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Measurement of Chern numbers through center-of-mass responses
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Probing the center-of-mass of an ultracold atomic cloud can be used to measure Chern numbers, the topological
invariants underlying the quantum Hall effects. In this work, we show how such center-of-mass observables can
have a much richer dependence on topological invariants than previously discussed. In fact, the response of the
center of mass depends not only on the current density, typically measured in a solid-state system, but also on
the particle density, which itself can be sensitive to the topology of the band structure. We apply a semiclassical
approach, supported by numerical simulations, to highlight the key differences between center-of-mass responses
and more standard conductivity measurements. We illustrate this by analyzing both the two- and four-dimensional
quantum Hall effects. These results have important implications for experiments in engineered topological
systems, such as ultracold gases and photonics.

DOI: 10.1103/PhysRevB.93.245113

I. INTRODUCTION

Over recent decades, there has been great interest in study-
ing topological phases of matter [1,2]. In these systems, energy
bands can be characterized by topological invariants, which
have direct physical consequences in quantized bulk responses
and robust edge physics. In the famous two-dimensional (2D)
quantum Hall (QH) effect, for example, the Hall conductance is
quantized in multiples of the integer first Chern number (1CN),
an important topological invariant of 2D energy bands [3].

Although the 2D QH effect was first studied for electrons in
solid-state materials subject to a perpendicular magnetic field,
there has been much progress also in exploring this physics
for other analog systems, such as ultracold atomic gases
[4–9] and photonics [10,11]. In these systems, the particles
are uncharged, and the effects of the magnetic field must
be engineered artificially using other means [12–14]. These
engineered platforms offer a variety of new opportunities, such
as the recent proposal for engineering the four-dimensional
(4D) QH effect for the first time [15,16]. This may be
achieved by combining a three-dimensional system of atoms or
photons with a “synthetic” dimension, where internal degrees
of freedom are coupled to simulate an additional spatial
dimension [8,9,17,18].

In atomic or photonic systems, different physical concepts
are required, not only to access quantum Hall physics, but also
to measure and probe its signatures. Usually in a solid-state ma-
terial, the QH effect is observed in the electrical conductivity,
namely, through voltage or current measurements. However,
such measurements are difficult to perform in analog quantum
Hall systems, and instead much work has gone into finding new
tools for probing the topological and geometrical properties
of energy bands [19–37]. In particular, QH responses can be
measured in the center-of-mass drift of an ultracold atomic
cloud [6,15,21,22], or in the displacement of the center of
mass of the photon steady state [16,30].

*hannah.price@unitn.it
†ngoldman@ulb.ac.be

Measurements of observables related to the center-of-mass
(c.m.) motion typically depend not just on the current, which
is usually measured in a solid-state system, but also on the
particle density. For example, the c.m. velocity for a cloud of
Ntot atoms with total velocity vtot is defined as

vc.m. = vtot

Ntot
= j

n
, (1)

where the current density is j = vtot/L
d and the particle

density is n = Ntot/L
d for a system of length L and dimension

d. For a QH system, the current density is proportional to
the topological invariants (Chern numbers) of filled energy
bands [see, e.g., Eq. (2) below]. This behavior is captured
directly by c.m. observables for the cases previously studied
[6,16,21,22,30], in which the particle density n only con-
tributes an unimportant constant factor. However, the particle
density can itself become a function of the geometrical and
topological properties of the energy bands in the presence of
external (possibly artificial) magnetic perturbations [15,19,38–
40]. As we show in this paper, center-of-mass responses can
therefore exhibit a much richer dependence on topological
invariants than previously discussed.

In this work, we use a semiclassical approach to explore
how c.m. responses depend on the topological invariants
of filled energy bands. We illustrate these results for the
2D quantum Hall effect, where we show that center-of-
mass observables can exhibit nonlinear topological responses,
which would not be observed in conductivity measurements,
as routinely performed in solid-state systems. Our findings
are directly relevant for current experiments in ultracold gases
[4–9], photonics [10,11], and even classical mechanical sys-
tems [41]. As far as ultracold gases are concerned, we em-
phasize that our semiclassical treatment is valid for uniformly
filled bands of either bosons or fermions, as can be achieved
through fermionic statistics (for Fermi gases) or through
thermal effects. We also build on our recent experimental
proposals for the 4D quantum Hall effect [15,16] and show that
in such 4D systems, our results have important implications
for experimental design and detection. We demonstrate, for
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example, pathological cases in which 4D topological invariants
would vanish from center-of-mass responses, while persisting
in conductivity measurements.

A. Main implications for the 2D quantum Hall effect

Before proceeding, we emphasize the key implications of
our results for the 2D quantum Hall effect. For a filled band
of electrons, the transverse (Hall) current density follows the
linear relation [3]

jx = e2

h
Eyν

xy

1 , (2)

where Ey is an external electric field aligned along the y

direction, e is the elementary charge, h is Planck’s constant,
and ν

xy

1 is the topological 1CN of the populated band [defined
in Eq. (4) below]; in the 2D QH effect, a nonzero 1CN, and
hence a nonzero Hall current, is due to an applied perpendicular
magnetic field. As the 1CN is topological, the Hall response
in Eq. (2) is remarkably robust; for example, it is insensitive to
small changes in the magnetic field provided that the energy
gap of the system remains open. This leads to characteristic
plateaus in the Hall conductivity σxy = jx/Ey plotted as a
function of the applied magnetic field, where the height of a
given plateau is proportional to the 1CN (summed over filled
energy bands) [3].

In contrast, c.m. observables can have a much more
complicated dependence on the topological index of an energy
band. We find that the c.m. velocity (1) of an ultracold cloud,
for example, can include nonlinear topological responses,
such as a contribution proportional to (νxy

1 )2 under a small
perturbation of the applied (artificial) magnetic field [see
Eq. (28) below]. Such terms, which have no analog in current
responses, stem from an interplay between the topological
invariants appearing in both the current density and particle
density in Eq. (1). These effects could be observed in state-
of-the-art experiments with ultracold atoms and in photonics
[4–11], where magnetic perturbations can both arise naturally
from experimental uncertainties in the (artificial) magnetic
flux imposed, and be engineered deliberately using current
experimental techniques. Our theory allows one to clearly
identify these topological effects and to understand the
important differences between probing QH physics through
c.m. observables versus conductivity measurements.

B. Outline

The structure of this paper is as follows: We begin by
reviewing in Sec. II how the semiclassical equations of motion
can be used to calculate the quantum Hall current response
and other relevant observables. In Sec. III, we study a 2D
quantum Hall system, emphasizing the effects of a magnetic
field perturbation on the particle density and hence on any
c.m. observables. In particular, we illustrate the effects of
nonlinear topological responses in the c.m. transverse velocity.
In Sec. IV, as a further example, we consider a 4D quantum
Hall system, where the distinction between c.m. observables
and current measurements has very striking implications for
the design of future experiments; for example, we identify
pathological configurations of the perturbing electromagnetic
fields for which 4D topological invariants can be extracted

from a current response, and yet not from a center-of-mass
response. Finally, we present additional experimental remarks
in Sec. V and draw conclusions in Sec. VI.

II. SEMICLASSICAL APPROACH TO THE
QUANTUM HALL EFFECT

In this section, we develop a semiclassical description
of center-of mass responses. In Sec. II A, we introduce the
geometrical and topological properties of eigenstates in an
energy band of a quantum Hall system, before reviewing
the semiclassical equations of motion for a wave packet
constructed out of these eigenstates in Sec. II B [42–46].
From these equations, we review how to derive the modified
density of states, the quantum Hall current density, and relevant
center-of-mass observables in Secs. II C–II E, respectively. By
keeping terms up to second order in the external perturbing
fields, this semiclassical framework can be used to describe
both current experiments on 2D quantum Hall physics in
ultracold gases and photonics [4–11] (see Sec. III) as well
as proposed schemes for realizing the 4D quantum Hall effect
[15,16] (see Sec. IV).

A. Berry curvature, the first Chern number, and
the second Chern number

We begin from a particle in a periodic potential, where
the eigenstates can be expressed through Bloch’s theorem
as |χn,k〉=eik·r |un,k〉, where |un,k〉 are the periodic Bloch
functions and k is the corresponding quasimomentum. In the
Brillouin zone (BZ), the Bloch functions |un,k〉 form bands
where the energy dispersion En(k) is labeled by the band index
n. In this paper, we focus on the physics of an energetically
isolated nondegenerate energy band, and so hereafter we drop
the label n.

The eigenstates that make up the energy band can have non-
trivial local geometrical properties as encoded, for example, in
the Berry curvature [38]. In this paper, we deal with systems of
various dimensionalities and so we express the Berry curvature
as a general differential 2-form

� = 1
2�μν(k)dkμ∧dkν,

�μν(k) = ∂kμ
Akν

− ∂kν
Akμ

, (3)

where ∧ is the antisymmetric wedge product, Akμ
=

i〈uk|∂kμ
|uk〉 is the Berry connection, and where the indices

μ,ν run over all spatial coordinates with Einstein summation
convention. As can be seen from this definition, the Berry
curvature components are antisymmetric under an exchange
of indices �μν(k) = −�νμ(k). Importantly, geometrical prop-
erties, such as the Berry curvature, are also closely related to
key topological properties of the energy bands.

In general, topological phases of matter can be classified
according to the symmetries and dimensionality of the system
[48]. In this paper, we focus on noninteracting systems without
any symmetries, where the energy bands are topologically
trivial in odd dimensions but can be characterized by nonzero
topological integers in even dimensions [3,47,48]. We con-
sider, in particular, systems with two and four dimensions,
where the relevant topological invariants are known as the
first and second Chern numbers, respectively. For a 2D system
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in, e.g. the x-y plane, the 1CN is calculated from the Berry
curvature as

ν
xy

1 = 1

2π

∫
T2

� = 1

2π

∫
T2

�xydkxdky ∈ Z, (4)

where the integral is over the first (magnetic) two-dimensional
BZ, which is denoted here by T2 to emphasize that it is
topologically equivalent to a 2-torus. We note that νxy

1 = −ν
yx

1
by the antisymmetry of the Berry curvature.

In 4D, the second Chern number (2CN) can also be
calculated from the Berry curvature as [49–53]

ν2 = 1

8π2

∫
T4

� ∧ � ∈ Z

= 1

32π2

∫
T4

εαβγ δ�
αβ�γδd4k

= 1

4π2

∫
T4

�xy�zw+�wx�zy +�zx�ywd4k, (5)

where εαβγ δ is the 4D Levi-Civita symbol and where we
have written out the antisymmetric wedge product � ∧ � in
components for clarity. Now, the integral is taken over the
first (magnetic) BZ in 4D, which we denote by T4. As can
be seen, the 2CN is a genuine four-dimensional invariant,
which vanishes in lower-dimensional systems due to the
4D Levi-Civita symbol. Physically, the 2CN underlies the
quantization of current in the 4D quantum Hall effect as will
be introduced below.

We emphasize that in the above definitions we have
explicitly restricted ourselves to a single isolated energy band.
More generally, there may be an isolated set of bands among
which there are degeneracies, such as for a spin- 1

2 particle in
the presence of time-reversal symmetry. Then, the components
of the Berry curvature �μν are themselves matrices, with
indices running over the set of bands. The definitions of the
1CN (4) and the 2CN (5) can then be generalized to the
integral of a matrix trace over � and � ∧ �, respectively. We
note that while the 1CN so defined always vanishes without
time-reversal symmetry breaking, there can be nonzero 2CNs
also in a time-reversal-invariant system in the presence of an
SU(2) gauge field; indeed, this was the context in which the 4D
quantum Hall effect was originally proposed [49] and studied
[50,54–58].

B. Semiclassical equations of motion

Having introduced the geometrical and topological prop-
erties of the underlying energy bands, we now review the
motion of a wave packet prepared in a given Bloch band E(k)
and subject to perturbing electromagnetic fields [42–46].

1. Introducing the perturbing fields

We consider particles of charge −e moving in the presence
of two families of fields: (1) the “intrinsic” fields Bμν

generating the band structure E(k) under scrutiny, and (2) the
perturbing “extrinsic” fields in response to which transport
is analyzed. While the intrinsic fields Bμν do not need to
be specified at this stage [their effects are entirely captured
by the dispersion E(k) and Berry curvature �μν(k) of the
band], the perturbing fields will be taken in the form of a

weak electric field E = Eμeμ and a weak magnetic field
strength Bμν =∂μAν −∂νAμ, where A = Aμeμ denotes the
electromagnetic vector potential. We assume that these weak
external electromagnetic fields are both time independent and
spatially uniform. In the following, we also set Planck’s
constant �=1 and the elementary charge e=1, such that
h/e2 =2π . We note that the discussion that follows is general
and also directly applies to neutral particles subject to synthetic
gauge fields [12,13].

Finally, we point out that, while the field Bμν should be
weak enough for the following perturbative analysis to be
valid, the partition of external magnetic fields into intrinsic
(Bμν) and perturbing (Bμν) components is somewhat arbitrary;
this aspect will be illustrated in Secs. III and IV.

2. Equations of motion

In a semiclassical approach, motion is assumed to be
adiabatic with respect to a manifold of states, such that a wave
packet can be constructed out of this manifold at all times. The
wave packet is chosen to have a well-defined center of mass
at position rc =r

μ
c eμ and quasimomentum kc =kc

μeμ. The
appropriate manifold to use for the wave-packet construction
depends on the strength of the applied electromagnetic fields.
To see this, the full quantum Hamiltonian, including the
perturbing electromagnetic fields, can be expanded around rc

as [38,42–46]

Ĥ ≈ Ĥc + Ĥ ′ + Ĥ ′′ + . . . , (6)

where Ĥc is the full Hamiltonian evaluated at the center-of-
mass position, and Ĥ ′ (Ĥ ′′) are first- (second-) order gradient
corrections in the electromagnetic fields.

When the external fields are weak, the wave packet moves
adiabatically with respect to the eigenstates of an isolated
energy band E(k) of Ĥc, corresponding to the original Bloch
states |uk〉 introduced above, up to a phase [42,43]. The
resulting semiclassical equations of motion are then consistent
up to first order in the perturbing electromagnetic fields;
this is sufficient to capture the physics of the 2D quantum
Hall effect for a filled band. To extend this validity up to
second order, so that we may also capture the (nonlinear) 4D
quantum Hall response, the wave packet should be constructed
out of the perturbed states |ũk〉 = |uk〉 + |ũ′

k〉 where |ũ′
k〉

are the first-order band-mixing corrections from Ĥ ′ [44–46].
These perturbed states have geometrical properties encoded in
modified Berry curvature components [44]

�̃μν = �μν + �
μν

1 ,

�
μν

1 = ∂kμ
A′

kν
− ∂kν

A′
kμ

, (7)

where A′
kμ

= i〈u|∂kμ
|u′〉 + c.c. is the first-order correction to

the Berry connection. As derived in Ref. [44], the semiclassical
equations valid up to second order in dimensions d � 2 are

ṙμ(k) = ∂ Ẽ(k)

∂kμ

− k̇ν�̃
μν(k), (8)

k̇μ = −Eμ − ṙ νBμν, (9)

where we have dropped the subscript c from the center-of-
mass position and quasimomentum. Here, the second-order
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wave-packet energy Ẽ(k) contains the unperturbed Bloch band
E(k) plus corrections from the perturbing terms Ĥ ′ + Ĥ ′′
[44,46]. These equations can be combined repeatedly to give
the mean velocity of the wave packet [15]

ṙμ ≈ ∂ Ẽ
∂kμ

+ Eν�̃
μν

+
(

∂ Ẽ
∂kγ

+ Eδ�̃
γ δ + ∂ Ẽ

∂kα

Bδα�̃γ δ

)
Bνγ �̃μν, (10)

where terms above second order in the perturbing electromag-
netic fields are neglected. As can be seen, there are many terms
in this expression; these will lead both to Bloch oscillations
and unquantized anomalous Hall effects for a wave packet
[44,46].

In order to reveal the topological quantum Hall effects, one
has to compute the total current density jμ associated with an
entirely populated band. This can be obtained using the mean
velocity in Eq. (10) and summing over all the states located in
the band,

jμ = 1

Ld

∑
k

ρ(k) ṙμ(k), (11)

where Ld is the volume of the system of dimension d, and
where ρ(k) is the distribution function of particles within the
band. In general, converting the sum over momentum states
in Eq. (11) into an integral over the BZ is subtle [38]: in the
semiclassical limit, this operation can be performed through
the so-called modified density of states D(r,k):

1

Ld

∑
k

ρ(k) →
∫
Td

ddk D(r,k)ρ(k), (12)

where the integration is performed over the first (magnetic)
Brillouin zone (Td ). Notably, the explicit expression for the
modified density of states relies on an interesting interplay
between the perturbing magnetic field Bμν and the Berry
curvature of the band �μν .

C. Modified density of states

When all magnetic field effects are included intrinsically
into the band structure, the phase-space density of states
D(r,k) is a simple constant factor of 1/hd =1/(2π )d . This is
also the case when all magnetic fields are treated extrinsically
as perturbations acting on systems with zero Berry curvature.
The fact that the density of states remains constant is guaran-
teed classically by Liouville’s theorem, which states that the
phase-space volume element is conserved under time evolution
[39]. However, Liouville’s theorem holds for the volume
element �V = �R�K associated with the canonical position
R and momentum K , while the semiclassical treatment above
is for the physical position r and momentum k [39,40,59].

To see how canonical and physical variables are related, we
consider three cases in turn. First, if all magnetic effects are
treated extrinsically, i.e., are not incorporated into the band
structure, and if the unperturbed band structure has a trivial
geometry (vanishing Berry curvature), the particle moves in
the presence of a magnetic vector potential but a trivial Berry
connection. Then, the physical momentum is modified by the

minimal (or Peierls) substitution k = K − A(r), while the
physical and canonical positions are equivalent [60].

Second, if all magnetic effects are treated intrinsically,
i.e., are included in the band structure, the particle moves
in the presence of a nontrivial Berry connection but no
(additional) magnetic vector potential. In this case, the physical
position is r = R + A(k), while the physical and canonical
momenta are equivalent [38,61,62]. The symmetry between
these substitutions can be understood as the Berry curvature
acting like a magnetic field in momentum space [62–64], i.e.,
the Berry connection A and magnetic vector potential A are
dual.

Third, if, as we consider here, some magnetic fields
are treated intrinsically and some extrinsically, the particle
experiences both a Berry connection and a magnetic vector
potential. Then, neither the physical position nor momentum
remain equal to their canonical counterparts, and generalized
Peierls substitutions are required [38,44,59,65]. The modified
density of states D(r,k) can then be understood as the
usual phase-space density of states 1/(2π )d multiplied by
the Jacobian of the transformation from the canonical to
physical variables [40,59,65,66]. For dimensions up to d = 4,
the modified density of states, valid to second order in the
external fields, is given by [15]

D(r,k) = 1

(2π )d

[
1 + 1

2
Bμν�̃

μν + 1

64
(εαβγ δBαβBγδ)

× (εμνλρ�
μν�λρ)

]
, (13)

where, thanks to the Levi-Civita symbol, the last term
vanishes in fewer than four dimensions [39,40,59,65]. Since
our analysis is restricted to second order, the last term in
Eq. (13) only involves the zeroth-order components of the
Berry curvature �μν . In contrast, the first correction to the
density of states, which is linear in the perturbing magnetic
field Bμν , involves the first-order corrections to the curvature
through �̃μν . Importantly, the correction �

μν

1 , introduced in
Eq. (7), necessarily vanishes upon integration over the BZ as
it is the curl of A′

kμ
, which is gauge invariant and periodic in

the BZ [44]. Hence, one can safely substitute �̃μν → �μν in
Eq. (13) whenever one considers a uniformly filled band.

D. Semiclassical current density

The modified density of states (13) can be combined
with the mean velocity (10) to evaluate the semiclassical
current density of a band filled with a given distribution of
particles ρ(k). In standard quantum Hall systems, one typically
considers an isolated band that is completely filled with
spinless fermions, in which case ρ(k)=1. The more general
uniformly populated-band situation [i.e., ρ(k)=ρ] is also
particularly relevant to cold-atom and photonics experiments
(see Secs. II E 1 and II E 2). However, as the current density
jμ for this configuration can be simply obtained from the
completely filled-band result through the substitution jμ(ρ)→
ρjμ(ρ =1) [see Eq. (11)], we focus without loss of generality
on the completely filled-band case.
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Then, the semiclassical current density is

jμ≈
∫
Td

ddk

(2π )d

[
Eν�̃

μν + Eδ�
γδBνγ �μν+1

2
Eν�

μνBδγ �δγ

+ ∂ Ẽ
∂kμ

+ ∂ Ẽ
∂kγ

Bνγ �̃μν + 1

2

∂ Ẽ
∂kμ

Bγν�̃
γ ν

+
(

∂E
∂kα

Bδα�γδ + 1

2

∂E
∂kγ

Bδα�δα

)
Bνγ �μν

+ 1

64

∂E
∂kμ

(εαβγ δBαβBγδ)(εξνλρ�
ξν�λρ)

]
, (14)

where whenever needed � replaces �̃ and E replaces Ẽ to
keep only terms up to second order in the external fields.
Expression (14) can be substantially simplified; first, terms on
the third and fourth lines sum to zero due to the antisymmetry
of the magnetic field strength and Berry curvature [15]. As
this cancellation is by symmetry, it holds also for a band with
arbitrary filling. Second, it can be shown that terms on the
second line vanish upon integration over the BZ, using, as
needed, the periodicity of the corrected energy dispersion Ẽ
and the Bianchi identity for the antisymmetric Berry curvature
[45]. This leaves only the first line which we rewrite as

jμ = Eν

∫
Td

�μν ddk

(2π )d

+ εμαβν 1

8
EνBαβ

∫
Td

εγ δλρ�
γδ�λρ ddk

(2π )d
, (15)

where we have used that the Berry curvature correction �1(k)
vanishes upon integration over the BZ as commented above
[44]. We note that this expression does not depend on the
corrections to the energy and Berry curvature appearing in the
full second-order semiclassical equations (8) and (9); these
would, however, play a role in the dynamics of bands with
nonuniform partial fillings, which we do not discuss further
here.

It is important to note, additionally, that the inclusion of the
modified density of states in calculating the current density
(14) implies that the band is filled in the presence of the
perturbing magnetic field Bμν . The experimental implications
of this will be discussed further in Sec. V. We also point
out that the perturbing magnetic field can potentially split
the unperturbed Bloch band under scrutiny E(k) into a set of
subbands, in which case the filling condition discussed above
should apply to the set of subbands.

1. Linear vs nonlinear responses

The first term in Eq. (15) can be nonzero for a system
with two or more dimensions; this is the famous quantum
Hall current response which is linear in the applied electric
field. This is independent of any magnetic perturbations and,
in 2D, is directly proportional to the 1CN in Eq. (4). The
second term, conversely, may be nonzero only for systems
with four or more dimensions due to the Levi-Civita symbols;
it corresponds to a nonlinear current response as it depends on
both the applied electric field and the magnetic perturbing field.
In 4D, the nonlinear term is directly proportional to the 2CN
in Eq. (5). While we have truncated the perturbative treatment

at second order in the applied fields, at each higher order
there can be an additional quantum Hall response for systems
with increasing even dimensions (potentially involving higher-
dimensional topological invariants).

2. External field partitionment and the current response

We observe that the current response jμ in Eq. (15) should
not depend on the arbitrary partition of external magnetic
fields into intrinsic (Bμν) and perturbing (Bμν) components
(see discussion in Sec. II B 1). In particular, one is formally
allowed to include all external magnetic fields into the intrinsic
component, which in our framework is directly realized
through the substitutions

Bμν → Bμν + Bμν, Bμν → 0. (16)

In this singular picture, the intrinsic Berry curvature now
depends on the included weak field components �→�(Bαβ),
and the transport equation in Eq. (15) becomes

jμ = Eν

∫
Td

�μν(k; Bαβ)
ddk

(2π )d
, (17)

where the linear and nonlinear responses are now mingled.
We note that the area of the magnetic Brillouin zone Td

over which the integration is performed now also depends
on the included magnetic perturbation AMBZ =AMBZ(Bαβ).
Moreover, including the perturbation Bαβ within the band
structure potentially leads to a band splitting (see, e.g., Fig. 1),
in which case a trace should be performed over the matrix-
valued Berry curvature in Eq. (17).

In this picture, the relation between the current responses
and the Chern numbers of the underlying band structure
is obscured, and so is the quantization of (Hall) transport
coefficients. This drawback is particularly well illustrated in
the case of time-reversal-invariant 4D systems subject to time-
reversal-breaking perturbations [49,50,54–58]: the connection
between the 4D-QH current response and the 2CN of the bands
is only made clear when treating all external U(1) magnetic
fields as perturbing components (i.e., by working in a picture
where the unperturbed system is time-reversal invariant).

These observations highlight the fact that, when all mag-
netic fields are present at all times, the external field partition,
although arbitrary and formal, could be chosen based on
theoretical convenience (see Secs. III and IV for illustrations).
However, in some experimental systems, as we discuss in
Sec. V, it is possible to ramp up magnetic perturbations
after the initial preparation of the energy bands, in which
case the partitionment of the field into intrinsic and extrinsic
components follows naturally.

E. Center-of-mass observables

While current or voltage measurements have long been
used to study the quantum Hall effect in solid-state systems,
other measurements are easier to make in the analog quantum
Hall systems which are currently of great experimental interest
[4–9,11,31]. In particular, key experimental observables in
ultracold atomic gases and photonics can be related to center-
of-mass (c.m.) behavior, e.g., the center-of-mass motion of an
atomic cloud (1). Such c.m. observables depend generally not
just on the quantum Hall current (15), but also on the particle
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FIG. 1. Energy spectrum E(kx,ky) of the 2D Harper-Hofstadter model [67] for (a) �= 1
3 and (b) �= 101

300 . For �= 1
3 , the spectrum contains

three well-separated bands, where the 1CN of the lowest band is indicated. Increasing the flux to �= 101
300 splits the lowest band into 101

subbands, while preserving the sum of 1CNs as shown. Due to the large number of bands in (b) compared to (a) it can be useful to instead view
a system with total flux �= 101

300 as a system with a strong flux �= 1
3 and a weak perturbing flux �̃= 1

300 . (c) Hofstadter butterfly (energy as a
function of the magnetic flux �) in the vicinity of the value �= 1

3 . The lowest band at exactly �= 1
3 is shown to split into many subbands as

the flux deviates from this ideal value, leading to complex (fractal) patterns in the E-� plane.

density n, which is calculated semiclassically as

n =
∫
Td

ddk D(r,k)ρ(k). (18)

As the modified density of states D(r,k) directly depends
on the Berry curvature � [see Eq. (13)], the particle density
of a filled band potentially contains information about the
topology of the filled band (see Secs. III B 2 and IV B 3). This
has important implications for experiments that extract Chern
numbers from the measurements of c.m. observables.

1. Center-of-mass drift in cold atoms

In ultracold atoms, as introduced above, a natural observ-
able is the center-of-mass motion of a cloud, which can
be extracted from in situ density measurements as in the
experiment of Ref. [6]. As shown in Eq. (1), the c.m. velocity
for a cloud of atoms is given by vc.m. = j/n, and so is influenced
by both the (quantum Hall) current response (15) and the
particle density n (18), with important consequences discussed
below.

We also point out that the above semiclassical analysis
equally applies to systems of noninteracting fermions and
bosons, as it only relies on the distribution function of particles
within the band ρ(k). Importantly, when a Bloch band is
uniformly populated, ρ(k)=ρ, the c.m. observables such as in
Eq. (1) become independent of the band-filling factor ρ. This
is because both the current density jμ from Eq. (11) and the
particle density n in Eq. (18) are directly proportional to the
band-filling factor ρ.

The uniformly populated-band situation [ρ(k)=ρ] is par-
ticularly relevant to cold-atom experiments, whenever the
temperature T is large compared to the bandwidth W of the
lowest-energy band, but small (or of the order) of the band
gap W 	kBT 	�. This typically occurs when the lowest
Bloch band displays a large flatness ratio �/W 
1, as was
recently demonstrated in the Munich experiment [6] through
band mapping. In particular, this indicates that atomic transport
experiments based on center-of-mass responses could be
equally performed using (thermal) Bose or Fermi gases; this is
in sharp contrast to measurements based on current densities,
where the filling factor ρ should be independently measured.

2. Center-of-mass displacement in photonics

In photonics, an optical analog of the quantum Hall effect
could be measured in the displacement of the center of mass
of the photon steady state in a driven-dissipative system of
coupled photonic cavities [30]. In such a system, a continuous-
wave laser can pump light resonantly with a given isolated
energy band, while the photon loss rate γ in the lattice is
chosen such that W 	γ 	�, where W is the bandwidth of
the chosen energy band, and � is the band gap to the nearest
energy band. In this regime, for sufficiently long times, the
light reaches a nonequilibrium steady state in which the losses
lead to an approximately uniform population of the single
energy band. Hence, the center-of-mass displacement of the
photon steady state for a square (hypercubic) lattice can be
expressed as [16,30]

〈rphoton〉 =
∑

r r|ar |2∑
r |ar |2 ≈ j

γ n
, (19)

where ar is the expectation value of the photon field in the
cavity labeled by r , the d-dimensional position index, and
where n is again the particle density of the filled band (18).
This idea is not restricted to optics, but an analogous effect
could also be observed in any driven-dissipative system of
coupled-classical harmonic oscillators simulating quantum
Hall physics [68].

Due to the similarities between Eqs. (1) and (19), our discus-
sion in the following sections focuses on the center-of-mass
velocity for ultracold atoms but has important experimental
implications also in photonics or even in classical mechanical
systems. However, we note that the displacement of the steady
state in Eq. (19) is the leading-order term to which there
are corrections that, for example, do not depend on the loss
rate, and which should be included when modeling realistic
experiments [16,30].

III. MAGNETIC PERTURBATIONS AND THE
2D QUANTUM HALL EFFECT

To emphasize the differences between the current density
and center-of-mass response, we first discuss the important
case of a two-dimensional quantum Hall system in the x-y
plane. As defined in Eq. (4), the integral of the Berry curvature
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over the whole 2D BZ gives the topological first Chern number
ν

xy

1 of the band. In the following, we focus on the 2D Harper-
Hofstadter model, introduced below, as a concrete example of a
system with energy bands that have nontrivial 1CNs. However,
we note that it is straightforward to extend our discussion to
other topologically nontrivial 2D models as required.

A. 2D Harper-Hofstadter model

The 2D Harper-Hofstadter (HH) model is a seminal lattice
model for studying the quantum Hall effect that was originally
developed to describe a charged particle hopping on a 2D
tight-binding square lattice in the presence of a uniform
perpendicular magnetic field B =Bez [67]. The Hamiltonian
is given by

Ĥ = −J
∑

r

(
c
†
r+aex

cr + ei2π�x/ac
†
r+aey

cr + H.c.
)
, (20)

where c
†
r creates a fermion at lattice site r = (x,y), a is the

lattice spacing, J is the hopping amplitude, and �=−a2B/2π

is the magnetic flux per plaquette in units of the flux quantum.
Here, we have chosen the magnetic vector potential in the
Landau gauge such that the hopping along ŷ is modified by
complex spatially dependent Peierls phase factors, while the
hopping along x̂ is unaffected by them.

A rational magnetic flux per plaquette � = p/q, where p

and q are coprime integers, can be directly incorporated into
magnetic Bloch states [51]. These are arranged into q energy
bands described by a band structure En(kx,ky) in the so-called
magnetic Brillouin zone [see Fig. 1(a)]. The magnetic Brillouin
zone is defined by the magnetic translational symmetry of the
HH model, and is a factor of q smaller than the original BZ,
having an area AMBZ = (2π )2/qa2. Due to the incorporated
magnetic flux, the eigenstates in the bands have nontrivial
Berry curvatures and nonzero 1CNs. For suitable values of the
flux (e.g., � = 1/q), the energy spectrum has a nondegenerate
lowest band which is well separated from other bands, to which
the above semiclassical approach can be directly applied.

1. Physical realizations of the HH model

The HH model is a directly experimentally relevant model
in materials, where it has been realized for electronic transport
in graphene placed on boron nitride substrates [69,70].
Furthermore, the HH model has recently been generated in a
wide variety of analog systems with neutral particles, where the
spatially dependent complex (Peierls) phase factors in the tun-
neling matrix elements are carefully engineered. In ultracold
gases, for example, the HH model has been realized by trapping
atoms in a 2D optical lattice, and then combining a superlattice
(or a Wannier-Stark ladder) along one direction with a resonant
time modulation of the optical-lattice potential [4–6]. In an
alternative approach, atoms were trapped in a one-dimensional
optical lattice while two-photon Raman couplings induced
transitions between different internal atomic states [8,9]. In
this setup, the internal states could then be viewed as sites
along an extra “synthetic” dimension [17,18], meaning that
the atoms moved in an effective 2D lattice. By controlling the
spatial dependence of the Raman wave vector, the experiments
were able to implement complex hopping phase factors along
this synthetic dimension, and hence realize HH physics.

For photons, the HH model has been experimentally
simulated in an array of silicon ring resonators [11], where
link resonators were used to introduce artificial Peierls phase
factors. The concept of synthetic dimensions can also be
extended to photonics [71]; it has been proposed to realize
a 2D HH model in either a one-dimensional array of optical
cavities where different angular momentum modes are coupled
by spatial light modulators [72] or in a one-dimensional
array of ring resonators, where the modes are coupled via
an external time-dependent modulation [16]. The HH model
has also been implemented by controlling intersite couplings
in 2D arrays of circuit elements [73,74] and classical pendula
[41]. Additionally, proposals exist for systems of periodically
modulated classical coupled harmonic oscillators [68]. Hence,
a full understanding of center-of-mass observables in this
model can have important and direct applications in many
current experiments.

B. 2D quantum Hall response

To study the quantum Hall response in two dimensions,
we consider an electric field applied along the y direction
E = Eyey and a perturbing magnetic field Bxy 	 B. In
experiments with neutral particles, such as those introduced
above, these perturbing fields can also be imposed artificially.
An electric field could correspond, for example, in ultracold
gases to a linear gradient created either magnetically [4,5] or
optically [6]. In a 2D array of coupled photonic cavities, it
can be generated by a spatial gradient in the cavity size or
temperature; see also Ref. [16] for synthetic electric fields
acting along synthetic dimensions.

The weak magnetic field Bxy may also arise naturally in
experiments whenever the realized flux �expt =�+�̃ slightly
deviates from the desired (rational) value �=p/q. In the
following, we write the perturbing flux as

�̃=−a2Bxy/2π. (21)

In recent cold-atom experiments, for example, the flux was
estimated to be �expt ≈ (1/4)×0.73(5) in [4], �expt ≈0.185 in
[8], �expt ≈4/3 in [9], and �expt ≈1/4 in [6]. In photonic
lattices, the flux realized in Ref. [11] was �expt ≈ 0.15,
although there was also an additional random variation in the
flux over the lattice.

1. Current density

Under the perturbing fields E and Bxy , the current density
of the filled lowest band from Eq. (15) simply leads to Eq. (2),
written out again here, now with our choice of units e=�=1:

jx = Ey

2π
ν

xy

1 . (22)

This is the 2D quantum Hall current response [3], for which a
weak perturbing magnetic field has no direct effect.

Let us comment further on why it may be convenient to
separate the flux penetrating a 2D lattice into strong and
weak components, i.e., �tot =�+�̃. Indeed, imagine that a
synthetic flux �expt =101/300≈0.34 has been realized; the
corresponding energy spectrum splits into three isolated sets
of bands, each set being associated with numerous extremely
flat subbands as shown in Figs. 1(b) and 1(c) (e.g., the lowest
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FIG. 2. (a) The Hofstadter butterfly: energy spectrum as a function of the magnetic flux �. The main gaps are labeled by two integer (tr ,sr ),
which satisfy the Diophantine equation: r =qsr − ptr , where the integer r denotes the rth gap and where �=p/q. The integer tr is given by
the sum of Chern numbers associated with the bands below the rth gap, and for the HH model was shown to satisfy −q/2 < tr < q/2 [51].
Focusing on the first gap (r =1), this integer is simply given by the Chern number of the lowest band t1 =ν

xy

1 [see Eq. (26)]. (b) The Wannier
diagram associated with the main gaps of the butterfly [78]. In the rth gap, the reduced particle density satisfies the equation n/n0 =sr − �tr ,
where the integers (tr ,sr ) satisfy the aforementioned Diophantine equation.

set is constituted of 101 subbands). The same system can be
seen as a lattice pierced by a main flux �= 1

3 , leading to
three nondegenerate isolated bands [Fig. 1(a)], which is then
slightly perturbed by a very weak flux �̃= 1

300 . This latter
picture, which involves a small set of nondegenerate bands,
significantly simplifies the analysis of the Hall current, which
remains immune to weak perturbing fields [see Eq. (22)].

2. Semiclassical particle density and the Diophantine equation

Unlike the current response, the density of particles in a
filled band is highly sensitive to perturbing magnetic fields.
Semiclassically, this can be seen from Eq. (18) calculated for
a 2D system

n =
∫
T2

d2k

(2π )2
(1 + Bxy�

xy) = AMBZ

(2π )2
+ Bxy

2π
ν

xy

1 , (23)

where we considered a filled lowest band, and where we
used that first-order corrections to the Berry curvature �1

vanish upon integration [see Eq. (13) and discussion below].
The particle density therefore varies smoothly with a weak
magnetic perturbing field in proportion to the 1CN of the filled
band. This is as expected from the Streda-Widom formula
[75–77], which relates the Hall conductance to the variation of
the particle density with respect to the magnetic field at fixed
temperature and chemical potential.

As a concrete example of this physics, we consider the
HH model introduced above, for which AMBZ = (2π )2/qa2.
Introducing the normalized particle density, we find [Eq. (23)]

n

n0
= 1

q
− �̃ν

xy

1 , (24)

where n0 = 1/a2 is the inverse of the unit-cell area and �̃

is the perturbing magnetic flux defined in Eq. (21). This can
be understood as the semiclassical derivation of the Wannier
diagram [78]: as illustrated in Fig. 2, each gap in the energy
spectrum of the HH model (the so-called Hofstadter butterfly
[67]) can be described by a straight line on a plot of density
versus applied magnetic flux [78]. The slope of each line

is given by minus the sum of first Chern numbers of the
bands lying below the gap [79,80]. For the lowest gap, i.e.,
considering the lowest band, this line is simply given by
[69,80]

n

n0
= s − �totν

xy

1 , (25)

where �tot = � + �̃ is the total magnetic flux per plaquette,
and s is an integer. For rational flux �tot = � = p/q, the
normalized particle density is simply n/n0 = 1/q as only one
of q bands is filled; this leads to the well-known Diophantine
equation for the HH model [3,78]

1 = qs − pν
xy

1 . (26)

Rearranging this as an equation for the integer s and substitut-
ing this back into Eq. (25) then recovers the semiclassical result
of Eq. (24). While we have focused here on the HH model,
we note that results such as Eqs. (25) and (26) can be derived
relying only on magnetic translational symmetry in a two-
dimensional periodic potential [79], while the semiclassical
result (23) was derived for any system with a nondegenerate
isolated energy band.

3. Center-of-mass observables

As introduced above, center-of-mass observables can be
important for experiments in analog quantum Hall systems.
Inputting the 2D current density (22) and particle density (23)
into the c.m. velocity for an atomic cloud (1), we find

vx
c.m. = jx

n
= Ey

AMBZ
2π

+ Bxyν
xy

1

ν
xy

1 . (27)

Neglecting any perturbing magnetic field Bxy , the c.m. velocity
is directly proportional to the quantum Hall current response up
to a simple multiplicative factor [22]. In such a configuration,
the first Chern number has recently been experimentally
extracted from a measurement of the center-of-mass drift of
an ultracold cloud of atoms [6]. However, when a perturbing
magnetic field is present, the dependence on the first Chern
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number in Eq. (27) is more involved. For a sufficiently weak
additional magnetic field (i.e., |2πBxyν

xy

1 |/AMBZ 	1), we can
perform a Taylor expansion to write

vx
c.m. ≈ 2π

AMBZ
Eyν

xy

1 −
(

2π

AMBZ

)2

EyBxy

(
ν

xy

1

)2
. (28)

As we see, even in 2D, an experiment could therefore measure
a nonlinear response term in the center-of-mass drift, quantized
in units of (νxy

1 )2. This second term can be isolated by
performing differential measurements, reversing the sign of
the perturbing magnetic field, as discussed in Example II
below and shown in Fig. 3. We shall now detail two examples
where this sensitivity to perturbing magnetic fields is distinctly
manifested:

Example I. Let us first illustrate the result in Eq. (27) on a
simple example. Consider a 2D lattice that is exactly pierced
by a uniform flux �= 1

5 . In this case, the lowest band of the
spectrum is associated with a Chern number ν

xy

1 =−1, the area
of the magnetic Brillouin zone is AMBZ = (2π/a)2/5, and the
perturbing magnetic field is Bxy =0. According to Eq. (27),
the c.m. velocity is thus given by vx

c.m. = (−5a2/2π )Ey .
Now, one can reinterpret this system as being a 2D

lattice pierced by an intrinsic uniform flux �= 1
4 , which

is perturbed by an extrinsic flux �̃=− 1
20 . The total flux is

then �tot =�+ �̃= 1
5 , as defined above. The unperturbed

spectrum, with flux �= 1
4 , is still characterized by a lowest

band with Chern number ν
xy

1 =−1, but now the area of the
magnetic Brillouin zone is AMBZ = (2π/a)2/4 and the perturb-
ing magnetic field is Bxy =−2π�̃/a2 =π/10a2. One readily
verifies that Eq. (27) yields vx

c.m. = (−5a2/2π )Ey , in agreement
with the complementary picture above. Interestingly, this
simple equivalence could not have been demonstrated without
invoking the modified density of states in Eq. (23), and thus,
its impact on c.m. observables.

Example II. Motivated by recent experiments in ultracold
gases [4,6], we consider a 2D lattice pierced by a uniform
flux �= 1

4 with an additional uniform uncertainty in the
flux of �̃ = ±10% × �. To validate the above semiclassical
results, we have numerically simulated the c.m. displacement
xc.m.(±Bxy ; t) of an ultracold cloud as shown in Fig. 3.
Numerically, the cloud is initially confined in the presence
of all fluxes �tot =�+�̃ before the confinement is removed
and the electric field is ramped up; see Appendix for details
on the numerical method.

As can be seen in Fig. 3(a), we find excellent agreement
between the c.m. trajectories from numerical simulations and
semiclassical analytics [Eq. (28)], as shown here by dark-blue
dots and light-blue solid lines, respectively. We note that there
is a clear quantitative deviation between these trajectories and
the semiclassical result when the perturbing flux is neglected,
as indicated by the solid red line. In Fig. 3(b), we also verify
that a differential measurement of the c.m. trajectories under
positive and negative perturbing magnetic flux xc.m.(Bxy ; t)−
xc.m.(−Bxy ; t) could be used to extract an approximate (νxy

1 )
2
est,

as predicted by Eq. (28). We note that for these parameters the
differential drift would be of the order of a lattice spacing over
typical experimental times around 50�/J . As the c.m. velocity
scales ∝ q2Bxy , from the second term of Eq. (28), this effect
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FIG. 3. (a) Center-of-mass trajectories xc.m.(t) after ramping up
the electric field to Ey =0.2J/a, in the presence of a strong flux
�= 1

4 and a perturbing flux �̃=±10% × �. The dark-blue dots are
numerical simulations performed for a 200 × 200 HH lattice. The
red dashed curve is the semiclassical analytical result in Eq. (28)
with ν

xy

1 = −1 when the nonlinear response due to the perturbing
magnetic flux is neglected (i.e., when disregarding the effects of
the modified density of states). The light-blue solid curves are the
corresponding analytical results when this response is also included.
(b) The difference between the center-of-mass trajectories for positive
and negative perturbing magnetic fluxes shown above in (a). The
light-blue solid line is the analytical nonlinear response calculated
from (28). The dark-blue dots are numerical simulations, from which
we extract an approximate (νxy

1 )2
est as indicated on the plot. The

small deviation between the analytical and numerical results is due to
approximation of Eq. (27) by the Taylor series expansion in Eq. (28).
Corrections to this approximation scale with the dimensionless
parameter δ= (2π |Bxyν

xy

1 |)/AMBZ; for the parameters shown here
δ=0.10. Residual deviations in the numerical results can be attributed
to weak interband transitions and small inhomogeneities in the wave
packet.

would of course be larger if the perturbing magnetic flux is
increased and/or the unperturbed flux is reduced.
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IV. 4D QUANTUM HALL RESPONSES AND
MAGNETIC PERTURBATIONS

As a further example, we turn to a 4D quantum Hall system,
for which magnetic perturbations enter both into the current
and the particle density. A four-dimensional system is also
richer than a two-dimensional one as the Berry curvature (3)
can now have up to six independent components �μν : one for
each possible 2D plane. To simplify the following discussion,
we therefore first introduce a minimal topological lattice
model, noting that to have a nonzero 2CN (5) it is sufficient to
have only two nonzero Berry curvature components provided
they are in “disconnected” planes. For instance, one can take
the nonzero components to be �xz =−�zx and �yw =−�wy ,
without loss of generality.

A. Minimal 4D topological model

As we have previously proposed in Refs. [15,16], a
minimal 4D lattice model that has energy bands with nonzero
2CNs consists of two copies of the Harper-Hofstadter model
[67] defined in the disconnected planes x-z and y-w. The
corresponding tight-binding Hamiltonian is

Ĥ = − J
∑

r

c
†
r+aex

cr + c
†
r+aey

cr

+ ei2π�1x/ac
†
r+aez

cr + ei2π�2y/ac
†
r+aew

cr + H.c., (29)

where c
†
r creates a fermion at lattice site r = (x,y,z,w), and

the x-z and y-w planes are penetrated by uniform magnetic
fluxes �1,2, respectively. This model could be realized exper-
imentally by exploiting the concept of synthetic dimensions
[15,16,18], already introduced in Sec. III A. By combining a
synthetic dimension with either a 3D optical lattice of ultracold
atoms [15] or with a 3D coupled-cavity array for photons
[16], experiments would be able to build and explore the
physics of an effective 4D lattice. Standard techniques, such
as those outlined in Sec. III, could then be used to generate the
necessary complex Peierls’ phase factors for the x-z and y-w
planes.

The energy spectrum of this 4D model is given by a
Minkowski sum of the energy bands of the two constituent
Harper-Hofstadter models [15,58], i.e.,

E(k)={E1 + E2|E1 ∈ Exz(kx,kz),E2 ∈ Eyw(ky,kw)}.

In particular, we will focus on the lowest 4D band, which
for appropriate choices of the uniform magnetic fluxes �1,2

is nondegenerate and well isolated from the higher bands. In
this minimal lattice model, the eigenstates making up the 4D
energy bands are also characterized by only two nonzero Berry
curvature components

�zx = �zx(kx,kz) �= 0, �yw = �yw(ky,kw) �= 0, (30)

that only depend on the components of momentum along the
considered plane. Consequently, the integral for the 2CN of
the lowest band (5) can be performed to find ν2 =νzx

1 ×ν
yw

1
[15,58], where we have introduced the 1CNs associated with
the x-z and y-w planes, respectively. For instance, the 1CN

characterizing the x-z plane is defined as

νzx
1 = 1

2π

∫
T2

�zx(kx,kz) dkxdkz = −νxz
1 . (31)

B. 4D quantum Hall response

The semiclassical current density (15) for a filled lowest
(nondegenerate) band in four dimensions is [15]

jμ = Eν

1

(2π )4

∫
T4

�μνd4k + ν2

4π2
εμαβνEνBαβ, (32)

where the second term now explicitly contains the second
Chern number of the lowest band (5). In the following,
we will choose with no loss of generality the perturbing
(synthetic) electric field to be along the y direction E =Eyey .
However, in 4D, there are various choices for the orientation
of the perturbing magnetic field, which will lead to dramatic
differences in center-of-mass observables, as we now discuss.

1. Perturbing magnetic flux through a 2D plane
without Berry curvature

In the simplest case, all nonzero extrinsic perturbing field
components Bμν are set in planes for which there is no Berry
curvature �μν from the underlying lattice. For example, for
the minimal model introduced above [Eqs. (29) and (30)],
this could be Bzw �=0 since �zw =0 by construction. For this
choice of perturbing magnetic field, the modified density of
states reduces to the standard form D(r,k) = 1

(2π)4 , as can be
seen from Eq. (13). Therefore, the density of particles for a
filled lowest band is simply [Eq. (18)]

n = Azx
MBZA

yw

MBZ

(2π )4
= 1

Vcell
, (33)

where A
μν

MBZ is the area of the magnetic BZ in the μ-ν plane,
and where Vcell is the four-dimensional magnetic unit-cell
volume. For the lattice introduced in Eq. (29), with rational
fluxes �1 =p1/q1 and �2 =p2/q2, we have the following
expressions:

Azx
MBZ = (2π )2

a2q1
, A

yw

MBZ = (2π )2

a2q2
, Vcell =q1q2a

4. (34)

Importantly, from Eqs. (1) and (33), we obtain that the c.m.
velocity is directly proportional to the current density up to a
constant factor [15]

vc.m. = j
n

= jVcell. (35)

Here, the current density j is explicitly given by [Eq. (32)]

jx = ν2

4π2
EyBzw, (36)

jw = Ey

1

(2π )4

∫
T4

�wyd4k = −ν
yw

1 Azx
MBZ

(2π )3
Ey, (37)

jy = jz = 0, (38)

where we have used that �wy is a function only of the momenta
in the y-w plane in order to perform the integral in Eq. (37).
The current response in Eq. (36) is a nonlinear 4D QH response
along the x direction, while that in Eq. (37) is similar to a 2D
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QH effect taking place in the y-w plane. However, unlike the
usual 2D QH response (22), the current jw is reduced by a
factor 1/a2q1, as it depends also on the area of the MBZ in the
z-x plane [15].

Combining Eqs. (35) and (36), one finds that the center-
of-mass displacement along the x direction is directly propor-
tional to the 2CN:

xc.m.(t) = ν2 (Vcellt/4π2)EyBzw. (39)

Hence, in this configuration, measurements of center-of-mass
observables [Eqs. (1) and (19)] in atomic or photonics systems
can be used to directly extract the 2CN response, as proposed in
Refs. [15,16]. The semiclassical predictions in Eqs. (36)–(39)
have already been validated through numerical simulations in
Ref. [15].

2. Perturbing magnetic flux through a 2D plane
with Berry curvature

In this case, there is only one nonzero extrinsic perturbing
field component Bμν , and this is in the same plane as a
nonzero Berry curvature �μν from the underlying lattice. For
the minimal model proposed above [Eq. (30)], this would be
the case, for example, when Bzx �=0 as �zx �=0. For such
a configuration, the density of states is strongly modified
[Eq. (13)], and the particle density for a filled band becomes
[Eq. (18)]

n =
∫
T4

d4k

(2π )4
(1 + Bzx�

zx)

= Azx
MBZA

yw

MBZ

(2π )4
+ A

yw

MBZ

(2π )3
Bzxν

zx
1 ,

= A
yw

MBZ

(2π )2

[
Azx

MBZ

(2π )2
+ Bzx

2π
νzx

1

]
, (40)

where we again used that first-order corrections to the Berry
curvature vanish upon integration. Up to the overall factor
A

yw

MBZ/(2π )2, this is the same modification of the density as
found in a 2D system [see Eq. (23)]; this was expected because
the Berry curvature component �zx =�zx(kx,kz) only depends
on the momenta along the considered x-z 2D plane when
performing the integral (see Ref. [15]).

In this case, the current density becomes [Eq. (32)]

jx = jy = jz = 0,

jw = −ν
yw

1 Azx
MBZ

(2π )3
Ey − ν2

4π2
EyBzx, (41)

where now both the 2D-like quantum Hall effect (1CN re-
sponse) and the 4D quantum Hall effect (2CN response) occur
along the w direction. These responses could be separated
by a differential current measurement, where the sign of the
perturbing magnetic field is flipped. For instance, the 2CN can
still be extracted from the differential current

δjw =jw(−Bzx)−jw(Bzx) = ν2

2π2
EyBzx. (42)

Surprisingly, if we now turn to the c.m. velocity, we find
that the nonzero velocity component vw

c.m. simplifies to the

expression [Eqs. (1), (40), and (41)]

vw
c.m. = jw

n
= − 2π

A
yw

MBZ

Eyν
yw

1 . (43)

Importantly, the c.m. velocity in Eq. (43) contains only the
linear 1CN response; all effects from the perturbing magnetic
field and 2CN have canceled out. Hence, in contrast to the
current densities in Eqs. (41) and (42), the c.m. displacement
cannot be exploited to extract the 2CN of the populated band.
Similar to Examples I and II above, we emphasize these
differences by presenting two examples:

Example III. Let us first illustrate Eqs. (41)–(43) on a
simple example: a 4D lattice pierced by a uniform flux
�1 = 1

5 in the x-z plane and �2 = 1
4 in the y-w plane. For

this system, the lowest band of the spectrum has a second
Chern number ν2 =−1 and first Chern numbers ν

yw

1 =−1 and
νzx

1 =1 in individual planes [15], while the magnetic Brillouin
zone areas are A

yw

MBZ = (2π/a)2/4 and Azx
MBZ = (2π/a)2/5. Let

us now assume that there is no perturbing magnetic field
Bzx =0, in which case the current density from Eq. (41) is
jw = (1/10πa2)Ey , and the c.m. velocity from Eq. (43) is
vw

c.m. = (4a2/π )Ey .
As in Example I in Sec. III, we can reinterpret the flux

through the x-z plane as a uniform flux �1 = 1
4 perturbed

by a weak flux �̃=− 1
20 , which corresponds to Bzx =−Bxz =

2π�̃/a2 = −π/10a2. The unperturbed spectrum of this system
is still characterized by the properties detailed above, except
that now Azx

MBZ = (2π/a)2/4. One then readily verifies that
Eq. (41) again leads to jw = (1/10πa2)Ey , while Eq. (43)
leads trivially to the same c.m. velocity as it is independent of
any perturbing magnetic field in the x-z plane.

Example IV. We have explored the results in Eqs. (41)–(43)
further by performing numerical simulations on a small 4D
lattice. Here, the strong fluxes are �1,2 = 1

4 in disconnected
planes [15], and we take the perturbing flux to be �̃=
a2Bzx/2π =±10% × �1 in the x-z plane. As for the 2D case
discussed in Sec. III B 3, an electric field is ramped up to the
final value Ey =0.2J/a, and the time-evolving particle density
is obtained. The resulting center-of-mass trajectories wc.m.(t)
are shown in Fig. 4, which demonstrates good agreement with
the prediction in Eq. (43); in particular, one finds that the
trajectories show no significant dependence on the perturbing
flux. From our numerical data, we use Eq. (43) to extract
(νyw

1 )est =−0.99 for �̃>0 and (νyw

1 )est =−1.00 for �̃<0, in
excellent agreement with the expected 1CN ν

yw

1 =−1 of the
y-w plane. The figure also compares the numerical results
with the wrong prediction vw

c.m. =jwVcell, which corresponds
to neglecting the effects of the modified density of states on
the particle density (40). We have also numerically verified
the expression for the differential current in Eq. (42), which
indicates that such measurements could equally be exploited
to give an approximate value for the 2CN of the band.

Summarizing the results of Secs. IV B 1 and IV B 2: Even
though a 4D-QH current response appears for both of the
above choices of perturbing magnetic fields [Eqs. (36) and
(42)], only the first of these is appropriate for extracting the
2CN from center-of-mass observables. This result highlights
the importance of evaluating the modified density of states
when considering density-dependent observables [Eqs. (1),
(13), and (18)].
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FIG. 4. Center-of-mass trajectories wc.m.(t) after ramping up the
electric field to Ey =0.2J/a, in the presence of strong fluxes �1,2 =
1
4 in disconnected x-z and y-w planes and a perturbing flux �̃=
a2Bzx/2π =±10% × �1 in the x-z plane. The filled dark-blue dots
(resp. empty dots) are numerical simulations performed for a small
(4×41×4×41) 4D lattice with positive (resp. negative) perturbing
flux �̃. The light-blue solid curve is the semiclassical analytical result
in Eq. (43). The two red dashed curves correspond to the wrong
prediction vw

c.m. =jwVcell combined with Eq. (41), which corresponds
to neglecting the effects of the modified density of states on the
particle density (40). Combining the numerical data together with
Eq. (43) allows one to extract approximate values for the first Chern
number associated with the y-w plane: we find (νyw

1 )est =−0.99 for
�̃>0 and (νyw

1 )est =−1.00 for �̃<0.

3. Perturbing magnetic fluxes through two 2D planes
with Berry curvature

As a final example, we consider perturbing fields in two
planes with nonzero Berry curvature, e.g., Bzx and Byw for the
above model [Eq. (30)]. In this case, the particle density for a
filled band is strongly modified as [cf. Eq. (18)]

n =
∫
T4

d4k

(2π )4
(1 + Bzx�

zx)(1 + Byw�yw)

= Azx
MBZA

yw

MBZ

(2π )4
+ A

yw

MBZBzxν
zx
1

(2π )3

+Azx
MBZBywν

yw

1

(2π )3
+ BzxByw

(2π )2
ν2 (44)

up to second order in the perturbing fields, where we used
that each Berry curvature component �μν is only a function of
momenta in the μ-ν plane. Interestingly, for this configuration
of perturbing fields and in contrast to Eq. (40), the particle
density now explicitly depends on the topological 2CN of the
lowest filled band. This suggests an extension of the Streda-
Widom formula relating the Hall conductance to density
variations with respect to magnetic fields, from 2D [75–77]
to 4D (see also Supplemental Material of Ref. [15]).

Let us now investigate the current and c.m. responses for
this third configuration. Since the perturbing electric field is
aligned along the y direction, E =Eyey , the component Byw

does not affect the current density [see Eq. (32)]. Hence, the
transport equations obtained in the previous case,

jx = jy = jz = 0,

jw = −ν
yw

1 Azx
MBZ

(2π )3
Ey − ν2

4π2
EyBzx, (45)

are still valid for this configuration. However, using the
modified density in Eq. (44), the center-of-mass velocity
vw

c.m. =jw/n is now

vw
c.m. =

−ν
yw

1 Azx
MBZEy − 2πν2EyBzx

Azx
MBZA

yw

MBZ
2π

+ A
yw

MBZBzxν
zx
1 + Azx

MBZBywν
yw

1 + 2πBzxBywν2

,

which depends on all three topological invariants νzx
1 , ν

yw

1 ,

and ν2. To extract the 4D quantum Hall response and 2CN
from such center-of-mass motion would therefore require a
multistep protocol to separate all the different effects.

4. Microscopic interpretation

Even though the current density displays a 4D quantum
Hall response in all three configurations (Secs. IV B 1–IV B 3),
there can be striking differences in the topological properties
revealed by center-of-mass observables, such as the c.m.
velocity of a cloud of ultracold atoms calculated above. We
now discuss how this can be understood through a microscopic
interpretation of the 4D quantum Hall effect for a filled band
of spinless particles.

From our semiclassical derivation of the current density
[Eqs. (11)–(15)], we can see that the nonlinear 2CN response
arises from combinations of terms in the mean velocity
(10) and in the modified density of states (13). In the first
configuration (Sec. IV B 1), as noted above, the density of
states (13) is not affected by the perturbing magnetic field.
Instead, the 2CN response in Eq. (36) stems entirely from
the mean velocity, where it appears from the interplay of
the Lorentz force in Eq. (9) with the anomalous velocity in
Eq. (8), that can itself be interpreted as the analog of a Lorentz
force acting in momentum space. Hence, we refer to this as a
“Lorentz-type” 2CN current response.

In the second configuration (Sec. IV B 2), on the other hand,
the situation is very different: the perturbing magnetic field
strongly modifies the density of states [see Eq. (40)], which
then combines with the anomalous velocity in Eq. (10) to give
the 2CN response. In this case, the 4D quantum Hall effect
arises from the change in particle density of a band due to a
perturbing extrinsic magnetic field, and not from the Lorentz
force. We refer to this a “density-type” 2CN current response.
Consequently, when we take into account the particle density
for center-of-mass observables, this type of 4D quantum Hall
effect vanishes from the latter [Eq. (43)].

In the third configuration (Sec. IV B 3), the 2CN current
again arises from the interplay of a change in particle
density, induced by an extrinsic field component Bzx , and the
anomalous velocity in Eq. (10), i.e., a “density-type” 2CN
response. However, in this case, the second extrinsic magnetic
field component Byw, while also further changing the particle
density, does not couple to the anomalous velocity. When
we calculate center-of-mass observables, both changes to the
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particle density must be taken into account but as only the first
leads to a 2CN response, the resulting c.m. observables have
a nontrivial dependence on the topological invariants.

All these configurations could be further combined to
yield other more complicated responses, which include both
“Lorentz-type” and “density-type” microscopic mechanisms.
Also, we have illustrated our discussion by assuming the Berry
curvature 2-form has only two nonzero components, as for the
minimal lattice model presented in Sec. IV A. However, the
extension to other lattice models would be straightforward.

V. EXPERIMENTAL REMARKS

In this section, we briefly comment on various experimental
aspects related to the detection of the quantized responses
identified in this work. The platforms that we consider include
bosonic and fermionic cold-atomic gases, electrons in solid-
state materials, and driven-dissipative systems such as coupled
photonic cavity arrays [11], where we note that the discussion
of the latter can also be extended to coupled electric circuits
[73] or mechanical systems [41].

A. Preparation of filled energy bands in the presence
of perturbing magnetic fields

As highlighted in Sec. II, we have assumed that the particle
density corresponds to that of a system where the lowest band
is filled in the presence of any perturbing magnetic fields. In
discussing the preparation of such bands, we shall distinguish
between three physical scenarios: closed systems in which the
particle number is fixed, open systems in which particles can
be exchanged with a reservoir, and finally driven-dissipative
systems in which an analog quantum Hall effect can be
observed in the long-time nonequilibrium steady state [30].

In closed systems, our assumption of filled bands requires
that the initial preparation of the system should be carried out
in the presence of all synthetic magnetic fields. A standard
example of a closed system is an ultracold atomic gas (which
is typically not connected to a reservoir). In this case, the
assumption of filled bands then means that all magnetic fields
should be present during the adiabatic loading of ultracold
atoms into the band structure. For ultracold fermions, the
energy bands can be filled through fermionic statistics by
ensuring that, after loading the atoms, the Fermi energy lies
in the middle of an energy band gap. If instead the perturbing
magnetic field were to be ramped up after the atoms were
loaded, the Fermi level would end up within an energy band,
leading to unquantized anomalous Hall effects [38,44]. For
thermal Bose gases, an energy band can be uniformly filled
when the temperature is large compared with the combined
bandwidth of the bands to be populated, as introduced also in
Sec. II E 1.

In open systems, when particles can be exchanged with a
reservoir, perturbing magnetic fields can be turned on during
the experiment. However, to ensure that the bands are filled in
the presence of all magnetic fields, the rate at which these per-
turbations are ramped up should be slow compared to the time
scale over which particles are exchanged with the reservoirs to
ensure equilibration of the particle density. Open systems with
reservoirs include solid-state materials, in which electrons are

exchanged with the connecting leads, but also cold-atom setups
involving constriction potentials (see Ref. [81]). Moreover,
we point out that harmonically trapped ultracold fermionic
gases potentially present incompressible density plateaus (in
a local-density-approximation picture, these correspond to
regions with filled bands) surrounded by compressible regions,
which can act as an internal reservoir within the cloud [19].
Note, however, that such inhomogeneities in the density can
also complicate the motion of such a cloud, making it difficult
to cleanly observe a quantum Hall response.

Finally, in driven-dissipative systems, such as coupled
photonic cavity arrays, we assume the system is coherently
and continuously pumped with sufficient losses to cover the
energy bands. Provided that measurements always take place
on a sufficiently long time after any variation of the perturbing
fields, the photon distribution is in the steady state and depends
only on the current values of these applied perturbations [30].
In this case, therefore, perturbing magnetic fields do not need
to be ramped up but can be switched on suddenly during the
experiment.

B. Switching on of the perturbing electric field and
the validity of the semiclassical approach

After the filled energy bands have been prepared, the
electric field can be turned on to measure the quantum Hall
response. Again, we can distinguish between the different
physical scenarios introduced above.

On the one hand, for closed systems and open systems with
reservoirs, the electric field should be ramped up adiabatically
such that the speed of the ramp is sufficiently slow and that the
final value of the fields is sufficiently small compared to the
energy band gap such that diabatic interband transitions can be
neglected. If these conditions are not fulfilled, then there can
be additional contributions to the transport from excited bands,
and the current density or c.m. responses will in general no
longer be quantized in terms of topological invariants [38,44].
For systems with reservoirs, we also require that the time scale
over which the electric field is ramped up is fast compared
with the rate with which particles are exchanged, otherwise
the equilibration of the system will suppress the quantum Hall
response. On the other hand, for driven-dissipative systems, the
perturbing electric field can be switched on suddenly, provided
that afterwards we wait a sufficiently long time for the steady
state to be reached as discussed above.

Finally, we emphasize that the semiclassical approach
presented in this work can only capture dynamics after any
external fields are fully switched on as we have assumed
throughout this work that all fields are time independent.
We note that the agreement between the semiclassics and the
dynamics after an adiabatic ramping of the electric field is
illustrated in Figs. 3 and 4.

C. Density measurements and the Streda-Widom formula

While we have focused in this paper on center-of-mass
transport, the dependence of the density on perturbing mag-
netic fields can itself be used as an experimental tool to measure
topological Chern numbers of an energy band, as indicated
by the Streda-Widom formula. In ultracold atomic gases, this
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was first proposed in Ref. [19], where it was demonstrated
numerically that the 2D Hall conductance could be extracted
by comparing the real-space density profile of a cloud for
two different values of the total synthetic magnetic field. This
protocol could be extended to a 4D system by measuring the
density profile of a cloud, for example, for different values
of the magnetic fields of the minimal model introduced in
Sec. IV A [see Eq. (44)]. As one of the four dimensions is now
synthetic, the real-space density imaging should be extended
with an optical Stern-Gerlach measurement to also determine
the distribution of atoms in the different internal states [8,9].

VI. CONCLUSIONS

We have discussed how center-of-mass responses can be
used to measure Chern numbers and so to directly probe the
topology of energy bands. Center-of-mass observables depend
not only on the quantum Hall current density, but also on the
particle density and so can have a more involved dependence
on topological invariants than previously considered. In par-
ticular, the particle density is itself sensitive to band topology
in the presence of extrinsic magnetic perturbations, enriching
the quantum Hall physics that may be explored in ultracold
atomic gases and photonic systems.

In the 2D quantum Hall effect, c.m. observables can depend
nonlinearly on the first Chern number of a filled energy
band, in striking contrast to the linear dependence expected
for electrical conductivity measurements. Such effects may
already be observable experimentally, as there are inherent
uncertainties in the precise value of magnetic flux imposed
[4–9,11]. Additionally, new experiments with larger magnetic
perturbations could also be engineered straightforwardly to
directly probe the physics discussed here.

Finally, as a further example of these effects, we have
considered recent proposals for the realization of the 4D
quantum Hall effect [15,16] in realistic experimental systems.
As we have seen, the particular configuration of perturbing
fields chosen can have a dramatic impact, even leading
to a cancellation of all 4D QH effects in center-of-mass
observables, despite the persistence of a clear signature in
the current density. A clear understanding of the differences
between c.m. observables and current density measurements
is therefore crucial to the proper design of future experiments.
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APPENDIX: NUMERICAL METHOD FOR THE
DYNAMICS OF INCOHERENT WAVE PACKETS

In this Appendix, we present the numerical method used in
Secs. III and IV to simulate the full-time dynamics, and hence
confirm the semiclassical predictions.

The present method aims to simulate the dynamics of a
noninteracting gas that is initially located in a region of space,
and which uniformly populates an isolated Bloch band E(k) in
an incoherent manner. This “incoherent wave-packet” config-
uration typically describes an atomic gas whose temperature
T is large compared to the bandwidth W of the lowest-energy
band E(k), but smaller than the band gap, W 	kBT 	�, as
discussed in Sec. II E 1. This is different with respect to the
numerical method used in Refs. [15,22,82], which describes
a Bloch band completely filled with noninteracting fermions
at zero temperature. As already pointed out in Sec. II E 1,
these two different band-filling configurations lead to the
same semiclassical equations of motion, up to a constant
band-filling factor ρ in the current density; we have verified
this equivalence numerically by comparing both methods on
several examples.

Let us start by building a state from an incoherent
superposition of all the Bloch states in a given band,

|ψsuper〉 =
∑

Eλ∈band

|φλ〉 exp[iθλ], (A1)

where |φλ〉 (resp. Eλ) are the single-particle eigenstates (resp.
eigenenergies) of the Hamiltonian Ĥ in the absence of the
perturbing electric field Eμ, and where θλ is a random phase
associated with the state λ. As our lattice models are treated
within the tight-binding approximation, we introduce the
Wannier basis {|j 〉}, which are states localized around the
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FIG. 5. Time-evolving particle density n(r,t) for the 2D system
of Sec. III subject to a constant electric field Ey =0.2J/a along the
y direction. The c.m. drift along the x direction is highlighted by
the static circles. Here, the density has been averaged over N =8
realizations. Time is measured in units of �/J .
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lattice sites j . We then define a closed region in the lattice S,
made of a set of lattice sites, and we project the state ψsuper

unto this small region

|ψpacket〉 = (1/N )
∑
j∈S

∑
Eλ∈band

|j 〉〈j |φλ〉 exp[iθλ], (A2)

where N is a normalization factor. While this projection
procedure can also weakly excite particles to higher bands,
we have verified that the resulting lowest-band population is
between 99% and 99.9% in our numerics and so we can safely
neglect the contribution from particles in higher bands. The
“wave packet” in Eq. (A2) defines the initial state for our
simulations. We then act on this state with the time-evolution

operator associated with the full Hamiltonian (including the
electric field), from which we compute the time-evolving
particle density n(r,t), extract the center-of-mass trajectory
r

μ
c.m.(t), and determine the corresponding velocity v

μ
c.m.. We

finally average the results over N ≈10 realizations in which
the phases θλ are randomly generated. The (mean) particle
density n and center-of-mass velocities can then be combined
to extract the current density, through Eq. (1). Finally, we
point out that the band-filling factor is simply evaluated as
ρ =1/Nstates, where Nstates is the number of states in the band,
i.e., the number of states λ included in the sum (A2) since the
wave packet is normalized. An example of a 2D time-evolving
cloud is illustrated in Fig. 5.
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