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Abstract: The rapid development of high throughput experimental techniques has resulted in a growing 
diversity of genomic datasets being produced and requiring analysis. Therefore, it is increasingly being recog-
nized that we can gain deeper understanding about underlying biology by combining the insights obtained 
from multiple, diverse datasets. Thus we propose a novel scalable computational approach to unsupervised 
data fusion. Our technique exploits network representations of the data to identify similarities among the 
datasets. We may work within the Bayesian formalism, using Bayesian nonparametric approaches to model 
each dataset; or (for fast, approximate, and massive scale data fusion) can naturally switch to more heuristic 
modeling techniques. An advantage of the proposed approach is that each dataset can initially be modeled 
independently (in parallel), before applying a fast post-processing step to perform data integration. This 
allows us to incorporate new experimental data in an online fashion, without having to rerun all of the analy-
sis. We first demonstrate the applicability of our tool on artificial data, and then on examples from the litera-
ture, which include yeast cell cycle, breast cancer and sporadic inclusion body myositis datasets.

Keywords: clustering; data integration; functional genomics; graph-theoretic methods.

1  Introduction
Given the broad variety of high-throughput biological datasets now being generated, attention is increasingly 
focusing on methods for their integration (Kirk et al., 2012; Lock and Dunson, 2013; Wang et al., 2014). Differ-
ent technologies allow us to probe different aspects of biological systems, and combining these complemen-
tary perspectives can yield greater insight (Altman, 2013; Savage et al., 2013; Schimek et al., 2015).

Computational techniques for data fusion are rapidly evolving, and moving towards potential clinical 
applications (Altman, 2013). For example, recently proposed methods try to identify cancer subtypes using 
fused similarity networks applied to a combination of DNA methylation, mRNA expression and miRNA 
expression datasets (Wang et al., 2014). Cancer subtype discovery has also been a focus of other recent data 
integration efforts (Yuan et al., 2011; Savage et al., 2013; Lock and Dunson, 2013). Further, data exploration 
via e.g. simultaneous clustering of gene expression networks (Narayanan et  al., 2010), inference of tran-
scriptional module networks (Lemmens et al., 2009), and bi-clustering with connected biologically relevant 
information (Reiss et al., 2006) are also becoming prominent in the recent data fusion literature.

Data integration methods can be categorized as either unsupervised (the subject of the present work), or 
supervised (Troyanskaya et al., 2003; Myers et al., 2005; Myers and Troyanskaya, 2007; Huttenhower et al., 
2009). Existing unsupervised techniques for the fusion of multiple (i.e. more than two) datasets fall into one 
of two broad categories: those which are Bayesian (Kirk et al., 2012; Lock and Dunson, 2013) and those which 
are not (Shen et al., 2009; Wang et al., 2014). For many real-world or large-scale analyses the lack of suitable 
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training sets places severe limitations on supervised algorithms, and unsupervised learning methods have 
thus gained in popularity. Current Bayesian approaches for unsupervised data fusion rely on mixture model 
representations of each dataset, with dependencies between datasets modeled either using coefficients that 
describe the similarity between pairs of datasets (Kirk et al., 2012), or by assuming that each dataset has a 
structure that adheres – to a lesser or greater degree – to an overall consensus structure that is common to 
all datasets (Lock and Dunson, 2013). Bayesian approaches have the advantage of having firm probabilistic 
foundations, of forcing all prior beliefs and assumptions to be formally expressed from the outset, and of 
allowing the uncertainty in unknown quantities to be encapsulated in (samples from) posterior densities. For 
these reasons, Bayesian approaches are usually preferred; however, computational cost may prohibit their 
application to large (e.g. genome-scale) datasets.

In this work we introduce a new approach for the fusion of heterogeneous datasets; the methodology 
presented here is closely related to a graph-theoretic approach, which may be used to test for associations 
between disparate sources of data (Balasubramanian et al., 2004). Our approach has two basic steps. In the 
first, we obtain (independently) for each dataset either an ensemble of networks (in the Bayesian case), or a 
single network (in the non-Bayesian case), where networks are used to represent the structure and dependen-
cies present in the dataset. In the second, we perform a post-processing step which compares the networks 
obtained for different datasets, in order to identify common edges, and to thereby assess and quantify the 
similarities in dataset structure.

Although, in principle, we could consider any type of structure that may be represented by a network, 
in the present work we are specifically interested in identifying and comparing the clustering structure pos-
sessed by each dataset, and it is at this level that we perform data fusion (Figure 1). In the Bayesian case, we 
employ for the purpose of cluster identification Dirichlet process mixture (DPM) models with either Gaussian 

Figure 1: Method illustration. It is common to visualize the clustering outcome in a “table-like” fashion, by listing all genes next 
to their associated cluster labels. To visualize this, we construct corresponding graphs; here, each node in the network repre-
sents a gene and a line indicates that two genes cluster together. We use different color schemes to represent cluster labels. 
By adopting a graph-theoretical approach we can represent each network as an adjacency matrix, which in turn can be used for 
data integration. (A) Illustrates an artificial example of 12 genes that are assigned into three clusters (e.g. control case) from 
the first dataset. (B) Illustrates the same list of genes assigned into different three clusters (e.g. disease case) from a second 
dataset. (C) Illustrates the corresponding network (and cluster assignment) after performing data integration step.
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process (GP) or multinomial likelihood functions. In our approach, data fusion is performed by constructing 
the connectivity networks that represent each clustering, and then forming “consensus networks” that iden-
tify the clusters upon which multiple datasets agree.

The integration step is somewhat similar to the consensus clustering approach (Monti et al., 2003), which 
was developed for the purpose of assessing cluster stability and for identifying the consensus across multiple 
evaluations of the same clustering approach. In contrast with other existing techniques (Kirk et al., 2012; 
Lock and Dunson, 2013), in our approach each dataset is initially considered independently. Although this 
is likely to result in some loss of sensitivity, it also means that computations can be performed in a parallel 
fashion, which offers potentially significant advantages in cases where we are dealing with large datasets, or 
where it is necessary to rerun computations in order to consider additional datasets.

2  Methods
Here we develop a novel graph theoretical approach for integrating clustering outcomes across several data-
sets, which we refer to as “GTA” for brevity. GTA may be applied to the output of Bayesian or non-Bayesian 
clustering algorithms.

2.1  Data integration

There are many different methods for data integration, most of which set out to accomplish one (or both) 
of the following two key aims: (i) modeling the dependencies that exist within and between datasets; and 
(ii) combining the predictions derived from one dataset with those derived from another. Assuming for con-
venience of notation that we wish to integrate just a pair of datasets, we might consider that the “ideal” 
way to fulfill the first of these two aims would be to model the joint distribution, p(q(1), q(2)|D(1), D(2)), of the 
predictions, q(1) and q(2), derived from datasets, D(1) and D(2), respectively (for the sake of generality, we leave 
the definition of q deliberately vague, but these predictions could be, for example, assessments of disease 
risk). Such an approach poses many potential challenges, not least that the datasets may be of very different 
types and/or may be of (very) high dimension. In contrast, the second aim just requires us to define a fusion 
function, f, for combining the predictions. We shall assume that this function is deterministic; i.e. for given 
predictions, q(1) and q(2), we assume that f maps the predictions onto a single combined output, f(q(1), q(2)). One 
challenge in this case is to assess the uncertainty/confidence in this output. If we were able to sample M pairs, 

…(1) (2) (1) (2) (1) (2)
1 1 2 2( , ), ( , ), , ( , )M Mq q q q q q  from the joint distribution, p(q(1), q(2)|D(1), D(2)), then we could consider the 

set =
(1) (2)

1{ ( , )}Mm m mf q q  in order to assess the variability in the output.
In general, modeling the joint distribution, p(q(1), q(2)|D(1), D(2)), is much more computationally demanding 

than defining a fusion function. To make modeling p(q(1), q(2)|D(1), D(2)) more tractable, here we make an inde-
pendence assumption and factorize the joint distribution as,

	 ≈(1) (2) (1) (2) (1) (1) (2) (2)( , | , ) ( | ) ( | ).p q q D D p q D p q D � (1)

While, in practice, the quality of this approximation will depend upon a number of factors (including the 
signal-to-noise ratio associated with the individual datasets), it has the advantage of circumventing many of 
the challenges associated with trying to model p(q(1), q(2)|D(1), D(2)). Moreover, this independence assumption 
means that we may perform computations for each dataset in parallel, allowing us to scale to potentially 
large number of datasets. Having made this independence assumption, we may obtain samples from the 
joint distribution by sampling independently from each of the factors, p(q(1)|D(1)) and p(q(2)|D(2)). For a given 
fusion function, f, we may then consider the set =

(1) (2)
1{ ( , )} ,M

m m mf q q  as described above. Extending to R datasets 
is straightforward: we simply obtain samples independently from each p(q(r)|D(r)) for r = 1, …, R, and then con-
sider the set =…(1) (2) ( )

1{ ( , , , )} .R M
m m m mf q q q
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2.2  GTA: a graph theoretic approach to unsupervised data integration

We start with a collection of datasets, D(1), …, D(R), each of which comprises measurements taken on a common 
set of N entities/items (e.g. genes or patients). We consider the situation in which the prediction, q(r), asso-
ciated with dataset D(r) is the clustering structure possessed by these items. To proceed, we must therefore 
define: (i) a method for sampling from p(q(r)|D(r)); and (ii) a fusion function, f, for combining the predicted 
clustering structures derived from the various datasets. Here, our aim is to identify similarities between the 
clustering structures associated with each of the datasets.

2.2.1  Sampling from p(q(r)|D(r))

We consider two different approaches for sampling from p(q(r)|D(r)). Where possible, we use Dirichlet process 
mixture modeling, a nonparametric Bayesian approach, which is discussed in the Appendix A. However, in 
some cases the size of the datasets being considered prohibits the use of such approaches. In these instances, 
rather than using an ensemble of M samples from p(q(r)|D(r)), we instead take M = 1 and treat the maximum 
likelihood estimate, ( ) ,r

MLq  as a single, representative sample.

2.2.2  Defining the fusion function

In order to define a fusion function, f, we take inspiration from Balasubramanian et al. (2004) work and adopt 
a graph theoretic approach. We define c to be a clustering of the N items of interest (genes, patients, etc.), so 
that ci is the cluster label associated with item i. The N × N adjacency matrix is given as,

 ==


1, if   ;
( )

0, otherwise.
i j

ij

c c
A

Given a collection of R such clusterings, say c(1), …, c(R), we may form a corresponding collection of adja-
cency matrices, A(1), …, A(R), where A(k) is the adjacency matrix representation of clustering c(k). The Hadamard 
(entry-wise) product of these matrices, H = A(1) …A(R), defines a new clustering, in which items i and j appear 
in the same cluster if and only if all of the clusterings c(1), …, c(R) agree that they should appear in the same 
cluster. From a graph theoretic perspective, H corresponds to the graph formed by taking the intersection 
of the graphs defined by A(1), …, A(R) (see Figure 1). Assuming that each of the clusterings, c(1), …, c(R), cor-
responds to a different dataset, we define our fusion function f to act on these and then return the cluster-
ing corresponding to the Hadamard product, H. Equipped with this fusion function, and M samples from 
p(q(r)|D(r)) (for r = 1, …, R), we may proceed to describe with the GTA algorithm (Algorithm 1).

2.2.3  Summarizing the fused output

The output of the GTA algorithm is a collection of M fused clusterings. While these provide a useful indication 
of the uncertainty in the fused output, it is often also helpful to condense these into a single, summary fused 
clustering, c̅. This can be done by constructing a posterior similarity matrix (Fritsch and Ickstadt, 2009) of 

…1
ˆ ˆ, , pc c  and maximizing the posterior expected adjusted Rand index (Hubert and Arabie, 1985).

2.2.4  Heuristic score of clustering similarity

In some instances, it is useful to measure the compatibility between data sources by comparing the inde-
pendent clusterings (obtained before data integration) with the fused clustering (obtained using the GTA 
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Algorithm 1: The GTA algorithm.

algorithm). Due to the nature of our technique it is expected to observe more clusters after the data integra-
tion process. This is particularly true when studying less related datasets and when integrating more than a 
few data sources. We therefore define the following measure of similarity between any two data sources Dr 
and DI,

	

+
=

�

( )/2
( , ) ,r l

r l

D D
r l

D D

K K
S D D

K �
(2)

where 
rD

K  and 
lDK  correspond to the number of clusters before data integration, and � ,

r lD DK  the number 
of clusters after integration. Here, the score S can have any value between zero and one. The closer S is to 0, 
the more dissimilar datasets are. On the other hand, the closer S is to 1, the more substantial the similarity 
between the structure of the two datasets.

3  GTA applications
In this section we explore the capabilities of GTA to data integration. Here we are interested in comparing our 
result to the result delivered by data fusion methods, which explicitly model relationships and dependencies 
between datasets. We start by illustrating the applicability of heuristic score to identify similarities between 
several data sources. Then we test GTA performance on popular examples from literature, and on sporadic 
inclusion body myositis dataset.

Example R code and instructions are available from https://sites.google.com/site/gtadatafusion/.

3.1  Capturing similarities across artificial dataset

We consider a S. cerevisiae dataset (Cho et al., 1998) that contains mRNA transcription levels taken to study 
the cell cycle. From 416 genes that had previously been identified to have periodic changes in transcript levels 
we select 100, and assign them into seven clusters using DPM with GPR likelihood model (Figure 2A). The 
details regarding MCMC specification and diagnostics are summarized in Appendix B. To demonstrate the 
performance of GTA, we further consider the artificial dataset example (Kirk et al., 2012) that was constructed 
using the same 100 genes. Briefly, this example consists of six data sources, where the first source is the origi-
nal dataset (see Figure 2A), and the other five were obtained sequentially, by randomly permuting a quarter 
of gene names in the previous dataset. Applying GTA on pairwise combinations of these datasets we identify 
the numbers of genes that cluster together before and after the fusion. These can be used for computing the 
score of agreement and for determining the similarities across all six datasets. The pairwise similarities are 
summarized in Figure 2B where columns and rows identify which combination of datasets were considered, 
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and color illustrates the level of similarity. Alternatively, the similarity between these datasets can be identi-
fied from the final clusterings by computing the adjusted Rand index (ARI) (Hubert and Arabie, 1985). The 
ARI compares two given partitions of the same list of genes and is based on how often a gene (observation) is 
associated with the same cluster in both partitions (see Figure 2C).

3.2  Integrating cell cycle datasets

We next compare the results from GTA to the results by Multiple Dataset Integration (MDI) (Kirk et al., 2012). 
In this example we consider integrating a number of datasets from yeast cell cycle studies. The first dataset 
contains gene expression time courses (Granovskaia et al., 2010), where mRNA measurements are taken at 
41 time points across 551 genes that exhibit oscillatory expression profiles. The second dataset is ChIP-chip 
data (Harbison et al., 2004) that contains binary information about proteins binding to DNA, and the third is 
a protein-protein interaction (PPI) dataset from BioGRID (Stark et al., 2006).

In order to apply GTA for data fusion, we initially cluster all datasets by running in parallel three inde-
pendent DPM models (see Appendices A and B). To specify the DPM, we use Gaussian process likelihood to 
cluster gene expression time courses, and multinomial likelihood to cluster the transcription factor binding 
and PPI datasets. As before, further details regarding MCMC specifications and diagnostic plots are summa-
rized in Appendix B. Although we use DPM here to automatically determine the number of cluster for each 
dataset; it is worth noting that initial clustering could also be done using other methods since GTA operates 
on pre-clustered dataset.

In this example we are aiming to compare the results from our method to the results from MDI, for this 
reason we consider two cases: (i) integration of gene expression and transcription factor binding data; (ii) 
integration of gene expression, transcription factor binding, and protein-protein interaction data.
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Figure 2: GTA applications to six artificial datasets. (A) Illustrates genes from Cho et al. (1998) sorted into seven clusters using 
DPM model with GP likelihood. (B) Illustrates similarity between six final clusterings using similarity measure S(Dr, Dl) outlined 
in (2). (C) Illustrates similarity between the same clusterings using adjusted Rand index. (D) Illustrates the effects of Hadamard 
product – each heatmap corresponds to the adjacency matrix constructed from original dataset, D1, and the first modified 
dataset, D2.
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MDI is a tool that jointly clusters all datasets by modeling dependencies between them. Using MDI 
approach the final clustering can be extracted by calculating a fusion probability – the probability that any 
two genes are fused in two datasets, and by removing those genes where this probability is less than 0.5. For 
this reason, using GTA we can also consider removing genes that lack the evidence of clustering together. 

This can be achieved by computing the matrix 1

1 ,M
mm

H
M =

= ∑P  where each matrix entry is probability, Pij, for 
gene i and gene j to be in the same cluster in both gene expression and transcription factor binding datasets; 
and removing genes i, where Pij < 0.5 for every j. The above procedure is somewhat analogous to MDI in terms 
of looking only at those genes that are fused across both datasets. Then, applying the approach of Fritsch and 
Ickstadt (2009) to filtered posterior clusterings we obtain the final data partition that assigns genes into clus-
ters based on information from both datasets. Figure 3A,C illustrates the performance of GTA, where genes 
are allocated into clusters based not only of their expression profiles but also on which transcription factors 
bind to DNA. In order to compare our results to the results obtained by MDI we use overlap score (OS) metrics 
(Nepusz et al., 2012; Zhang et al., 2015), OS(A, B) = |A∩B|2/|A||B|, where |·| denotes the number of elements in 
the set; A is predicted network/clustering structure by GTA, and B is a benchmark structure, in this example 
it is obtained using MDI. A predicted clustering can be considered as a match to the benchmark clustering 
if their OS value is no less than a predefined threshold, which typically can be set to 0.2 (Bader and Hogue, 
2003; Wu et al., 2009; Zhang et al., 2015). In this example we obtained OS = 0.426, which indicates that GTA 
can provide the approximation to MDI result. In order to better understand the difference between both clus-
terings we looked at corresponding network structures (Figure 3A,B). In this case MDI maintains densely 
connected clusters, whereas the GTA output is dominated by small clusters. Although GTA is less sensitive in 
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Figure 3: GTA applications to yeast cell cycle datasets. Integrating yeast cell cycle time course and transcription factor 
(TF) binding datasets. Here a line indicates that any two genes are assigned to the same cluster after the fusion ((A)/(B)). 
(A) Networks illustrates final clustering structure using fused samples from GTA. (B) Networks illustrates final clustering struc-
ture using MDI. (C) Further illustrate three additional clusters identified by GTA; on the left – gene expression time courses are 
projected on a heatmap of TF binding data on the right, here yellow color indicated that a TF is binding to a gene. Horizontal 
black lines mark cluster boundaries.
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detecting larger clustering structures, it took less than a minute for algorithm to fuse M = 1000 samples from 
posterior (running time = 40.665 s, was obtained using R function proc.time()); it was reported (Kirk et al., 
2012) that it took approximately 2 hours to execute MDI on the same example using bag-of-words model, 
and approximately 4 hours to run it using multinomial model. This suggest that GTA can be seen as a useful 
approximation to MDI, which offers considerable savings on computational times.

As a second step in our yeast cell cycle example we consider integrating three datasets: gene expression, 
transcription factor binding and protein-protein interaction (PPI) data. In order to also fuse the PPI dataset 
using MDI, it is necessary to rerun joint clustering from the beginning; however, using GTA we can benefit from 
previously pre-clustered data and perform data fusion in an “online-fashion” using only samples from the pos-
terior. In this case GTA fuses three datasets in under a minute (40.889 s), whereas for MDI it took to generate 
approximately 90 samples per chain per hour Kirk et al. (2012). Applying thinning-out strategy (removing genes 
that lack the evidence of clustering together) we obtained a set of 14 genes that can be assigned into 6 clusters 
(for comparison MDI assigned 16 genes into 5 clusters). Supplementary Figures 3A,B show the final network 
structures that correspond to fused three datasets using GTA and MDI, respectively; in addition, Supplementary 
Figure 2 projects clusters from GE data on to TF and PPI. For convenience, Supplementary Material Tables 3 
contains further details regarding gene function. In addition to this, we looked at the overlap score, OS = 0.214, 
which is above predefined threshold and suggests that GTA results can be seen as a useful approximation.

3.3  Breast cancer data

In this example we explore the performance of our data integration technique on a breast cancer dataset, 
where we aim to integrate four different data sources taken from The Cancer Genome Atlas (Cancer Genome 
Atlas Network, 2012). We use a previously described dataset (Lock and Dunson, 2013) that consists of prese-
lected 348 tumor samples characterized in four different ways: RNA gene expression (645 genes), DNA meth-
ylation (574 probes), miRNA expression (423 miRNAs), and reverse phase protein array (171 proteins). In order 
to cluster all data sources, we adopt a modified version of Bayesian consensus clustering (BCC) approach 
Lock and Dunson (2013). BCC is a data integration technique that seeks to simultaneously model data specific 
and shared features by inferring the overall clustering Ĉ (that describes all datasets), and by inferring data 
specific clusterings = …ˆ , 1, , 4.iL i  The source specific clustering is controlled by parameter α = [α1, …, α4], 
which express the probability of how much each Li contributes to the overall Ĉ. Our goal is to pre-cluster each 
dataset without inferring the overall clustering Ĉ and then use GTA to fuse all four datasets. For this reason 
we fix the probability α = 1 and cluster each dataset independently using publicly available R code (Lock and 
Dunson, 2013). Next, applying GTA with M = 1000 on posterior samples we can identify the fused clustering c̅. 
To run GTA on pre-clustered data takes under a minute (running time was 40 s on a MacBook Pro), however to 
run a full joint clustering using BCC took about half an hour. In order to compare both clusterings we looked 
at the overlap scores (see Table 1), which indicate that GTA result can be considered as a fast approximation 
to the BCC fused clustering.

Breast cancer is a heterogeneous disease, for this reason four biologically distinct molecular subtypes 
can be connected to these dataset (Cancer Genome Atlas Network, 2012; Lock and Dunson, 2013). They are 
known as Her2, Basal, Luminal A, Luminal B, and are associated with different clinical prognosis (Rakha 
et al., 2008; Dawood et al., 2011). In order to further assess our results we look at cancer subtypes that are 
associated with each cluster and compared these to the BCC clusters. Confusion matrices in Table 2 illus-
trates the summarized results. The first matrix corresponds to the outcome using BCC method (a single run 

Table 1: Overlap scores between GTA clusters and corresponding BCC clusters.

1 1OS(Cl , Cl ) 0.57gta bcc =

2 2OS(Cl , Cl ) 0.89gta bcc =

3 3OS(Cl ,Cl ) 0.69gta bcc =
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of publicly available code), while the second matrix summarize results from GTA. This further demonstrates 
that clusters identified using our technique bear similarity to the BCC results.

3.4  Sporadic inclusion body myositis

In this section we apply our technique on clinical gene expression datasets that include: (i) sporadic Inclusion 
Body Myositis (sIBM), which is an inflammatory muscle disease that progresses very slowly, causes muscu-
lar weakness and eventually muscle atrophy (Grau and Selva-O’Callaghan, 2008; Machado et al., 2009); (ii) 
polymyositis (PM) which causes chronic inflammation of the muscles; and (iii) a dataset containing human 
protein-protein interactions (BPPI) (see Supplementary Material, Section B for further details). Both sIBM 
and PM are associated with aging but interestingly sIBM can be frequently misdiagnosed as PM, and the 
explicit diagnosis can only be confirmed via a muscle biopsy (Dalakas, 2006). Current understanding is that 
sIBM is driven by two coexisting processes (autoimmune and degenerative); however, the actions by which 
sIBM occurs are still only poorly understood (Dalakas, 2006; Needham and Mastaglia, 2007).

3.4.1  PM and sIBM data integration

Here we focus on experimental sIBM and PM datasets that have 5 and 3 data points (clinical cases). In order to 
apply our technique, we select 424 genes that where previously identified to have the largest variation in their 
expression across all data points (Thorne et al., 2013). In order to cluster these datasets, we employ “mclust” 
package in R, which fits a Gaussian mixture model and uses the Bayesian information criterion to estimate 
the number of components. Because we do not have access to the clustering samples from the posterior for 
each dataset, we use GTA with a special case M = 1 to integrate single clusterings from both datasets. The inte-
grative analysis enables partitioning of large PM and sIBM clusters into smaller ones; however, this results 
in a greater number of clusters after the fusion, see Figure 4. To validate our results we use the “ToppGene” 
(https://toppgene.cchmc.org) tool, which performs gene set enrichment analysis and allows the detection 
of functional enrichment for phenotype (disease) and GO terms such as biological function. Such analysis 
enabled us to identify those clusters (5 out of 12) that are enriched with diseases like rheumatoid arthritis 
and myositis, and biological processes related to response from immune system. This suggests that genes in 
disease enriched clusters might play an important and shared role in both PM and sIBM, and for this reason 
they are promising targets for further analysis.

4  Discussion
In this paper we have developed and illustrated an alternative way to integrate data generated from different 
sources. GTA mainly relies on the outcomes from Bayesian clustering approaches and is based on concepts 

Table 2: Comparison between BCC overall and GTA final clusterings.

TCGA tumor 
subtypes

 
 

BCC single run  
 

GTA

Cl1   Cl2   Cl3 Cl1   Cl2   Cl3

Her2   5   14   20   28   6   5
Basal   3   65   4   6   65   1
Luminal A   77   3   81   98   4   59
Luminal B   3   0   73   17   0   59

In the table are given numbers of tumor samples per cluster; e.g. GTA cluster 3 contains six samples of Her2, 65 samples of 
Basal and four samples of Luminal A, for this reason, cluster 3 can be summarized as containing mostly Basal type tumors. Clus-
ters are classified by particular cancer subtype using publicly available R code (Lock and Dunson, 2013). In bold we highlight 
tumor samples that could be associated with cluster identity.
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Figure 4: GTA applications to myositis datasets. Illustrate clusters obtained by integrating PM and sIBM gene expression 
datasets using GTA. Each network represents a fused cluster, which is associated with one of enriched ontologies, biological 
process (BP), and disease (D).

from graph theory. We have demonstrated that our technique, can produce similar data fusion results when 
compared to recently proposed data integration methods. Equally, while GTA can fuse the outcomes from 
Bayesian clustering algorithms, the special case M = 1 can be applied in order to fuse a single clusterings 
across various datasets.

Here we have demonstrated the applicability of our technique to a variety of typical biological and bio-
medical problems: the identification of potentially underlying regulatory mechanisms in the yeast cell cycle; 
sub-typing tumors in breast cancer data; and exploring similarity patterns across inflammatory muscle 
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diseases. We have compared our technique to MDI and BCC, the current state-of-the-art techniques used to 
address similar data integration problems. The main benefits of our graph-theoretical approach include: (i) 
the applicability to Bayesian and non-Bayesian type clustering approaches. This means that our methodol-
ogy can be applied in order to model multiple sources on a genome scale data without facing computational 
challenges; and (ii) ability to perform clustering in a parallel fashion. These features might be advantageous 
in situations where it is necessary to rerun computations in order to consider additional datasets. As part of 
our modeling approach, we have defined a measure of similarity between two data sources. This can be used 
to evaluate the effects of data integration routine and in order to assess the agreement between data sources.

We note that it is possible to apply our graph-theoretical approach to the outcomes from simple cluster-
ing techniques, for example hierarchical or K-means clustering. This could be done by first performing a 
bootstrapping approach on each gene within a dataset Dr, M times; for further details on bootstrapping see 
(Efron, 1981) and (Kerr and Churchill, 2001). This would produce a set of bootstrapped datasets …1 , , .Mb b

r rD D  
The bootstrapped datasets together with the initial dataset can be clustered using a standard hierarchical 
clustering algorithm. The clustering outcomes can to some extent be viewed as being the analogs to the 
samples from posterior. Then after bootstrapping all data sources we can use GTA to perform integrative 
modeling. This process can be seen as a frequentist modeling approach to data integration.

Acknowledgments: This work was supported by the Leverhulme Trust (to JŽ and MPHS), the Royal Society (to 
MPHS), HFSP (to PK and MPHS) and BBSRC (to MPHS).

Appendix

A Further details regarding clustering using Dirichlet processes

A.1 Dirichlet process mixtures

The methodology for modeling heterogeneity in genomic datasets bears similarity to the structure of an infi-
nite Gaussian mixture model. A Dirichlet process mixture (DPM) model can be derived as a limit of a finite 
mixture model when the number of mixture components grows to infinity. Precisely, let consider a dataset 
D = {x1, …, xN} that we intend to model by the following mixture model,

	
π θ π θ π π

= =

… ∼ > =∑ ∑1
1 1

( , , | , ) ( | ),   0,   1,
K K

N k k k k
k k

p x x DF

�
(3)

where K is the number of components, πk are the mixing proportions, and ℱ  (D|θk) are component 
density functions parameterised with a set of parameters θk. Furthermore, we associate each data 
point, xi, with a component indicator variable ci∈{1, …, K}. This allow us to track which mixture com-
ponent generated a data point xi. We can allocate a symmetric Dirichlet prior to the mixing proportions, 

απ π α Γ α Γ α π −
=

… = ∏ / 1
1 1

( , , | ) ( )/ ( / ) ,KK K
K kk

p K  where α is a concentration parameter; and a multinomial prior, 
π π

=
… =∏1 1

( , , | ) ,k
K n

K kk
p c c  to the indicator variables with nk indicating the number of times ci = k (the number 

of observations that have same indicator value). Then a conditional prior for a single indicator, all others 
being given, is obtained by integrating over the mixing proportions

α
α

α
−

−

+
= =

− +
, /

( | , ) ,
1

i k
i i

n K
p c k c

N

where the subscript, “–i,” is a short notation for all indicators excluding i; and n−i,k denotes the number of 
observations within the cluster k not including observation xi. Now, by taking the limit as K goes to infinity 
the conditional prior has the following limits,

	
α

α
−

−= =
− +

,( | , ) ,
1
i k

i i

n
p c k c

N �
(4a)
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Combining conditional priors (4) with a likelihood function, ℱ  (xi|θk), will result in a conditional posteriors
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that are necessary to perform the inference of all parameters associated with model (3), including the number 
of clusters K. This can be achieved via Markov chain Monte Carlo (MCMC) methods. In equations (5), H denotes 
a prior for parameters θk, which might be a conjugate prior and depends on the likelihood model.

The DPM model is a general framework, and here we will focus on specific likelihood models. Specif-
ically, we will employ DPM of Gaussian process regression (GPR) models to cluster gene expression time 
series, and DPM of multinomial models to model categorical/discrete functional genomics data. These two 
likelihood options are incorporated in our Matlab package DPMSysBio.

A.2 Likelihood function for the time course data

For convenience, bellow we will use the following notation, xi≡xi. Instead of specifying a parametric (e.g. a 
multivariate-Gaussian) likelihood function, in this work we capture the time course observations xi = {xi(t1), 
…, xi(tp)}, where xi(tj) denotes the measurement taken on gene i at time point tj, with a regression model. In a 
regression approach, each gene xi can be expressed as

ε= +( ) ( ) ,i j i j ijx t f t

where fi is a regression function and εij~N  (0, σ2) is added to express the potential uncertainty in measure-
ments. In our case we are modeling observations (genes) that tend to cluster together. This means that each 
cluster can be described by the same “data generating” function fi≡fk and noise σ σ≡2 2

i k  model; here, k = 1, 
…, K. In order to identify function fk = [fk(t1), …, fk(tp)] for each cluster, we adopt a Bayesian nonparametric 
approach by specifying a Gaussian process prior for the function fk. Formally, a Gaussian process is a col-
lection of random variables, any finite number of which have a joint Gaussian distribution Rasmussen and 
Williams (2006). In order to specify a GP prior we need to define two main characteristics – a mean, m, and 
covariance, cov, functions. Such GP prior allow us to describe the Gaussian distributions that are associated 
with unique gene clusters. In simple terms this means that the function fk evaluated at a finite number of 
input points t1, …, tp will have a multivariate Gaussian distribution with zero mean and there exists a covari-
ance function, cov, such that,

… ∼ −1[ ( ), , ( )] (0, cov( , ));   , are any two inputs.T
k k p i j i jf t f t t t t tN

Here, for simplicity, we adopted a zero mean function (m(t) = 0, for all t) and squared exponential function,

	

 −
= − 

 

2
2 ( )

cov( , ) exp ,
2

i j
i j k

k

t t
t t a

l
�

(6)

where ak, lk > 0 are the hyper-parameters. Then, the genes (observations) within each cluster, k,

σ σ… ∼( ) ( ) 2 2
1 , , | , ( , ).

k

k k
N k k k k pf f Ix x N

Here, Nk is the number of observations in cluster k. For convenience we can rewrite the above in an 
expanded form,
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( ) ( ) ( ) ( ) 2
1 1 1 1
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1 1
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σ

σ
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∼ … … …N

where [fs(t1), …, fk(t1), …, fk(tp), …, fk(tp)]T contains Nk replicates of each fk(tj).
Now, we can define a Gaussian process prior,

( )
1 1[ ( ), , ( ), , ( ), , ( )] | , ( , cov ).T k

k k k p k p k kf t f t f t f t a l… … … ∼ 0N

Here cov(k) is an Nk p × Nk p matrix that is composed of smaller block matrices,
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1 1 1

1
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p p p

t t t t

t t t t

where [cov(ti, tj)] denotes i, j-th a smaller matrix structure. Here, each block matrix is symmetric and positive 
definite. This enable us to specify the following likelihood function within each cluster k,

	 σ σ… … … ∼ +( ) ( ) ( ) ( ) ( ) 2
1 1 1 1[ ( ), , ( ), , ( ), , ( )]| , , ( , cov )

k k k

k k k k k
N p N p k k k k N px t x t x t x t a l I0N � (7)

A.3 Likelihood function for the discretised data

For convenience in this section we will describe a multinomial model Kirk et al. (2012) to capture categori-
cal data. Typically, the categorical dataset consist of a list of genes (objects) where measurements, r∈{1, …, 
R}, for each gene are taken at Q distinctive attributes. For genes that tend to cluster together, xrq denotes the 
number of times q-th attribute receives a value r. Thus, the multivariate probability mass function for cat-
egorical data,

θ θ θ θ
= =

… ∝ =∏ ∑1
1 1

( | , , ) ,   1,rq
RR

x
q q Rq rq rq

r r
p x

where xq = [x1q, …, xRq]; and θrq denotes the cluster related probability for attribute q to receive a value r.
Setting a Dirichlet prior, β β…1( , , ),q RqD  for θ1q, …, θRq, we obtain

Γ Γ β
β β

Γ Γ β=

+
… =

+ ∏1
1

( ) ( )
( | , , ) ,

( ) ( )

R
q rq rq

q q Rq
rq q rq

B x
p

S B
x

where Bq = β1q, …, βRq and Sq = x1q, …, xRq. From the independence between the attributes follows the marginal 
likelihood function,

1
1 1

( ) ( )
( , , | ) ,

( ) ( )

Q R
q rq rq

Q
q rq q rq

B x
f

S B
Γ Γ β

β
Γ Γ β= =

+
… =

+∏ ∏x x

where βR×Q is a matrix.

B Inference of the hyper–parameters
In this section we explain how inference is performed for DPM models. Additionally, we provide the Markov 
chain Monte Carlo (MCMC) run details for S. cerevisiae and yeast cell cycle (examples in the paper).

In the DPMSysBio package, the Gaussian process likelihood is controlled by three hyper-parameters, 
θc = {ac, lc, σc}, that are necessary in order to learn the means and covariances of each cluster. We set a Gaussian 
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priors for the logarithmic versions of hyper-parameters (log(θc)) and employ a Gibbs sampling algorithm as 
described in Neal (2000) (see Section 6 for details). This algorithm can be seen as the most general Gibbs 
sampling scheme that can deal with a non-conjugate priors. In order to learn the hyper-parameters of DPM 
model with multinomial likelihood, we use Dirichlet priors.

Finally, to infer the concentration parameter α we set the following gamma prior α~G (2, 4), and adopt 
approach Escobar and West (1995) proposed by Escobar and West.

B.1 S. cerevisiae example

For the original time courses Cho et al. (1998) and five perturbed datasets, we ran DPMSysBio package with 
GPR likelihood for 50,000 iterations recording each 5th sample. This provided us with 10,000 “thinned-out” 
MCMC samples. Further, we discarded the first 5000 samples as a “burn-in” period and for further analysis 
we used 5000 samples per each dataset.

B.2 Yeast cell cycle datasets example

–– For time course dataset (Granovskaia), we ran DPMSysBio package with GP likelihood for 40,000 
iterations recording each 5th sample. This provided us with 8000 “thinned-out” MCMC samples. 
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Figure 5: MCMC diagnostics plots. In the first column figures illustrate a “thinned-out” Markov chains for the concentration 
parameter, α; in the second column are given posterior distributions for α; in the third column – a “thinned-out” Markov chains 
for the number of clusters, K; in the fourth – posterior distributions for K. (A) Time course datasets Granovskaia et al. (2010). (B) 
Transcription factor binding dataset Harbison et al. (2004). (C) Protein-protein interaction dataset from BioGRID Stark et al. (2006).
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Further, we discarded the first 5000 samples as a “burn-in” period and for further analysis we used 
3000 samples.

–– For transcription factor binding dataset (Harbison), we ran DPMSysBio package with multinomial likeli-
hood for 20,000 iterations recording each 5th sample. This provided us with 4000 “thinned-out” MCMC 
samples. Further, we discarded the first 2000 samples as a “burn-in” period and for further analysis we 
used 2000 samples.

–– For protein-protein interaction dataset (Biogrid), we ran DPMSysBio package with multinomial likeli-
hood for 30,000 iterations recording each 5th sample. This provided us with 6000 “thinned-out” MCMC 
samples. Further, we discarded the first 3000 samples as a “burn-in” period and for further analysis we 
used 3000 samples.

Figure 5 illustrates the Markov chains and posterior distributions for the number of clusters, K, and the con-
centration parameter, α, for Granovskaia (TC), Harbison (TF) and Biogrid (PPI) datasets.
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