
 
 

University of Birmingham

Data mining for software engineering and humans
in the loop
MINKU, L.L.; MENDES, E.; TURHAN, B.

DOI:
10.1007/s13748-016-0092-2

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
MINKU, LL, MENDES, E & TURHAN, B 2016, 'Data mining for software engineering and humans in the loop',
Progress in Artificial Intelligence , vol. 5, no. 4, pp. 307-314. https://doi.org/10.1007/s13748-016-0092-2

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 22/10/2018

Minku, L.L., Mendes, E. & Turhan, B. Prog Artif Intell (2016) 5: 307. https://doi.org/10.1007/s13748-016-0092-2

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1007/s13748-016-0092-2
https://doi.org/10.1007/s13748-016-0092-2
https://birmingham.elsevierpure.com/en/publications/32742e86-f940-4d13-8e48-dbeddb91ab83


Prog Artif Intell (2016) 5:307–314
DOI 10.1007/s13748-016-0092-2

REGULAR PAPER

Data mining for software engineering and humans in the loop

Leandro L. Minku1 · Emilia Mendes2 · Burak Turhan3

Received: 8 March 2016 / Accepted: 29 March 2016 / Published online: 16 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The field of data mining for software engineer-
ing has been growing over the last decade. This field is
concerned with the use of data mining to provide useful
insights into how to improve software engineering processes
and software itself, supporting decision-making. For that,
data produced by software engineering processes and prod-
ucts during and after software development are used. Despite
promising results, there is frequently a lack of discussion on
the role of software engineering practitioners amidst the data
mining approaches. This makes adoption of data mining by
software engineering practitioners difficult. Moreover, the
fact that experts’ knowledge is frequently ignored by data
mining approaches, together with the lack of transparency
of such approaches, can hinder the acceptability of data min-
ing by software engineering practitioners. To overcome these
problems, this position paper provides a discussion of the role
of software engineering experts when adopting data mining
approaches. It also argues that this role can be extended to
increase experts’ involvement in the process of building data
mining models. We believe that such extended involvement
is not only likely to increase software engineers’ accept-
ability of the resulting models, but also improve the models

B Leandro L. Minku
leandro.minku@leicester.ac.uk

Emilia Mendes
emilia.mendes@bth.se

Burak Turhan
turhanb@computer.org

1 Department of Computer Science, University of Leicester,
Leicester LE1 7RH, UK

2 Blekinge Institute Technology, 371 79 Karlskrona, Sweden

3 Department of Information Processing Science, University of
Oulu, POB.3000, 90014 Oulu, Finland

themselves. We also provide some recommendations aimed
at increasing the success of experts involvement and model
acceptability.

Keywords Data mining · Machine learning · Software
engineering · Software analytics

1 Introduction

The twenty-first century has been experiencing a rapid
growth in the amount of data produced by sensors, processes
and activities. Data are everywhere. They are produced by
cameras monitoring public pathways, sensors monitoring
industrial machinery, customers making purchases in super-
markets, financial markets, hospital logs, elderly patients at
home, etc. Data have also been (and are being) collected
from software engineering processes and products, during
and after software development. We refer to these data as
software data.

Software data have the potential to provide useful insights
into how to improve software engineering processes and soft-
ware itself, supporting decision-making. For instance, they
can be used to gain insights into what software modules are
most likely to contain bugs [15,34], what amount of effort is
likely to be required to develop new software projects orWeb
applications [12,29], what software changes are most likely
to induce bugs [2,19], how the productivity of a company
changes over time [37], etc.

The data availability combined to the difficulty of manu-
ally browsingdata to retrieve knowledge and insights resulted
in the emergence of research communities exploring the
use and development of data mining approaches for soft-
ware engineering. For instance, the Working Conference on
Mining Software Repositories (MSR) has experienced an

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-016-0092-2&domain=pdf


308 Prog Artif Intell (2016) 5:307–314

Fig. 1 Number of paper submissions to the Working Conference on
Mining Software Repositories since its first chapter in 2004 until its
most recent chapter in 2015

increase in the number of paper submissions since its first
chapter in 2004 (see Fig. 1).

Despite the promising results being achieved in the field
of data mining for software engineering, there is frequently a
lack of discussion on the role of software engineering prac-
titioners amidst the data mining approaches. Such limitation
can make industrial adoption of data mining for software
engineering difficult. Moreover, despite the fact that soft-
ware engineers have valuable knowledge, such knowledge is
usually ignored by data mining approaches. Together with
the lack of transparency of the models created by most data
mining approaches and of the data mining approaches them-
selves, this can be an additional factor to hinder the accept-
ability of data mining by software engineering practitioners.

To overcome these problems, this position paper provides
a discussion of the role of software engineering experts when
adopting data mining approaches. It also argues that this
role can be extended to increase experts’ involvement in the
process of building data mining models. We believe that this
extended involvement can (1) increase the acceptability of
data mining approaches in software engineering in practice,
and (2) further improve the field of data mining for soft-
ware engineering by facilitating the integration of knowledge
automatically retrieved from data with human knowledge.
We also provide some recommendations aimed at increasing
the success of software engineering experts involvement and
model acceptability.

This paper is further organised as follows. Section 2
provides an overview of current work on data mining for
software engineering. Section 3 discusses the current role
of software engineering experts in data mining for software
engineering. Section 4 argues in which ways software engi-
neering experts’ participation could be increased. Section 5
provides recommendations for involving software engineer-
ing practitioners. Section 6 concludes the paper with final
remarks.

2 Current work on data mining for software
engineering

Data mining has been used for several software engineering
problems. This section provides a brief overview of work
done in three of the software engineering problems most
studied from the data mining perspective: software effort
estimation, software defect prediction, and prediction of bug-
inducing software changes.

2.1 Software effort estimation

Software effort estimation is the task of estimating the effort
(e.g. in person-hours, person-months) required to develop a
software project. It is a task of strategic importance for soft-
ware companies, given that effort is the main contributing
factor for project cost. For instance, overestimations could
cause companies towaste resources or loose bids for projects.
Underestimations could cause companies to be unable to
complete software projects.

Data mining can be used to create software effort estima-
tion models based on data describing previously completed
software projects. These data may contain project features
such as estimated software size, team expertise, program-
ming language, memory requirements, etc, besides the actual
effort required to develop the completed software projects.

There has been more than 400 studies in the effort esti-
mation field, investigating new prediction techniques, and
or comparing techniques. Jorgensen and Shepperd provide
details on a mapping study in this topic [16]. A seminal
work is that of Boehm, who proposed a regression-based
model called COnstructive COst MOdel (COCOMO) [7].
This approach learns an equation for estimating effort,
which can be easily interpreted by software engineering
experts. Another landmark study is the work of Shepperd
and Schofield, who used k-Nearest Neighbours for software
effort estimation [46]. Their approach was shown to usu-
ally outperformmore traditional stepwise regressionmodels.
Chulani et al. proposed to use a Bayesian approach to com-
bine a priori information based on expert knowledge with a
linear regression model based on log transformation of the
data [10]. Their approach showed promising results, outper-
forming linear regression models based on log transformed
data. However, their study was based on a single data set and
its extended version. It is difficult to know how much the
results would generalise to other software projects.

Dejaeger et al. provide a comparison of several machine
learning approaches applied to software effort estimation
[12]. Their results show that ordinary least squares regres-
sion in combination with logarithmic transformation obtain
competitive results. Studies involving ensembles of learning
machines have also been showing promising results when
applied to software effort estimation [23,36]. In particu-

123



Prog Artif Intell (2016) 5:307–314 309

lar, Minku and Yao showed that combining the power of
ensembles with local learning through the use of bagging
ensembles of regression trees outperformed several other
machine learning approaches [36]. A problem of ensemble-
based approaches is that they are difficult to interpret by
software engineering experts.Alternatively, despite not being
the best ranked approach for software effort estimation,
regression trees can also obtain competitive results. These
interpretable models have shown to be rarely considerably
worse than the best approach for a given software effort esti-
mation data set [36].

Software effort estimation has also been investigated as
a transfer (cross-company) learning problem [22,37,52]; an
online or incremental learning task, where more software
project data are used for training over time [24,35,37]; a
problem where estimations for latter phases of the project
can be improved based on the actual effort spent on previous
phases [13,25,51]; a multi-objective learning problem [38,
45], and a semi-supervised learning problem [21].

Finally, many of the techniques that were applied to soft-
ware effort estimation have also been used for Web effort
estimation [4,27], which also include the use of ensembles
[5]. Mendes pioneered this field, and also led the creation
of the Tukutuku database, which is to date the only cross-
company database on Web project data [31]. The Tukutuku
database has been used in numerous studies to compare dif-
ferent effort prediction techniques. Mendes has also applied
one specific technique Bayesian Network, to building Web
effort prediction models using as basis expert knowledge
[27]. Further details are given in Sect. 3.

2.2 Software defect (bug) prediction

In 2002 IEEEMetric Panel, a group of noted researchers have
agreed that fixing defects in a software product after being
delivered to the customer is up to 100 times more expensive
than finding and fixing them during the requirements and
design phases [8,47]. They have also argued that up to 50 %
of effort is spent on avoidable work, 80 % of which comes
from a small number of defects (i.e. 20 %) in the system. The
bottom-line is that software testing is a costly challenge and
practitioners seek the knowledge of where the defects might
exist before they start testing.

In this respect, defect predictors are data mining applica-
tions to help prioritising the list of software modules to be
tested, to allocate limited testing resources effectively and to
detect as many defects as possible with minimum effort.

Software defect prediction has been a popular area of soft-
ware quality research that has drawn the attention of signif-
icant organisations including, but not limited to, Microsoft,
NASA andAT&T [32,41,43]. Basically, software defect pre-
diction models require a set of features to characterize the
problem and to give estimation on the defect proneness of

the system. In software quality, these attributes are referred
to as softwaremetrics and numerous previous studies demon-
strated defect predictors learned from product [32] (e.g. size,
complexity) and process [43,53] (e.g. code churn) metrics.

Once relevant data are available, a variety of data min-
ing algorithms can be applied to learn defect predictors,
please see Hall et al. for a systematic literature review [15].
Most defect prediction studies formulate the problem as a
supervised learning problem, where the outcomes of a defect
predictor model depend on historical data used for training.
They can be either labels indicating that a software module
is or is not likely to contain defects, or the predictive num-
ber of defects expected to be present in the software module,
or a ranking of software modules according to their defect
proneness.

Majority of research focus on the algorithmic models
and report simulation results of defect predictors that are
trained on a project and tested on a reserved portion of the
same project, i.e. retrospective analyses, or the application of
defect predictors to the newer versions of the same project in
terms of longitudinal case studies [50,53]. These attempts for
defect prediction modelling assume the availability of local
project data (i.e. within project predictors). In other words,
building data mining models requires a project to have a
historical data repository, where project metrics and defect
information from past are stored. However, this is rarely the
case in reality.

To address this issue, recently a branch of defect predic-
tion research emerged that makes use of transfer learning
and deals with cross-project predictors, where the goal is
to learn a predictor model from a project and then to apply
the model to another project [9]. Cross-project defect pre-
diction is a challenge with important practical aspects. One
such practical aspect is that cross-project predictions may
enable practitioners to use the available open-source project
data for defect prediction [54], without making big changes
in or investments to their existing processes for data col-
lection, and process improvement activities. Existing studies
provide empirical evidence over a wide range of software
systems, advocating that cross-project defect predictors can
be effective. Considering that the idea behind cross-project
prediction is to make estimates of faulty locations in projects
with no history, it is a viable stop-gap choice [52] in data
starving project environments.

2.3 Prediction of bug-inducing software changes

More recently, researchers have started to investigate the use
of data mining for predicting whether software code changes
are likely to induce bugs [19]. This type of approach allows
risky changes to be identified immediately after the commit
of the code related to the changes take place, rather than
having to wait a whole software module (e.g. software class)

123



310 Prog Artif Intell (2016) 5:307–314

to finish being implemented. As the changes have just been
committed, the context of the changes is still fresh in the
developer’smind, beingmuch easier to investigate for finding
bugs.

The problem of predicting bug-inducing changes can be
formulated in different ways. Existing work has investigated
predictions at the individual change level [19,20], and at the
level of initial modification requests [40], which may consist
of several changes. Researchers have also investigated pre-
diction of whether commits are likely to lead to crash-related
bugs [2], i.e. bugs that result in an unexpected interruption
of the software system in users’ environment.

Models for predicting bug-inducing changes for a given
software can be created based on data describing previous
changes for this software, which can be obtained when using
version control systems. Input attributes describing changes
can be change metrics [19,40], such as the number of modi-
fied directories, the distribution of modified code across each
file, number of lines of code added/deleted, whether the com-
mit is a bug fix change, number of developers that modified
the changed files in the past, developer experience, etc. Exist-
ing work has also used code complexity metrics such as the
ones typically used for software defect prediction (Sect. 2.2)
and social network analysis metrics computed based on the
dependency among the changed files [2].

The datamining approaches used for these predictive tasks
include logistic regression [3,19], general linearmodel, naive
Bayes and random forest [40], support vector machines [20]
and k-nearest neighbours [3].

3 The current role of software engineering experts

This section outlines the main current roles of software engi-
neering experts in different phases of the application of data
mining for software engineering.

3.1 Problem definition

An important role of the experts is to help defining the
software engineering predictive problem itself. To address
problems that are relevant to software engineering practice,
qualitative research in the form of interviews and question-
naires can be performed to understand software engineering
practitioners’ needs. As explained byRuneson andHost [44],
software engineering case studies differ from other areas in
that the study objects are developing rather than using soft-
ware, they are project oriented rather than line or function
oriented, and the subjects have advanced software engineer-
ing knowledge, rather than being people performing routine
work. Interviews and questionnaires should be prepared with
that in mind.

3.2 Data collection

Software engineering experts also play an important role in
creating and providing data that can be used by data min-
ing approaches. They have useful knowledge regarding data
quality, which can be provided for data mining experts to
decide how to best process the data before applying data
mining approaches. As explained by Bener et al. [6], data
mining professionals can decide whether or not to include
certain parts of the data in the training set based on soft-
ware engineering experts’ knowledge. Given that poor data
quality is likely to result in poor predictive models, software
engineering expertsmay also have the keyknowledge to iden-
tify the reasons for possibly poorly performing predictive
models.

3.3 Model building

A few studies use software engineering expert knowledge
during data-driven model building, which aims to select the
best choice of data/variables/relationships based on their
expertise [10,30]. However, most work on data mining for
software engineering implicitly assumes that the role of the
software engineering experts in creating predictive models
should be minimised. It is typically considered that soft-
ware engineering experts should be able to press a button
that will not only build, but also automatically fine-tune the
parameters of data mining approaches. Software engineering
practitioners are unlikely to have the data mining knowl-
edge required to fine-tune parameters of certain data mining
approaches, and such parameters can significantly affect the
performance of software engineering predictive models [48].
Therefore, studies on optimisation algorithms to automati-
cally tune parameters [11,42,49] are likely to be useful in
practice.

3.4 Model usage and decision-making

The main purpose of data mining for software engineering is
to create models which are able to provide actionable insight
into support decision-making related to software [14]. In this
context, the next role of software engineering experts after
the predictivemodels are created is to use the predictivemod-
els to support decision-making. Software engineers can use
predictive models in different ways. For instance, they can
use isolated predictions for a given set of input attributes.
For example, several studies investigated the use of proba-
bilistic models for decision-making in software engineering,
within the context of effort estimation [26,27]. They may
also try several different sets of input attributes to find which
of themwould lead to themost desirable outcome.When pre-
dictive models are transparent, software engineering experts
may also use them to gain insights into significant correla-

123



Prog Artif Intell (2016) 5:307–314 311

tions between input attributes and the variable of interest. The
transparency of predictive models is also likely to increase
their acceptance by software engineering experts, as experts
can understand the model and how it makes predictions.
However, care must be taken not to confuse correlations with
causations. We believe that software engineering experts can
use their domain knowledge to explain whether certain cor-
relations are likely to represent causations or not.

4 The potential role of software engineering
experts

Even though it is usually assumed that the software engineer-
ing experts’ role in model creation should be minimised, we
argue that, in software engineering:

1. involving experts in the process of building predictive
models is likely to increase the acceptability of data min-
ing in software engineering and

2. experts have valuable knowledge that can improve pre-
dictivemodels, further improving the field of datamining
for software engineering.

A few studies can be used to support our arguments
[6,10,18,26,27]. One of the authors of this paper (Mendes)
had the opportunity to collaborate with six different com-
panies in New Zealand and Brazil building expert-based
Web effort estimation models based on Bayesian networks
[26,27]. The software engineering experts who took part in
the case studieswere all projectmanagers ofwell-established
Web companies in either Auckland (New Zealand) or Rio de
Janeiro (Brazil), each with at least 10 years of experience in
project management. These companies varied in their size,
measured as the total number of employees. In addition,
all six companies were consulting companies and as such,
developed a wide range of Web applications, from static and
multimedia-like to very large e-commerce solutions.

When approached, all six companies were looking at
improving their current effort estimates, and agreed to partic-
ipate in the study for twomain reasons: (i) because themodels
to be createdwere geared towards their specific needs; and (ii)
because their expertise and participation were acknowledged
as essential to eliciting the models [26,27]. This shows how
important the inclusion of software engineering experts in
the process of building models is to increase their openness
to the use of data mining. Given that many software engi-
neers will have been working in their field of several years,
we believe that the importance of acknowledging their exper-
tise to support model building also extends to other software
engineering tasks than Web effort estimation. Even though
software engineers may lack the expertise to tune parame-
ters of certain data mining approaches, other data mining

approaches such as Bayesian networks lend themselves for
domain experts input.

Once the study finished, all companies except for the com-
pany in Brazil were contacted for postmortem interviews.
The interviews revealed that not only the resulting models
but also the process of building the models was itself advan-
tageous to the companies. This is because the process enabled
software engineering experts to thinkdeeply about their effort
estimation process and the factors taken into account during
that process. This has been pointed out by all the software
engineering experts interviewed after the study finished. All
the companies remained positive and very satisfied with the
results of the study once it finished. In particular, the soft-
ware engineering experts from the largest company in terms
of number of employees presented their effort estimation
models to their development teams and asked them to adopt
the model in all of their effort estimations. We believe that
the successful development of these six Web effort Bayesian
network models was thanks to the involvement of software
engineering experts in the loop. It was greatly influenced by
the commitment of the participating companies, and also by
the software engineering experts’ experience in estimating
effort.

The Bayesian networks from the study above were cre-
ated entirely based on expert knowledge. However, given
that software engineering experts can have their estimations
influenced by irrelevant and misleading information [18],
knowledge acquired from data could be used to improve
expert-based predictive models further. Knowledge acquired
from data could also be used to improve upon less experi-
enced software engineers’ knowledge. Meanwhile, software
engineering is a domain where there is relatively limited data
[6]. It is not uncommon for datasets produced by a given
company to contain less (or much less) than 50 projects
[1,17,31,33,39]. Therefore, models created solely based on
data can performpoorly. Knowledge from software engineer-
ing experts can be used to overcome the problem of little data
[10]. Carefully combining expert knowledgewith knowledge
automatically retrieved from data could bring the best of both
worlds in software engineering.

5 Recommendations for practitioners involvement

Based on previous experiences, we would like to share some
lessons gained in terms of involving software engineering
experts and ensuring successful adoption of the resulting
models by practitioners.

5.1 Initial engagement

To reach out to industry, researchers can organise seminars
to provide an introduction to the approaches to be used, how

123



312 Prog Artif Intell (2016) 5:307–314

they use software engineering experts knowledge and what
can be achieved by companies using such approaches. These
seminars can help practitioners to understand the value of the
approach. This has been successfully done in previous work
[26,27],where companies saw the immediate value in expert-
based Bayesian networks, in particular because it enabled the
very close and fundamental participation of in-house soft-
ware engineering experts while building and validating a
company-specific model.

5.2 Experts data collection

Besides collecting software engineering experts’ knowledge
through meetings, interviews and surveys, recent work has
also successfully used decision-support tools as a way to col-
lect data on software engineering experts decisions [28]. For
the software engineers, such tools can be designed with the
external purpose of helping software engineers to organise
their tasks, visualise data, record a diary of decisions, etc. For
the data miners, these tools can then collect and process data
produced by the software engineering experts. An analogy
of such tools can be made with software bug report tools,
which can be used to collect information about bugs from
software.

5.3 Initial results

As highlighted by Bener et al. [6], it is advisable to involve
software engineering experts in discussions about the initial
results achieved with the models and any concerns related to
them. Given software engineering experts’ knowledge about
the problem and the data being used, they may be able to
provide a clear explanation for poor performance or results
that are unexpected to the researcher.

5.4 Model improvement

Once amodel has been validated and put into use, it is impor-
tant to obtain feedback from developers and managers on its
use, as the model may need to be updated at some point.
Those who have participated in building the model should
ideally be the ones engaged in any model updates that take
place.

5.5 Company-wide model availability

Previous research building expert-based effort prediction
models in collaborationwith several software companies [27]
suggests that once suchmodels have been built and validated,
it is important that they do not remain within the boundaries
of a single development team and project manager (assum-
ing the company has several development teams and project

managers). Our anecdotal evidence from postmortem inter-
views with some of the companies with whom one of the
authors collaborated building such models provided us with
a range of concrete and industry-informed choices that can
be used for that. For instance:

– To increase the chances of successful adoption of a
model, it is advisable to presenting a seminar to all
developers and project managers who participate in the
development and management of the types of applica-
tions that were the focus of the expert-based model built.
One of the goals of this seminar is to elaborate on the
value that the entire company can gain from using such
models.

– We suggest that the seminar focuses around presenting
and detailing the model and various what-if scenarios
based on their most recent projects for which the model
was used. This provides concrete examples of how the
model is being used in the company. It is in our view also
important to detail all the factors and categories that were
defined by the software engineering experts who partici-
pated in building the model, such that all those attending
the seminar become familiar with the terminology.

– Once the seminar takes place, the documentation relating
to the model (description of factors and how to use the
model) should become available for all the participants.
The tool that is used to run the model and the model itself
should also be made available to all development teams,
so they can all run what-if scenarios obtained using the
model.

– The nomenclature that was defined in the model should
also become a common vocabulary for all teams, to be
used whenever they need to discuss anything relating to
the models. This is quite important as it guarantees the
model’s uptake by all relevant developers and managers.

– Depending on the purpose of the model being built, the
model can also be presented to clients of the software
company. For example, software effort estimationmodels
can be presented as a way to provide clients with reassur-
ance that the effort estimates being put forward are not
simply guesses. Project managers and/or requirements
analysts can take the model to requirements elicitation
meetings and use it as a guide to obtain some of the
evidence to be entered in the model to obtain an effort
estimate. Such approach can be effective and helpmaking
the elicitation meetings focused, in particular whenever
clients want quick cost estimates based on very short elic-
itation meetings.

– Seminar to other branches and/or events on best practices
can be organised within the company as part of a wider
strategy to use suchmodelling approach. In addition, such
model, or experiences fromusing it, can also be presented
at industry events as examples of best practice.

123



Prog Artif Intell (2016) 5:307–314 313

6 Conclusions

The current role of software engineering experts is usually
not discussed in papers on data mining for software engi-
neering, making adoption of approaches developed in this
field difficult in practice. To fill in this gap, this paper pro-
vided a discussion on the role of software engineering experts
when adopting datamining approaches. Even though this role
ranges from problem definition to decision-making, there is
a lack of involvement of software engineering experts in the
process of building data models. This lack of involvement is
a hindering factor when it comes to the acceptability of data
mining approaches by software engineering practitioners.

We argue that the involvement of software engineering
experts in the process of building data models is likely to not
only help increasing acceptability of datamining for software
engineering in practice, but also to improve the resulting data
models themselves. This is because data mining for software
engineering is a particular field in the sense that (1) many
software engineering experts will have valuable knowledge
that can be used for performing software engineering tasks,
despite being potentially affected by irrelevant information,
and (2) several software engineering tasks have a certain level
of data scarcity. Knowledge acquired from data can help to
overcome potential mistakes made by software engineering
experts and provide useful insights that they may otherwise
not have identified. At the same time, experts’ knowledge
can help to overcome the problems resulting from little data.
Our argument is supported by previous successful collab-
orations with industry and papers containing initial results
on integrating software engineering experts’ knowledge with
knowledge acquired from data. We also share some lessons
gained in terms of involving software engineering experts in
data mining studies and ensuring successful adoption of the
resulting models by practitioners.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Albrecht, A., Gaffney, J.E.J.: Software function, source lines of
code, and development effort prediction: a software engineering.
IEEE Trans. Softw. Eng. 9(6), 639–648 (2016)

2. An, L., Khomh, F.: An empirical study of crash-inducing com-
mits in mozilla firefox. In: Proceedings of the 11th International
Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE), pp. 5.1–5.10 (2015)

3. Aversano, L., Cerulo, L., Del Grosso, C.: Learning from bug-
introducing changes to prevent fault prone code. In: Proceedings of

the International Workshop on Principles of Software Evolution,
pp. 19–26 (2007)

4. Azhar, D., Mendes, E., Riddle, P.: A systematic review of
web resource estimation. In: Proceedings of the 8th Interna-
tional Conference on Predictive Models in Software Engineering
(PROMISE), pp. 49–58 (2012)

5. Azhar, D., Riddle, P., Mendes, E., Mittas, N., Angelias, L.:
Using ensembles for web effort estimation. In: Proceedings of the
ACM/IEEE International SymposiumonEmpirical Software Engi-
neering and Measurement, pp. 173–181 (2013)

6. Bener, A., Misirli, A., Caglayan, B., Kocaguneli, E., Calikli, G.:
The Art and Science of Analyzing Software Data: Analysis Pat-
terns, chap. Morgan Kaufmann, Lessons Learned For Software
Analytics in Practice (2015)

7. Boehm, B.W.: Software engineering economics. IEEE TSE 10(1),
4–21 (1984)

8. Boehm, B.W., Basili, V.R.: Software defect reduction top 10 list.
IEEE Comput. 34(1), 135–137 (2001)

9. Briand, L.C., Melo, W.L., Wst, J.: Assessing the applicability of
fault-proneness models across object-oriented software projects.
IEEE Trans. Softw. Eng. 28(7), 706–720 (2002)

10. Chulani, S., Bohem, B., Steece, B.: Bayesian analysis of empirical
software engineering cost models. IEEE Trans. Softw. Eng. 25(4),
573–583 (1999)

11. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F.,
Mendes, E.: Using tabu search to configure support vector regres-
sion for effort estimation. Empirical Softw. Eng. 18(3), 506–546
(2013)

12. Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data min-
ing techniques for software effort estimation: a comparative study.
IEEE Trans. Softw. Eng. 38(2), 375–397 (2012)

13. Ferrucci, F., Gravino, C., Sarro, F.: Exploiting prior-phase effort
data to estimate the effort for the subsequent phases: a further
assessment. In: Proceedings of the 10th International Conference
on Predictive Models in Software Engineering (PROMISE), pp.
42–51 (2014)

14. Gall, H., Menzies, T., Williams, L., Zimmermann, T.: Software
Development Analytics (Dagstuhl Seminar 14261). Dagstuhl Rep.
4(6), 64–83 (2014)

15. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A system-
atic literature review on fault prediction performance in software
engineering. IEEE Trans. Softw. Eng. 38(6), 1276–1304 (2012)

16. Jorgensen, M., Shepperd, M.: A systematic review of software
development cost estimation studies. IEEE Trans. Softw. Eng.
33(1), 33–53 (2007)

17. Jureczko, M., Madeyski, L.: Towards identifying software project
clusters with regard to defect prediction. In: Proceedings of the 6th
International Conference on Predictive Models in Software Engi-
neering, PROMISE ’10, pp. 9:1–9:10. ACM, New York (2010).
doi:10.1145/1868328.1868342

18. Jrgensen,M.,Grimstad, S.: The impact of irrelevant andmisleading
information on software development effort estimates: a random-
ized controlled field experiment. IEEE Trans. Softw. Eng. 37(5),
695–707 (2011)

19. Kamei, Y., Shihab, E., Adams, B., Hassan, A., Mockus, A., Sinha,
A.,Ubayashi,N.:A large-scale empirical studyof just-in-timequal-
ity assurance. IEEE Trans. Softw. Eng. 39(6), 757–773 (2013)

20. Kim, S., Whitehead Jr., E., Zhang, Y.: Classifying software
changes: clean or buggy? IEEE Trans. Softw. Eng. 34(2), 181–196
(2008)

21. Kocaguneli, E., Cukic, B., Menzies, T., Lu, H.: Building a second
opinion: learning cross-company data. In: Proceedings of the 9th
International Conference on Predictive Models in Software Engi-
neering, pp. 12.1–12.10 (2013)

22. Kocaguneli, E.,Menzies, T.,Mendes, E.: Transfer learning in effort
estimation. Empirical Softw. Eng. 20(3), 813–843 (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/1868328.1868342


314 Prog Artif Intell (2016) 5:307–314

23. Kultur, Y., Turhan, B., Bener, A.: Ensemble of neural networkswith
associative memory (ENNA) for estimating software development
costs. Knowl. Based Syst. 22, 395–402 (2009)

24. Lokan, C., Mendes, E.: Applying moving windows to software
effort estimation. In: International Symposium on Empirical Soft-
ware Engineering and Measurement, pp. 111–122. Lake Buena
Vista, Florida (2009)

25. MacDonell, S., Shepperd, M.: Using prior-phase effort records for
re-estimation during software projects. In: Proceedings of the Soft-
ware Metrics Symposium, pp. 73–86 (2003)

26. Mendes, E.: Using knowledge elicitation to improve web effort
estimation: lessons from six industrial case studies. In: Proceed-
ings of the International Conference on Software Engineering, pp.
1112–1121 (2012)

27. Mendes, E.: Practitioner’s Knowledge Representation: A Pathway
to Improve Software Effort Estimation. Springer, NewYork (2014)

28. Mendes, E.: Estimating the value of decisions relating to manag-
ing and developing software-intensive products: talk at CREST
open workshop on predictive modelling for software engi-
neering (2015). http://crest.cs.ucl.ac.uk/cow/44/videos/mendes_
cow44_720p.mp4

29. Mendes, E., Mosley, N.: Web Engineering. Springer Science &
Business Media, New York (2006)

30. Mendes, E., Mosley, N.: Bayesian network models for web effort
prediction: a comparative study. IEEE Trans. Softw. Eng. 34(6),
723–737 (2008)

31. Mendes, E., Mosley, N., Counsell, S.: Investigating web size met-
rics for early web cost estimation. J. Syst. Softw. 77(2), 157–172
(2005)

32. Menzies, T., Greenwald, J., Frank, A.: Data mining static code
attributes to learn defect predictors. IEEE Trans. Softw. Eng. 33(1),
2–13 (2007)

33. Menzies, T., Krishna, R., Pryor, D.: The promise repository of
empirical software engineering data (2015). http://openscience.us/
repo

34. Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener,
A.: Defect prediction from static code features: current results,
limitations, new approaches. Autom. Softw. Eng. 17(4), 375–407
(2010)

35. Minku, L., Yao, X.: Can cross-company data improve performance
in software effort estimation? In: Proceedings of the 8th Interna-
tional Conference on Predictive Models in Software Engineering
(PROMISE), pp. 69–78 (2012)

36. Minku, L., Yao, X.: Ensembles and locality: Insight on improving
software effort estimation. Inform. Softw. Technol. 55(8), 1512–
1528 (2013)

37. Minku, L., Yao, X.: How to make best use of cross-company data
in software effort estimation? In: Proceedings of the 36th Interna-
tional Conference on Software Engineering, pp. 446–456 (2014)

38. Minku, L.L., Yao, X.: Software effort estimation as a multi-
objective learning problem. ACM Trans. Softw. Eng. Methodol.
22(4), 35.1–35.32 (2013)

39. Miyazaki, Y., Terakado, M., Ozaki, K., Nozaki, H.: Robust regres-
sion for developing software estimation models. J. Syst. Softw.
27(1), 3–16 (1994)

40. Mockus, A.,Weiss, D.M.: Predicting risk of software changes. Bell
Labs Tech. J. 5(2), 169–180 (2000)

41. Nagappan, N., Ball, T.: Use of relative code churn measures to
predict system defect density. In: Proceedings of the International
Conference on Software Engineering, pp. 284–292 (2005). doi:10.
1145/1062455.1062514

42. Oliveira, A.L., Braga, P.L., Lima, R., Cornelio, M.L.: Ga-based
method for feature selection and parameters optimization for
machine learning regression applied to software effort estimation.
Inform. Softw. Technol. 52, 1155–1166 (2010)

43. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Automating algorithms
for the identification of fault-prone files. In: D.S. Rosenblum, S.G.
Elbaum (eds.) Proceedings of the International Symposium on
Software Testing and Analysis, pp. 219–227. ACM (2007)

44. Runeson, P.,Host,M.:Guidelines for conducting and reporting case
study research in software engineering. Empirical Softw. Eng. 14,
131–164 (2009)

45. Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software
effort estimation. In: Proceedings of the International Conference
on Software Engineering (2016) (to appear)

46. Shepperd, M., Schofield, C.: Estimating software project effort
using analogies. IEEE Trans. Softw. Eng. 23(12), 736–743 (1997)

47. Shull, F., Basili, V., Boehm, B., Brown, A.W., Costa, P., Lind-
vall, M., Port, D., Rus, I., Tesoriero, R., Zelkowitz, M.: What we
have learned about fighting defects. In: VIII International Sympo-
sium on Software Metrics, pp. 249–258. IEEE Computer Society,
Washigton, DC (2002). doi:10.1109/METRIC.2002.1011343

48. Song, L., Minku, L.L., Yao, X.: The impact of parameter tuning on
software effort estimation using learning machines. In: Proceed-
ings of the 9th International Conference on Predictive Models in
Software Engineering (PROMISE), pp. 9.1–9.10 (2013)

49. Tantithamthavorn, C., McIntosh, S., Hassan, A., Matsumoto, K.:
Automated parameter optimization of classification techniques for
defect prediction models. In: Proceedings of the International Con-
ference on Software Engineering (2016) (to appear)

50. Tosun, A., Bener, A.B., Turhan, B., Menzies, T.: Practical con-
siderations in deploying statistical methods for defect prediction: a
case study within the turkish telecommunications industry. Inform.
Softw. Technol. 52(11), 1242–1257 (2010)

51. Tsunoda, M., Kamei, Y., Toda, K., Nagappan, M., Fushida, K.,
Ubayashi, N.: Revisiting software development effort estimation
based on early phase development activities. In: Proceedings of the
10th IEEEWorking Conference on Mining Software Repositories,
pp. 429–438 (2013)

52. Turhan, B., Menzies, T., Bener, A., Di Stefano, J.: On the rela-
tive value of cross-company and within-company data for defect
prediction. Empirical Softw. Eng. 14(5), 540–578 (2009)

53. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Do too many cooks spoil
the broth? using the number of developers to enhance defect pre-
diction models. Empirical Softw. Eng. 13(5), 539–559 (2008)

54. Zimmermann, T., Nagappan, N., Gall, H.C., Giger, E., Murphy,
B.: Cross-project defect prediction: a large scale experiment on
data vs. domain vs. process. In: van Vliet, H., Issarny, V. (eds.)
Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on
theFoundations of SoftwareEngineering, pp. 91–100.ACM(2009)

123

http://crest.cs.ucl.ac.uk/cow/44/videos/mendes_cow44_720p.mp4
http://crest.cs.ucl.ac.uk/cow/44/videos/mendes_cow44_720p.mp4
http://openscience.us/repo
http://openscience.us/repo
http://dx.doi.org/10.1145/1062455.1062514
http://dx.doi.org/10.1145/1062455.1062514
http://dx.doi.org/10.1109/METRIC.2002.1011343

	Data mining for software engineering and humans in the loop
	Abstract
	1 Introduction
	2 Current work on data mining for software engineering
	2.1 Software effort estimation
	2.2 Software defect (bug) prediction
	2.3 Prediction of bug-inducing software changes

	3 The current role of software engineering experts
	3.1 Problem definition
	3.2 Data collection
	3.3 Model building
	3.4 Model usage and decision-making

	4 The potential role of software engineering experts
	5 Recommendations for practitioners involvement
	5.1 Initial engagement
	5.2 Experts data collection
	5.3 Initial results
	5.4 Model improvement
	5.5 Company-wide model availability

	6 Conclusions
	References




