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Abstract

In this paper the spherical quasi-convexity of quadratic functions on spherically

convex sets is studied. Several conditions characterizing the spherical quasi-

convexity of quadratic functions are presented. In particular, conditions im-

plying spherical quasi-convexity of quadratic functions on the spherical positive

orthant are given. Some examples are provided as applications of the obtained

results.

Keywords: sphere, spherical quasi-convexity, quadratic functions, positive

orthant.
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1. Introduction

In this paper we study the spherical quasi-convexity of quadratic functions

on spherically convex sets, which is related to the problem of finding their min-

imizer. This problem of minimizing a quadratic function on the sphere has

arisen to S. Z. Németh by trying to make certain fixed point theorems, sur-

jectivity theorems, and existence theorems for complementarity problems and

variational inequalities more explicit (see [1] and the related references therein).

In particular, some existence theorems could be reduced to the optimization of a
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quadratic function on the intersection of the sphere and a cone. Indeed, consider

a closed convex cone K ⊆ R
n with dual K∗. Let F : Rn → R

n be a contin-

uous mapping such that G : Rn → R
n defined by G(x) = ‖x‖2F (x/‖x‖2) and

G(0) = 0 is differentiable at 0. Denote by DG(0) the Jacobian matrix of G at 0.

By [2, Corollary 8.1] and [3, Theorem18], if min‖u‖=1,u∈K〈DG(0)u, u〉 > 0, then

the nonlinear complementarity problem defined by K ∋ x ⊥ F (x) ∈ K∗ has a

solution. Thus, we need to minimize a quadratic form on the intersection be-

tween a cone and the sphere. These sets are exactly the spherically convex sets;

see [4]. Therefore, this leads to minimizing quadratic functions on spherically

convex sets. In fact the optimization problem above reduces to the problem of

calculating the scalar derivative, along cones introduced by S. Z. Németh (see

[1] and the related references therein). Similar minimizations of quadratic func-

tions on spherically convex sets are needed in the other settings (see [1] and the

related references therein). Apart from the above, the motivation of this study

is much wider. For instance, the quadratic constrained optimization problem

on the sphere

min{〈Qx, x〉 : x ∈ C}, C ⊆ S
n−1 := {x ∈ R

n : ‖x‖ = 1} , (1)

for a symmetric matrixQ, is a minimum eigenvalue problem in C, which includes

the problem of finding the spectral norm of the matrix −Q when C = S
n−1 (see,

e.g., [5]). It is important to highlight that the special case when C is the nonneg-

ative orthant is of particular interest because the nonnegativity of the minimum5

value is equivalent to the copositivity of the matrix Q [6, Proposition 1.3] and

to the nonnegativity of all Pareto eigenvalues of Q [6, Theorem 4.3]. As far

as we are aware there are no methods for finding the Pareto spectra by using

the intrinsic geometrical properties of the sphere, hence our study is expected

to open new perspectives for detecting the copositivity of a symmetric matrix.10

More problems that deal with “spherical” constraints can be found in [7].

Optimization problems posed on the sphere have a specific underlying alge-

braic structure that could be exploited to greatly reduce the cost of obtaining the

solutions; see [8, 9, 5, 10, 11, 12]. It is worth to point out that when a quadratic
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function is spherically quasi-convex, then a spherical strict local minimizer is15

equal to a spherical strict global minimizer. Therefore, it is natural to consider

the problem of determining the spherically quasi-convex quadratic functions on

spherically convex sets. The goal of the paper is to present necessary conditions

and sufficient conditions for quadratic functions which are spherically quasi-

convex on spherical convex sets. As a particular case, we exhibit several such20

results for the spherical positive orthant.

The paper can be considered as a first spherical analogue for the study of

quasi-convexity of quadratic functions. Without the aim of completeness, we list

here some of the main papers about the quasi-convexity of quadratic functions:

[13, 14, 15, 16, 17]25

The remainder of this paper is organized as follows. In Section 2, we re-

call some notations and basic results used throughout the paper. In Section 3

we present some general properties of spherically quasi-convex functions on

spherically convex sets. In Section 4 we present some conditions characteriz-

ing quadratic spherically quasi-convex functions on a general spherically convex30

set. In Section 4.1 we present some properties of quadratic functions defined

in the spherical positive orthant. We conclude this paper by making some final

remarks in Section 5.

2. Basics results

In this section we present the notations and the auxiliary results used through-

out the paper. Let Rn be the n-dimensional Euclidean space with the canonical

inner product 〈·, ·〉 and norm ‖·‖. The set of all m×n matrices with real entries

is denoted by R
m×n and R

n ≡ R
n×1. Denote by R

n
+ the nonnegative orthant

and by R
n
++ the positive orthant, that is,

R
n
+ = {x = (x1, . . . , xn)

⊤ : x1 ≥ 0, . . . , xn ≥ 0}

and

R
n
++ = {x = (x1, . . . , xn)

⊤ : x1 > 0, . . . , xn > 0}.
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Denote by ei the i-th canonical unit vector in R
n. A set K is called a cone if it

is invariant under the multiplication with positive scalars and a convex cone if

it is a cone which is also a convex set. The dual cone of a cone K ⊂ R
n is the

cone K∗ := {x ∈ R
n : 〈x, y〉 ≥ 0, ∀ y ∈ K}. A cone K ⊂ R

n is called pointed if

K∩{−K} ⊆ {0}, or equivalently, if K does not contain straight lines through the

origin. Any pointed closed convex cone with nonempty interior will be called

proper cone. The cone K is called subdual if K ⊆ K∗, superdual if K∗ ⊆ K and

self-dual if K∗ = K. The matrix In denotes the n × n identity matrix. Recall

that A = (aij) ∈ R
n×n is positive if aij > 0 and nonnegative if aij ≥ 0 for all

i, j = 1, . . . , n. A matrix A ∈ R
n×n is reducible if there is permutation matrix

P ∈ R
n×n so that

PTAP =





B11 B12

0 B22



 ,

B11 ∈ R
m×m, B22 ∈ R

(n−m)×(n−m), B12 ∈ R
m×(n−m), m < n.

A matrix A ∈ R
n×n is irreducible if it not reducible. In the following we state a35

version of Perron-Frobenius theorem for both positive matrices and nonnegative

irreducible matrices, its proof can be found in [18, Theorem 8.2.11] and [18,

Theorem 8.4.4], respectively.

Theorem 1. Let A ∈ R
n×n be either nonnegative and irreducible or positive.

Then A has a dominant eigenvalue λmax(A) ∈ R with associated eigenvector40

v ∈ R
n which satisfies the following properties:

i) The eigenvalue λmax(A) > 0 and its associated eigenvector v ∈ R
n
++;

ii) The eigenvalue λmax(A) > 0 has multiplicity one;

iii) Every other eigenvalue λ of A is less that λmax(A) in absolute value, i.e,

|λ| < λmax(A);45

iii) There are no other positive or non-negative eigenvectors of A except pos-

itive multiples of v.
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Recall that A ∈ R
n×n is copositive if 〈Ax, x〉 ≥ 0 for all x ∈ R

n
+ and a

Z-matrix is a matrix with nonpositive off-diagonal elements. Let K ⊂ R
n be

a pointed closed convex cone with nonempty interior, the K-Z-property of a

matrix A ∈ R
n×n means that 〈Ax, y〉 ≤ 0 for all (x, y) ∈ C(K), where C(K) :=

{(x, y) ∈ R
n×R

n : x ∈ K, y ∈ K∗, 〈x, y〉 = 0}. If x = (x1, . . . , xn)
⊤ ∈ R

n, then

diag(x) will denote an n×n diagonal matrix with (i, i)-th entry equal to xi, for

i = 1, . . . , n. Throughout the paper the tangent hyperplane of the n-dimensional

Euclidean sphere S
n−1 at a point x ∈ S

n−1 is denoted by

TxS
n−1 := {v ∈ R

n : 〈x, v〉 = 0} ,

The intrinsic distance on the sphere between two arbitrary points x, y ∈ S
n−1

is defined by

d(x, y) := arccos〈x, y〉. (2)

It can be shown that (Sn−1, d) is a complete metric space, so that d(x, y) ≥ 0

for all x, y ∈ S
n−1, and d(x, y) = 0 if and only if x = y. It is also easy to check

that d(x, y) ≤ π for all x, y ∈ S
n−1, and d(x, y) = π if and only if x = −y. The

intersection curve of a plane though the origin of Rn with the sphere S
n−1 is

called a geodesic. If x, y ∈ S
n−1 are such that y 6= x and y 6= −x, then the

unique segment of minimal geodesic from to x to y is

γxy(t) =

(

cos(td(x, y))− 〈x, y〉 sin(td(x, y))
√

1− 〈x, y〉2

)

x+
sin(td(x, y))
√

1− 〈x, y〉2
y, t ∈ [0, 1].

(3)

Let x ∈ S
n−1 and v ∈ TxS

n−1 such that ‖v‖ = 1. The minimal segment of

geodesic connecting x to −x, starting at x with velocity v at x is given by

γx{−x}(t) := cos(t)x+ sin(t) v, t ∈ [0, π]. (4)

Let Ω ⊂ S
n−1 be a spherically open set (i.e., a set open with respect to the in-

duced topology in S
n−1). The gradient on the sphere of a differentiable function

f : Ω → R at a point x ∈ Ω is the vector defined by

grad f(x) :=
[

In − xxT
]

Df(x) = Df(x)− 〈Df(x), x〉x, (5)
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where Df(x) ∈ R
n is the usual gradient of f at x ∈ Ω. Let D ⊆ R

n be an open

set, I ⊂ R an open interval, Ω ⊂ S
n−1 a spherically open set and γ : I → Ω

a geodesic segment. If f : D → R is a differentiable function, then, since

γ′(t) ∈ Tγ(t)S
n−1 for all t ∈ I, the equality (5) implies

d

dt
f(γ(t)) = 〈grad f(γ(t)), γ′(t)〉 = 〈Df(γ(t)), γ′(t)〉 , ∀ t ∈ I. (6)

Definition 2. The set C ⊆ S
n−1 is said to be spherically convex if for all x,

y ∈ C all the minimal geodesic segments joining x to y are contained in C.

Example 3. The set S+ = {(x1, . . . , xn) ∈ S
n−1 : x1 ≥ 0, . . . , xn ≥ 0} is a50

closed spherically convex set.

We assume for convenience that from now on all spherically convex sets

are nonempty proper subsets of the sphere. For each closet set A ⊂ S
n−1, let

KA ⊂ R
n be the cone spanned by A, namely,

KA := {tx : x ∈ A, t ∈ [0,+∞)} . (7)

Clearly, KA is the smallest closed cone which contains A. In the next proposition

we exhibit a relationship of spherically convex sets with the cones spanned by

them; for the proof see [19].

Proposition 4. The set C is spherically convex if and only if the cone KC is55

convex and pointed.

Let C ⊂ S
n−1 be a spherically convex set. A function f : C → R is said to be

spherically convex (respectively, strictly spherically convex) if for all minimal

geodesic segment γ : [0, 1] → C, the composition f ◦ γ : [0, 1] → R is convex

(respectively, strictly convex) in the usual sense.60

We end this section by stating some standard notations. We denote the

spherically open and the spherically closed ball with radius δ > 0 and center

in x ∈ S
n−1 by Bδ(x) := {y ∈ S

n−1 : d(x, y) < δ} and B̄δ(x) := {y ∈ S
n−1 :

d(x, y) ≤ δ}, respectively. The sub-level sets of a function f : Rn ⊇ D → R are

denoted by

[f ≤ c] := {x ∈ D : f(x) ≤ c}, c ∈ R. (8)
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3. Spherically quasi-convex functions on spherically convex sets

In this section we study general properties of quasi-convex functions on the

sphere. In particular, we present first order characterizations of differentiable

quasi-convex functions on the sphere. Several results of this section have already

appeared in [20], but here these results have more explicit statements and proofs.65

It is worth to remark that the quasi-convexity concept generalizes the convexity

one, which was extensively studied in [4]. Let us start by defining this concept.

Definition 5. Let C ⊂ S
n−1 be a spherically convex set. A function f : C → R

is said to be spherically quasi-convex (respectively, strictly spherically quasi-

convex) if for all minimal geodesic segment γ : [0, 1] → C, the composition70

f ◦γ : [0, 1] → R is quasi-convex (respectively, strictly quasi-convex) in the usual

sense, i.e., f(γ(t)) ≤ max{f(γ(0)), f(γ(1))} for all t ∈ [0, 1], (respectively,

f(γ(t)) < max{f(γ(0)), f(γ(1))} for all t ∈ [0, 1]).

Naturally, from the above definition, it follows that spherically convex (re-

spectively, strictly spherically convex) functions are spherically quasi-convex75

(respectively, strictly spherically quasi-convex), but the converse is not true; see

[4].

Proposition 6. Let C ⊂ S
n−1 be a spherically convex set. A function f : C → R

is spherically quasi-convex if and only if the sub-level sets [f ≤ c] are spherically

convex for all c ∈ R.80

Proof. Assume that f is spherically quasi-convex and c ∈ R. Take x, y ∈ [f ≤ c]

and γ : [0, 1] → S
n−1 the minimal geodesic such that γ(0) = x to γ(1) = y, see

(3) and (4). Since f is a spherically quasi-convex function and x, y ∈ [f ≤ c] we

have f(γ(t)) ≤ max{f(γ(0)), f(γ(1))} ≤ c for all t ∈ [0, 1], which implies that

γ(t) ∈ [f ≤ c] for all t ∈ [0, 1]. Hence we conclude that [f ≤ c] is a spherically85

convex set for all c ∈ R. Conversely, we assume that [f ≤ c] is spherically convex

for all c ∈ R. Let γ : [0, 1] → C be a minimal geodesic segment. Since [f ≤ c] is

a spherically convex set, we have γ(t) ∈ [f ≤ c] for all t ∈ [0, 1], which implies

7



f(γ(t)) ≤ max{f(γ(0)), f(γ(1))} for all t ∈ [0, 1]. Therefore, f is a spherically

quasi-convex function and the proof is concluded.90

Proposition 7. Let C ⊂ S
n−1 be spherically convex and f : C → R be spherically

quasi-convex. If x∗ ∈ C is a strict local minimizer of f , then x∗ is also a strict

global minimizer of f in C.

Proof. If x∗ is a strict local minimizer of f , then there exists a number δ > 0

such that

f(x) > f(x∗), ∀ x ∈ Bδ(x
∗) \ {x∗} = {y ∈ C : 0 < d(y, x∗) < δ}. (9)

Assume by contradiction that x∗ is not a strict global minimizer of f in C. Thus,
there exists x̄ ∈ C with x̄ 6= x∗ such that f(x̄) ≤ f(x∗). Since C is spherically95

convex, we can take a minimal geodesic segment γ : [0, 1] → C joining x∗ and

x̄, let’s say, γ(0) = x∗ and γ(1) = x̄. Considering that f is spherically quasi-

convex we have f(γ(t)) ≤ max{f(x∗), f(x̄)} = f(x∗) for all t ∈ [0, 1]. On the

other hand, for t sufficiently small we have γ(t) ∈ Bδ(x
∗). Therefore, the last

inequality contradicts (9) and the proof is concluded.100

Proposition 8. Let C ⊂ S
n−1 be a spherically convex set and f : C → R

be a strictly spherically quasi-convex function. Then f has at most one local

minimizer which is also a global minimizer of f .

Proof. Assume by contradiction that f has two local minimizers x∗, x̄ ∈ C with

x̄ 6= x∗. Thus, we can take a minimal geodesic segment γ : [0, 1] → C joining105

x∗ and x̄, let’s say, γ(0) = x∗ and γ(1) = x̄. Due to f being strictly spheri-

cally quasi-convex f(γ(t)) < max{f(x∗), f(x̄)} for all t ∈ [0, 1]. Since we can

take t sufficiently close to 0 or 1, the last inequality contradicts the assumption

that x∗, x̄ are two distinct local minimizers. Thus, f has at most one local

minimizer. Since f is strictly quasi-convex, the local minimizer is strict. There-110

fore, Proposition 7 implies that the local minimizer is global and the proof is

concluded.
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Proposition 9. Let C ⊂ S
n−1 be an open spherically convex set and f : C → R

be a differentiable function. Then f is spherically quasi-convex if and only if

f(x) ≤ f(y) =⇒ 〈Df(y), x〉 − 〈x, y〉〈Df(y), y〉 ≤ 0, ∀ x, y ∈ C. (10)

Proof. Let γ : I → C be a geodesic segment and consider the composition

f ◦ γ : I → R. The usual characterization of scalar quasi-convex functions

implies that f ◦ γ is quasi-convex if and only if

f(γ(t1)) ≤ f(γ(t2)) =⇒
d

dt
(f(γ(t2))) (t1 − t2) ≤ 0, ∀ t2, t1 ∈ I. (11)

On the other hand, for each x, y ∈ C with y 6= x we have from (3) that γxy is

the minimal geodesic segment from x = γxy(0) to y = γxy(1) and

γ′
xy(1) =

arccos〈x, y〉
√

1− 〈x, y〉2
(

yyT − In
)

x ∈ TyS
n−1, y 6= −x.

Note that letting x = γ(t1) and y = γ(t2) we have that γxy(t) = γ(t1+t(t2−t1)).

Therefore, by using (6) we conclude that the condition in (11) is equivalent to

(10) and the proof of the proposition follows.115

4. Spherically quasi-convex quadratic functions on spherically convex

sets

In this section our aim is to present some conditions characterizing quadratic

spherically quasi-convex functions on a general spherically convex set. For that

we need some definitions: From now on we assume that K ⊂ R
n is a proper

subdual cone, C = S
n−1∩ int(K) is an open spherically convex set and A = AT ∈

R
n×n with the associated quadratic function qA : C → R defined by

qA(x) := 〈Ax, x〉. (12)

We also need the restriction on intK of the Rayleigh quotient function ϕA :

intK → R defined by

ϕA(x) :=
〈Ax, x〉
‖x‖2 . (13)

9



In the following propositions we present some equivalent characterizations of

the convexity of qA defined by (12) on spherically convex sets. Our first result

is the following proposition.120

Proposition 10. Let qA and ϕA be the functions defined in (12) and (13),

respectively. The following statements are equivalent:

(a) The quadratic function qA is spherically quasi-convex;

(b) 〈Ax, y〉 ≤ 〈x, y〉max {qA(x), qA(y)} for all x, y ∈ S
n−1 ∩ K;

(c)
〈Ax, y〉
〈x, y〉 ≤ max {ϕA(x), ϕA(y)} for all x, y ∈ K with 〈x, y〉 6= 0.125

Proof. First of all, we assume that item (a) holds. Let x, y ∈ C. Thus, either

qA(x) ≤ qA(y) or qA(y) ≤ qA(x). Hence, by using Proposition 9 we conclude

that either 〈Ay, x〉 ≤ 〈x, y〉qA(y) or 〈Ax, y〉 ≤ 〈x, y〉qA(x). Thus, since A = AT

implies 〈Ax, y〉 = 〈Ay, x〉, taking into account that K is a subdual cone and

hence 〈x, y〉 ≥ 0, we have

〈Ax, y〉 ≤ max{〈x, y〉qA(x), 〈x, y〉qA(y)} = 〈x, y〉max{qA(x), qA(y)}, ∀ x, y ∈ C.

Therefore, by continuity we extend the above inequality to all x, y ∈ S
n−1 ∩ K

and, then item (b) holds. Conversely, we assume that item (b) holds. Let

x, y ∈ C satisfying qA(x) ≤ qA(y). Then, by the inequality in item (b) and

considering that K is a subdual cone, we have 〈Ax, y〉 ≤ 〈x, y〉qA(y). Hence,

by using Proposition 9 we conclude that qA is spherically quasi-convex and the130

proof of the equivalence between (a) and (b) is complete.

To establish the equivalence between (b) and (c), we assume first that item

(b) holds. Let x, y ∈ K with 〈x, y〉 6= 0. Then, x 6= 0 and y 6= 0. Moreover, we

have

u :=
x

‖x‖ ∈ S
n−1 ∩ K, v :=

y

‖y‖ ∈ S
n−1 ∩ K.

Hence, by using the inequality in item (b) with x = u and y = v, we obtain the

inequality in item (c). Conversely, suppose that (c) holds. Let x, y ∈ S
n−1 ∩K.

First assume that 〈x, y〉 6= 0. Since, ‖x‖ = ‖y‖ = 1, from the inequality in item

(c) we conclude that

〈Ax, y〉
〈x, y〉 ≤ max {qA(x), qA(y)} .

10



Due to K being a subdual cone, we have 〈x, y〉 ≥ 0, and hence the last inequality

is equivalent to the inequality in item (b). Now, assume that 〈x, y〉 = 0. Then,

take two sequences {xk}, {yk} ⊂ C such that limk→+∞ xk = x, limk→+∞ yk = y

and 〈xk, yk〉 6= 0. Since K is a subdual cone, we have 〈xk, yk〉 > 0 for all

k = 1, 2, . . .. Therefore, considering that ‖xk‖ = ‖yk‖ = 1 for all k = 1, 2, . . .,

we can apply again the inequality in item (c) to conclude

〈Axk, yk〉 ≤ 〈xk, yk〉max
{

qA(x
k), qA(y

k)
}

, k = 1, 2, . . . .

By tending with k to infinity, we conclude that the inequality in item (b) also

holds for 〈x, y〉 = 0 and the proof of the equivalence between (b) and (c) is

complete.

Corollary 11. Assume that K is a self-dual cone. If the quadratic function qA135

is spherically quasi-convex, then A has the K-Z-property.

Proof. Let x, y ∈ R
n×R

n such that x ∈ K, y ∈ K∗ and 〈x, y〉 = 0. If x = 0 or y =

0 we have 〈Ax, y〉 = 0. Thus, assume that x 6= 0 and y 6= 0. Considering that

K is self-dual we have x/‖x‖, y/‖y‖ ∈ S
n−1 ∩ K. Thus, since qA is spherically

quasi-convex and 〈x/‖x‖, y/‖y‖〉 = 0, we obtain, from items (a) and (b) of140

Proposition 10, that 〈Ax, y〉 ≤ 0. Therefore, A has the K-Z-property and the

proof is concluded.

Theorem 12. The function qA defined in (12) is spherically quasi-convex if

and only if ϕA defined in (13) is quasi-convex.

Proof. For c ∈ R, let [qA ≤ c] := {y ∈ C : qA(x) ≤ c} and [ϕA ≤ c] := {x ∈
int(K) : ϕA(x) ≤ c} be the sublevel sets of qA and ϕA, respectively, where

c ∈ R. Let K[qA≤c] be the cone spanned by [qA ≤ c]. Since C = S
n−1 ∩ int(K),

we conclude that x ∈ intK if and only if x/‖x‖ ∈ C. Hence, the definitions of

[qA ≤ c] and [ϕA ≤ c] imply that

K[qA≤c] = [ϕA ≤ c]. (14)

Now, we assume that qA is spherically quasi-convex. Thus, from Poposition 6145

we conclude that [qA ≤ c] is spherically convex for all c ∈ R. Hence, it follows
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from Proposition 4 that the cone K[qA≤c] is convex and pointed, which implies

from (14) that [ϕA ≤ c] is convex for all c ∈ R. Therefore, ϕA is quasi-convex.

Conversely, assume that ϕA is quasi-convex. Thus, [ϕA ≤ c] is convex for

all c ∈ R. On the other hand, since K is a proper subdual cone, intK is150

pointed. Thus, considering that [ϕA ≤ c] ⊂ intK is a cone, it is also a pointed

cone. Hence, from (14) it follows that K[qA≤c] is a pointed convex cone. Hence,

Proposition 4 implies that [qA ≤ c] is spherically convex for all c ∈ R. Therefore,

by using Proposition 6, we conclude that qA is spherically quasi-convex and the

proof is completed.155

Corollary 13. Assume that {x ∈ int(K) : 〈Acx, x〉 < 0} 6= ∅, where c ∈ R

and Ac := A − cIn. If qA defined in (12) is spherically quasi-convex, then the

cone

{x ∈ K : 〈Acx, x〉 ≤ 0}, (15)

is convex.

Proof. Assume that qA is spherically quasi-convex. Hence Theorem 12 implies

that ϕA is quasi-convex and then [ϕA ≤ c] is convex for all c ∈ R. Since

{x ∈ int(K) : 〈Acx, x〉 < 0} 6= ∅ we conclude that

closure({x ∈ int(K) : 〈Acx, x〉 ≤ 0}) = {x ∈ K : 〈Acx, x〉 ≤ 0}.

where “closure” is the topological closure operator of a set. Thus, considering

that [ϕA ≤ c] = {x ∈ int(K) : 〈Acx, x〉 ≤ 0}), we obtain that

closure ([ϕA ≤ c]) = {x ∈ K : 〈Acx, x〉 ≤ 0},

Taking into account that [ϕA ≤ c] is convex, the set closure ([ϕA ≤ c]) is also

convex. Therefore, last equality implies that the set in (15) is convex.

4.1. Spherically quasi-convex quadratic functions on the spherical positive or-

thant160

In this section we present some properties of a quadratic function defined in

the spherical positive orthant, which corresponds to K = R
n
+. We know that if A

12



has only one eigenvalue, then qA is constant and, consequently, it is spherically

quasi-convex. Therefore, throughout this section we assume that A has at least

two distinct eigenvalues. The domains C and int(K) of qA and ϕA, respectively

are given by

C := S
n−1 ∩ R

n
++, int(K) := R

n
++, (16)

We recall that qA and ϕA are defined in (12) and (13), respectively. Next we

present a technical lemma which will be useful in the sequel.

Lemma 14. Let n ≥ 2 and V = [v1 v2 v3 · · · vn] ∈ R
n×n be an orthogonal

matrix, A = V ⊤ΛV and Λ = diag(λ1, . . . , λn). Assume that λ1 < λ2 ≤ . . . ≤
λn. If v1 ∈ R

n
+ and c /∈ [λ2, λn) then the sublevel set [ϕA ≤ c] is convex.165

Proof. By using that V V ⊤ = In and A = V ⊤ΛV we obtain from the definition

(13) that

[ϕA ≤ c] =

{

x ∈ R
n
++ :

n
∑

i=1

(λi − c)〈vi, x〉2 ≤ 0

}

. (17)

We will show that [ϕA ≤ c] is convex for all c /∈ [λ2, λn). If c < λ1, then since

v1, v2, . . . , vn are linearly independent, we conclude from (17) that [ϕA ≤ c] =

{0} and therefore it is convex. If c = λ1, then from (17) we conclude that

[ϕA ≤ c] = S ∩ R
n
++, where S := {x ∈ R

n : 〈v2, x〉 = 0, . . . , 〈vn, x〉 = 0}, and
hence [ϕA ≤ c] is convex. Assume that λ1 < c < λ2. By letting y = V ⊤x, i.e.,

yi = 〈vi, x〉, for i = 1, . . . , n, and since v1 ∈ R
n
++ and x ∈ R

n
++, we have y1 > 0

and from (17) we obtain that [ϕA ≤ c] = L ∩ V ⊤
R

n
++, where

L :=

{

y = (y1, . . . , yn) ∈ R
n : y1 ≥

√

θ2y22 + . . .+ θny2n

}

,

θi =
λi − c

c− λ1
, i = 2, . . . , n.

Since L and V ⊤
R

n
++ are convex sets, we conclude that [ϕA ≤ c] is convex. If

c ≥ λn, then [ϕA ≤ c] = R
n
++ is convex, which concludes the proof.

Lemma 15. Let λ be an eigenvalue of A. If λIn − A is copositive and λ ≤ c,

then

[ϕA ≤ c] = R
n
++
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and consequently it is a convex set.

Proof. Let c ∈ R and [ϕA ≤ c] = {x ∈ R
n
++ : 〈Ax, x〉 − c‖x‖2 ≤ 0}. Since

λ ≤ c and λIn − A is copositive, we have 〈Ax, x〉 − c‖x‖2 ≤ 〈Ax, x〉 − λ‖x‖2 =170

〈(A− λIn)x, x〉 ≤ 0 for all x ∈ R
n
++, which implies that [ϕA ≤ c] = R

n
++.

The next theorem exhibits a series of implications and, in particular, condi-

tions which imply that the quadratic function qA is spherically quasi-convex.

Theorem 16. Let A ∈ R
n×n be a symmetric matrix and let λ1 ≤ λ2 ≤ ... ≤ λn

its eigenvalues. Consider the following statements:175

(i) qA is spherically quasi-convex.

(ii) A is a Z-matrix.

(iii) λ2In − A is copositive and there exists an eigenvector v1 ∈ R
n
+ of A cor-

responding to the eigenvalue λ1 of A.

(iv) A is a Z-matrix and λ2 ≥ aii for any i ∈ {1, 2, . . . , n}.180

(v) A is a Z-matrix, λ1 < λ2 and λ2 ≥ aii for all i ∈ {1, 2, . . . , n}.

(vi) A is an irreducible Z-matrix and λ2 ≥ aii for all i ∈ {1, 2, . . . , n}.

Then the following implications hold:

(v)

⇓
(iv) ⇐ (iii) ⇒ (i) ⇒ (ii)

⇑
(vi)

Proof.

(v)⇒(iii)⇐(vi): It is easy to verify that λ2In − A is nonnegative and hence

copositive. Moreover, Perron-Frobenius theorem applied to the matrix λ2In−A185

implies that there exists an eigenvector v1 ∈ R
n
+ corresponding to the largest

eigenvalue λ2−λ1 of λ2In−A, which is also the eigenvector of A corresponding

to λ1.
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(iii)⇒(i): If c ≤ λ2, then Lemma 14 implies that [ϕA ≤ c] is convex. If

c ≥ λ2, then from Lemma 15 we have [ϕA ≤ c] = R
n
++, which is convex. Hence,190

[ϕA ≤ c] is convex for all c ∈ R. Therefore, by using Theorem 12, we conclude

that qA is spherically quasi-convex function.

(i)⇒(ii): From Corollary 1, it follows that A has the R
n
+-Z-property. It is

easy to check that this is equivalent to A being a Z-matrix.

(iii)⇒(iv): Since (iii) =⇒ (i) =⇒ (ii), it follows that A is a Z-matrix. Since195

λ2In − A is copositive it follows that its diagonal elements are nonnegative.

Hence, λ2 ≥ aii for all i ∈ {1, 2, . . . , n}.

Corollary 17. Let n ≥ 2 and λ1, . . . , λn ∈ R be the eigenvalues of A. Assume

that −A is a positive matrix, λ1 < λ2 ≤ . . . ≤ λn and 0 < λ2 . Then qA is200

spherically quasi-convex.

Proof. First note that the matrix λ2In−A is a positive matrix and λ2−λ1 > 0

is its largest eigenvalue. Thus, Theorem 1 implies that the eigenvalue λ2 − λ1

has the associated eigenvector v1 ∈ R
n
++. Since (λ2In − A)v1 = (λ2 − λ1)v

1

we have Av1 = λ1v
1. Hence v1 is also an eigenvector of A associated to λ1.205

Therefore, considering that A is a Z-matrix, v1 ∈ R
n
+, λ1 < λ2 and λ2 ≥ aii for

all i ∈ {1, 2 . . . , n}, it follows from Theorem 16 (v)⇒(i) that qA is spherically

quasi-convex.

In the following two examples we use Theorem 16 (iii)⇒(i) to present a class

of quadratic quasi-convex functions defined in the spherical positive orthant.210

Example 18. Let n ≥ 3 and V = [v1 v2 v3 · · · vn] ∈ R
n×n be an orthogonal

matrix, A = V ⊤ΛV and Λ := diag(λ, µ, . . . , µ, ν), where λ, µ, ν ∈ R. Then qA

is a spherically quasi-convex, whenever

v1 −
√

ν − µ

µ− λ
|vn| ∈ R

n
+, λ < µ < ν, (18)

where |vn| := (|vn1 |, . . . , |vnn |). Indeed, by using that V V ⊤ = In and A = V ⊤ΛV ,
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after some calculations we conclude that

〈Ax, x〉 − µ‖x‖2 = (µ− λ)

[

−〈v1, x〉2 + ν − µ

µ− λ
〈vn, x〉2

]

. (19)

Thus, using the condition in (18) and considering that x ∈ R
n
++, we have

−〈v1, x〉2 + ν − µ

µ− λ
〈vn, x〉2 ≤ ν − µ

µ− λ

[

−〈|vn|, x〉2 + 〈vn, x〉2
]

≤ 0.

Hence, by combining the last inequality with (19), we conclude that µIn − A

is copositive. Therefore, since v1 ∈ R
n
+ we can apply Theorem 16 (iii)⇒(i)

with λ2 = µ to conclude that qA is a spherically quasi-convex function. For

instance, taking λ < (λ + ν)/2 < µ < ν the vectors v1 = (e1 + en)/
√
2, v2 =

e2, . . . , vn−1 = en−1, vn = (e1 − en)/
√
2, satisfy (18).215

Example 19. Let n ≥ 3 and V = [v1 v2 v3 · · · vn] ∈ R
n×n be an orthogonal

matrix, A = V ⊤ΛV and Λ = diag(λ1, . . . , λn). Then qA is a spherically quasi-

convex, whenever

v1 = (v11 , . . . , v
1
n) ∈ R

n
++, λ1 < λ2 ≤ · · · ≤ λn ≤ λ2 +

α2

(n− 2)
(λ2 − λ1),

(20)

where α := min{v1i 6= 0 : i = 1, . . . , n}. Indeed, by using that V V ⊤ = In and

the definition of the matrix A, we obtain that

〈Ax, x〉−λ2‖x‖2 = (λ1−λ2)〈v1, x〉2+(λ3−λ2)〈v3, x〉2+ · · ·+(λn−λ2)〈vn, x〉2.

Since λ2 − λ1 > 0 and 0 ≤ λj − λ2 ≤ λn − λ2 for all j = 3, . . . , n, the last

equality becomes

〈Ax, x〉 − λ2‖x‖2 ≤ (λ2 − λ1)

[

−〈v1, x〉2 + λn − λ2

λ2 − λ1

(

〈v3, x〉2 + · · ·+ 〈vn, x〉2
)

]

. (21)

On the other hand, by using that v1i ∈ R++ and v1i ≥ α for all i = 1, . . . , n, we

obtain that

〈v1, x〉2 = (v11x1 + · · ·+ v1nxn)
2

≥ α2(x1 + · · ·+ xn)
2 ≥ α2(x2

1 + · · ·+ x2
n) = α2‖x‖2 (22)
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for all x ∈ R
n
+. Moreover, taking into account that ‖vj‖ = 1 for all j = 3, . . . , n,

it follows from the Cauchy-Schwarz inequality, that

〈v3, x〉2 + · · ·+ 〈vn, x〉2 ≤ ‖v3‖2‖x‖2 + · · ·+ ‖vn‖2‖x‖2 ≤ (n− 2)‖x‖2

for all x ∈ R
n
+. Thus, combining the last inequalities with (21) and (22) and

considering that the last inequality in (20) is equivalent to −α2 + (n− 2)(λn −
λ2)/(λ2 − λ1) ≤ 0, we have

〈Ax, x〉 − λ2‖x‖2 ≤ (λ2 − λ1)

[

−α2 + (n− 2)
λn − λ2

λ2 − λ1

]

‖x‖2 ≤ 0

for all x ∈ R
n
+. Hence, we conclude that λ2In − A is copositive. There-

fore, since v1 ∈ R
n
+ is the eigenvector of A corresponding to the eigenvalue

λ1, we apply Theorem 16 (iii)⇒(i), to conclude that qA is spherically quasi-

convex function. For instance, n ≥ 3, A = V ⊤ΛV , Λ = diag(λ1, . . . , λn) and

V = [v1 v2 v3 · · · vn] ∈ R
n×n, where α = 1/

√
n,

v
1 :=

1√
n

n
∑

i=1

e
i
, v

j :=
1

√

(n+ 1− j) + (n+ 1− j)2

[

e
1 − (n+ 1− j)ej +

n
∑

i>j

e
i

]

,

for j = 2, . . . , n and λ1 < λ2 ≤ . . . ≤ λn < λ2 + (1/[n(n− 2)])(λ2 − λ1), satisfy

the orthogonality of V and the condition (20).

In the next theorem we establish the characterization for quasi-convex quadratic

functions qA on the spherical positive orthant where A is symmetric having only

two distinct eigenvalues.220

Theorem 20. Let n ≥ 3 and A ∈ R
n×n be a symmetric matrix with only two

distinct eigenvalues, such that its smallest one has multiplicity one. Then, qA is

spherically quasi-convex if and only if there is an eigenvector of A corresponding

to the smallest eigenvalue with all components nonnegative.

Proof. Let A := (aij) ∈ R
n×n, λ1, λ2, . . . , λn be the eigenvalues of A correspond-

ing to an orthonormal set of eigenvectors v1, v2, . . . , vn, respectively. Then, we

can assume without lose of generality that λ1 =: λ < µ := λ2 = · · · = λn. Thus,

we have

A = V ΛV T , V := [v1 v2 . . . vn] ∈ R
n×n, Λ := diag(λ, µ, . . . , µ) ∈ R

n×n.

(23)
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First we assume that qA is a spherically quasi-convex function. The matrix Λ

can be equivalently written as follows

Λ = µIn + (λ− µ)D, (24)

where D := (dij) ∈ R
n×n has all entries 0 except the d11 entry which is 1. Then

(24) and (23) imply

aij = (λ− µ)v1i v
1
j i 6= j. (25)

Since qA is spherically quasi-convex and ei ∈ C = S
n−1 ∩ R

n
++ for all i =225

1, . . . , n, by using item (b) of Proposition 10 we conclude that aij ≤ 0 for

all i, j = 1, . . . , n with i 6= j. Thus, since λ < µ, we obtain form (25) that

0 ≤ v1i v
1
j for all i 6= j, which implies v1 ∈ R

n
+ or −v1 ∈ R

n
+. Therefore, there

is an eigenvector corresponding to the smallest eigenvalue with all components

nonnegative. Conversely, assume that v1 ∈ R
n
+. Then, applying Lemma 14 with230

λ = λ1 < µ = λ2 = · · · = λn we conclude that [ϕA ≤ c] is convex for all c ∈ R,

and hence ϕA is quasi-convex. Therefore, by using Theorem 12, we conclude

that qA is spherically quasi-convex.

In the following example we present a class of matrices satisfying the as-

sumptions of Theorem 20.235

Example 21. Let v ∈ R
n
+ and define the Householder matrix H := In −

2vvT /‖v‖2. The matrix H is nonsingular and symmetric. Moreover, Hv = −v

and letting E := {u ∈ R
n : 〈v, u〉 = 0} we have Hu = u for all u ∈ E. Since

the dimension of E is n − 1, we conclude that −1 and 1 are eigenvalues of H

with multiplicities one and n − 1, respectively. Furthermore, the eigenvector240

corresponding to the smallest eigenvalue of H has all components nonnegative.

Therefore, Theorem 20 implies that qH(x) = 〈Hx, x〉 is spherically quasi-convex.

In order to give a complete characterization of the spherical quasi-convexity

of qA for the case when A is diagonal, in the following result we start with

a necessary condition for qA to be spherically quasi-convex on the spherical245

positive orthant.
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Lemma 22. Let n ≥ 3, C = S
n−1 ∩ R

n
++ and A ∈ R

n×n be a nonsingular

diagonal matrix. If qA is spherically quasi-convex, then A has only two distinct

eigenvalues, such that its smallest one has multiplicity one.

Proof. The proof will be made by contradiction. First we assume that A has

at least three distinct eigenvalues, among which exactly two are negative, or

at least two distinct eigenvalues, among which exactly one is negative and has

multiplicity greater than one, i.e.,

Ae1 = −λ1e
1, Ae2 = −λ2e

2, Ae3 = λ3e
3, λ1, λ2, λ3 > 0 (26)

with −λ1 < −λ2 < 0 < λ3 or −λ1 = −λ2 < 0 < λ3 and e1, e2, e3 are canonical

vectors of Rn. Define the following two auxiliary vectors

v1 := e1 + t1e
3, v2 := e2 + t2e

3, ti =

√

λi

λ3
, i = 1, 2. (27)

Hence, (26) and (27) imply that 〈Av1, v1〉 = 0 and 〈Av2, v2〉 = 0 and since

v1, v2 ∈ R
n
+, we conclude that v1, v2 ∈

{

x ∈ R
n
+ : 〈Ax, x〉 ≤ 0

}

. However,

using again (26) and (27) we obtain that

〈A(v1 + v2), v1 + v2〉 = 2
√

λ1λ2 > 0,

and then v1 + v2 /∈
{

x ∈ R
n
+ : 〈Ax, x〉 ≤ 0

}

. Thus,
{

x ∈ R
n
+ : 〈Ax, x〉 ≤ 0

}

is250

not convex. Finally, assume that A has at least three distinct eigenvalues or at

least two distinct ones with the smallest one having multiplicity greater than

one. Let λ, µ, ν be eigenvalues of A such that λ < µ < ν or λ = µ < ν. Take a

constant c ∈ R such that µ < c < ν. Letting Ac := A − cIn we conclude that

λ − c, µ − c, ν − c are eigenvalues of Ac and satisfy λ − c < µ − c < 0 < ν − c255

or λ − c = µ − c < 0 < ν − c. Hence, by the first part of the proof, with

Ac in the role of A, we conclude that
{

x ∈ R
n
+ : 〈Acx, x〉 ≤ 0

}

is not convex.

On the other hand, due to ei ∈ R
n
+ and 〈Aei, ei〉 = λ − c < 0, for some i, we

obtain that
{

x ∈ R
n
++ : 〈Acx, x〉 < 0

}

6= ∅. Thus, applying Corollary 13 with

K = R
n
+ and taking into account that

{

x ∈ R
n
+ : 〈Acx, x〉 ≤ 0

}

is not convex,260

we conclude that qA is not spherically quasi-convex, which is absurd and the

proof is complete.
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To make the paper self-contained we state the result of [21, Theorem 1]

explicitly here:

Theorem 23. Let C = S
n−1∩Rn

++ and A ∈ R
n×n be a symmetric matrix. Then265

qA is spherically convex if and only if there exists λ ∈ R such that A = λIn. In

this case qA is a constant function.

The next result gives a full characterization for qA to be spherically quasi-

convex quadratic function on the spherical positive orthant, where A is a diago-

nal matrix. The proof of this result is a combination of Theorem 20, Lemma 22270

and Theorem 23. Before presenting the result we need the following definition:

A function is called merely spherically quasi-convex if it is spherically quasi-

convex, but it is not spherically convex.

Theorem 24. Let n ≥ 3 and A ∈ R
n×n be a nonsingular diagonal matrix.

Then qA is merely spherically quasi-convex if and only if A has only two eigen-275

values, such that its smallest one has multiplicity one and has a corresponding

eigenvector with all components nonnegative.

We end this section by showing that, if a symmetric matrix A has three eigen-

vectors in the nonnegative orthant associated to at least two distinct eigenvalues,

then the associated quadratic function qA cannot be spherically quasi-convex.280

Lemma 25. Let n ≥ 3 and v1, v2, v3 ∈ R
n be distinct eigenvectors of a symmet-

ric matrix A associated to the eigenvalues λ1, λ2, λ3 ∈ R, respectively, among

which at least two are distinct. If qA is spherically quasi-convex, then vi /∈ R
n
+

for some i = 1, 2, 3.

Proof. Assume by contradiction that v1, v2, v3 ∈ R
n
+. Without loss of generality

we can also assume that ‖vi‖ = 1, for i = 1, 2, 3. We have three possibilities:

λ1 < λ2 < λ3, λ1 = λ2 < λ3 or λ1 < λ2 = λ3. We start by analyzing the

possibilities λ1 < λ2 < λ3 or λ1 = λ2 < λ3. First we assume that λ1 < λ2 <

0 < λ3 or λ1 = λ2 < 0 < λ3. Define the following vectors

w1 := v1+ t1v
3, w2 := v2+ t2v

3, t1 :=

√

−λ1

λ3
, t2 :=

√

−λ2

λ3
. (28)
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We have 〈vi, vj〉 = 0 for all i, j = 1, 2, 3 with i 6= j, and since

Av1 = λ1v
1, Av2 = λ2v

2, Av3 = λ3v
3, v1, v2, v3 ∈ R

n
+, (29)

we conclude from (28) that 〈Aw1, w1〉 = 0 and 〈Aw2, w2〉 = 0. Moreover, since

v1, v2, v3 ∈ R
n
+ we conclude that w1, w2 ∈

{

x ∈ R
n
+ : 〈Ax, x〉 ≤ 0

}

. On the

other hand, by using (29) and (28), we obtain that

〈A(w1 + w2), w1 + w2〉 = 2
√

λ1λ2 > 0,

and then w1 + w2 /∈
{

x ∈ R
n
+ : 〈Ax, x〉 ≤ 0

}

. Thus,
{

x ∈ R
n
+ : 〈Ax, x〉 ≤ 0

}

is not a convex cone. For the general case, take c ∈ R such that λ2 < c < λ3.

Letting Ac := A − cIn we conclude that λ1 − c, λ2 − c, λ3 − c are eigen-

values of Ac and satisfying λ1 − c < λ2 − c < 0 < λ3 − c or λ1 − c =

λ2 − c < 0 < λ3 − c with the three corresponding orthonormal eigenvec-

tors v1, v2, v3 ∈ R
n
+. Hence, by the first part of the proof, with Ac in the

role of A, we conclude that the cone
{

x ∈ R
n
+ : 〈Acx, x〉 ≤ 0

}

is not convex.

On the other hand, due to v1 ∈ R
n
+ and 〈Av1, v1〉 = λ1 − c < 0, we have

{

x ∈ R
n
++ : 〈Acx, x〉 < 0

}

6= ∅. Thus, applying Corollary 13 with K = R
n
+

and taking into account that
{

x ∈ R
n
+ : 〈Acx, x〉 ≤ 0

}

is not convex, we con-

clude that qA is not spherically quasi-convex, which is absurd. To analyze the

possibility λ1 < λ2 = λ3, first assume that λ1 < 0 < λ2 = λ3 and define the

vectors

w1 := t1v
1 + v3, w2 := t2v

1 + v3, t1 =

√

λ2

−λ1
, t2 =

√

λ3

−λ1
,

and then proceed as above to obtain again a contradiction. Therefore, vi /∈ R
n
+285

for some i = 1, 2, 3 and the proof is complete.

5. Final remarks

This paper is a continuation of [4, 19, 21], where intrinsic properties of the

spherically convex sets and functions were studied. As far as we know this is

the first study of spherically quasi-convex quadratic functions. As an even more290
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challenging problem, we will work towards developing efficient algorithms for

constrained optimization on spherically convex sets. Minimizing a quadratic

function on the spherical nonnegative orthant is of particular interest because

the nonnegativity of the minimum value is equivalent to the copositivity of the

corresponding matrix [6, Proposition 1.3] and to the nonnegativity of its Pareto295

eigenvalues [6, Theorem 4.3]. Considering the intrinsic geometrical properties

of the sphere will open interesting perspectives for detecting the copositivity of

a matrix. We foresee further progress in these topics in the near future.
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