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3School of Naval Architecture, Dalian University of Technology, Dalian 116085, China

(Received 14 July 2016; accepted 6 December 2016; published online 28 December 2016)

The numerical modelling of 3D toroidal bubble dynamics is a challenging problem
due to the complex topological transition of the flow domain, and physical and numer-
ical instabilities, associated with jet penetration through the bubble. In this paper, this
phenomenon is modelled using the boundary integral method (BIM) coupled with
a vortex ring model. We implement a new impact model consisting of the refined
local mesh near the impact location immediately before and after impact, and a
surgical cut at a high resolution forming a smooth hole for the transition from a singly
connected to doubly connected form. This enables a smooth transition from a singly
connected bubble to a toroidal bubble. The potential due to a vortex ring is reduced
to the line integral along the vortex ring. A new mesh density control technique is
described to update the bubble and free surfaces, which provides a high mesh quality
of the surfaces with the mesh density in terms of the curvature distribution of the
surface. The pressure distribution in the flow field is calculated by using the Bernoulli
equation, where the partial derivative of the velocity potential in time is calculated
using the BIM model to avoid numerical instabilities. Experiments are carried out
for the interaction of a spark generated bubble with a free surface near a boundary,
which is captured by using a high speed camera. Our numerical results agree well
with the experimental images, for the bubble and free surface shapes for both before
and after jet impact. New results are analyzed for the interaction of a toroidal bubble
with a free surface near a vertical boundary and a sloping boundary, at both negative
and positive angles to the vertical, without and with buoyancy, respectively. After
jet impact, the bubble becomes a bubble ring, whose cross section is much thinner
at the distal side from the boundary. It subsequently breaks into a crescent shaped
bubble. The free surface displays singular features at its intersection with an inclined
boundary. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972771]

I. INTRODUCTION

A bubble is generated after the shock wave when a charge explodes underwater. It will cause
severe damage to its nearby structures. A high-speed liquid jet often forms during nonspherical
collapse of a bubble, which subsequently impacts on the opposite bubble wall, and penetrates
through the bubble, forming a toroidal bubble. High-speed bubble jets impinging on a rigid bound-
ary are believed to be associated with cavitation damage to pumps, turbines, and propellers (Young,
1989; Brennen, 1995; Magnaudet and Eames, 2000; Lauterborn and Vogel, 2013; Hsiao et al., 2014;
Huang et al., 2013; and Ji et al., 2014), as well as a part of the damage associated with underwater
explosions (Cole, 1948; Chahine and Bovis, 1980; Klaseboer et al., 2005a; Jayaprakash et al., 2011;
and Jayaprakash et al., 2012). This mechanism is also believed responsible for ultrasonic cleaning
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(Song et al., 2004; Ohl et al., 2006; and Lauterborn and Kurz, 2010). In sonochemistry, bubble
jetting due to ultrasound may accelerate chemical reactions (Blake et al., 1999; Fernandez Rivas
et al., 2013; and Zhang et al., 2016a). Toroidal bubble dynamics are essential for studying these
applications.

Bubble dynamics before jet impact have been extensively studied theoretically, experimentally,
and numerically (Rayleigh, 1917; Plesset and Prosperetti, 1977; Blake and Gibson, 1987; Leighton,
1994; Brennen, 1995; Feng and Leal, 1997; Lauterborn et al., 1999; Lauterborn and Kurz, 2010;
Zhang and Liu, 2015; and Zhang et al., 2016b). However, the jet impact and subsequent toroidal
bubble dynamics have been much less investigated in the literature.

The liquid domain becomes doubly connected after jet impact, which results in a non-unique
solution problem for a potential flow model. The doubly connected domain can be made singly
connected by, for example, using a branch cut by Best (1993) or a vortex sheet by Zhang et al.
(1993) and Zhang and Duncan (1994). Wang et al. (1996) and Wang et al. (2005) developed a vor-
tex ring model, to model the topological transition of a bubble and the subsequent toroidal bubble
dynamics. Bonometti and Magnaudet (2006) and Bonometti and Magnaudet (2007) simulated the
rising, deforming, and topological transition of a two-dimensional bubble in a viscous fluid, using
an advanced interface-capturing method based on the Navier-Stokes equations. Hsiao et al. (2014)
developed a hybrid approach, using the boundary integral method (BIM) to simulate a bubble
collapsing near an elastic boundary and the compressible finite difference method to simulate the
subsequent jet impact and toroidal bubble dynamics. Han et al. (2015) simulated laser induced
bubble pairs using the OpenFOAM based on the volume-of-fluid (VOF) method, and their results
agreed well with experiments for the toroidal phase.

Very few simulations in the literature are for three dimensional (3D) toroidal bubbles (Zhang
et al., 2001; Wang et al., 2003; Klaseboer et al., 2005a; and Zhang and Liu, 2015) due to the
challenges associated with the complex topological change of the flow domain, and the physical and
numerical instabilities, associated with jet impact, jet penetration through the bubble, and bubble
rebound. In this paper, 3D toroidal bubbles are modeled using the BIM model, coupled with a
new impact model and a vortex ring model. After jet impact, numerically a “hole” must be made
by a surgical cut procedure to allow the liquid to penetrate through the bubble. To overcome the
shortcomings of the numerical instabilities after the surgical cut procedure at the first ring around
the impact node (Zhang et al., 2001), the second ring cut is performed in this paper. A local mesh
refinement is executed near the impact location to reduce the numerical errors. With this procedure,
a high resolution and smooth hole is generated, enabling a smooth transition from a singly con-
nected bubble to a toroidal bubble. The potential due to a vortex ring was calculated using a solid
angle formula, which leads to unacceptable errors for points close to the vortex surface because of
the poor quality of the tetrahedron (Zhang et al., 2001 and Curtiss et al., 2013). In this paper, the
potential of a 3D vortex ring is calculated by integrating the velocity associated from infinity to the
field point to avoid the numerical inaccuracy using a solid angle formula (Wang et al., 1996 and
Zhang and Liu, 2015). The criterion on the choice of the integral path is provided.

Another challenge associated with the phenomenon is to calculate the pressure distribution gener-
ated by bubble dynamics, which are essential to analyze bubble dynamics and to estimate its damage
potential. There are very few calculations for the pressure field associated with axisymmetric toroidal
bubbles (Pearson et al., 2004a; Hsiao et al., 2013; and Han et al., 2015). We consider 3D cases using
the potential flow model, where the pressure is calculated using the Bernoulli equation in the potential
flow theory. The difficulty lies on the calculation of ∂ϕ/∂t, a term in the Bernoulli equation, where ϕ
is the velocity potential. To calculate ∂ϕ/∂t using the finite difference method often results in unac-
cepted errors because the time steps used for simulating violent collapsing bubbles are very small.
We will calculate ∂ϕ/∂t using the BIM model (Tanizawa, 1995 and Wu, 1998).

In this paper, we consider a toroidal bubble and its interaction with a free surface near an inclined
boundary, which is associated with underwater explosion bubble dynamics near a shipboard or a dam.
To cope with the topological difficulties of the moving mesh along the inclined boundary, the image
method is introduced. To validate the numerical model, experiments are carried out for the interaction
of a spark generated bubble with a free surface near a boundary in a water tank, which is captured by
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using a high speed camera. Our numerical results agree well with the experimental images, for the
bubble surface and free surface shapes, both before and after jet impact.

With the validated model, we simulate the interaction of a toroidal bubble and a free surface
near a rigid boundary, which are associated with applications for underwater explosions (Cole,
1948; Chahine and Perdue, 1990; Klaseboer et al., 2005a; Hung and Hwangfu, 2010; and Wang,
2013) and seismic airgun operations (Caldwell, 2002; Cox et al., 2004; Madsen et al., 2006; Chen
et al., 2008; and Barker and Landrø, 2014). The bubble and free surface interaction near a vertical
boundary was modelled by Zhang et al. (1998), Wang et al. (2003), Wang (2004), and Liu et al.
(2013), using the BIM model. We carry out the following three developments to these works: (i) the
modelling of toroidal bubbles, (ii) the calculation of the pressure and velocity distributions of the
flow field, and (iii) the analysis of the effects of the inclined boundary. We model the interaction
near an inclined boundary, since a sloping boundary, at negative and positive angles to the vertical
may represent a vessel hull and a dam, respectively. Our calculations show that the free surface
displays singular features at its intersection with the boundary.

II. PHYSICAL AND MATHEMATICAL MODEL

Consider the interaction of a gas bubble with a free surface near an inclined rigid boundary,
as shown in Figure 1. A Cartesian coordinate system Oxyz is set, with the origin at the centre of
the initial spherical bubble, and the z-axis in the direction opposite gravity. The depth of the bubble
centre at inception is denoted as d1, and its standoff distance from the rigid boundary is d2. The
inclined angle of the boundary α is measured from the z-axis, being positive counter clockwise. As
α < 0, it is termed as a flaring boundary, which may represent bubble dynamics near a vessel hull.
As α > 0, it is termed as a fall in the boundary, which may represent bubble dynamics near a dam.

The flow is assumed to be incompressible, inviscid, and irrotational. The fluid velocity v thus
has a potential ϕ, v = ∇ϕ satisfying Laplace’s equation,

∇2ϕ = 0. (2.1a)

The kinematic boundary conditions on the boundary SW , bubble surface SB, free surface SF, and at
infinity are as follows:

∂ϕ

∂n
= 0 on SW , (2.1b)

Dr
Dt
= ∇ϕ on SB and SF, (2.1c)

∇ϕ → 0 as r → ∞, (2.1d)

where r is the position vector of the boundary, n is the normal on the boundary surface D/Dt
denotes the material derivative, and r = |r| is the length of a vector r. (2.1b) is the impermeable

FIG. 1. (a) Configuration and coordinate system for bubble dynamics near a free surface and an inclined rigid plane boundary.
The inclined boundary is with an angle α with the z-axis, the depth of the bubble centre at inception is denoted as d1, and its
standoff distance from the rigid boundary is d2. (b) Illustration of the method of image.
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boundary condition on the rigid boundary, and (2.1c) requires a node on the bubble or free surfaces
to remain on them.

We assume that the pressure inside the bubble is uniform, since the density of gases is usually
three orders of magnitude smaller than that of liquids. We assume also that the expansion and
contraction of the bubble gases occur adiabatically. The pressure of the bubble gas pB is thus given
by

pB = p0

(
V0

V

)κ
, (2.1e)

where p0 is the initial gas pressure inside the bubble, V and V0 are the instantaneous and initial
bubble volumes, respectively, and κ is the polytropic coefficient (Best and Kucera, 1992). We
take κ = 1.25 in this paper. Additionally, heat and mass transfer across the bubble surface can be
included (cf. Szeri et al., 2003) but are neglected here.

The dynamic boundary conditions on the bubble surface SB and free surface SF require that
the pressure is continuous across the two surfaces, which can be written as follows by using the
Bernoulli equation:

Dϕ
Dt
=

1
2
|∇ϕ|2 − gz on SF, (2.1f)

Dϕ
Dt
=

p∞
ρ
+

1
2
|∇ϕ|2 − g (z − d1) − pB

ρ
on SB, (2.2)

where g is the acceleration of gravity, p∞ is the hydrostatic pressure at the origin, and ρ is the
fluid density. The Weber number We = Rmp∞/σ, where σ = 0.0728 N/m is the surface tension
coefficient, Rm is the equivalent radius at the bubble’s maximum volume, and Reynolds number
Re =

(
Rm


p∞/ρ

)
/υ, where υ = 1.0037 × 10−6 m2/s is the kinematic coefficient of viscosity at

20 ◦C. For example, when a 200 kg TNT explodes at 7.6 m beneath the free surface, the maximum
bubble radius generated is 7.6 m with the corresponding Weber number equaling to 1.1 × 107 and
Rayleigh number equaling to 108 which indicates both the surface tension and the viscous effects
are ignorable. It has been concluded that these two effects are considered only for tiny bubbles
(Wang and Blake, 2010; Wang and Blake, 2011; and Wang and Manmi, 2014). The surface tension
and viscous effects are neglected here.

The potential ϕ may be represented as an integral over the bubble surface SB and free surface
SF as follows, using Green’s second identity:

c (r, t) ϕ (r, t) =


SB+SF

(
∂ϕ (q, t)
∂n

G(r,q) − ϕ(q, t)∂G(r,q)
∂n

)
dS (q) , (2.3)

where q is the source point varying as an integration variable on the boundary and c(r, t) is the solid
angle. To satisfy the impermeable boundary condition on the rigid boundary, the Green function is
given as follows using the method of image:

G(r, q) = 1
|r − q| +

1
|r − q′| , (2.4)

where q′ is the image of q reflected to the rigid boundary, and the boundary conditions on the
boundary and at infinity ((2.1b) and (2.1d)) are satisfied automatically.

We choose the hydrostatic pressure p∞ as the reference pressure, and the maximum equivalent
radius of the bubble Rm =

� 3
4πVm

�1/3 as the reference length, where Vm is the maximum bubble
volume. The phenomenon is largely affected by the following two dimensionless depth γ f and
dimensionless standoff distance from the boundary γw,

γf = d1/Rm, γw = d2/Rm, (2.5)

where d1 and d2 are the distances of the bubble centre at bubble inception from the free surface and
rigid boundary, respectively.
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The dimensionless dynamical boundary conditions ((2.1e) and (2.1f)) become

Dϕ∗
Dt∗
=

1
2
|∇∗ϕ∗|2 − δ2z∗ on SF, (2.5a)

Dϕ∗
Dt∗
= 1 +

1
2
|∇∗ϕ∗|2 − δ2 �z∗ − γ f

�
− ε

(
V∗0
V∗

)κ
on SB, (2.5b)

where the dimensionless quantities are denoted by a subscript *, δ =

ρgRm/p∞ is the buoy-

ancy parameter, and ε = p0/p∞ is the dimensionless initial bubble pressure, which is set as ε =
100 for the calculations in this paper unless stated otherwise. The time is nondimensionalized by
Rm


ρ/p∞.

The bubble is assumed to begin its existence at t∗ = 0 as a high pressure spherical bubble
with radius R∗0 and zero radial velocity, where the initial radius R∗0 is solved by the reverse time
integration of the Rayleigh-Plesset equation (Best and Blake, 1994 and Wang, 2013). The quiescent
initial state is given, i.e., ϕ = 0 throughout the entire fluid domain.

III. MODELING FOR 3D TOROIDAL BUBBLES

A. Impact modelling

Jet impact often occurs at a single point, since the curvature of the jet front is usually larger
than that of the opposite bubble surface. We restrict it to this idealized model. In reality, jet impact
may be more complex: jet impact may occur at a small area, when the curvatures of the jet front
and the opposite bubble surface at the impact location are approximately equal, or at a ring when the
curvature of the jet front is smaller.

We first identify two impact nodes, N and S (one on the jet front and the other on the opposite
bubble boundary, respectively). The two nodes are selected when the distance between them is
within the average element size at the impact nodes. To avoid having “false” impact node S from the
neighbours of node N (this would mean that the jet impacts on itself), the angle between the normal
vectors at the two nodes is set larger than 3π/4.

Once the impact nodes N and S are identified, numerically a “hole” must be made by a surgical
cut procedure to allow the fluid to go through (Klaseboer et al., 2005a). At each impact node, the
first and second rings of neighbouring nodes are shown in Figure 2(a), and the top view of the
toroidal bubble after the surgical cut at the second ring is shown in Figure 2(b). Zhang et al. (2001)
performed the cut at the location of the first ring to make the hole. Because the first ring consists of
only 5 to 7 nodes, the hole of the bubble torus is like a prism with about 5 to 7 sides, each of them
consisting of two plane triangles. The hole/eye of the bubble torus is thus not smooth, and this can
cause numerical instabilities subsequently.

We perform the surgical cut at the second ring, consisting of 10 to 14 nodes, and thus a
relatively smooth hole/eye of the bubble torus can be formulated. This is essential for avoiding
numerical instability during the toroidal phase. However, a larger portion of the bubble volume is
cut away in this approach as compared to the surgical cut at the first ring. To reduce the associated
numerical errors with the new approach, the local mesh near the impact location is refined before
the surgical cut. The details of the mesh control techniques are to be described in Sec. III D. The
meshes of the bubble surface before and after mesh refinement are shown in Figures 2(c) and 2(d),
respectively. The mesh refinement is carried out using the density potential method (Zhang and Liu,
2015). Before the mesh refinement, the line segments between neighbouring nodes on the second
ring on the jet front are much shorter than those on the second ring on the opposite bubble wall.
With the same mesh density prescribed in the density potential method at the two areas, the segment
lengths on both the second rings are comparable after the mesh refinement. This further helps in
improving the smoothness and mesh quality of the eye. The starting geometry and mesh of the
toroidal bubble, obtained by using the new surgical cut, are shown in Figure 2(b) for the top view
and Fig. 2(e) for the side view, respectively, where the eye of the toroidal bubble is much smoother
than that in Zhang et al. (2001).
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FIG. 2. Illustration of the impact model: (a) Top view of the bubble before jet impact with the first and second rings of
neighbour nodes to an impact node, (b) top view of the toroidal bubble by the improved surgical cut along the second ring,
(c) side view of the bubble before impact with the mesh before mesh refinement, (d) side view of the bubble before impact
after mesh refinement, and (e) the side view.

To perform the surgical cut automatically, a local coordinate O-XY Z is introduced with its
origin at the node N and its Z-axis passing the node S. We reorder the neighbour nodes on the
two rings according to their azimuth angles, as N1N2 . . . Nm associated with the node N and as
S1S2 . . . Sm associated with the node S, respectively. When the node numbers of the two sets are not
equal, additional nodes will be added to the ring with the less nodes to make them even. Triangles
are then connected among the neighboring nodes. Each of the triangles consists of two neighboring
nodes on one of the two rings and another node from the other ring. It is not necessary to add
additional nodes to make the nodes on the two rings identical as performed by Zhang et al. (2001).

B. 3D vortex ring modelling

Jet impact transforms a simply connected bubble into a toroidal bubble, generating a circulation
to the flow around the bubble ring. In the vortex ring model, a vortex ring is placed inside the
toroidal bubble after jet impact, in such a way that the hole of the bubble is going through the ring.
The strength Γ of the vortex ring is equal to the jump of the potential ϕ across the contact points N
and S at the time of impact to account for the circulation generated by jet impact, as illustrated in
Figure 3. Thus,

Γ = ϕN − ϕS, (3.1)

where ϕN and ϕS are potentials at the impact points (Wang et al., 2005). The circulation Γ is
invariant in time as the potential satisfies Laplace’s equation.

In theory, the precise location of the vortex ring is immaterial, as long as it lies completely
within the toroidal bubble. However, if the distance between the vortex ring and the bubble surface
is comparable to the element size, the numerical errors associated with the calculation of the poten-
tial of the vortex ring may result in numerical instabilities. As such, the vortex ring should not be
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FIG. 3. Illustration of the numerical transition of the bubble shape and the vortex ring model: (a) immediately before and (b)
immediately after jet impact, when a vortex ring placed inside the toroidal bubble.

too close to the bubble surface. We place each node of the vortex ring at the farthest point from the
associated cross section of the bubble ring in the azimuth plane (Zhang and Liu, 2015).

With the vortex ring placed in the bubble ring, the potential ϕ is now decomposed as follows:

ϕ (r, t) = ϕvr (r) + φ (r, t) , (3.2)

where ϕvr is the potential of the vortex-ring, r = (x, y, z). With the potential jump being accounted
for the vortex ring using (3.2), the remnant potential φ is continuous in the flow field.

For convenience, we assume that the potential of the vortex ring satisfies the impermeable
boundary condition and vanishes at infinity, i.e.,

∂ϕvr

∂n
= 0 on SW , (3.3a)

ϕvr(r) = 0 as r → ∞. (3.3b)

After the potential for a vortex ring in an unbounded flow field, ϕvr satisfying condition (3.3a) can
be obtained by using the method of image.

Substituting (3.2) and (3.3) into (2.1), one can obtain the boundary value problem for the
remnant potential φ as follows:

∇2φ = 0, (3.4a)
∂φ

∂n
= 0 on SW , (3.4b)

Dr
Dt
= vvr + ∇φ on SB and SF, (3.4c)

∇φ → 0 as r → ∞, (3.4d)
Dφ
Dt
= ∇φ · (vvr + ∇ϕ) − 1

2
|vvr + ∇ϕ|2 − gz on SF, (3.4e)

Dφ
Dt
= 1 + ∇φ · (vvr + ∇ϕ) − 1

2
|vvr + ∇ϕ|2 − g (z − d) − pB − p∞

ρ
on SB. (3.4f)

The above governing equations for the remnant potential φ are in the same format as Equations (2.1)
for the potential ϕ for the pre-toroidal phase. φ thus can be solved using the BIM approach devel-
oped for ϕ.

C. Calculation of potential due to a vortex ring

Zhang et al. (2001) calculated the potential due to a vortex ring using the solid angle formula
referred in Milne-Thompson (1968),

ϕvr =
Γ

4π


Sc

∂G (r,q)
∂n

dS (q) , (3.5)
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where Sc is any surface enclosed by the vortex ring. This integral is associated with discontinuity
when the field points r are on any plane that is tangent to the vortex ring c, and so this approach
leads to unacceptable errors at these points (Curtiss et al., 2013).

The velocity field vvr induced by a vortex ring is given by the Biot-Savart law,

vvr(r) = ∇ϕvr(r) = Γ

4π


c

τ × R
R3 dl, R = r − q, (3.6)

where the line integral is along the vortex ring c, q is the moving point of the integration on c, and
τ is the unit tangential vector of curve c at point q. The potential due to the vortex ring can be
calculated by performing the line integral of the velocity (3.6) from infinity to the point considered
along an arbitrary path.

Assume that the jet is along the z-axis and this can always be satisfied with a coordinate
transform. The potential at a field point r = (x, y, z) due the vortex ring can be calculated by inte-
grating the velocity of (3.5) along a straight line parallel to the z-axis from (x, y,∞) or (x, y,−∞) to
(x, y, z),

ϕ±vr(r) = −
z

±∞

vvr (r) · kdz = − Γ
4π

z
±∞


c

τ × R
R3 dl · k dz = − Γ

4π


c

z
±∞

τ × R
R3 · kdldz, (3.7)

where k is the unit coordinate vector of the z-axis. The order of the integrations was changed
because the curve c for the line integral does not depend on z. It is assumed in (3.7) that ϕ±vr(r) =
0 as r → ∞.

Only the z-component of R in the integrant of (3.7) depends on z. It is easy to verify that
τ × R · kdl does not depend on z, since

τ × R · kdl = τ · R × kdl = τ ·
�
−Rxj + Ryi

�
dl, (3.8)

where Rx and Ry are the x- and y-components of R, respectively, and i and j are the unit coordinate
vectors of the x- and y-axes, respectively. Therefore the inner integral of (3.7) can be written as

z
±∞

τ × R
R3 dl · kdz = τ × R · k

z
±∞

1
R3 dzdl . (3.9)

The integral on the right hand side of (3.9) can be integrated analytically,
z

±∞

1
R3 dz =

z
±∞

dz

(R2
r + (z − cz (θ)))3/2 =

z−qz
±∞

dη

(R2
r + η

2)3/2 =
η

R2
r


R2
r + η

2

������

z−qz

±∞

=
1
R2
r

(
Rz

R
∓ 1

)
,

(3.10)

where Rz and Rr are the z-component and radial component of R, respectively, and qz is the
z-component of q.

Substituting (3.9) and (3.10) into (3.7) yields

ϕ±vr(r) = Γ4π

c

1
R2
r

(
Rz

R
∓ 1

)
k · R × τdl . (3.11)

More specifically the potential of the vortex ring obtained by the integration along the straight line
from (x, y,∞) to (x, y, z) is

ϕ+vr(r) = Γ

4π


c

1
R2
r

(
Rz

R
− 1

)
k · R × τdl, (3.12)

and the potential integrated along the straight line from (x, y,−∞) to (x, y, z) is

ϕ−vr(r) = Γ

4π


c

1
R2
r

(
Rz

R
+ 1

)
k · R × τdl . (3.13)
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The potential due to a vortex ring is reduced as the integration along the vortex ring, which is
subsequently calculated numerically.

It can be proven that

ϕ+vr(r) − ϕ−vr(r) =



0 as (x, y,0) is outside of cz,
Γ as (x, y,0) is inside of cz,

(3.14)

where cz is the enclosed curve projecting the vortex ring c onto the plane of z = 0.
When the line (x, y,−∞) to (x, y,∞) does not penetrate through the vortex ring, ϕ+vr(r) is equal

to ϕ−vr(r), otherwise they are different by a value of Γ.
The integral paths for the points N and S, as shown in Figure 3(a), should be chosen from

(x, y,∞) to (x, y, z) and from (x, y,−∞) to (x, y, z), respectively, to remove the potential jump at the
two points. As for an arbitrary field point, the integral path should be chosen as a straight line, from
the point (x, y,∞) or (x, y,−∞) to (x, y, z), such that the line does not cross the bubble surface. With
that, the remainder potential φ is a continuous function on the bubble ring.

The above criterion for choosing the integration path only works for the situation that the
straight line from (x, y,−∞) or (x, y,∞) intersects with the bubble surface at most two times.
However, if a straight line from (x, y,−∞) or (x, y,∞) intersects with the bubble surface for more
than two times, the integration path is chosen as follows. First, a surface Sc enclosed by the vortex
ring c and entirely within the bubble ring is chosen. The integral path is then chosen as a straight
line, from the point (x, y,∞) or (x, y,−∞) to (x, y, z), such that the line does not across the surface
Sc.

D. Mesh control technique

The formulation is in the dimensionless form. At every time step, a particle at the bubble/free
surface is upgraded using the prescribed velocity vpre as follows:

vn+1
pre (r, t) = vnpre (r, t) + ∇sψ

(
r + vnpret

)
, (3.14a)

v0
pre (r, t) = v (r, t) , (3.14b)

where ψ(r) is a function for the mesh control. The iteration in (3.14a) is performed to n. Note here
that the normal component of the prescribed velocity is the same as that for the Lagrangian velocity,
as such the prescribed velocity does not change the bubble shape but affects the mesh distribution.

One option is to choose ψ(r) being proportion to the square of the local average mesh size
dmesh (r),

ψ (r) = χ

∆t
d2

mesh (r)
R2

eq
, (3.15)

where χ is a constant, Req is the equivalent radius of the bubble, and ∆t is the time step. χ is
chosen as 0.1 in the calculations performed. ∇sψ (r) is proportional to the mesh size and is along the
direction that the mesh size increases most rapidly. Such a prescribed velocity makes mesh uniform.
The factor 1/∆t is included to make the adjustment of mesh independent of time steps.

Another option to choose ψ(r) is as follows:

ψ (r) = χ

∆t
d2

mesh (r)
ρ2

cur (r)
, (3.16)

where ρcur (r) is the curvature radius of the bubble/free surface. This operation generates a mesh
with its mesh size being proportional to the curvature radius of the bubble surface.

When the jet impacts the opposite bubble surface, a surgical cut procedure is performed to
change the fluid field into double-connected. We connect the second ring nodes of the jet tip and the
nearest node on the opposite side together to generate a smoother toroidal eye with more divisions
along the circular.
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Before jet impact, the mesh of the jet front surface is usually finer than the opposite bubble
surface, which is thus refined as follows. Suppose that node M and node N are the two impact
points, and N is at the jet tip. Denote rNi (i = 1,m) as the nodes on the second rings of the jet surface
to the node N . Denote rSi as the nodes on the second rings of the opposite surface to the node M .
Denote the nearest node on the opposite bubble surface to rNi as rj and denote the normal vector of
the bubble surface at rj as nj. The nodes rSi of the second ring of the opposite surface are adjusted as
follows:

rSnew
i = rNi + n j

�
r j − rNi

�
· n j . (3.17)

IV. BIM MODELLING

A. Basic numerical model

The BIM model is grid-free in the flow domain and computationally efficient and is thus widely
used in the field of bubble dynamics. It has been applied for an axisymmetric configuration for a
bubble near a rigid boundary, a free surface, or a compliant surface (Lenoir, 1979; Blake et al.,
1986; Blake et al., 1997; Brujan et al., 2002; Pearson et al., 2004b; Lind and Phillips, 2010; and
Lind and Phillips, 2013) and for 3D configurations (Chahine and Harris, 1998a; Chahine and Harris,
1998b; and Klaseboer et al., 2005b).

Linear planar triangular elements are used in the present BIM model. At each time step, we
have a known bubble surface, a known free surface and known potential distributions on them. With
this information, the tangential velocity on the two surfaces can be calculated from the gradient
of the potential at the surfaces. The normal velocity at the two surfaces is obtained after solving
the boundary integral equation (2.3). The bubble surface, free surface, and potential distributions
on them are further updated by performing the Lagrangian time integration to (2.1c), (2.1e), and
(2.1f), using a second-order Runge-Kutta scheme. A variable time step is chosen for accuracy and
efficiency, in such a way that the maximum change of the potential in each time step is restricted by
a constant (Blake et al., 1986 and Blake et al., 1987). The details on the numerical model using the
BIM model for this problem can be found in Wang (1998), Wang and Manmi (2014), Wang et al.
(2015), and Zhang and Liu (2015).

The moment when the liquid jet impacts its opposite surface requires special treatment during
the simulation, the flow chart is shown in Figure 4. At the very motion when the jet penetration
occurs, a local mesh refinement is executed at the jet tip and the opposite bubble surface. The mesh
density near the impact zone is automatically controlled by using mesh control techniques as shown
in Figures 2(c) and 2(d) with the segment lengths on both the second rings comparable after the
mesh refinement.

FIG. 4. Flow chart of the numerical scheme for modelling toroidal bubble dynamics.
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B. Truncation of the infinite free surface

An infinite free surface has to be truncated in numerical simulations and this works well as
long as the free surface is truncated sufficiently far away. However, a theoretical justification of the
truncation is necessary. Green’s function G(r,q) in (2.4) can be expanded as

G (r,q) = 1
r

(
2 + (q + q′) · r

r2

)
+O

(
1
r3

)
. (4.1)

Substitution in (2.3) yields

c (r, t) ϕ (r, t) = 2
r


SB+SF

∂ϕ (q, t)
∂n

dS +
r
r3 ·


SB+SF

(
−2nϕ (q, t) − (q + q′) ∂ϕ (q, t)

∂n

)
dS +O

(
1
r3

)
.

(4.2)

We thus have ϕ = O (1/r) and ∇ϕ = O
�
1/r2�; with these we know that at the free surface at far field,

nz = O (1/r) and ∂ϕ/∂n = O
�
1/r3�, i.e.,

ϕ = O (1/r) , ∇ϕ = O
�
1/r2� ; nz = O (1/r) , ∂ϕ/∂n = O

�
1/r3� on SF. (4.3)

Oguz and Prosperetti (1989) and Robinson and Blak (2001) performed similar estimations using
Havelock’s theory (Havelock, 1942 and Havelock, 1955).

Denote the truncated free surface as SFT and the truncated away free surface as SFF. The
boundary integral equation (2.3) can be written as follows:

c (r, t) ϕ (r, t) =


SB+SFT

(
∂ϕ (q, t)
∂n

G (r,q) − ϕ (q, t) ∂G (r,q)
∂n

)
dS (q) + β, (4.4)

where β can be estimated as follows using (4.1) and (4.3):

β =


SFF

(
∂ϕ (q, t)
∂n

G (r,q) − ϕ (q, t) ∂G (r,q)
∂n

)
dS (q) =


SFF

O
(

1
r4

)
dS = O

�
r−2
B

�
, (4.5)

where rB is the point on the external boundary of SFT that is closest to the z-axis. The error
associated with the truncation is thus at the order of O

�
r−2
B

�
.

In the calculation performed, the bubble is meshed into 980 triangles. The truncated free sur-
face takes a half circle shape with a radius 5 Rm, and is meshed into 3000 triangles with their
sides varying gradually from 0.08 to 0.4 Rm, from near the bubble too far away, as illustrated
in Figure 5(a). Our calculations show that the radius of the truncated area with a radius 5 Rm is
sufficient. Figure 5(b) displays the results for a case characterized by ε = 20, δ = 0, and γ f = 0.6,
with a truncated free surface having a radius 10 Rm, calculated using an axisymmetric BIM model
(Wang et al., 1996). The results are shown at jet impact, when the part of the free surface at 3 Rm

away from the z-axis is almost flat.

C. Calculation of pressure field

With the flow field calculated from the BIM model, the pressure distribution can be calculated
using the Bernoulli equation

p
ρ
=

p∞
ρ
− ∂ϕ
∂t
− 1

2
|∇ϕ|2 − g (z − d) . (4.6)

It is a well-known challenge to calculate the pressure field associated with bubble dynamics. To
calculate ϕ̇ = ∂ϕ/∂t using the finite difference method often results in unaccepted errors due to very
small time steps usually used for simulating a violent collapsing bubble. This is also because of flow
instabilities associated with the jet impact and numerical instabilities due to the numerical treatment
of the topological transition of the bubble shape. We calculate ϕ̇ using the BIM model following
Tanizawa (1995) and Wu (1998).
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FIG. 5. (a) The truncated free surface takes a half circle shape with a radius 5 Rm and is meshed into 3000 triangles. (b)
The bubble and free surface calculated using an axisymmetric BIM model for a case for ε = 20, δ = 0, and γ f = 0.6, with a
truncated free surface having a radius 10 Rm.

It is easy to see that ϕ̇ satisfies Laplace’s equation. The boundary conditions for φ̇ on the rigid
boundary and at far field can be obtained from (2.1b) and (2.1d) as follows:

∂ϕ̇

∂n
= 0 on SW, (4.7a)

∇ϕ̇ → 0 as r → ∞. (4.7b)

As such, ϕ̇ satisfies the same boundary integral equation as ϕ on the bubble surface and free surface
as follows:

c (r, t) ϕ̇ (r, t) =


SB+SF

(
∂ϕ̇ (q, t)
∂n

G (r,q) − ϕ̇ (q, t) ∂G (r,q)
∂n

)
dS (q) , (4.8)

where G(r,q) is the same Green function given in (2.4), which guarantees that ϕ̇ satisfies the
boundary conditions at the boundary and at infinity ((4.7a) and (4.7b)).

The boundary conditions for ϕ̇ on the free surface and bubble surface can be obtained from
(2.1e) and (2.1f) as follows:

ϕ̇ = − (∇ϕ · ∇) ϕ + 1
2
|∇ϕ|2 − gz on SF, (4.9c)

ϕ̇ = − (∇ϕ · ∇) ϕ + 1
2
|∇ϕ|2 − g (z − d) − pB − p∞

ρ
on SB. (4.9d)

With the distributions of ϕ̇ on the free surface and bubble surface, ϕ̇n on the two surfaces can be
obtained by solving (4.8) using the BIM model. After that, one can calculate ϕ̇ (r, t) at any field
point r using (4.8) and calculate the pressure using (4.6).

The BIM approach for calculating ϕ̇n almost doubles the CPU time of the model. However,
the BIM equation and the boundary associated for ϕ̇ are the same as that for ϕ; therefore the
same influence matrix is used. The memory requirements and coding efforts for the approach are
insignificant.
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FIG. 6. Illustration of the experimental setup. A bubble is generated at a connect point of the thin copper wires extended
from a capacitor. The interaction of the bubble and free surface is captured using a high speed camera at 20 000 FPS.

V. VALIDATION TO EXPERIMENT

To evaluate the numerical model, we carry out experiments for a bubble generated by low-
voltage electric discharges in a cubic water tank with a side 0.5 m. The experimental setup is
illustrated in Figure 6. A capacitor of 400 µF charged to 370 V is used to provide Joule’s heating
to generate bubbles. Thin copper wires extending from the capacitor are connected at a pre-decided
position, where a bubble is to be generated. The evolution of the bubble and free surface is captured
using a Phantom V12.1 high-speed camera at 20 000 frames per second (FPS), with illumination
from a 2 kW spot light, opposite to the camera through a diffuser (matte glass). The rigid boundary
is placed behind the bubble, which cannot be depicted in the figure; however, to illustrate its relative
position to the bubble, the boundary is drawn between the bubble and the source of light. The
copper wires are thin (with a radius 0.12 mm), compared to the bubble radius of about 10 mm; their
influence on the bubble dynamics thus is small. The effects of the glass tank walls are negligible, as
being more than 20 times the maximum bubble radius away from the bubble.

In numerical simulations comparing with the experiments, it is difficult to determine the initial
pressure inside the spark generated bubble. Likely, it has been declared that the bubble’s initial
pressure, which is called the strength parameter ε in a dimensionless form, has little influence on
the bubble motion when it is set as 100 and 500 (Blake et al., 1998; Turangan et al., 2006; and Li
et al., 2006). In this paper, we adopt ε = 100 for the numerical analysis which is widely used in the
simulation of bubble motion in the dimensionless form except for a special case study at the end of
this work.

Figure 7 shows the comparison between the experimental images and the numerical results
for a spark generated bubble interacting with a free surface near a vertical boundary, characterized
by Rm = 12.5 mm, γ f = 0.75, and γw = 1.4. Buoyance effects are negligible in this case, since
δ ≈ 0.03. The dimensionless initial bubble pressure for the computation is chosen as ε = 100. All
the following features, observed in the experiment, are reproduced by the computation. The bubble
first expands and the free surface rises (frames 7(a) and 7(b)), reaching its maximum volume in
frame 7(b). The bubble then collapses, yet the free surface rises continuously, forming a high spike
(frames 7(c)–7(e)). In the computational results, a jet forms and penetrates the bubble, towards the
end of collapse (frames 7(d) and 7(e)). Although the jet cannot be seen in the experiment due to the
opaqueness of the bubble surface, the bubble profiles of the computation agree well with the exper-
iment at jet impact (frame 7(d)). After jet impact, a protrusion forms in the experimental image
along the jet direction; nevertheless the main part of the bubble in the image agrees well with the
computation. The bubble is apparently asymmetric, with the part proximity to the rigid boundary
collapsing significantly slower than the distal side (frames 7(d) and 7(e)). A little difference appears
in the comparison between experimental and numerical results in frame 7(e). The protrusion in
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FIG. 7. Comparison between the experimental images (the upper row) and numerical results (the lower row) for the
interaction of a spark generated bubble with a free surface near a vertical boundary (on the left side in each frame), for
Rm = 12.5 mm, ε = 100, γ f = 0.75, γw = 1.4, at t = 0.471, 0.941, 1.471, 1.824, 1.941 ms, for frames ((a)-(e)), respectively.

the numerical result is shorter than the experimental one due to the numerical smooth technique
adopted in the program.

VI. INTERACTION OF BUBBLE/FREE SURFACE NEAR A VERTICAL BOUNDARY

Figure 8 shows the case for a vertical boundary without the buoyancy effects for γ f = 0.8 and
γw = 1.5, where the bubble is closer to the free surface than to the boundary. While the bubble

FIG. 8. Interaction of a bubble with a free surface near a vertical boundary for γ f = 0.8 and γw = 1.5, at the dimensionless
times t∗: (a) 0.09, (b) 0.75, (c) 1.53, (d) 1.54, and (e) 1.60, respectively. (f) The top view of the bubble ring shown in
Figure 7(e), just before it breaks down to become a crescent shaped bubble.
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FIG. 9. Comparison of the profiles of the bubble surface and free surface at (a) the maximum bubble volume and (b) jet
impact, for their interaction near a vertical boundary, for γw = 1.0 and γ f = 0.8, 1.0, 1.2, 1.4, respectively.

expands (Figures 8(a) and 8(b)) and collapses (Figures 8(b) and 8(c)), the free surface rises contin-
uously, forming a high spike (Figure 8(c)). A downward jet forms due to the repulsion of the free
surface (Figure 8(c)), and the bubble becomes significantly asymmetric.

After jet impact (Figure 8(d)), a vortex ring is put inside the bubble. The bubble becomes a
bubble ring and continues collapsing asymmetrically, whose cross section is much thinner at the
distal side from the boundary (Figures 8(d) and 8(e)). Figure 8(f) displays the top view of the bubble
ring just before its breaking. Afterwards it will become a crescent shaped bubble and the fluid
domain returns to be singly connected.

Parametric studies are carried out in terms of γ f and γw, respectively. Figure 9 shows the
profiles of the bubble surface and free surface for fixed γw = 1.0 and various γ f = 0.8, 1.0, 1.2,
and 1.4, respectively. As the bubble is initiated deeper, the features for the bubble expansion do not
change significantly: its nearer side to the boundary becomes flattened near the end of expansion.
However, bubble behaviours during collapse depend obviously on its depth. The bubble collapses
faster on the distal side from the boundary. This trend is strengthened while the bubble is initiated
deeper, when the repulsion due to the free surface decreases, and the attraction due to the boundary
becomes relatively strong.

As for the free surface, the height of the free surface hump at the end of expansion decreases
with the bubble depth; the free surface between the bubble and boundary becomes flatten for
γ f > γw. At the end of collapse, a sharp free surface spike forms for γ f = 0.8, its height decreases
significantly with γ f , and the elevation of the free surface between the spike and boundary decreases
slowly with γ f .

Figure 10 shows the time histories of (a) the x-component xcen and (b) z-component zcen of
the bubble centroid, respectively, for the cases in Figure 9. The bubble first rises to the free surface
and leaves from the boundary, moves back before the end of expansion, and moves down and
towards the boundary rapidly at the end of collapse. As the bubble is initiated deeper, the horizontal

FIG. 10. Time histories of (a) the x-component xcen∗ and (b) z-component zcen∗ of the bubble centroid for the cases in
Figure 9.
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FIG. 11. Comparison of the profiles of the bubble surface and free surface at (a) the maximum bubble volume and (b) jet
impact for their interaction near a vertical boundary, for γ f = 1.0 and γw = 0.8, 1.0, 1.2, 1.4, respectively.

central movement increases and the vertical central movement decreases. The bubble migrates more
vertically than horizontally during expansion but migrates much more horizontally during collapse.

Figure 11 shows the profiles of the bubble surface and free surface for fixed γ f = 1.0 and
various γw = 0.8, 1.0, 1.2, 1.4, respectively. As γw ≤ 1.0, the bubble surface proximity to the
boundary is flattened at the end of expansion. The boundary effects on the bubble dynamics are
insignificant at γw = 1.4 till the end of expansion, when the bubble is approximately symmetric.
However, significant boundary effects display during collapse: the nearer side of the bubble surface
to the boundary remains in contact with the boundary as γw ≤ 1.0, is attracted by the boundary as
γw > 1.0, and collapses slower than the distal side. The asymmetric effects are strengthened at a
smaller γw.

The closeness of the bubble to the boundary does not affect the height of the free surface hump
significantly but affects the free surface profile. As γw ≤ 1.0, the free surface between the hump and
boundary rises up resulting in a plateau because the nearer side of the bubble to the boundary is
flattened by the boundary, since the later stage of expansion. The free surface plateau disappears as
γw > 1.0, and the boundary effects on the free surface are not appreciable for γw ≥ 1.4.

Figure 12 shows the time histories of the bubble centroid (xcen, zcen). The bubble again first
rises to the free surface and leaves away from the boundary slightly, moves back before reaching its
maximum volume, and moves rapidly at the end of collapse. As the bubble is initiated closer to the
boundary, the horizontal central movement increases, and the vertical central movement decreases,
since the bubble is attracted by a stronger boundary attraction.

VII. INTERACTION OF BUBBLE/FREE SURFACE NEAR AN INCLINED BOUNDARY

Consider the interaction of a bubble with a free surface, near a flaring boundary with an
inclined angle α = −10◦, for γw = 1.0 and γ f = 1.0. Figure 13 shows the profiles of the bubble

FIG. 12. Time histories of (a) the x-component xcen∗ and (b) z-component zcen∗ of the bubble centroid, for the cases in
Figure 11.
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FIG. 13. Interaction of a bubble with a free surface near a flaring boundary, for γw = 1.0, γ f = 1.0, and α =−10◦, at typical
dimensionless times t∗: (a) 0.15, (b) 0.77, (c) 1.32, (d) 1.50, (e) 1.67, and (f) 1.68. Contours of the pressure of the flow field
are also shown in the figure.

surface and free surface at typical time steps, as well as the contours for the dimensionless pres-
sure. In the middle of expansion (Figure 13(a)), the pressure of the bubble gases is lower than
the surrounding liquid; however, the bubble continues expanding due to inertial. At the maximum
bubble volume (Figure 13(b)), the bubble surface proximity to the boundary is flattened due to the
boundary, and a side hump of the free surface forms near its intersection with the boundary, raised
by the high pressure zone observed there in Figures 13(a) and 13(b).

During collapse (Figures 13(c) and 13(d)), a high pressure zone occurs between the top of the
bubble surface and the free surface, which drives a free surface spike and a downward bubble jet
simultaneously. The side hump near the boundary becomes more prominent. At the end of collapse
(Figure 13(e)), a free surface spike forms above the bubble, the high pressure zone shifts towards the
distal side of the bubble from the boundary due to the boundary effects, and a large jet forms with its
direction rotating towards the boundary. Then the bubble is penetrated by the jet (Figure 13(f)).

We next consider the interaction near a fall in boundary for α = 10◦, with the remaining param-
eters being the same as in Figure 13. The general features of this case are similar to that for a
flaring boundary in Figure 13. The bubble surface proximity to the boundary is flattened due to
the boundary at the end of expansion. A high pressure zone is generated between the top of the
bubble surface and the free surface subsequently, which drives an upward free surface hump and a
downward bubble jet. At the end of collapse, the high pressure zone shifts to the distal side of the
bubble from the boundary, and the jet rotates to the direction pointing to the boundary.

However the free surface motion near a fall in boundary displays different features. The upward
velocity at the free surface near the boundary is relatively smaller than elsewhere during expansion
(Figure 14(a)); the elevation of the free surface is lower near the boundary at the end of expansion
(Figure 14(b)). During collapse, a free surface trough develops near the intersection, as the fluid is
pulled towards the contracting bubble (Figures 14(c)–14(e)).
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FIG. 14. Interaction of a bubble with a free surface near a fall in boundary for γw = 1.0,γ f = 0.8, and α = 10◦, at the typical
dimensionless times t∗: (a) 0.15, (b) 0.77, (c) 1.40, (d) 1.50, (e) 1.67, and (f) 1.68, respectively. Contours of the pressure of
the field are also shown in the figure.

We now perform a parametric study for the inclined angle for α = −10◦, 0◦, 10◦, respectively,
with the other parameters fixed at γ f = 1.0 and γw = 1.0. As shown in Figure 15, the bubble takes
similar shapes so does the free surface hump both at the maximum bubble volume (Figure 15(a))
and at jet impact (Figure 15(b)). However, the free surface near the boundary displays different
features associated with the inclined angle of the boundary. The elevation of the free surface

FIG. 15. Comparison of the profiles of the bubble surface and free surface, for various inclined angles of the boundary
α=−10◦, 0◦, 10◦, respectively at (a) the maximum bubble volume (left) and (b) jet impact (right). The other parameters for
the cases are δ = 0,γw = 1.0, and γ f = 1.0, respectively.
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FIG. 16. Time histories of (a) the x-component xcen∗ and (b) z-component zcen∗ of the bubble centroid versus the inclined
angle α of the boundary for the cases in Figure 16.

between the hump and boundary decreases with α, a side hump of the free surface forms near a
flaring boundary at α = −5◦ and −10◦, whereas a trough forms near a fall in boundary at α = 5◦

and 10◦.
Figure 16 shows the time histories of the x- and z-components of the bubble centroid versus α

for the cases in Figure 15. An interesting feature displayed is that the lateral translation towards the
boundary does not change with α appreciably; however, the vertical translation decreases with α. A
bubble migrates deeper besides a flaring boundary than a fall in boundary.

The mechanism for this phenomenon is illustrated in Figure 17. The Bjerknes force from the
boundary Fw is pointing perpendicular to the boundary, and the Bjerknes force due to the free
surface F f is downwards. As such the total force F acting on the bubble, including the buoyancy Fb,
is estimated as follows along the x- and z-axes, respectively:

Fx = Fw cos α = Fw

(
1 − 1

2
α2

)
+O

�
α3� , (7.1)

Fz = Fb − Ff + Fw sin α = Fb − Ff + Fwα +O
�
α3� . (7.2)

As α is small, the change in Fx due to α is at O(α2), whereas the change in Fy is linear in α.

FIG. 17. Illustration of the downward Bjerknes force F f due to the free surface and the Bjerknes force Fw due to the
boundary pointing perpendicular to the boundary.
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VIII. INTERACTION OF LARGE SCALE BUBBLE/FREE SURFACE NEAR
AN INCLINED BOUNDARY

Bubbles associated with underwater explosions and airgun operations have large radii of
O(1) m or larger, which are usually subject to significant buoyancy effects. We consider an under-
water explosion bubble due to 200 kg TNT, exploded at a depth of 7.6 m, and at a standoff distance
of 7.6 m from a boundary. The maximum bubble radius for this case is 7.6 m. The corresponding
dimensionless parameters are R0 = 0.089, ε = 416, δ = 0.66, γw = 1.0, and γ f = 1.0, respectively.
Three inclined angles of the boundary are considered for α = −10◦, 0◦, and 10◦, respectively.

Figure 18 shows the profiles of the bubble surface and free surface at typical time steps, which
display similar features at the end of expansion (Figure 18(a)) as the cases without buoyancy
(Figure 15(a)), except that the free surface hump is higher and a larger part of the bubble has risen
above the original calm water surface. The buoyancy effects become prominent during collapse.
During the middle stage of collapse (Figure 18(b)), two counter jets start to form due to the free
surface repulsion and buoyancy, respectively. The two jets develop subsequently, impact each other
(Figure 18(c)), and a toroidal bubble forms (Figure 18(d)).

As compared to the cases without buoyancy (Figure 15), the asymmetric features of collapse
are strengthened, and a larger part of the bubble surface is attracted by the Bjerknes force of the
boundary (Figure 18(c)). This is because the repellence due to the free surface is partially balanced
by buoyancy, and the boundary attraction becomes relatively stronger.

FIG. 18. Interaction of an underwater explosion bubble with a free surface near an inclined wall, with inclined angles
α =−10◦, 0◦, and 10◦, respectively, at dimensionless time t∗: (a) 0.90 (at the maximum volume), (b) 1.30, (c) 1.59 (jet
impact), and (d) 1.60 (during the toroidal phase). Other dimensionless parameters for the cases are R0∗= 0.089, ε = 416, δ =
0.66,γw = 1.0, and γ f = 1.0, respectively.
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The singular features of the free surface at the intersection with the boundary exist as well,
when subject to buoyancy. A side trough occurs as the bubble near a fall in boundary for α = 10◦,
which develops continuously during collapse. A side hump appears as the bubble near a flaring
boundary for α = −10◦, which is a well know phenomenon associated with underwater explosion
bubble dynamics near a hull.

IX. SUMMARY AND CONCLUSIONS

Three dimensional toroidal bubble dynamics are simulated based on the boundary integral
method (BIM) coupled with a new impact model and a vortex ring model, enabling a smooth
transition from a singly connected bubble to a toroidal bubble. We show that the potential due to a
vortex ring can be reduced to the line integral along the vortex ring. The pressure distribution in the
flow field is calculated by using the Bernoulli equation, where the partial derivative of the velocity
potential in time is calculated using the BIM model to avoid numerical instabilities. Experiments
are carried out for a spark generated bubble interacting with a free surface near a boundary, which
is captured by using a high speed camera. Our numerical results agree well with the experimental
images for the bubble and free surface shapes. Some new features for the interaction of a transient
bubble with a free surface near an inclined boundary are as follows.

A high pressure zone is generated between the bubble surface and free surface, since the early
stage of collapse, which drives a free surface spike and a downward bubble jet simultaneously, as
the bubble collapsing. Towards the end of collapse, the high pressure zone shifts towards the distal
side of the bubble away from the boundary, causing the jet rotating towards the boundary. The distal
side of the bubble collapses faster and the nearer side of the bubble is attracted by the boundary.
After jet impact, an asymmetric bubble ring forms, with a relatively small cross section at the distal
side, where it breaks subsequently, becoming a crescent shaped bubble.

As the inclined angle of the boundary increases, the horizontal migration of the bubble does not
change appreciably, but it migrates deeper besides a flaring boundary than a fall in boundary. The
free surface near the boundary displays special features: The elevation of the free surface between
the free surface spike and boundary decreases with the inclined angle, a side hump forms near a
flaring boundary, and a trough of the free surface forms near a fall in boundary.

Buoyancy effects are appreciable for a large bubble, the Bjerknes repellence acting on the
bubble due to the free surface is countervailed partially by buoyancy, and the Bjerknes attraction
due to the boundary becomes relatively stronger. As a result, the asymmetric collapse due to the
boundary is strengthened, and a larger part of the bubble surface is attracted by the boundary during
collapse.
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