such blunted 12 

responses and associated fluid retention may promote the development of HAPE.  Thus, the 13 

maintenance of an appropriate fluid balance at high altitude, namely preventing a state of fluid 14 

excess, is important for the prevention of all altitude-related illnesses [76, 82]. There is limited 15 

information on the use of diuretics in preventing AMS except it has been shown that 16 

spironolactone is ineffective in preventing AMS when compared to Az [83].  It is also possible 17 

that those with AMS may be volume depleted, thus, the use of a loop diuretic in this instance 18 

could be problematic.  Herein lies the rationale behind furosemide being deamed as inappropriate 19 

for the treatment of AMS which would produce excessive diuresis that may be dangerous at 20 

altitude [62].  Spironolactone has also been considered for the treatment of altitude illnesses due 21 

to the mild acidosis produced [83].  22 

 23 
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3.4 Angiotensin Converting Enzyme (ACE) Inhibitors  1 

Angiotensin converting enzyme (ACE), found predominantly in the pulmonary and renal 2 

endothelia, plays a key role in the renin-angiotensin aldosterone system (RAAS).  ACE 3 

influences the control of systemic BP via its conversion of angiotensin-I to angiotensin-II (A-II) 4 

and the subsequent downstream effects on fluid balance.  The implications of ACE and 5 

performance at altitude have been evaluated but the use of ACE inhibitors was not addressed 6 

[84].  More recent discoveries surrouding genetic polymorphisms of the ACE gene and 7 

associated responses to hypoxia have resulted in the consideration of ACE inhibitors for 8 

prevention and treatment of altitude illnesses [85, 86].   As individuals with the “DD” genotype 9 

appear to be at greater risk for maladaptations at altitude, inducing physiologic response that is 10 

more consistent with a favorable II or ID genotype could be advantageous altitude [87].  11 

The effects of ACE inhibitors during exposure to hypoxia include blunting of the hypoxic 12 

ventilatory response and reduction in PAPs [86, 88, 89].  Therefore, such drugs may reduce 13 

HAPE in a similar way to that of nifedipine [86].  However, ACE inhibitors have been shown to 14 

blunt the kidneys ability to produce eryhtoprpoetin and, thereby, producing an unwanted effect in 15 

those attempting to acclimatize [90].   While the ventilatory responses to ACE inhibitors during 16 

hypoxia have been briefly considered, further research is warranted in this area.  Future research 17 

should also consider the hormonal effects of ACE inhibitors with hypoxic exposure, such as the 18 

influence on aldosterone and any subsequent relation to altitude illnesses.  19 

 20 

3.5 Angiotensin-II Receptor Blockers (ARBs) 21 

Intermittent hypoxia such as in sleep apnoea is accompanied by concomitant rises in BP, 22 

which may be mediated by A-II [85, 91, 92].  ARBs, such as, telmisartan have been shown to 23 
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reduce increases in BP associated with ascent to altitude up to 3400 m in healthy individuals [93, 1 

94, 95].  Additionally, losartan appears to alleviate the oxidative stress imposed by intermittent 2 

hypoxia and may reduce ROS production [91].  Thus, ARBs may attenuate the progression of 3 

altitude illnesses by regulating fluid volume, reducing altitude associated increases in BP, and 4 

alleviating oxidative stress; however, their efficacy at extreme altitudes may be limited [91, 93].  5 

Furthermore, ARBs and ACE inhibitors are safe to administer at altitude but comparisons 6 

between these drugs and existing pharmacologic strategies, such as Az, are warranted.   7 

 8 

3.6 Magnesium 9 

Magnesium is an antagonist of N-methyl-D-aspartate (NMDA).  The involvement of the 10 

N-methyl-D-aspartate (NMDA) receptor in regards to hypoxic altitude convulsions has 11 

previously been implicated with a blockage of the NMDA receptor proving to have beneficial 12 

effects [62, 96, 97].   Intravenous magnesium appears to be superior over oral administration for 13 

the attenuation of AMS [62, 98, 99]. The precise connection between NMDA and AMS reamins 14 

unclear and  further investigations are needed. 15 

 16 

3.7 Ibuprofen and Paracetamol  17 

High altitude headache (HAH) is an important symptom in the recently revised AMS 18 

scoring scheme [10].  Conflicting results have been produced regarding ibuprofen’s efficacy 19 

compared.  Ibuprofen has been repeatedly shown to reduce HAH due to its anti-inflammatory 20 

effects [100, 101, 102], which may also be responsible for its superiorty over paracetamol.  21 

Studies have also shown ibuprofen and paracetamol to be equivocal in preventing HAH [103, 22 

104]. 23 
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 1 

3.8 Nitrovasodilators  2 

The involvement of endothelial nitric oxide synthase (NOS) in the development of 3 

altitude illnesses has been outlined [62] and further implicated in those studies observing 4 

lowlanders travelling to altitude exhibiting reductions in exhaled NO which have correlated with 5 

AMS scores and the presentation of HAPE [32, 33, 105, 106].  Others have argued that exhaled 6 

NO decreases with increasing altitude and may not be a contributor to HPV [105, 107].  7 

However, recent studies concerning gene variants of the nitric oxide synthase 3 gene (NOS3), a 8 

gene encoding for eNOS, in relation to both, acclimatization and adaptation to altitude are 9 

conflicting [108, 109].  Despite, nitrates’ ability to improve exercise performance at sea-level, 10 

recent findings indicate that dietary nitrate consumption exacerbates AMS symptoms and 11 

increases the sense of effort with maximal exercise in hypoxia [110].  12 

 13 

4. Established Pharmacotherapies for Prevention & Treatment of HAPE 14 

Despite some overlap, the development of HAPE is attributed to alternative 15 

maladaptations compared to AMS and HACE.  HPV and the resultant pulmonary hypertension, 16 

stress failure of the pulmonary capillaries, and disrupted alveolar fluid clearance have all been 17 

hypothesized to contribute to the development of HAPE [4, 111, 112, 113]. While immediate 18 

descent remains the first line treatment for HAPE, drugs that act on any one of aforementioned 19 

pathways can also be helpful for prevention and treatment.     20 

 21 

4.1 Calcium-Channel Blockers (CCBs) 22 

4.1.1 Nifedipine  23 
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Nifedipine, a calcium channel blocker, interferes with the calcium channel blockade, 1 

inhibiting vasoconstriction and reducing PAPs.  Administration of 20 mg of slow-release 2 

nifedipine every 8 hrs prevents HAPE in those persons whom are known to be susceptible [88].  3 

For acute treatment of HAPE, an immediate dosage of 10 mg of nifedipine should be 4 

administered sublingually followed by 20 mg every 6 hrs in addition to supplemental oxygen and 5 

descent [62, 114].   6 

 7 

4.2 Phosphodiesterase Inhibitors (PDE-5 Inhibitors)  8 

Elevated PAPs are of concern in relation to altitude illnesses and can result in the 9 

development of HAPE and worsening hypoxemia [115].  Phosphodiesterase inhibitors (PDE-5 10 

inhibitors) are of interest for HAPE prevention, due to their ability to attenuate rises in PAPs 11 

with ascent.  Recent reviews have demonstrated the efficacy of PDE-5 inhibitors, such as 12 

tadalafil and sildenafil, for the treatment of elevated PAPs [62, 115, 116, 117].  Pre-treatment 13 

with 10 mg of tadalafil has been shown to protect against HAPE (reducing incidence by 78%) in 14 

those who are susceptible by attenuating rises in PAP [118].  Newer research is in agreement 15 

with these earlier works demonstrating reductions in the incidence of HAPE with tadalafil [119]. 16 

Although PDE-5 inhibitors are known to improve HPV and, thereby, reduce the 17 

propensity for developing HAPE, results regarding the efficacy of PDE-5 inhibitors for 18 

prevention and treatment of other altitude illnesses are less conclusive.  Sildenafil may be 19 

appropriate for AMS and HACE prophylaxis based on its ability to increase cerebral 20 

oxygenation [120].  Tadalafil may have the potential to reduce cerebral specific AMS scores; 21 

however, it may also increase the potential of headache [111, 119, 121, 122].  Consequently, 22 
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more research is needed to clarify whether PDE-5 inhibitors can be used to prevent and treat 1 

AMS an HACE. 2 

 3 

4.3 Acetazolamide.  4 

There is evidence that acetazolamide inhibits HPV in many animal models and in humans 5 

and, therefore, could be useful in the prevention, and perhaps treatment, of HAPE [123]. 6 

 7 

4.4 Corticosteroids 8 

4.4.1 Dexamethasone  9 

While the treatment of HACE with Dx is recommended, its administration for the 10 

treatment of HAPE is less established.  Recent guidelines provide a Recommendation Grade of 11 

2C for Dx as a preventative strategy for HAPE due to limited evidence, and suggest that it is 12 

reserved for the clinical presentation of HAPE, known HAPE-susceptible individuals, or when 13 

alternative therapies are contraindicated [56].  It is possible that Dx could reduce HAPE by 14 

stimulating the cGMP production in response to hypoxia, increasing NOS activity and 15 

modulating sympathetic activity; however,.  limited reports have documented its use in this way 16 

[118, 124, 125, 126].   17 

  18 

4.5 Iron Supplementation  19 

The suggestion of iron supplementation for the treatment of altitude illnesses comes from 20 

the effects that severe iron deficiency has on the pulmonary vasculature resulting in pulmonary 21 

vasoconstriction [127].  Unfortunately, however, it seems that i.v. iron supplementation has no 22 

significant protective effect against AMS [128].  23 
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 1 

5. Future Pharmacotherapies for Prevention & Treatment of Altitude Illnesses  2 

This next section provides suggestions for the potential use of other pharmacologic 3 

agents  in preventing and treating altitude illnesses.  4 

 5 

5.1 Type A Endothelin Receptor Antagonists (ETA Receptor Antagonist)  6 

The effects of hypoxia in pulmonary vasculature may be detrimental and result in a 7 

greater propensity for apoptosis in the pulmonary artery smooth muscle cells [129].  Thus, 8 

susceptibility to altitude-related illnesses attributed to such effects on the pulmonary vasculature 9 

should kept in mind with the consideration of new pharmacotherapies for prevention and 10 

treatment of altitude illnesses.   11 

Type A endothelin receptor antagonists (ETA antagonists) elicit similar outcomes as 12 

PDE-5 inhibitors on the pulmonary vasculature, however, the mechanism of action of ETA 13 

antagonists is inherently different.  In animal models, ETA antagonists have proven to be 14 

beneficial in reduction of PAPs in the HAPE susceptible [31, 130, 131, 132, 133].  It has also 15 

been hypothesized that additional off-target effects of ETA antagonists may be more beneficial 16 

for the prophylactic treatment of altitude illnesses [65].  17 

5.1.1 Sitaxentan 18 

Research has demonstrated that the ETA antagonist sitaxentan reduces pulmonary 19 

vascular resistance (PVR) in both, acute and chronic hypoxia with such changes in PVR being 20 

correlated with restorations in VO2max [134].   Increases in PVR associated with hypoxia may be 21 

a contributing factor to the reductions in VO2max observed in hypoxia.  Thus, sitaxentan, may 22 

offer an alternative option to existing pharmacotherapies, especially, when exercise performance 23 
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at altitude is a priority.  In vivo models have shown sitaxentanreduces high-altitude induced 1 

cerebral vascular leakage by 40% but its effect on altitude illnesses remains uninvestigated [65].   2 

 3 

5.1.2 Ambrisentan  4 

Ambrisentan is currently approved for the treatment of pulmonary arterial hypertension 5 

and having limited interactions with other medicaiotns [135].  Ambrisentan has been shown to 6 

improve exercise capacity and reduce HPV [136, 137].  When compared to sitaxentan, 7 

ambrisentan increased  Nrf-2 four-fold, helping to scavenge greater amounts of ROS [65].  8 

Additionally, in vitro studies have shown that ambrisentan decreased hypoxia-induced H2O2 9 

production and permeability in basal media endothelial cells [65], indicating its potential use for 10 

prophylaxis of HAPE [65].  The efficacy of ambrisentan for the specific prevention and 11 

treatment  of altitude illnesses is unknown. 12 

 13 

5.1.3 Bosentan 14 

Bosentan, also approved for treatment of PAP, has repeatedly been shown to reduce 15 

increases in PAP asscoaited with altitude exposure in animals, healthy humans and known HAPE 16 

susceptiple individuals [132, 138].  However, bosentan may have adverse effects on renal 17 

adaptation at high altitude, specifically, reducing diruresis [139].   This could present as 18 

problematic with ascent to altitude in light of the known relationship between reductions in 19 

diuresis and a greater propensity for developing altitude illnesses [140, 141].   20 

 21 

5.14 Macitentan  22 
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Macitentan is an ETA antagonist indicated for the treatment of PAH [142].  Macitentan 1 

improves PAP and exercise capacity, so may attenuate the development of altitude illnesses 2 

[143, 144].  Due to the effects of altitude and the associated hypobaric hypoxic conditions that 3 

elicit a disruption in the vasoregulatory processes and promote vasoconstriction, caution should 4 

be taken with drugs that may attenuate the vasoconstriction response and favorably affect PAP 5 

(see below).  The vasoregulatory changes and vascular characteristic changes (reduced capillary 6 

density and diameter) induced by hypoxia appear to be attenuated with macitentan in healthy 7 

individuals in hypobaric hypoxic conditions [143].  Thus, macitentan could attenuate the 8 

development of altitude illnesses by improving capillary blood flow, and microcirculation [143], 9 

and attenuating the hypoxia-induced rise in PAPs.   10 

 11 

5.2 IL-10 Upregulators  12 

Gene connectivity has been used to evaluate the connections between AMS (from high 13 

altitude exposure) and genetic profiles [145].  Early research revealed that HAPE is largely 14 

attributed to a failure of the lung endothelial lining due to high intravascular pressures rather than 15 

inflammation, with this lining failure a more likely source of such vascular leak [36, 80].  These 16 

earlier studies appear not to draw attention to the potential effect of the anti-inflammatory 17 

involvement in the prevention of altitude illnesses though such an approach has been proposed 18 

recently   [146, 147].   19 

Liu et al. [145] has highlighted the genetic profiles of those with AMS compared to those 20 

without AMS during altitude exposure, revealing a contrast in the production of anti-21 

inflammatory cytokines between AMS non-AMS groups.  More specifically, Liu et al. [145] was 22 

able to isolate the change in interleukin (IL) gene expression amongst those with AMS who 23 



 

19 
	

presented with a downregulation of IL-2, IL-4, IL-6ST, IL-7, IL-10, IL-17B, and IL-32, as well 1 

as, an upregulation in IL-13 and IL-17F.  Others have further implicated the involvement of 2 

endothelin 1 (ET-1), IL-6, and IL-17a [148].  Liu et al. [145] further analysed differential 3 

connectivity patterns among gene expressions across groups, and found that IL-10 and CCR7 4 

were substantially downregulated and IL-17F and CCL8 were substantially upregulated in the 5 

AMS group.  This could be due to an enriched DUSP1 response to oxidative stress at altitude, 6 

limiting the IL-10 production by adversely effecting p38 phosphorylation [145].  An additional 7 

mechanism [145] is the downregulation of the CCR7 protein, a protein that maintains T-cell 8 

function normal secretion of IL-10.  Based on these findings there is substaintial evidence 9 

implicating the involvement of the inflammatory response (anti-inflammatory response) in the 10 

development of AMS.  This evidence also supports the consideration of alternative 11 

pharmacologic agents that promote IL-10 upregulation for the prevention and treatment of 12 

altitude illnesses.   13 

 14 

5.2.1 Gabapentin 15 

The use of alternative drugs that influence the upregulation of IL-10 may be more 16 

appropriate as prophylactic agents. Gabapentin has been used to treat high altitude headache and 17 

is now known to upregulate IL-10; however, the use of gabapentin to treat altitude illnesses has 18 

not gained wide popularity [132, 149, 150, 151]. 19 

5.3 Rho-kinase Inhibitors  20 

5.3.1 Fausidil 21 

At high altitude, hypoxia-induced pulmonary hypertension is one of the physiologic 22 

factors that can result in HAPE and reduced cardiopulmonary performance [80, 152].    The rho-23 
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kinase inhibitor fasudil reduces high-altitude pulmonary hypertension with high-altitude 1 

exposure [153].   Rho-kinase inhibitors in combination with ARBs reduce proteinuria by helping 2 

to maintain the podocyte integrity, thereby protecting the kidneys [154].  Overall, the efficacy of 3 

rho-kinase inhibitors and their use in the prophylactic treatment for high-altitude illnesses is 4 

relatively unknown.  5 

 6 

5.4 Guanylate Cyclase Stimulators  7 

5.4.1 Riociguat (Adempas) 8 

  9 

 A contribution of the rho-kinase signaling pathway to the development of HAPE has 10 

been suggested.  Riociguat (Adempas) could b a novel treatment for HAPE, specifically in those 11 

whom are at an increased risk for developing HAPE based on their genetic profile [155].  12 

Riociguat decreases pulmonary vascular resistance while increasing cardiac output and 13 

peripheral O2 delivery during rest and low intensity exercise at simulated altitude (15000 ft.) 14 

[156].  Furthermore, no changes in VO2max were reported with riociguat administration. This is 15 

promising in view of recent research with concern for the potential cardiovascular effects and 16 

exercise performance limitations amongst  older individuals (e.g. 50+ years )  [49].  The efficacy 17 

for the use of riociguat as a prophylactic agent against AMS or HAPE is unknown.   18 

 19 

5.5 Oxyhaemoglobin Dissociation Influencers  20 

Inducing a leftward shift in the oxyhaemoglobin dissociation curve  could potentially 21 

help prevent or reduce the risk of altitude illnesses [157].   22 

 23 
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5.5.1 GBT1118 and GBT 440 1 

GBT1118, an O2-hemoglobin (Hb-O2) affinity modulator via an allosteric change to 2 

haemoglobin, has been demonstrated to have favourable effects on the oxyhaemoglobin 3 

dissociation curve [158].  It reduces hypoxemia by increasing arterial oxygenation in hypoxemic 4 

animals [158].  GBT1118 also reduces leukocyte infiltration into the lungs and prevents 5 

pulmonary inflammation in hypoxemic animals [158].  GBT440 induces a favourable shift, 6 

similar to GBT440, under conditions that mimic strenuous exercise, hypoxia, and acidosis [159].    7 

 8 

5.6 Corticotropin-releasing Factor Antagonists  9 

Corticotropin-releasing hormone (CRH), is a peptide hormone released from the 10 

hypothalamus in response to stress resulting in the release of ACTH. CRH has been shown to 11 

contribute to the brain-endocrine-immune network and associated dysfunction in  altitude illness 12 

[160].  Individuals that with  AMS demonstrate enhanced plasma levels of CRH in response to 13 

hypoxia induced by rapid ascent [161].  It is possible that enhanced plasma levels of CRH, which 14 

activate the cAMP-dependent protein kinase pathway and calcium influx through L-type 15 

channels, contributes to excessive vasoconstriction in response to hypoxia, thereby, promoting 16 

AMS [161].  Over activation of the target receptor of CRH, the corticotropin releasing hormone 17 

receptor-1 (CRHR1)  in response to hypoxia has also been shown to contribute to increased 18 

expression of aquaporin-4 (increasing cellular permeability), promoting cellular water influx and 19 

cerebral oedema [25].  Therefore, drugs that block or produce antagonistic effects at the CRHR1 20 

receptor may attenuate thishypoxic response .  21 

 22 

5.6.1 CP154,526 23 
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CP154,526 is a CRHR1 antagonist, negating the effects of CRH.  CP154,526 appears to 1 

reduce the hypoxia-associated increases in pro-inflammatory markers, such as TNF-α and IL-1β, 2 

which correlate AMS [162].  It is possible that CP154,526 may reduce the stress response 3 

associated with hypoxia and reduce the incidence of AMS.  Future research is warranted for the 4 

efficacy in altitude illness of CRHR1 antagonists such as antalarmin and pexacerfont in addition 5 

to CP154,526.    6 

 7 

5.7 Nootropics 8 

5.7.1 Oxiracetam 9 

Oxiracetam has been reported to influence brain function at high altitude. Blood flow 10 

velocity measured by transcranial Doppler decreased in both anterior and posterior circulations 11 

following the administration of oxiracetam, attributed to vasodilation in the posterior and 12 

anterior circulation [163]. More importantly preconditioning with oxiracetam appeared to reduce 13 

the decline in cognitive function on ascent to altitude.  14 

 15 

5.8 Glutathione S-transferase Inducers 16 

Decreases in plasma glutathione S-transferase activity have been associated with the 17 

presentation of AMS, with specific glutathione S-transferase genes being independently 18 

associated with AMS [164, 165, 166].  Compounds that induce glutathione S-transferase activity 19 

may protect against oxidative stress and need to be investigated in the prevention of AMS [167, 20 

168].  Interestingly, the Chinese herbal treatment Cordyceps sinesis, unique to the Sikkim region 21 

of the Himalayas, has been shown to increase glutathione stimulating hormone, inducing heme 22 
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oxygenase-1, and metallothionen (via activation of Nrf-2), which may increase hypoxic tolerance 1 

[169]. 2 

 3 

6. Conclusion 4 

The evolving understanding of pathophysiologies associated with altitude has enabled for 5 

a more thorough evaluaion of existing pharmacotherapies used to prevent and treat altitude 6 

illnesses and has allowed for the consideration of alternative options.  When rapid ascent is 7 

unavoidable, and immediate descent is impossible, established pharmacotherapies remain 8 

important for preventing and managing altitude-related illnesses. Additional alternative agents 9 

presented here offer a considerable  expansion of existing pharmacotherapies for  the future. 10 

 11 

7. Expert opinion 12 

The spectrum of acute altitude illnesses range from mild, self-limiting syndromes of 13 

AMS and HAH, to more severe syndromes, such as HACE and HAPE.  Pathophysiologic 14 

changes that contribute to the development of AMS occur on a continuum with HACE, and thus, 15 

treatment and prevention strategies for these acute altitude illnesses also occur along this 16 

continuum.  On the other hand, HAPE is attributed to an alternate pathophysiologic responses 17 

and pharmacological treatments.  18 

Slow ascent remains the primary prevention strategy for the development of altitude 19 

illness, and rapid descent remains the primary treatment strategy for all altitude illness.  20 

Pharmacologic agents  aid in both the prevention and treatment of such illnesses.  Pharmacologic 21 

agents are particularly helpful when rapid ascent cannot be avoided or rapid descent is not 22 

possible.  Strikingly, after decades of research, these pharmacologic prevention and treatment 23 
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strategies have not changed wildly.  Acetazolamide remains the pharmacologic agent of choice 1 

for the prevention and treatment of AMS and HACE and appears to be effective in dosages as 2 

little as 62.5 mg twice daily for preventation.  Consideration should be given when prescribing 3 

Az to adults over the age of 50 given the age-related reductions in kidney function and therefore 4 

lower renal clearance of Az.  Calcium-channel blockers and PDE-5 inhibitors remain the 5 

pharmacologic agents of choice in the prevention and treatment of HAPE.  Dexamethasone is 6 

inappropriate for prophylaxis and should be reserved for the treatment of HACE.  7 

Dexamethosone’s efficacy for the treatment of HAPE remains unestablished; however, it should 8 

not be forfeited as a treatment option in thise instance entirely, particularly, when alternative 9 

treatment strategies may be contraindicated.   10 

 In light of the research advances that have been made in the last 10 years, current 11 

evidence supports the potential inclusion of alternative and newer drugs for the prevention and 12 

treatment of altitude illnesses.  IL-10 upregulators may be helpful in preventing all altitude 13 

related illnesses and particularly AMS.  Corticotropin-releasing factor antagonists, glutathione S-14 

transferase inducers and nootropics may be beneficial for prophylaxis and treatment of AMS, 15 

specifically.  Type A endothelin receptor antagonists, rho-kinase inhibitors, and guanylate 16 

cyclase stimulators may serve as additive or alternative agents for prophylaxis and treatment of 17 

HAPE.  Agents that influence the oxyhaemoglobin dissociation curve may be beneficial in 18 

preventing and treating all altitude illnesses.  Further evaluation of the efficacy of these newer 19 

treatment strategies is warranted.   20 

Identification of those who are susceptible to altitude illnesses, as well as gaps in the 21 

existing knowledge regarding the etiology of the development of these illnesses, are challenges 22 

for the future.  Ideally, an objective measure of AMS is required in addition to the Lake Louise 23 
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scoring system widely used in research studies. While the pharmacologic prevention and 1 

treatments strategies discussed herein are warranted, future research should aim to elucidate the 2 

importance of including genetic profiling prior to prescribing medication for those patients 3 

wishing to sojourn to high altitude.  Genetic profiling in this instance would allow for the 4 

evaluation of gene expression and expression patterns that are consistent with (or may contribute 5 

to the development of) those who have previously been observed to develop altitude illnesses.  6 

This would allow not only for a risk evaluation and determination of susceptibility prior to 7 

sojourn, but would also allow for the appropriate prescription of pharmacologic agents ..  8 

Therefore, future pharmacologic research pertaining to the prevention and treatment  of high 9 

altitude medicine should be largely focused on personalized medicine and/or combination 10 

treatments for the best outcomes.   11 

Article highlights box  12 

 Pathophysiology of altitude illnesses is outlined. 13 

 Existing pharmcotherapies for prevention and treatment of AMS, HACE, and HAPE are 14 

discussed. 15 

 Off-label pharmacotherapies for prevention and treatment AMS, HACE, and HAPE are 16 

presented. 17 

 Updated concensus regarding pharmacologic prevention and treatment of altitude 18 

illnesses is given. 19 

 Focus of future research for the pharmacologic prevention and treatment of altitude 20 

illnesses is suggested.    21 
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