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Submitted to the Annals of Probability

COMPARISON PRINCIPLE FOR STOCHASTIC HEAT
EQUATION ON Rd

By Le Chen∗ and Jingyu Huang†

University of Nevada, Las Vegas∗ and University of Utah†

We establish the strong comparison principle and strict positivity
of solutions to the following nonlinear stochastic heat equation on Rd(

∂

∂t
− 1

2
∆

)
u(t, x) = ρ(u(t, x)) Ṁ(t, x),

for measure-valued initial data, where Ṁ is a spatially homogeneous
Gaussian noise that is white in time and ρ is Lipschitz continu-
ous. These results are obtained under the condition that

∫
Rd(1 +

|ξ|2)α−1f̂(dξ) < ∞ for some α ∈ (0, 1], where f̂ is the spectral mea-
sure of the noise. The weak comparison principle and nonnegativity
of solutions to the same equation are obtained under Dalang’s con-
dition, i.e., α = 0. As some intermediate results, we obtain handy
upper bounds for Lp(Ω)-moments of u(t, x) for all p ≥ 2, and also
prove that u is a.s. Hölder continuous with order α− ε in space and
α/2− ε in time for any small ε > 0.

1. Introduction. In this paper, we study the sample-path comparison
principle, or simply comparison principle of the solutions to the following
stochastic heat equation (SHE) with rough initial conditions,

(
∂

∂t
− 1

2
∆

)
u(t, x) = ρ(u(t, x)) Ṁ(t, x), x ∈ Rd, t > 0,

u(0, ·) = µ(·).
(1.1)

In this equation, ρ is assumed to be a globally Lipschitz continuous function.
The linear case, i.e., ρ(u) = λu, is called the parabolic Anderson model
(PAM) [3]. The noise Ṁ is a Gaussian noise that is white in time and
homogeneously colored in space. Informally,

E
[
Ṁ(t, x)Ṁ(s, y)

]
= δ0(t− s)f(x− y)

MSC 2010 subject classifications: Primary 60H15; secondary 35R60, 60G60
Keywords and phrases: Stochastic heat equation, parabolic Anderson model, space-time

Hölder regularity, spatially homogeneous noise, comparison principle, measure-valued ini-
tial data
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2 L. CHEN AND J. HUANG

where δ0 is the Dirac delta measure with unit mass at zero and f is a
“correlation function” i.e., a nonnegative and nonnegative definite function
that is not identically zero. The Fourier transform of f is denoted by f̂

f̂(ξ) = Ff(ξ) =

∫
Rd

exp (−i ξ · x) f(x)dx.

In general, f̂ is again a nonnegative and nonnegative definite measure, which
is usually called the spectral measure. The precise meaning of the “rough
initial conditions/data” are specified as follows. We first note that by the
Jordan decomposition, any signed Borel measure µ can be decomposed as
µ = µ+ − µ− where µ± are two non-negative Borel measures with disjoint
support. Denote |µ| := µ+ + µ−. The rough initial data refers to any signed
Borel measure µ such that∫

Rd
e−a|x|

2 |µ|(dx) < +∞ , for all a > 0 ,(1.2)

where |x| =
√
x21 + · · ·+ x2d denotes the Euclidean norm. It is easy to see

that condition (1.2) is equivalent to the condition that the solution to the
homogeneous equation – J0(t, x) defined in (1.6) below – exists for all t > 0
and x ∈ Rd.

The comparison principle refers to the property that if two initial con-
ditions are ordered, then the corresponding solutions to the stochastic par-
tial differential equations are also ordered. For any Borel measure µ on
Rd, “µ ≥ 0” has its obvious meaning that µ is a nonnegative measure and
“µ > 0” refers to the fact that µ ≥ 0 and µ is nonvanishing, i.e., µ 6= 0. Let u1
and u2 be two solutions starting from two measures µ1 and µ2, respectively.
We say that (1.1) satisfies the weak comparison principle if u1(t, x) ≤ u2(t, x)
a.s. for all t > 0 and x ∈ Rd whenever µ1 ≤ µ2. Similarly, we say that (1.1)
satisfies the strong comparison principle if u1(t, x) < u2(t, x) for all t > 0
and x ∈ Rd a.s. whenever µ1 < µ2. Note that when ρ(u) = λu, it is relatively
easier to establish the weak comparison principle since the solution can be
approximated by its regularized version, which admits a Feynman-Kac for-
mula; see [16, 17, 19].

Most strong comparison principles are obtained through Mueller’s origi-
nal work [20], where he proved the case when d = 1, Ṁ is the space-time
white noise, ρ(u) = |u|γ (for all γ ≤ 1), and the initial data is a bounded
function. In [23], Shiga studied the same equation as that in [20] except that
ρ is assumed to be Lipschitz and there can be a drift term. By using con-
centration of measure arguments for discrete directed polymers in Gaussian
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environments, Flores established in [13] the strict positivity of solution to
1-d PAM with Dirac delta initial data. Following arguments by Mueller and
Shiga, Chen and Kim extended these results in [8] to allow both fractional
Laplace operators and rough initial data. Recently, by using paracontrolled
distributions, Gubinelli and Perkowski gave an intrinsic proof of the strict
positivity; see [15]. Their proof does not depend on the details of noise,
though they require the initial data to be a function that is strict positive
anywhere.

When d ≥ 2, in order to study a random field solution, the noise has to
be colored in space, where “colored” means “correlated”. Equation (1.1) has
been much studied since the introduction by Dawson and Salehi [12] as a
model for the growth of a population in a random environment. In [10, 11],
it is shown that if the initial condition is a bounded function, and under
some integrability condition on f̂ , now called Dalang’s condition, i.e.,

Υ(β) := (2π)−d
∫
Rd

f̂(dξ)

β + |ξ|2 < +∞ for some and hence for all β > 0,

(1.3)

there is a unique random field solution to equation (1.1). This equation has
been extensively studied; see, e.g., [6, 14, 16, 19]. Recently, Chen and Kim
showed that Dalang’s condition (1.3) also guarantees an L2(Ω)-continuous
random field solution starting from rough initial conditions; see [7]. To the
best of our knowledge, comparison principle in this setting is much less
known, though people believe that it is true. In [24], Tessitore and Zabczyk
proved the strict positivity for the case when f̂ belongs to Lp(Rd) for some
p ∈ [1, d/(d−2)). Clearly, this condition excludes the important Riesz kernel
case, i.e., f(x) = |x|−β with β ∈ (0, 2 ∧ d). Indeed, we will show that under
Dalang’s condition (1.3), if ρ(0) = 0, then the solution u(t, x) starting from
any nonnegative rough initial data is a.s. nonnegative for any t > 0 and
x ∈ Rd. Moreover, if the nonnegative rough initial data is nonvanishing and
f satisfies ∫

Rd

f̂(dξ)

(1 + |ξ|2)1−α
<∞, for some α ∈ (0, 1],(1.4)

then we are able to establish the strict positivity of u(t, x) through the
following small-ball probability estimate:

P (u(t, x) < ε) ≤ A exp
(
−A| log ε|α (log | log ε|)1+α

)
.
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Similar small-ball probabilities in various settings can be found in [8, 9,
13, 21]. These nonnegativity statements can be translated into comparison
statements by considering v = u1 − u2.

Condition (1.4) is natural since in a recent paper [6], it is shown that
Dalang’s condition (1.3) alone cannot guarantee the existence of a continuous
version of the solution. There might be solutions that behave so badly that
they may hit zero. Whether this phenomenon does happen is still not clear
to us and it is left for future exploration. For the moment, we are content
with this slightly stronger condition (1.4). Indeed, if the initial condition is
a bounded function, Sanz-Solé and Sarrà [22] showed that condition (1.4)
guarantees that the solution is a.s. Hölder continuous with order α − ε in
space and α/2−ε in time for any small ε > 0. In this paper, we have extended
this result for rough initial conditions. The space-time white noise case is
proved in [5].

In all these studies, the moment bounds/formulas play an important role.
The upper bounds for the second moments under Dalang’s condition (1.3)
for rough initial conditions is obtained in [7]. In this paper, we extend this
bound to obtain similar upper bounds for all p-th moments, p ≥ 2. Using
these moments upper bounds, we establish the (weak) comparison principle.
Note that similar moment upper bounds have also been recently obtained by
the second author [18]. By contrast, the major effort of [7] is to obtain some
nontrivial lower bounds for the second moments. Note when ρ(u) = λu,
the p-th moment admits a Feynman-Kac representation, which has been ex-
ploited to study the intermittency phenomenon in [16, 17, 19].

In the rest of this introduction, we will first give the precise definition of
the solution and recall the existence/uniqueness result in Section 1.1. The
main results are stated in Section 1.2. Then we give an outline of the rest
of the paper in Section 1.3.

1.1. Definition and existence of a solution. Recall that a spatially homo-
geneous Gaussian noise that is white in time is an L2(Ω)-valued mean zero
Gaussian process on a complete probability space (Ω,F ,P){

F (ψ) : ψ ∈ C∞c
(

[0,∞)× Rd
) }

,

such that

E [F (ψ)F (φ)] =

∫ ∞
0

ds

∫∫
R2d

ψ(s, x)φ(s, y)f(x− y)dxdy.

Let Bb(Rd) be the collection of Borel measurable sets with finite Lebesgue
measure. As in Dalang-Walsh theory [10, 25], one can extend F to a σ-finite
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L2(Ω)-valued martingale measure B 7→ F (B) defined for B ∈ Bb(R+ ×Rd),
where R+ := [0,∞). Then define

Mt(B) := F ([0, t]×B) , B ∈ Bb(Rd).

Let (Ft, t ≥ 0) be the natural filtration generated by M·(·) and augmented
by all P-null sets N in F , i.e.,

Ft := σ
(
Ms(A) : 0 ≤ s ≤ t, A ∈ Bb

(
Rd
))
∨N , t ≥ 0,

Then for any adapted, jointly measurable (with respect to B
(
(0,∞)× Rd

)
×

F) random field {X(t, x) : t > 0, x ∈ Rd} such that for all integers p ≥ 2,∫ ∞
0

ds

∫∫
R2d

dxdy ||X(s, y)X(s, x)|| p
2
f(x− y) <∞,

the stochastic integral ∫ ∞
0

∫
Rd
X(s, y)M(ds, dy)

is well-defined in the sense of Dalang-Walsh. Here we only require the joint-
measurability instead of predictability; see Proposition 2.2 in [7] for this case
or Proposition 3.1 in [4] for the space-time white noise case. Throughout this
paper, ||·||p denotes the Lp(Ω)-norm.

The solution to (1.1) is understood in the mild form

u(t, x) = J0(t, x) +

∫ t

0

∫
Rd
G(t− s, x− y)ρ(u(s, y))M(ds, dy).(1.5)

Here J0(t, x) denotes the solution to the homogeneous equation

J0(t, x) := (µ ∗G(t, ·)) (x) :=

∫
Rd
G(t, x− y)µ(dy)(1.6)

where

G(t, x) = (2πt)−d/2 exp

(
−|x|

2

2t

)
.(1.7)

Denote

I(t, x) :=

∫∫
[0,t]×Rd

G(t− s, x− y)ρ(u(s, y))M(ds, dy).

The above stochastic integral is understood in the sense of Walsh [10, 25].



6 L. CHEN AND J. HUANG

Definition 1.1. A process u =
(
u(t, x), (t, x) ∈ (0,∞)× Rd

)
is called

a random field solution to (1.1) if

(1) u is adapted, i.e., for all (t, x) ∈ (0,∞)× Rd, u(t, x) is Ft-measurable;
(2) u is jointly measurable with respect to B

(
(0,∞)× Rd

)
×F ;

(3) ||I(t, x)||2 < +∞ for all (t, x) ∈ (0,∞)× Rd;
(4) I is L2(Ω)-continuous, i.e., the function (t, x) 7→ I(t, x) mapping (0,∞)×

Rd into L2(Ω) is continuous;
(5) u satisfies (1.5) a.s., for all (t, x) ∈ (0,∞)× Rd.

Definition 1.1 does not require a random field solution to have a pathwise
continuous version. The L2(Ω)-continuity in condition (4) is a much weaker
condition than the condition of having continuous sample path. Actually,
one can construct a discontinuous solution as in [6]. On the other hand,
from Definition 1.1 one can find sufficient conditions for both the admissible
initial data and the admissible correlation function f , which is the content
of the following theorem:

Theorem 1.2 (Theorem 2.4 in [7]). If the initial data µ satisfies (1.2),
then under Dalang’s condition (1.3), SPDE (1.1) has a unique (in the sense
of versions) random field solution

{
u(t, x) : t > 0, x ∈ Rd

}
starting from µ.

This solution is L2(Ω)-continuous.

The existence of the random field solution (except the L2(Ω)-continuity)
has also been obtained recently by the second author in [18]. Note that the
L2(Ω)-continuity that comes with Theorem 1.2 is too weak to be useful in
this paper. When we need the pathwise continuity, we will instead work
under a stronger condition – (1.4) – than Dalang’s condition (1.3).

1.2. Statements of the main results. We will prove seven theorems as
follows:

Theorem 1.3 (Weak comparison principle). Assume that f satisfies
Dalang’s condition (1.3). Let u1 and u2 be two solutions to (1.1) with the
initial measures µ1 and µ2 that satisfy (1.2), respectively. If µ1 ≤ µ2, then

(1.8) P (u1(t, x) ≤ u2(t, x)) = 1 , for all t ≥ 0 and x ∈ Rd .

Moreover, if the paths of u1(t, x) and u2(t, x) are a.s. continuous, then

(1.9) P
(
u1(t, x) ≤ u2(t, x) for all t ≥ 0 and x ∈ Rd

)
= 1 .
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If ρ(0) = 0, then u ≡ 0 is the unique solution to (1.1) starting from µ = 0.
Hence, we have the following corollary:

Corollary 1.4 (Nonnegativity). Assume that f satisfies Dalang’s con-
dition (1.3) and ρ(0) = 0. Let u be the solution to (1.1) with the initial
measure µ that satisfies (1.2). If µ ≥ 0, then

(1.10) P (u(t, x) ≥ 0) = 1 , for all t ≥ 0 and x ∈ Rd .

Moreover, if the path of u(t, x) are a.s. continuous, then

(1.11) P
(
u(t, x) ≥ 0 for all t ≥ 0 and x ∈ Rd

)
= 1 .

Theorem 1.5 (Strong comparison principle). Assume that f satisfies
(1.4) for some α ∈ (0, 1]. Let u1 and u2 be two (continuous versions of the)
solutions to (1.1) with the initial data µ1 and µ2, respectively. Then the fact
µ1 < µ2 implies

(1.12) P
(
u1(t, x) < u2(t, x) for all t > 0 and x ∈ Rd

)
= 1.

Note that by Theorem 1.8 below, under the assumptions of Theorem 1.5,
the solution to (1.1) has a continuous version.

Theorem 1.6 (Strict positivity). Assume that f satisfies (1.4) for some
α ∈ (0, 1] and ρ(0) = 0. Let u be the solution to (1.1) with initial measure
µ > 0 that satisfies (1.2). Then for any compact set K ⊂ (0,∞)×Rd, there
exists a finite constant A > 0 which only depends on K such that for all
ε > 0 small enough,

(1.13) P
(

inf
(t,x)∈K

u(t, x) < ε

)
≤ A exp

(
−A| log ε|α (log | log ε|)1+α

)
.

In order to establish the above results, we need to prove the following four
theorems, which are of interest by themselves. The first result is a general
moment bound. This provides us with a very handy tool in studying various
properties of the solution to (1.1). This result extends the previous work [7]
from the two-point correlation function to higher moments. Let Lipρ > 0 be
the Lipschitz constant for ρ. See Section 2 for the proof.

Theorem 1.7 (Moment bounds). Under Dalang’s condition (1.3), if the
initial data µ is a signed measure that satisfies (1.2), then the solution u to
(1.1) for any given t > 0 and x ∈ Rd is in Lp(Ω), p ≥ 2, and

||u(t, x)||p ≤
[
ς +
√

2 (|µ| ∗G(t, ·)) (x)
]
H (t; γp)

1/2 ,(1.14)
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where ς = |ρ(0)|/Lipρ and γp = 32pLip2
ρ and H(t; γp) is defined in (2.4)

below. Moreover, if for some α ∈ (0, 1] condition (1.4) is satisfied, then
when p ≥ 2 is large enough, there exists some constant C > 0 such that

||u(t, x)||p ≤ C
[
ς + (|µ| ∗G(t, ·)) (x)

]
exp

(
C Lip2/α

ρ p1/αt
)
.(1.15)

The second result is about the sample-path regularity under (1.4) for
rough initial data. This result is used to obtain a large deviation estimates
in proving the strong comparison principle. See Section 3 for its proof.

Theorem 1.8 (Hölder regularity). Suppose that µ is any measure that
satisfies (1.2) and f satisfies (1.4) for some α ∈ (0, 1]. Then the solution
to (1.1) starting from µ has a version which is a.s. β1-Hölder continuous in
time and β2-Hölder continuous in space on (0,∞)× Rd for all

β1 ∈ (0, α/2) and β2 ∈ (0, α) .

The third theorem consists of two approximation results, which are used
to establish the weak comparison principle. The first one says that we can
approximate a solution starting from rough initial data by solutions starting
from smooth and bounded initial conditions. This result allows us to pass
from the weak comparison principle for L∞(Rd)-valued initial data to that
for rough initial data. In the second approximation, we mollify the noise and
establish an uniform L2(Ω)-limit. See Section 4 for the proof.

Theorem 1.9 (Two approximations). Assume that f satisfies Dalang’s
condition (1.3).
(1) Suppose that the initial measure µ satisfies (1.2). If u and uε are the
solutions to (1.1) starting from µ and ((µψε)∗G(ε, ·))(x), respectively, where

ψε(x) = 1I{|x|≤1/ε} + (1 + 1/ε− |x|) 1I{1/ε<|x|≤1+1/ε},(1.16)

then
lim
ε→0+

||u(t, x)− uε(t, x)||2 = 0, for all t > 0 and x ∈ Rd.

(2) Let φ be any continuous, nonnegative and nonnegative definite function
on Rd with compact support such that

∫
Rd φ(x)dx = 1. Let u be the solution

to (1.1) starting from bounded initial data, i.e., µ(dx) = g(x)dx with g ∈
L∞(Rd). If ũε is the solution to the following mollified equation

(1.17)
∂

∂t
ũε(t, x) =

1

2
∆ũε(t, x) + ρ(ũε(t, x))Ṁ ε(t, x) ,
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with the same initial condition ũε(0, ·) = µ as u, where

(1.18) M ε(ds, dx) =

∫
Rd
φε(x− y)M(ds, dy)dx ,

and φε(x) = ε−dφ(x/ε), then

lim
ε→0+

sup
x∈Rd

||u(t, x)− ũε(t, x)||2 = 0, for all t > 0.(1.19)

Remark 1.10. One can always find one example of such function φ in
part (2) of Theorem 1.9, e.g., φ(x) =

∏d
i=1 (1− |xi|) 1I{|xi|≤1} whose Fourier

transform is nonnegative: φ̂(ξ) = 2d
∏d
j=1 ξ

−2
j (1− cos(ξj)) ≥ 0.

The last result shows that the solution u(t, x) to (1.1) converges to its
initial data µ weakly as t → 0. This result is used to establish the strong
comparison principle for measure-valued initial data given that for function-
valued initial data. See Section 5 for the proof. Let Cc(Rd) be the set of
continuous functions with compact support.

Theorem 1.11. Under Dalang’s condition (1.3), if u is the solution to
(1.1) starting from a measure µ that satisfies (1.2), then, for all φ ∈ Cc(Rd),

lim
t→0

∫
Rd
u(t, x)φ(x)dx =

∫
Rd
φ(x)µ(dx) in L2(Ω).(1.20)

Finally, let us give some more explanations on the reason that we need to
work under the stronger condition (1.4) instead of Dalang’s condition (1.3).
Actually, as one can see, Lemma 7.2 below will play a key role in the proof
of the main result – the strong comparison principle. This lemma tells us
that for small time step, i.e., for large m, with high probability the solution
in one time step will not change too much. (Then one can argue using the
Markov property that if the initial data is positive somewhere, this property
can be propagated to the whole space-time plane.) Hence, this kind of result
(Lemma 7.2) has to do with the regularity of the solution. Indeed, the proof
of Lemma 7.2, as one can see, consists of an optimization of two competing
terms, one from the moment growth rate (Theorem 1.7) and the other from
the Hölder continuity (Theorem 1.8). Under (1.3), the dependence on p in
(1.14) is implicit, while under (1.4) it becomes explicit and hence very easy
to handle. However, this is not the reason why we assume (1.4). As shown in
[6], under (1.3) alone one can construction a densely blow-up solution, i.e.,
for any small time step, the solution may have a drastic change. To avoid
such undesirable behavior, one has to use a stronger condition than Dalang’s
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condition (1.3). Condition (1.4) turns out to be both general enough (which
can cover the Riesz kernel case) and very convenient, and most of all, it
guarantees a pathwise continuous solution.

1.3. Outline of the paper. This paper is organized as follows: We first
prove the moment bounds, Theorem 1.7, in Section 2. Using these moment
bounds, we proceed to establish the Hölder regularity, Theorem 1.8, in Sec-
tion 3. Then in Section 4 we prove Theorem 1.9 for the two approximations.
The weak limit as t goes to zero, i.e., Theorem 1.11, is proved in Section 5.
With this preparation, we prove the weak comparison principle, Theorem
1.3, in Section 6. Finally, in Section 7 we prove both the strong comparison
principle (Theorem 1.5) and the strict positivity (Theorem 1.6). Some tech-
nical lemmas are given in Appendix. Throughout this paper, C will denote
a generic constant which may vary at each occurrence.

2. Moment bounds (Proof of Theorem 1.7). We first introduce
some notation following [7]. Denote

k(t) :=

∫
Rd
f(z)G(t, z)dz.(2.1)

By the Fourier transform, this function can be written in the following form

k(t) := (2π)−d
∫
Rd
f̂(dξ) exp

(
− t|ξ|

2

2

)
.(2.2)

Define h0(t) := 1 and for n ≥ 1,

hn(t) =

∫ t

0
ds hn−1(s)k(t− s).(2.3)

Let

H(t; γ) :=

∞∑
n=0

γnhn(t), for all γ ≥ 0.(2.4)

This function is defined through the correlation function f . The following
lemma tells us that this function has an exponential bound.

Lemma 2.1 (Lemma 2.5 in [7] or Lemma 3.8 in [2]). For all t ≥ 0 and
γ ≥ 0, recalling that Υ(β) is defined in (1.3), it holds that

lim sup
t→∞

1

t
logH(t; γ) ≤ inf

{
β > 0 : Υ (2β) <

1

2γ

}
.(2.5)
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The following lemma will play a key role in our Picard iteration to obtain
the upper bounds for the p-th moment. Interested readers may want to
compare it with Lemma A.1 below. While Lemma A.1 is appropriate for
dealing with the two-point correlation function, the corresponding recursion
for the p-point (p > 2) correlation function will be much more complicated.
Instead if one only needs some upper bounds for the p-th moment, the
following lemma will do the job.

Lemma 2.2. Suppose that µ is a signed measure that satisfies (1.2) and
recall that J0(t, x) is the solution to the homogeneous equation (see (1.6)).
If a nonnegative (measurable) function g : R+ × Rd 7→ R+ satisfies that for
all t > 0 and x ∈ Rd,∫ t

0
ds

∫∫
R2d

G(t− s, x− y1)G(t− s, x− y2)

× f(y1 − y2)g(s, y1)g(s, y2)dy1dy2 < +∞

and

g(t, x)2 ≤ J2
0 (t, x) + λ2

∫ t

0
ds

∫∫
R2d

G(t− s, x− y1)G(t− s, x− y2)

× f(y1 − y2)g(s, y1)g(s, y2)dy1dy2,

(2.6)

then

g(t, x) ≤ (|µ| ∗G(t, ·)) (x)H(t; 2λ2)1/2.(2.7)

Proof. We prove this lemma using Picard iteration. We need only to
prove the case when the inequality in (2.2) is an equality. Let

g0(t, x) = (|µ| ∗G(t, ·)) (x),

and for n ≥ 1,

g2n(t, x) = J2
0 (t, x)+λ2

∫ t

0
ds

∫∫
R2d

G(t− s, x− y1)G(t− s, x− y2)

× gn−1(s, y1)gn−1(s, y2)f(y1 − y2)dy1dy2.
(2.8)

For γ = 2λ2, we claim that

gn(t, x) ≤ g0(t, x)

(
n∑
i=0

γihi(t)

)1/2

, for all n ≥ 0.(2.9)
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It is clear that (2.9) holds for n = 0. Suppose that (2.9) is true for n ≥ 0.
Notice that

g2n+1(t, x) =J2
0 (t, x) + λ2

∫ t

0

∫∫
R2d

G(t− s, x− y1)G(t− s, x− y2)f(y1 − y2)

× gn(s, y1)gn(s, y2)dsdy1dy2

=:J2
0 (t, x) + λ2 I(t, x).

By the induction assumption,

I(t, x) ≤
∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)G(t− s, x− y1)G(t− s, x− y2)

× |J0(s, y1)| |J0(s, y2)|
(

n∑
i=0

γihi(s)

)

=

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)G(t− s, x− y1)G(t− s, x− y2)

×
∫∫

R2d

|µ|(dz1)|µ|(dz2)G(s, y1 − z1)G(s, y2 − z2)
(

n∑
i=0

γihi(s)

)
.

Because (see [4, Lemma 5.4])

G(s, x)G(t− s, y) = G

(
s(t− s)

t
,
sy − (t− s)x

t

)
G(t, x+ y),(2.10)

we see that

G(t−s, x−y1)G(s, y1−z1) = G(t, x−z1)G
(
s(t− s)

t
, y1 − z1 −

s

t
(x− z1)

)
.

Hence,

I(t, x) ≤
∫ t

0
ds

(
n∑
i=0

γihi(s)

)∫∫
R2d

dy1dy2 f(y1 − y2)

×G
(
s(t− s)

t
, y1 − z1 −

s

t
(x− z1)

)
×G

(
s(t− s)

t
, y2 − z2 −

s

t
(x− z2)

)
×
∫∫

R2d

|µ|(dz1)|µ|(dz2)G(t, x− z1)G(t, x− z2).
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By the Fourier transform, the above double integral dy1dy2 is equal to

(2π)−d
∫
Rd
f̂(dξ) exp

(
i
t− s
t

(z1 − z2) · ξ −
s(t− s)

t
|ξ|2
)
.

Since f̂ is nonnegative, this integral is bounded by

(2π)−d
∫
Rd
f̂(dξ) exp

(
−s(t− s)

t
|ξ|2
)
.

Hence,

I(t, x) ≤ g20(t, x)

∫ t

0
ds

(
n∑
i=0

γihi(s)

)
(2π)−d

∫
Rd
f̂(dξ) exp

(
−s(t− s)

t
|ξ|2
)
.

Then using the fact that t→ hi(t) is nondecreasing (see Lemma 2.6 in [7]),
by Lemma B.1 with β = |ξ|2/2, we see that

I(t, x) ≤2 g20(t, x)

∫ t

0
ds

(
n∑
i=0

γihi(s)

)
(2π)−d

∫
Rd
f̂(dξ) exp

(
− t− s

2
|ξ|2
)
.

Then by (2.2) and (2.3), we see that

I(t, x) ≤ 2 g20(t, x)

∫ t

0
ds

(
n∑
i=0

γihi(s)

)
k(t− s) = 2 g20(t, x)

n∑
i=0

γihi+1(t).

Therefore,

g2n+1(t, x) ≤ g20(t, x) + 2λ2g20(t, x)
n∑
i=0

γihi+1(t) ≤ J2
0 (t, x)

n+1∑
i=0

γihi(t).

This proves (2.9). Finally,

g(t, x) ≤ lim
n→∞

g0(t, x)

(
n∑
i=0

γihi(t)

)1/2

= g0(t, x)

( ∞∑
i=0

γihi(t)

)1/2

,

which completes the proof of Lemma 2.2.
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Proof of Theorem 1.7. The unique solution in L2(Ω) has been estab-
lished in [7]. We will prove the moment bounds in three steps.

Step 1. Now we prove this moment bound using Picard iteration. Let

u0(t, x) = J0(t, x),

and for n ≥ 1,

un(t, x) = J0(t, x) +

∫ t

0

∫
Rd
G(t− s, x− y)ρ(un−1(s, y))M(ds, dy).(2.11)

Since ρ is Lipschitz, by denoting ς = |ρ(0)|/Lipρ,

||ρ (X)||p ≤ Lipρ ||ς +|X| ||p ≤ Lipρ

√
2
(
ς2 + ||X||2p

)
.

Because by the Burkholder-Davis-Gundy inequality and linear growth con-
dition of ρ,

ς2 + ||un+1(t, x)||2p

≤ ς2 +2J2
0 (t, x) + 8p

∫ t

0

∫∫
R2d

G(t− s, x− y1)G(t− s, x− y2)

× f(y1 − y2) ||ρ(un(s, y1))||p ||ρ(un(s, y2))||p dsdy1dy2

≤ ς2 +2J2
0 (t, x) + 16pLip2

ρ

∫ t

0

∫∫
R2d

G(t− s, x− y1)G(t− s, x− y2)

× f(y1 − y2)
√
ς2 + ||un(s, y1)||2p

√
ς2 + ||un(s, y2)||2pdsdy1dy2,

we can apply the same induction arguments as those in the proof of Lemma

2.2 with λ2 = 16pLip2
ρ and gn(t, x) =

√
ς2 + ||un(t, x)||2p and J0(t, x) re-

placed by ς +
√

2J0(t, x) to conclude that for all n ≥ 0,

||un(t, x)||p ≤
√
ς2 + ||un(t, x)||2p

≤
√

2
(
ς +
√

2 (|µ| ∗G(t, ·)) (x)
)( n∑

i=0

(
32pLip2

ρ

)i
hi(t)

)1/2

.(2.12)

Step 2. In this step, we will show that {un(t, x), n ∈ N} defined in (2.11)
is a Cauchy sequence in Lp(Ω). Without loss of generality, we may assume
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that µ ≥ 0, otherwise one may simply replace µ by |µ| at each occurrence
of µ. This will then imply the moment bound in (1.14). Denote

Fn(t, x) = ||un+1(t, x)− un(t, x)||p .

Then

F 2
n(t, x) ≤8pLip2

ρ

∫ t

0
ds

∫∫
R2d

dy1dy2 G(t− s, x− y1)G(t− s, x− y2)

× f(y1 − y2)Fn−1(s, y1)Fn−1(s, y2),

for n ≥ 1, and

F 2
0 (t, x) = ||u1(t, x)− J0(t, x)||2p

≤8pLip2
ρ

∫ t

0
ds

∫∫
R2d

dy1dy2 G(t− s, x− y1)G(t− s, x− y2)

× f(y1 − y2)J0(s, y1)J0(s, y2).

Then by setting F−1(t, x) := J0(t, x) and γ = 16pLip2
ρ, one can apply the

same induction arguments in the proof of Lemma 2.2 to conclude that

∞∑
n=0

Fn(t, x) ≤ J0(t, x)

( ∞∑
i=0

γihi(t)

)1/2

<∞.

Therefore, {un(t, x), n ∈ N} is a Cauchy sequence in Lp(Ω) and

||u(t, x)||p = lim
n→∞

||un(t, x)||p

≤ lim
n→∞

(
ς +
√

2J0(t, x)
)( n∑

i=0

(32pLip2
ρ)
ihi(t)

)1/2

=
(
ς +
√

2J0(t, x)
)
H
(
t; 32pLip2

ρ

)1/2
<∞.

This proves (1.14).

Step 3. In this step, we will prove (1.15). Notice that in this case for β > 0,

Υ(β) = (2π)−d
∫
Rd

1

(β + |ξ|2)α
f̂(dξ)

(β + |ξ|2)1−α

≤ C

βα

(∫
|ξ|≤1

f̂(dξ)

β1−α
+

∫
|ξ|>1

f̂(dξ)

|ξ|2(1−α)

)
≤ C

(
1

β
+

1

βα

)
.
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From now on fix the constant C on the right-hand side of the above inequal-
ities. If p is large enough such that 32pLip2

ρC > 1, then

C

(
1

β
+

1

βα

)
≤ 1

32pLip2
ρ

⇐=
2C

βα
≤ 1

32pLip2
ρ

⇐⇒ β ≥
(
C64pLip2

ρ

)1/α
=: βp.

Then an application of Lemma 2.1 shows that

lim sup
t→∞

1

t
logH(t; 32pLip2

ρ) ≤ βp.

Hence, the function e−βptH(t; 32pLip2
ρ) is a continuous function on [0,∞].

Therefore, for some constant C ′ > 0, e−βptH(t; 32pLip2
ρ) ≤ C ′ for all t ≥ 0.

This proves (1.15) and also completes the whole proof of Theorem 1.7.

3. Hölder regularity (Proof of Theorem 1.8). We first prove the
following lemma.

Lemma 3.1. For all α ∈ (0, 1], x, y ∈ Rd and t′ ≥ t > 0, we have that

|G(t, x)−G(t, y)| ≤ C

tα/2
[G(2t, x) +G(2t, y)] |x− y|α,(3.1)

and ∣∣G(t, x)−G(t′, x)
∣∣ ≤ Ct−α/2G (4t′, x) (t′ − t)α/2.(3.2)

Proof. By the scaling property, for (3.1), it suffices to prove that

|G(1, x)−G(1, y)| ≤ C [G(2, x) +G(2, y)] |x− y|α.

We may assume that |x| ≤ |y|. Choosing x̄ ∈ Rd such that |x̄| = |x| and
y = ax̄ for some a ≥ 1, i,e, x̄, y and the origin are on the same line. By the
mean-value theorem, for some c ∈ [0, 1] and ξ = cx̄+ (1− c)y,

|G(1, x)−G(1, y)| = |G(1, x̄)−G(1, y)| ≤ G(1, ξ)|ξ||x̄− y| ≤ CG(2, ξ)|x̄− y|.

Then by the choice of x̄, we see that

G(2, ξ)|x̄− y| ≤ C [G(2, x̄) +G(2, y)] |x̄− y| ≤ C [G(2, x) +G(2, y)] |x− y| .

Therefore,

|G(1, x)−G(1, y)| = |G(1, x)−G(1, y)|α |G(1, x)−G(1, y)|1−α



COMPARISON PRINCIPLE FOR SHE ON Rd 17

≤ C [G(2, x) +G(2, y)]α |x− y|α |G(2, x) +G(2, y)|1−α

= C [G(2, x) +G(2, y)] |x− y|α,

where we have applied the inequality that is just obtained to the factor
|G(1, x) − G(1, y)|α and we have used the fact 0 < G(1, x) ≤ CG(2, x) for
the other factor. This proves (3.1).

As for (3.2), notice that

|G(t, x)−G(t′, x)|

≤ (2π)−d/2
∣∣∣t−d/2 − (t′)−d/2

∣∣∣ e− |x|22t + (2π)−d/2(t′)−d/2
∣∣∣∣e− |x|22t − e−

|x|2
2t′

∣∣∣∣
= td/2

∣∣∣t−d/2 − (t′)−d/2
∣∣∣G(t, x) + (t′)−d/2

∣∣∣∣G(1,
x√
t

)
−G

(
1,

x√
t′

)∣∣∣∣ .
For any γ ∈ (0, 1), because t′ > t,∣∣∣t−d/2 − (t′)−d/2

∣∣∣ =
∣∣∣t−d/2 − (t′)−d/2

∣∣∣1−γ ∣∣∣t−d/2 − (t′)−d/2
∣∣∣γ

≤ C
[
2t−d/2

]1−γ [(
t−d/2−1 + (t′)−d/2−1

)
|t− t′|

]γ
≤ Ct−d/2−γ |t− t′|γ .(3.3)

By (3.1), for all α ∈ (0, 1],∣∣∣∣G(1,
x√
t

)
−G

(
1,

x√
t′

)∣∣∣∣
≤ C

[
G

(
2,

x√
t

)
+G

(
2,

x√
t′

)]
|x|α

∣∣∣t−1/2 − (t′)−1/2
∣∣∣α

≤ CG
(

2,
x√
t′

)
|x|α

∣∣∣t−1/2 − (t′)−1/2
∣∣∣α

= C(t′)d/2G
(
2t′, x

)
|x|α

∣∣∣t−1/2 − (t′)−1/2
∣∣∣α .

By the concavity of the square root, we see that

|t−1/2 − (t′)−1/2| =
√
t′ −
√
t√

tt′
≤
√
t′ − t√
tt′

.

Hence,∣∣∣∣G(1,
x√
t

)
−G

(
1,

x√
t′

)∣∣∣∣ ≤Ct−α/2(t′)(d−α)/2G (2t′, x) |x|α(t′ − t)α/2
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≤Ct−α/2(t′)d/2G
(
4t′, x

)
(t′ − t)α/2.

The bound in (3.2) is proved by taking γ = α/2 in (3.3) and using the fact
that G(t, x) ≤ CG(4t′, x). This completes the proof of Lemma 3.1.

Proof of Theorem 1.8.. Denote the stochastic integral in (1.5) by
I(t, x). Set ς = |ρ(0)|/Lipρ. We need only to prove the Hölder regular-

ity for I(t, x). Fix n > 1. For all (t, x) and (t′, x′) ∈ [1/n, n]×Rd with t′ > t,
we see that∣∣∣∣I(t, x)− I(t′, x′)

∣∣∣∣2
p
≤ CI1(t, x, x′) + CI2(t, t

′, x′) + CI3(t, t
′, x′),

where

I1(t, x, x
′) =

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×
∣∣G(t− s, x− y1)−G(t− s, x′ − y1)

∣∣√ς2 + ||u(s, y1)||2p(3.4)

×
∣∣G(t− s, x− y2)−G(t− s, x′ − y2)

∣∣√ς2 + ||u(s, y2)||2p ,

I2(t, t
′, x′) =

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×
∣∣G(t− s, x′ − y1)−G(t′ − s, x′ − y1)

∣∣√ς2 + ||u(s, y1)||2p(3.5)

×
∣∣G(t− s, x′ − y2)−G(t′ − s, x′ − y2)

∣∣√ς2 + ||u(s, y2)||2p ,

and

I3(t, t
′, x′) =

∫ t′

t
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×G(t′ − s, x′ − y1)
√
ς2 + ||u(s, y1)||2p

×G(t′ − s, x′ − y2)
√
ς2 + ||u(s, y2)||2p.

(3.6)

Note that when ς 6= 0, from the moment bounds in (1.14), by choosing

µ̃(dx) =
√

2µ(dx) + ς dx and J̃0(t, x) :=
√

2J0(t, x) + ς ,

one can reduce it to the case that ς = 0, i.e., ρ(0) = 0. Hence, in the
following, we only need to consider the case that ς = 0. We will study these
three increments in three steps.
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Step 1. In this step, we study I1. We apply the moment bound (1.14) to
(3.4), it follows that

I1(t, x, x
′) ≤ CH(t, γp)

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×
∣∣G(t− s, x− y1)−G(t− s, x′ − y1)

∣∣
×
∣∣G(t− s, x− y2)−G(t− s, x′ − y2)

∣∣
×
∫∫

R2d

µ(dz1)µ(dz2)G(s, y1 − z1)G(s, y2 − z2) .

Here we have used the definition of J0(t, x) and the fact that H(s, γp) is
nondecreasing in s, see Lemma 2.6 in [7]. By Lemma 3.1 and and (2.10), for
all α ∈ (0, 1),∣∣G(t− s, x− y1)−G(t− s, x′ − y1)

∣∣
≤C

[
G(2(t− s), x− y1) +G(2(t− s), x′ − y1)

] |x− x′|α
(t− s)α/2 ,

and

G(s, y1 − z1)
∣∣G(t− s, x− y1)−G(t− s, x′ − y1)

∣∣
≤ CG(2s, y1 − z1)

[
G(2(t− s), x− y1) +G(2(t− s), x′ − y1)

] |x− x′|α
(t− s)α/2

= C
|x− x′|α
(t− s)α/2

[
G(2t, x− z1)G

(
2s(t− s)

t
, y1 − z1 −

s

t
(x− z1)

)

+G(2t, x′ − z1)G
(

2s(t− s)
t

, y1 − z1 −
s

t
(x′ − z1)

)]
.

A similar bound holds for the expression with respect to y2 and z2. Expand-
ing the product of the two bounds, we will get a sum of four terms,

I1(t, x, x
′) ≤

4∑
k=1

I1,k(t, x, x
′),

where, for example,

I1,1(t, x, x
′)

≤C|x− x′|2α
∫∫

R2d

µ(dz1)µ(dz2)

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
1

(t− s)α
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×G(2t, x− z1)G
(

2s(t− s)
t

, y1 − z1 −
s

t
(x− z1)

)
×G(2t, x′ − z2)G

(
2s(t− s)

t
, y2 − z2 −

s

t
(x− z2)

)
,

and similarly for I1,i, i = 2, 3, 4. Because

|F [G(t, ·+ w)](ξ)| ≤ exp

(
− t

2
|ξ|2
)
, for all w ∈ Rd,

we see that

I1,1(t, x, x
′) ≤C|x− x′|2α

∫∫
R2d

µ(dz1)µ(dz2)

∫ t

0
ds

∫
Rd
f̂(dξ)

1

(t− s)α

×G(2t, x− z1)G(2t, x− z2) exp

(
−2s(t− s)

t
|ξ|2
)

=C|x− x′|2αJ0(2t, x)J0(2t, x
′)

∫ t

0
ds

∫
Rd
f̂(dξ)

exp
(
−2s(t−s)

t |ξ|2
)

(t− s)α .

By Lemma B.1 with g(s) = s−1/α and β = |ξ|2 (g is nonincreasing),

∫ t

0
ds

∫
Rd
f̂(dξ)

exp
(
−2s(t−s)

t |ξ|2
)

(t− s)α ≤ 2

∫ t

0
ds

∫
Rd
f̂(dξ)

1

sα
exp

(
−s|ξ|2

)
≤ 2et

∫ t

0
ds

∫
Rd
f̂(dξ)

1

sα
exp

(
−s(|ξ|2 + 1)

)
≤ C

∫
Rd

f̂(dξ)

(1 + |ξ|2)1−α .

Hence,

I1,1(t, x, x
′) ≤ C|x− x′|2αJ0(2t, x)J0(2t, x

′)

∫
Rd

f̂(dξ)

(1 + |ξ|2)1−α .

One can obtain similar bounds for all the other three terms. Therefore,

I1(t, x, x
′) ≤ C|x− x′|2α[J0(2t, x) + J0(2t, x

′)]2
∫
Rd

f̂(dξ)

(1 + |ξ|2)1−α .

Step 2. Now we consider the time increment I2. By (1.14),

I2(t, t
′, x′) ≤C

∫ t

0
ds

∫∫
R2d

dy1dy2
∣∣G(t− s, x′ − y1)−G(t′ − s, x′ − y1)

∣∣
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×
∣∣G(t− s, x′ − y2)−G(t′ − s, x′ − y2)

∣∣ f(y1 − y2)J0(s, y1)J0(s, y2)

=C

∫∫
Rd
µ(dz1)µ(dz2)

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×G(s, y1 − z1)
∣∣G(t− s, x′ − y1)−G(t′ − s, x′ − y1)

∣∣
×G(s, y2 − z2)

∣∣G(t− s, x′ − y2)−G(t′ − s, x′ − y2)
∣∣ .

Applying (3.2), using the fact that G(s, y1− z1) ≤ CG(4s, y1− z1) and then
applying (2.10), we see that

G(s,y1 − z1)|G(t− s, x′ − y1)−G(t′ − s, x′ − y1)|
≤C(t− s)−α/2G(s, y1 − z1)G(4(t′ − s), x′ − y1)

(
t′ − t

)α/2
≤C(t− s)−α/2G(4s, y1 − z1)G(4(t′ − s), x′ − y1)

(
t′ − t

)α/2
≤C(t− s)−α/2G(4t′, x′ − z1)G

(
4s(t′ − s)

t′
, y1 − z1 −

s

t′
(x′ − z1)

)(
t′ − t

)α/2
.

Therefore,

I2(t, t
′, x′)

≤C(t′ − t)α
∫∫

R2d

µ(dz1)µ(dz2)G(4t′, x′ − z1)G(4t′, x′ − z2)

×
∫ t

0
ds (t− s)−α

∫∫
R2d

dy1dy2 f(y1 − y2)

×G
(

4s(t′ − s)
t′

, y1 − z1 −
s

t′
(x′ − z1)

)
G

(
4s(t′ − s)

t′
, y2 − z2 −

s

t′
(x′ − z2)

)
≤C(t′ − t)α

∫∫
R2d

µ(dz1)µ(dz2)G(4t′, x′ − z1)G(4t′, x′ − z2)

×
∫ t

0
ds (t− s)−α

∫
Rd
f̂(dξ) exp

(
−4s(t− s)

t
|ξ|2
)

=C(t′ − t)αJ2
0 (4t′, x′)

∫
Rd
f̂(dξ)

∫ t

0
ds (t− s)−α exp

(
−4s(t− s)

t
|ξ|2
)
,

where in the second inequality above we have used the fact that

exp

(
−4s(t′ − s)

t′
|ξ|2
)
≤ exp

(
−4s(t− s)

t
|ξ|2
)

since t′ ≥ t. By the same arguments as those in Step 1,

I2(t, t
′, x′) ≤ C(t′ − t)αJ2

0 (4t′, x′)

∫
Rd
f̂(dξ)

∫ t

0
ds s−α exp

(
−2s|ξ|2

)
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≤ C(t′ − t)αJ2
0 (4t′, x′)

∫
Rd
f̂(dξ)

∫ t

0
ds s−α exp

(
−2s

(
1 + |ξ|2

))
≤ C(t′ − t)αJ2

0 (4t′, x′)

∫
Rd

f̂(dξ)

(1 + |ξ|2)1−α .

Step 3. As for I3, by the moment bound (1.14) and (2.10),

I3(t, t
′, x′)

≤C
∫ t′

t
ds

∫∫
R2d

dy1dy2 G(t′ − s, x′ − y1)G(t′ − s, x′ − y2)

× f(y1 − y2)J0(s, y1)J0(s, y2)

=C

∫∫
Rd
µ(dz1)µ(dz2)

∫ t′

t
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×G(s, y1 − z1)G(t′ − s, x′ − y1)G(s, y2 − z2)G(t′ − s, x′ − y2)

=C

∫∫
Rd
µ(dz1)µ(dz2)G(t′, x′ − z1)G(t′, x′ − z2)

∫ t′

t
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×G
(
s(t′ − s)

t′
, y1 − z1 −

s

t′
(x′ − z1)

)
G

(
s(t′ − s)

t′
, y2 − z2 −

s

t′
(x′ − z2)

)
≤C

∫∫
Rd
µ(dz1)µ(dz2)G(t′, x′ − z1)G(t′, x′ − z2)

∫ t′

t
ds

∫
Rd
f̂(dξ)

× exp

(
−s(t

′ − s)
t′

|ξ|2
)

=CJ2
0 (t′, x′)

∫ t′

t
ds

∫
Rd
f̂(dξ) exp

(
−s(t

′ − s)
t′

|ξ|2
)
.

Notice that for any α ∈ (0, 1],∫ t′

t
ds exp

(
−s(t

′ − s)
t′

|ξ|2
)
≤
∫ t′

t
ds exp

(
− t(t

′ − s)
t′

|ξ|2
)

≤
∫ t′

t
ds exp

(
− t(t

′ − s)
t′

(
1 + |ξ|2

)
+
t(t′ − t)

t′

)
≤ C

∫ t′

t
ds exp

(
− t(t

′ − s)
t′

(
1 + |ξ|2

))

= C
1− exp

(
− t(t′−t)

t′

(
1 + |ξ|2

))
1 + |ξ|2
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≤ C

(
t(t′−t)
t′

(
1 + |ξ|2

))α
1 + |ξ|2 =

C(t′ − t)α
(1 + |ξ|2)1−α

.

Therefore,

I3(t, t
′, x′) ≤ C(t′ − t)αJ2

0 (t′, x′)

∫
Rd

f̂(dξ)

(1 + |ξ|2)1−α .(3.7)

Combining these three cases and applying the Kolmogorov’s continuity the-
orem, we have completed the proof of Theorem 1.8.

4. One approximation result (Proof of Theorem 1.9).

Proof of Theorem 1.9. (1) By Theorem 1.2, we see that both u and
uε are well-defined random field solutions to (1.1). Let vε(t, x) = uε(t, x) −
u(t, x) and ρ̃(vε) := ρ(vε+u)−ρ(u). It is clear that ρ̃ is a Lipschitz continuous
function satisfying ρ̃(0) = 0 and Lipρ̃ = Lipρ. Then vε is a solution to (1.1)
with ρ replaced by ρ̃ starting from µε := ((µ ψε) ∗G(ε, ·)) (x)− µ. Denote

Jε(t, x) = (µε ∗G(t, ·))(x) and gε(t, x, x
′) =

∣∣E [vε(t, x)vε(t, x
′)
]∣∣ .

Then g satisfies the following integral equation

gε(t, x, x
′) ≤ |Jε(t, x)Jε(t, x

′)|

+ Lip2
ρ

∫ t

0
ds

∫∫
R2d

G(t− s, x− y)G(t− s, x′ − y′)

× f(y − y′)g(s, y, y′)dydy′.

By Lemma A.1, we see that

gε(t, x, x
′) ≤ |Jε(t, x)Jε(t, x

′)|

+ C

∫ t

0
ds

∫∫
R2d

G(t− s, x− y)G(t− s, x′ − y′)

× f(y − y′)|Jε(s, y′)Jε(s, y′)|dydy′.

Notice that

|Jε(t, x)| ≤ [(|µ ψε| ∗ |G(t+ ε, ·)−G(t, ·)|) (x) + (|µψε − µ| ∗G(t, ·)) (x)]

≤ [(|µ| ∗ |G(t+ ε, ·)−G(t, ·)|) (x) + (|µψε − µ| ∗G(t, ·)) (x)] .

Because for any ε ∈ (0, t), |G(t+ ε, x)−G(t, x)| ≤ CG(2t, x) for all x ∈ Rd
uniformly in ε, and because |µψε − µ| ≤ |µ|, we see that

|Jε(t, x)| ≤ C (|µ| ∗G(2t, ·)) (x) + (|µ| ∗G(t, ·)) (x).
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Then one can apply the dominated convergence theorem twice to conclude
that

lim
ε→0

gε(t, x, x
′) = 0,

which completes the proof of part (1) of Theorem 1.9.

(2) Since u and ũε start from the same initial data, we see that

E
[
(u(t, x)− ũε(t, x))2

]
≤ 2E

(∫ t

0

∫
Rd
G(t− s, x− y) [ρ(u(s, y))− ρ(ũε(s, y))]M(ds, dy)

)2

+ 2E
(∫ t

0

∫
Rd
G(t− s, x− y)ρ(ũε(s, y)) (M(ds, dy)−M ε(ds, dy))

)2

:=I1(t, ε) + I2(t, ε) .

For I1(t, ε), using the Lipschitz condition on ρ and since the initial condition
is bounded, we obtain that

I1(t, ε) ≤ C
∫ t

0

∫
Rd
G(2(t− s), y)f(y) sup

z∈Rd
E
[
(u(s, z)− ũε(s, z))2

]
dyds

= C

∫ t

0
ds k(2(t− s)) sup

z∈Rd
E
[
(u(s, z)− ũε(s, z))2

]
,

where k(·) function is defined in (2.1). As for I2(t, ε), we have that

E

(∫ t

0

∫
Rd
G(t− s, x− y)ρ(ũε(s, y))M(ds, dy)

×
∫ t

0

∫
Rd
G(t− s, x− y)ρ(ũε(s, y))M ε(ds, dy)

)

=E
(∫ t

0

∫
Rd
G(t− s, x− y)ρ(ũε(s, y))M(ds, dy)

×
∫ t

0

∫∫
R2d

G(t− s, x− y)ρ(ũε(s, y))φε(y − z)M(ds, dz)dy

)
=E
(∫ t

0

∫
Rd
G(t− s, x− y)ρ(ũε(s, y))M(ds, dy)

×
∫ t

0

∫
Rd

(∫
Rd
G(t− s, x− y)ρ(ũε(s, y))φε(y − z)dy

)
M(ds, dz)

)
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=E

(∫ t

0
ds

∫∫
R2d

dy1dy2 G(t− s, x− y1)ρ(ũε(s, y1))G(t− s, x− y2)ρ(ũε(s, y2))

×
∫
Rd

dz φε(y2 − z)f(y1 − z)
)

=E

(∫ t

0
ds

∫∫
R2d

dy1dy2 f
ε(y1 − y2)G(t− s, x− y1)ρ(ũε(s, y1))

×G(t− s, x− y2)ρ(ũε(s, y2))

)
,

where we have applied the stochastic Fubini theorem and f ε(x) := (φε ∗ f) (x).
In the same way, we can get

E

[(∫ t

0

∫
Rd
G(t− s, x− y)ρ(ũε(s, y))M ε(ds, dy)

)2
]

= E

(∫ t

0
ds

∫∫
R2d

dy1dy2 G(t− s, x− y1)ρ(ũε(s, y1))

×G(t− s, x− y2)ρ(ũε(s, y2))f
ε,ε(y1 − y2)

)
,

where f ε,ε(x) := (φε ∗ φε ∗ f) (x). Since φ is nonnegative definite, the kernel
function f ε,ε is nonnegative and nonnegative definite. Moreover, due to

φ̂ε(ξ)
2 = φ̂(εξ)2 =

∣∣∣∣∫
Rd
e−iε〈ξ,x〉φ(x)dx

∣∣∣∣2 ≤ (∫
Rd
φ(x)dx

)2

= 1,(4.1)

f ε,ε satisfies Dalang’s condition (1.3). From the above calculation, we see
that the spatial correlation function for the noise M ε is f ε,ε(x). Notice that

kε(t) :=

∫
Rd
f ε,ε(z)G(t, z)dz = (2π)−d

∫
Rd
f̂(dξ)φ̂ε(ξ)

2 exp

(
− t|ξ|

2

2

)
≤ (2π)−d

∫
Rd
f̂(dξ) exp

(
− t|ξ|

2

2

)
= k(t),

for all ε > 0. Therefore, by Theorem 1.7,

sup
ε>0

sup
(s,x)∈[0,t]×Rd

||ũε(s, x)||2 ≤ sup
(s,x)∈[0,t]×Rd

||u(s, x)||2 <∞.

Thus,

I2(t, ε) ≤C
∫ t

0

∫∫
R2d

G(t− s, x− y)G(t− s, x− z)
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× |f(y − z)− 2f ε(y − z) + f ε,ε(y − z)|dydzds

=C

∫ t

0

∫
Rd
G(2(t− s), y)|f(y)− 2f ε(y) + f ε,ε(y)|dyds

≤C
∫ t

0

∫
Rd
G(2(t− s), y)|f(y)− f ε(y)|dyds

+ C

∫ t

0

∫
Rd
G(2(t− s), y)|f(y)− f ε,ε(y)|dyds

=C

∫
Rd
g(2t, |y|)|f(y)− f ε(y)|dy + C

∫
Rd
g(2t, |y|)|f(y)− f ε,ε(y)|dy ,

where the function g(t, |x|) is defined in Lemma B.4. Because f is nonnega-
tive and∫
Rd
g(4t, |y|)f(y)dy =

∫ t

0

∫
Rd
G(4s, y)f(y)dyds =

∫ t

0
k(4s)ds ≤ h1(4t) <∞,

part (2) of Lemma B.5 implies that limε→0 I2(t, ε) = 0. Hence an application
of Gronwall’s lemma shows that

lim
ε→0+

sup
z∈Rd

E
[
(u(t, z)− ũε(t, z))2

]
= 0,

which completes the proof of Theorem 1.9.

5. A weak limit (Proof of Theorem 1.11).

Proof of Theorem 1.11. Fix φ ∈ Cc(Rd). Let I(t, x) be the stochastic
integral part of (1.5). We only need to prove that

lim
t→0+

∫
Rd

dx I(t, x)φ(x) = 0 in L2(Ω).

Denote L(t) :=
∫
R I(t, x)φ(x)dx. By the stochastic Fubini theorem (see [25,

Theorem 2.6, p. 296]),

L(t) =

∫ t

0

∫
Rd

(∫
Rd

dx G(t− s, x− y)φ(x)

)
ρ(u(s, y))M(ds, dy).

Hence, by Itô’s isometry and the linear growth condition on ρ,

E
[
L(t)2

]
≤ Lip2

ρ

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dx1dx2

×
√
ς2 + ||u(s, y1)||22G(t− s, x1 − y1)|φ(x1)|



COMPARISON PRINCIPLE FOR SHE ON Rd 27

×
√
ς2 + ||u(s, y2)||22G(t− s, x2 − y2)|φ(x2)| ,

where ς = |ρ(0)|/Lipρ. Then by the moment bounds (1.14),

E
[
L(t)2

]
≤ C

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dx1dx2

×
√

1 + J2
0 (s, y1)G(t− s, x1 − y1)|φ(x1)|

×
√

1 + J2
0 (s, y2)G(t− s, x2 − y2)|φ(x2)| .

Assume that t ≤ 1/2. By considering µ∗(dx) = µ(dx) + dx and setting
J∗(t, x) = (µ∗ ∗G(t, ·)) (x), we see that

1 + J2
0 (t, x) ≤ J2

∗ (t, x).

Because for some constant C > 0, |φ(x)| ≤ CG(1, x) for all x ∈ Rd, we can
apply the semigroup property to get

E
[
L(t)2

]
≤ C

∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2) J∗(s, y1)G(t+ 1− s, y1)

×J∗(s, y2)G(t+ 1− s, y2).

Then by a similar argument as those in the proof of Lemma 2.2, we see that

E
[
L(t)2

]
≤CJ2

∗ (t+ 1, x)

∫
Rd
f̂(dξ)

∫ t

0
ds exp

(
−s(t+ 1− s)

t+ 1
|ξ|2
)

≤CJ2
∗ (t+ 1, x)

∫
Rd
f̂(dξ)

∫ t

0
ds exp

(
−s

2
|ξ|2
)
,

where the last inequality is due to t ≤ 1/2. Since the above double integral
is finite for t = 1/2, by the dominated convergence theorem, we see that this
double integral goes to zero as t→ 0. This completes the proof.

6. Weak comparison principle (Proof of Theorem 1.3).

Proof of Theorem 1.3. We begin by noting that (1.9) is an immediate
consequence of (1.8). So we only need to prove (1.8). The proof consists of
four steps. Both the setup and Steps 1 & 4 of the proof follow the same lines
as those in the proof of Theorem 1.1 in [8] with some minor changes. The
main difference lies in Step 2 and Step 3.

Now we set up some notation in the proof. We view the G(t, x) as an
operator, denoted by G(t), as follows:

(6.1) G(t)f(x) := (G(t, ·) ∗ f)(x) .
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Let I be the identity operator: If(x) := (δ ∗ f)(x) = f(x). Set

(6.2) ∆ε =
G(ε)− I

ε
.

Let

(6.3) Gε(t) = exp(t∆ε) = e−
t
ε

∞∑
n=0

(t/ε)n

n!
G(nε) := e−t/εI + Rε(t) ,

where the operator Rε(t) has a density, denoted by Rε(t, x), which is equal
to

(6.4) Rε(t, x) = e−t/ε
∞∑
n=1

(t/ε)n

n!
G(nε, x) .

For ε > 0 and x ∈ Rd, denote

(6.5) M ε
x(t) =

∫ t

0

∫
Rd
G(ε, x− y)M(ds, dy) , for t ≥ 0 .

Denote Ṁ ε
x(t) = ∂

∂tM
ε
x(t). Then the quadratic variation of dM ε

x(t) is

d〈M ε
x(t)〉 =

∫∫
R2d

G(ε, x− y1)G(ε, x− y2)f(y1 − y2)dy1dy2dt

=

∫
Rd
e−ε|ξ|

2
f̂(dξ)dt .

Consider the following stochastic partial differential equation

(6.6)


∂

∂t
uε(t, x) = ∆εuε(t, x) + ρ(uε(t, x))Ṁ ε

x(t) , t > 0 , x ∈ Rd ,

uε(0, x) = (µ ∗G(ε, ·))(x) , x ∈ Rd .

Since ρ is Lipschitz continuous and ∆ε is a bounded operator, (6.6) has a
unique strong solution

(6.7) uε(t, x) = (µ ∗G(ε, ·)) (x) +

∫ t

0
ds∆εuε(s, x) +

∫ t

0
ρ(uε(s, x))dM ε

x(s) .

We proceed the proof in three steps. We fix t > 0 and assume that ε ∈
(0, 1 ∧ t).

Step 1: Let uε,1(t, x) and uε,2(t, x) be the solutions to (6.6) with initial
data (µ1 ∗ G(ε, ·))(x) and (µ2 ∗ G(ε, ·))(x), respectively. Following exactly
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the same lines as those in Step 1 of the proof in [8], we can prove that
vε(t, x) := uε,2(t, x)− uε,1(t, x) satisfies

(6.8) P
(
vε(t, x) ≥ 0, for every t > 0 and x ∈ Rd

)
= 1 .

Actually, one can construct a sequence of C2(R) functions Ψn as in [8] such
that

Ψn(x) ↑ −(x ∧ 0) =: Ψ(x), Ψ′n(x)x ↑ Ψ(x), 0 ≤ Ψ′′n(x)x2 ≤ 2/n.(6.9)

Then we apply Itô’s formula to Ψn(vε(t, x)) and take the expectation on both
sides to remove the martingale part. The third property in (6.9) ensures that
the quadratic variation part goes to zero as n → ∞. Using the other two
properties in (6.9), we see that by passing to the limit, it holds that

E [Ψ(vε(t, x))] ≤ 1

ε

∫ t

0
ds

∫
Rd

dy G(ε, x− y)E [Ψ(vε(s, y))] ,

Then one can apply Gronwall’s lemma to supy∈Rd E [Ψ(vε(s, y))] to conclude

that E [Ψ(vε(t, x))] = 0 for all t > 0 and x ∈ Rd. This implies (6.8).

Step 2. In this step we consider the case that the initial condition is bounded
nonnegative function, i.e., µ(dx) = g(x)dx where g(x) ≥ 0 and g ∈ L∞(Rd).
We also assume that the covariance function f satisfies condition (1.4) with
α = 1, i.e., ∫

Rd
f̂(dξ) <∞.

Let uε(t, x) be the solution to (1.1) starting from uε(0, x) := (µ ∗G(ε, ·)) (x).
The aim of this step is to prove

(6.10) lim
ε→0

sup
x∈Rd

‖uε(t, x)− u(t, x)‖22 = 0 , for all t > 0 .

Notice that uε(t, x) can be written in the following mild form using the
kernel of Gε(t):

uε(t, x) = (uε(0, ·) ∗Gε(t, ·)) (x) +

∫ t

0
e−(t−s)/ερ(uε(s, x))dM ε

x(s)

+

∫ t

0

∫
Rd
Rε(t− s, x− y)ρ(uε(s, y))dM ε

y(s)

= (uε(0, ·) ∗Gε(t, ·)) (x) +

∫ t

0
e−(t−s)/ερ(uε(s, x))dM ε

x(s)
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+

∫ t

0

∫
Rd

(∫
Rd
Rε(t− s, x− z)ρ(uε(s, z))G(ε, y − z)dz

)
M(ds, dy).

The boundedness of the initial data implies that

(6.11) At := sup
ε∈(0,1]

sup
s∈[0,t]

sup
x∈Rd

‖uε(s, x)‖22 ∨ ‖u(s, x)‖22 <∞ .

By the assumption on ρ, we have the following estimate:

‖uε(t, x)− u(t, x)‖22 ≤ C
6∑

n=1

In(t, x; ε) ,

where

I1(t, x; ε) := ((uε(0, ·) ∗Gε(t, ·)) (x)− u(0, ·) ∗G(t, ·)(x))2 ,

I2(t, x; ε) :=

∫ t

0
ds

∫
Rd
e−ε|ξ|

2
e−

2(t−s)
ε f̂(dξ) ,

and I3(t, x; ε), I4(t, x; ε), I5(t, x; ε), I6(t, x; ε) are, respectively, equal to∥∥∥∥∫ t

0

∫
Rd

∫
Rd
Rε(t− s, x− z) [ρ(uε(s, z))− ρ(u(s, z))]G(ε, y − z)dzM(ds, dy)

∥∥∥∥2
2

,∥∥∥∥∫ t

0

∫
Rd

∫
Rd
Rε(t− s, x− z) [ρ(u(s, z))− ρ(u(s, y))]G(ε, y − z)dzM(ds, dy)

∥∥∥∥2
2

,∥∥∥∥∫ t

0

∫
Rd

∫
Rd

(Rε(t− s, x− z)−G(t− s, x− z)) ρ(u(s, y))G(ε, y − z)dzM(ds, dy)

∥∥∥∥2
2

,∥∥∥∥∫ t

0

∫
Rd

∫
Rd

(G(t− s, x− y)−G(t− s, x− z)) ρ(u(s, y))G(ε, y − z)dzM(ds, dy)

∥∥∥∥2
2

.

Since µ has a bounded density, we see that

I1(t, x; ε)

≤ C |(uε(0, ·) ∗Gε(t, ·)) (x)− (u(0, ·) ∗G(t, ·)) (x)|
≤ C (uε(0, ·) ∗ |Gε(t, ·)−G(t, ·)|) (x) + C (u(0, ·) ∗ |G(t+ ε, ·)−G(t, ·)|) (x)

≤ C
(
e−t/ε +

∫
Rd
|Rε(t, y)−G(t, y)|dy +

∫
Rd
|G(t+ ε, y)−G(t, y)|dy

)
.

Then by Lemma B.3 and the fact that log(1 + x) ≤ √x, we see that

sup
x∈Rd

sup
s∈(0,t]

I1(s, x; ε) ≤ C
(
e−t/ε +

√
ε/t
)
.(6.12)
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As for I2, we see that

I2(t, x; ε) =

∫
Rd
e−ε|ξ|

2 ε

2
(1− e−2t/ε)f̂(dξ) ≤ ε

2

∫
Rd
f̂(dξ) ≤ C ε ,

which implies that

sup
x∈Rd

sup
s∈(0,t]

I2(s, x; ε) ≤ C ε .(6.13)

The term I3 will contribute to the recursion. By (6.11),

I3(t, x; ε)

≤ E

[∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×
∫
Rd

dz1 R
ε(t− s, x− z1) [ρ(uε(s, z1))− ρ(u(s, z1))]G(ε, y1 − z1)

×
∫
Rd

dz2 R
ε(t− s, x− z2) [ρ(uε(s, z2))− ρ(u(s, z2))]G(ε, y2 − z2)

]

≤ C
∫ t

0
ds sup

z∈Rd
‖uε(s, z)− u(s, z)‖22

∫∫
R2d

dy1dy2 f(y1 − y2)

× (Rε(t− s, ·) ∗G(ε, ·)) (x− y1) (Rε(t− s, ·) ∗G(ε, ·)) (x− y2)

≤ C
∫ t

0
ds sup

z∈Rd
‖uε(s, z)− u(s, z)‖22 ,

where in the last line we used Lemma B.2. As for I4,

I4(t, x; ε)

= E

[∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×
(∫

Rd
dz1 R

ε(t− s, x− z1) [ρ(u(s, z1))− ρ(u(s, y1))]G(ε, y1 − z1)
)

×
(∫

Rd
dz2 R

ε(t− s, x− z2) [ρ(u(s, z2))− ρ(u(s, y2))]G(ε, y2 − z2)
)]

≤ C
∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dz1dz2

×Rε(t− s, x− z1) ||u(s, z1)− u(s, y1)||2G(ε, y1 − z1)
×Rε(t− s, x− z2) ||u(s, z2)− u(s, y2)||2G(ε, y2 − z2).
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Then by the Hölder continuity of u (see the proof of Theorem 1.8), we have
that

I4(t, x; ε) ≤ C
∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dz1dz2

×Rε(t− s, x− z1)|z1 − y1|G(ε, y1 − z1)
×Rε(t− s, x− z2)|z2 − y2|G(ε, y2 − z2)

≤ Cε
∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dz1dz2

×Rε(t− s, x− z1)G(2ε, y1 − z1)Rε(t− s, x− z2)G(2ε, y2 − z2)
≤ Cε ,

where the last inequality is due to Lemma B.2 and the second inequality is
due to the following inequality with α = 1:
(6.14)
|z1−y1|α|z2−y2|αG(ε, y1−z1)G(ε, y2−z2) ≤ CεαG(2ε, y1−z1)G(2ε, y2−z2) ,

for all α ∈ (0, 1]. Hence,

sup
x∈Rd

sup
s∈[0,t]

I4(s, x; ε) ≤ Cε .(6.15)

Now let’s consider I5,

I5(t, x; ε)

= E

[∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)

×
(∫

Rd
dz1 (Rε(t− s, x− z1)−G(t− s, x− z1)) ρ(u(s, y1))G(ε, y1 − z1)

)
×
(∫

Rd
dz2 (Rε(t− s, x− z2)−G(t− s, x− z2)) ρ(u(s, z2))G(ε, y2 − z2)

)]

≤ C
∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dz1dz2

× |Rε(t− s, x− z1)−G(t− s, x− z1)|G(ε, y1 − z1)
× |Rε(t− s, x− z2)−G(t− s, x− z2)|G(ε, y2 − z2)

≤ C
∫ t

0
ds

∫∫
R2d

dz1dz2 |Rε(s, z1)−G(s, z1)| |Rε(s, z2)−G(s, z2)|

×
∫∫

R2d

dy1dy2 f(y1 − y2)G(ε, y1 − x+ z1)G(ε, y2 − x+ z2)
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= C

∫ t

0
ds

∫∫
R2d

dz1dz2 |Rε(s, z1)−G(s, z1)| |Rε(s, z2)−G(s, z2)| f2ε(z1 − z2),

where f2ε(z) = (f ∗G(2ε, ·))(z). Hence,

I5(t, x; ε) ≤C
∫ t

0
ds

∫
Rd

dz1dz2 |Rε(s, z1)−G(s, z1)|

×
∫
R

dz2 (Rε(s, z2) +G(s, z2)) f2ε(z1 − z2).

Notice that by the assumption of f in this step,∫
Rd

(
Rε(s, z2)+G(s, z2)

)
f2ε(z1 − z2)dz2

≤
∫
Rd

(
Rε(s, z2) +G(s, z2)

)
f2ε(z2)dz2

=

∫
Rd

(
e−s/ε

∞∑
n=1

(s/ε)n

n!
e−

nε
2
|ξ|2 + e−

s|ξ|2
2

)
e−ε|ξ|

2
f̂(dξ) ≤ C .

Thus, according to Lemma B.3, we have

I5(t, x; ε) ≤C
∫ t

0

(
e−s/ε +

ε1/2

s1/2

)
≤ Cε1/2 .

Thus,

sup
x∈Rd

sup
s∈(0,t]

I5(s, x; ε) ≤ C ε1/2.(6.16)

Now we study I6. By Lemma 3.1,

I6(t, x; ε)

= E

[∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)ρ(u(s, y1))ρ(u(s, y2))

×
(∫

Rd
dz1 (G(t− s, x− z1)−G(t− s, x− y1))G(ε, y1 − z1)

)
×
(∫

Rd
dz1 (G(t− s, x− z2)−G(t− s, x− y2))G(ε, y2 − z2)

)]

≤ C
∫ t

0
ds

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dz1dz2

× |G(t− s, x− z1)−G(t− s, x− y1)|G(ε, y1 − z1)
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× |G(t− s, x− z2)−G(t− s, x− y2)|G(ε, y2 − z2)

≤ C
∫ t

0
ds

1

(t− s)1/2
∫∫

R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dz1dz2

× |z1 − y1|1/2 [G(2(t− s), x− z1) +G(2(t− s), x− y1)]G(ε, y1 − z1)
× |z2 − y2|1/2 [G(2(t− s), x− z2) +G(2(t− s), x− y2)]G(ε, y2 − z2).

Then by (6.14) with α = 1/2 and by the semigroup property,

I6(t, x; ε) ≤ Cε1/2
∫ t

0
ds

1

s1/2

∫∫
R2d

dy1dy2 f(y1 − y2)
∫∫

R2d

dz1dz2

× [G(2s, x− z1) +G(2s, x− y1)]G(2ε, y1 − z1)
× [G(2s, x− z2) +G(2s, x− y2)]G(2ε, y2 − z2)

= Cε1/2
∫ t

0
ds

1

s1/2

∫∫
R2d

dy1dy2 f(y1 − y2)

×G(2(s+ ε), x− y1)G(2(s+ ε), x− y2)

≤ Cε1/2
∫ ∞
0

ds
1

s1/2

∫
Rd
e−2(s+ε)(|ξ|

2+1)f̂(dξ)

≤ Cε1/2
∫
Rd

f̂(dξ)

(1 + |ξ|2)1/2 ≤ Cε
1/2 .

Thus,

sup
x∈Rd

sup
s∈[0,t]

I6(s, x; ε) ≤ Cε1/2 .(6.17)

Therefore, by setting

M(t; ε) := sup
y∈Rd

||uε(t, y)− u(t, y)||22 ,

we have shown that

M(t; ε) ≤ C
(
ε1/2 + e−t/ε +

√
ε/t
)

+ C

∫ t

0
M(s; ε)ds.

Then an application of Gronwall’s lemma shows that

M(t; ε) ≤ C
(
ε1/2 + e−t/ε +

√
ε/t
)

+CeCt
∫ t

0

(
ε1/2 + e−s/ε +

√
ε/s
)

ds→ 0,

as ε→ 0. This proves (6.10).



COMPARISON PRINCIPLE FOR SHE ON Rd 35

Step 3 In this step we still work under the same assumption on the initial
condition as in Step 2, i.e., µ(dx) = g(x)dx with g ≥ 0 and g ∈ L∞(Rd), but
we assume that the covariance function f satisfies Dalang’s condition (1.3).
Choose a nonnegative and nonnegative definite function φ as in part (2) of
Theorem 1.9 (see also Remark 1.10). Let u and uε be the solutions to (1.1)
and (1.17), respectively, with the same initial data µ. From the proof of part
(2) of Theorem 1.9, we see that the spatial covariance function for M ε is
(f ∗ φε ∗ φε) (x). We claim that (f ∗ φε ∗ φε) (x) satisfies (1.4) with α = 1.
Indeed, because φ(x) ≤ CG(1, x), we have that φε(x) ≤ CG(ε2, x) and∫

Rd
f̂(dξ)φ̂ε(ξ)

2 = C

∫∫
R2d

f(x− y)φε(x)φε(y)dxdy

≤ C
∫∫

R2d

f(x− y)G(ε2, x)G(ε2, y)dxdy

= C

∫
Rd
f(y)G(2ε2, y)dy = Ck(2ε2) <∞,

where k(·) is defined in (2.1). Hence, by Step 2, we see that

P (uε(t, x) ≥ 0) = 1, for all t > 0 and x ∈ Rd.

Part (2) of Theorem 1.9 implies that uε(t, x) converges to u(t, x) a.s., for
each t > 0 and x ∈ Rd. Therefore,

P (u(t, x) ≥ 0) = 1, for all t > 0 and x ∈ Rd.

Finally, suppose that µi(dx) = gi(x)dx with gi ∈ L∞(Rd), i = 1, 2. Let uε,i
be the solutions of (1.17) driven by M ε and starting from initial conditions
µi. If g1(x) ≤ g2(x) for almost all x ∈ Rd, then by Step 1, vε(t, x) :=
uε,2(t, x)− uε,1(t, x) ≥ 0 a.s. for all t > 0 and x ∈ Rd. This step implies that
vε(t, x) converges to v(t, x) = u2(t, x) − u1(t, x) in L2(Ω) for all t > 0 and
x ∈ Rd. Therefore, v(t, x) is nonnegative a.s., i.e.,

P
(
u1(t, x) ≤ u2(t, x)

)
= 1 , for all t > 0 and x ∈ Rd .

Step 4. Now we assume that the initial data µ1 and µ2 are measures
that satisfy (1.2). Recall the definition of ψε in (1.16). For ε > 0, let uε,i,
i = 1, 2, be the solutions to (1.1) starting from ([µiψε] ∗G(ε, ·)) (x). Denote
v(t, x) = u2(t, x) − u1(t, x) and vε(t, x) = uε,2(t, x) − uε,1(t, x). Because ψε
is a continuous function with compact support on R, the initial data for
uε,i(t, x) are bounded functions. By Step 3, we have that

P
(
vε(t, x) ≥ 0

)
= 1, for all t > 0, x ∈ Rd and ε > 0.
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Then part (1) of Theorem 1.9 implies that

P
(
v(t, x) ≥ 0

)
= 1, for all t > 0 and x ∈ Rd.

This completes the whole proof of Theorem 1.3.

7. Strong comparison principle and strict positivity (Proofs of
Theorems 1.5 & 1.6). We need some lemmas. Denote Q(r) = [−r, r]d,
i.e., a d-dimensional centered cube in Rd of radius r.

Lemma 7.1. Let ` > 0. For all t > 0 and M > 0, there exists some
constants 1 < m0 = m0(t,M) < ∞ and γ > 0 such that for all m ≥ m0,
s ∈

[
t

2m ,
t
m

]
and x ∈ Rd,

(7.1)
(
G(s, ·) ∗ 1IQ(`)

)
(x) ≥ γ1IQ(`+M

m )(x) .

Proof. Since the d-dimensional heat kernel can be factored as a product
of one-dimensional heat kernel, so the proof will be parallel with the proof
of Lemma 4.1 in [8]. We will not repeat it here.

Lemma 7.2. Let ` > 0, t > 0, and M > 0. Assume that (1.4) holds for
some α ∈ (0, 1]. If ρ(0) = 0 and µ(dx) = 1IQ(`)(x)dx, then there are some
finite constants Θ := Θ(β,Lipρ, t) > 0, β > 0, and m0 > 0 such that for all
m ≥ m0,

P
(
u(s, x) ≥ β1IQ(`+M

m )(x) for all
t

2m
≤ s ≤ t

m
and x ∈ Rd

)
≥ 1− exp

(
−Θmα (logm)1+α

)
.

Proof. This proof follows similar arguments as those in the proof of
Lemma 4.3 in [8]. Here we only give a sketch of it. Denote S := St,m,`,M :={

(s, y) : t
2m ≤ s ≤ t

m , y ∈ Q
(
`+ M

m

)}
. By Lemma 7.1, for some β > 0,

(7.2) (µ ∗G(s, ·)) (x) ≥ 2β1IQ(`+M
m )(x) for all s ∈

[
t

2m
,
t

m

]
and x ∈ Rd .

Then the stochastic integral part I(t, x) of the mild solution in (1.5) satisfies

P
(
u(s, x) < β1IQ(`+M

m
) for some

t

2m
≤ s ≤ t

m
and x ∈ Rd

)
≤P
(
I(s, x) < −β for some (s, x) ∈ S

)



COMPARISON PRINCIPLE FOR SHE ON Rd 37

≤P
(

sup
(s,x)∈S

|I(s, x)| > β

)
≤ β−pE

(
sup

(s,x)∈S
|I(s, x)|p

)
.

Denote τ = t/m and S′ := {(s, y) : 0 ≤ s ≤ t/m, |y| ≤ `+M/m}. Using the
fact that I(0, x) ≡ 0 for all x ∈ Rd, we see that for all 0 < η < 1− 6d

αp ,

E

(
sup

(s,x)∈S

∣∣∣∣I(s, x)

τ
αη
2

∣∣∣∣p
)
≤E

(
sup

(s,x),(s′,x′)∈S′

∣∣∣∣∣ I(s, x)− I(s′, x′)(
|x− x′|α + |s− s′|α/2

)η
∣∣∣∣∣
p)

.

We are interested in, and hence assume in the following, the case when
p = O([m logm]α) as m→∞; see (7.3) below. Since our initial condition is
bounded, by (1.15), an application of the Kolmogorov’s continuity theorem
shows that for large p,

β−pE

(
sup

(s,x)∈S
|I(s, x)|p

)
≤Cτ α2 pηeCp

α+1
α τ ≤ C exp

(
1

2
αpη log (τ) + Cp

α+1
α τ

)
.

Since p is large, we may choose η = 1/2. Hence, the exponent in the right-
hand side of the above inequalities becomes

f(p) :=
1

4
αp log (τ) + Cp

α+1
α τ.

Some elementary calculation shows that f(p) is minimized at

p =

(
α2 log(1/τ)

4(α+ 1)Cτ

)α
=

(
α2m log(m/t)

4(α+ 1)Ct

)α
.(7.3)

Hence, for some positive constants A and Θ,

min
p≥2

f(p) ≤ f(p′) = −Θmα [log(m)]1+α with p′ = A [m log(m)]α.

This completes the proof of Lemma 7.2.

Proof of Theorem 1.5. This proof follows the same arguments as those
in the proof of Theorem 1.3 in [8]. Here we only give a sketch of the proof.
Interested readers are referred to [8] for details.

Let u(t, x) := u2(t, x)−u1(t, x) and denote ρ̃(u) = ρ(u+u1)−ρ(u1). Then
it is not hard to see that u(t, x) is a solution to (1.1) with the nonlinear
function ρ̃ and the initial data µ := µ2 − µ1. Note that ρ̃ is a Lipschitz
continuous function with the same Lipschitz constant as for ρ and ρ̃(0) = 0.
For simplicity, we will use ρ instead of ρ̃. By the weak comparison principle,
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we only need to consider the case when µ has compact support and show
that u(t, x) > 0 for all t > 0 and x ∈ Rd, a.s.

Case I. We fist assume that µ(dx) = 1IQ(`)dx for some ` > 0. Denote

(7.4) c(m) := exp
(
−Θmα[log(m)]1+α

)
,

where Θ is a constant defined in Lemma 7.2. We comment that due to a
version mismatch in [8], B0 should be defined separately, i.e.,

Ak :=

{
u(s, x) ≥ βk+11ISmk (x) for all s ∈

[
(2k + 1)t

2m
,
(k + 1)t

m

]
and x ∈ Rd

}
,

for all k ≥ 0,

Bk :=

{
u(s, x) ≥ βk+11ISmk (x) for all s ∈

[
kt

m
,
(2k + 1)t

2m

]
and x ∈ Rd

}
,

for all k ≥ 1 and

B0 :=

{
u

(
t

2m
,x

)
≥ β1ISm0 (x) for all x ∈ Rd

}
,

where

Smk :=

(
−`− Mk

m
, `+

Mk

m

)
.

See Figure 1 for an illustration of the schema.
By an argument using the strong Markov property, one can show that

P
(
Ak | Fkt/m

)
≥ 1− c(m), a.s. on Ak−1 for 0 ≤ k ≤ m− 1,

which implies

P (Ak | Ak−1 ∩ · · · ∩A0) ≥ 1− c(m), for all 1 ≤ k ≤ m− 1.

Notice that the fact that A0 ⊆ B0 implies that P(B0) ≥ P(A0) ≥ 1− c(m).
By similar arguments as those for Ak, one can show that

P (Bk | Bk−1 ∩ · · · ∩B0) ≥ 1− c(m), for all 1 ≤ k ≤ m− 1.

Then,

P (∩0≤k≤m−1 [Ak ∩Bk]) ≥ 1− (1− P (∩0≤k≤m−1Ak))− (1− P (∩0≤k≤m−1Bk))
≥ (1− c(m))m−1P(A0) + (1− c(m))m−1P(B0)− 1
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x
0

t

m = 4

t
m

2t
m

3t
m

t

t
2m

3t
2m

5t
2m

(2m−1)t
2m

B0

B1

B2

B3

A0

A1

A2

A3

k = 0

k = 1

k = 2

k = 3

ℓ−ℓ ℓ+ M
m−ℓ− M

m
· · ·· · · ℓ+ (m−1)M

m−ℓ− (m−1)M
m

[t/2, t]× [−M/2,M/2]

Fig 1: Induction schema for the strong comparison principle in the one-
spatial dimension case.

≥ 2(1− c(m))m − 1.(7.5)

Therefore, for all t > 0 and M > 0,

P
(
u(s, x) > 0 for all t/2 ≤ s ≤ t and x ∈ Q(M/2)

)
≥ lim

m→∞
P
(
∩0≤k≤m−1 [Ak ∩Bk]

)
≥ lim

m→∞
2(1− c(m))m − 1 = 1.

Since t and M are arbitrary, this completes the proof for the case when
µ(dx) = 1IQ(`)dx.

Case II. Now for general initial data µ, we only need to prove that for
each ε > 0,

P
(
u(t, x) > 0 for t ≥ ε and x ∈ Rd

)
= 1.(7.6)

Fix ε > 0. Denote V (t, x) := u(t + ε, x). By the Markov property, V (t, x)
solves (1.1) with the time-shifted noise Ṁε(t, x) := Ṁ(t+ ε, x) starting from
V (0, x) = u(ε, x), i.e.,

V (t, x) = (u(ε, ◦) ∗G(t, ·)) (x) +

∫∫
[0,t]×Rd

ρ(V (s, y))G(t− s, x− y)Mε(ds, dy).

(7.7)



40 L. CHEN AND J. HUANG

We first prove by contradiction that

P
(
u(ε, x) = 0, for all x ∈ Rd

)
= 0.(7.8)

Notice that by Theorem 1.8, the function x 7→ u(t, x) is Hölder continu-
ous over Rd a.s. The weak comparison principle (Theorem 1.3) shows that
u(t, x) ≥ 0 a.s. Hence, if (7.8) is not true, then by the Markov property
and the strong comparison principle in Case I, at all times η ∈ [0, ε], with
some strict positive probability, u(η, x) = 0 for all x ∈ Rd, which contradicts
Theorem 1.11 as η goes to zero. Therefore, there exists a sample space Ω′

with P(Ω′) = 1 such that for each ω ∈ Ω′, there exists x ∈ Rd such that
u(ε, x, ω) > 0.

Since u(ε, x, ω) is continuous at x, one can find two nonnegative constants
c = c(ω) and β = β(ω) such that u(ε, y, ω) ≥ β1Ix+Q(c)(y) for all y ∈ Rd.
Then Case I implies that

P
(
Vω(t, x) > 0 for all t ≥ 0 and x ∈ Rd

)
= 1,

where Vω is the solution to (7.7) starting from u(ε, x, ω). Therefore, (7.6) is
true. This completes the proof of Theorem 1.5.

Proof of Theorem 1.6. Following the proof of Theorem 1.5, since K
is compact, we can choose η, T,N > 0 such that K ⊂ [η, T ]×Q(N). Let β,
Ak and Bk be as in the proof of Theorem 1.5, we have

P
(

inf
(t,x)∈K

u(t, x) < βm
)
≤1− P

(
∩0≤k≤m−1 (Ak ∩Bk)

)
≤2 [1− (1− c(m))m] ,

where c(m) is a positive quantity defined in (7.4). Then we use the fact that
(1 − x)m ≥ 1 −mx for all x > 0 and m > 1 to conclude that for some Θ′

slightly bigger than the Θ in (7.4),

P
(

inf
(t,x)∈K

u(t, x) < βm
)
≤2mc(m) ≤ exp

(
−Θ′mα (logm)1+α

)
.

Finally, by taking m = | log ε|, we complete the proof of Theorem 1.6.
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APPENDIX A: RECURSION ON THE TWO-POINT CORRELATION

We have encountered two types of recursions. One is (2.6), which is used
in the proof of Theorem 1.7; the other is (A.4) below, which is used in the
proof of Theorem 1.9. Lemma A.1 below is sharper than Lemma 2.2 and is
used in [7] to obtain lower bounds for the second moment.

We need to introduce some notation. For h,w : R+×R3d 7→ R, define the
(asymmetric convolution) operation “B”, which depends on f , as follows

(hB w) (t, x, x′; y) :=

∫ t

0
ds

∫∫
R2d

dzdz′ h(t− s, x− z, x′ − z′; y − (z − z′))

×w(s, z, z′; y) f(y − (z − z′)),(A.1)

or equivalently, by change of variables,

(hB w) (t, x, x′; y) :=

∫ t

0
ds

∫∫
R2d

dzdz′ h(s, z, z′; y − [(x− z)− (x′ − z′)])

×w(t− s, x− z, x′ − z′; y) f(y − [(x− z)− (x′ − z′)]).(A.2)

This operation is associative (see Lemma B.1 in [7])

((hB w) B v) (t, x, x′; y) = (hB (w B v)) (t, x, x′; y).

We use the convention that for functions h defined on R+ × R2d, when
applying the operation B to h, it is meant for h′(t, x, x′; y) := h(t, x, x′).

For t > 0 and x, x′, y ∈ Rd, define recursively:

Ln(t, x, x′; y) :=

{
G(t, x)G(t, x′) if n = 0

(L0 B Ln−1) (t, x, x′; y). for n ≥ 1.

For λ ∈ R, Lemma 2.7 of [7] ensures that the following series is well defined

Kλ(t, x, x′; y) :=
∞∑
n=0

λ2(n+1)Ln(t, x, x′; y) ≤ L0(t, x, x′)H(t; 2λ2).(A.3)

Then the upper bounds for the two-point correlation function in Theorem
2.4 of [7] can be summarized as the following lemma.

Lemma A.1. Suppose that g : R+×R2d 7→ R is some measurable function
such that (L0 B |g|) (t, x, x′; 0) <∞ for all t > 0 and x, x′ ∈ Rd. If for some
nonnegative function J∗ : R+×R2d 7→ R+ and λ ≥ 0, g satisfies the following
integral inequality

g(t, x, x′) ≤J∗(t, x, x′) + λ2
∫ t

0
ds

∫∫
R2d

g(s, y1, y2)

× f(y1 − y2)G(t− s, x− y1)G(t− s, x′ − y2)dy1dy2,
(A.4)
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then

g(t, x, x′) ≤ J∗(t, x, x′) + (Kλ B J∗) (t, x, x′; 0).(A.5)

In particular,

g(t, x, x′) ≤J∗(t, x, x′) +H(t; 2λ2)

∫ t

0
ds

∫∫
R2d

J∗(s, y1, y2)

×G(t− s, x− y1)G(t− s, x′ − y2)f(y1 − y2)dy1dy2.
(A.6)

If the inequality (A.4) is an equality, then (A.5) is also an equality.

Proof. This lemma is proved using Picard iteration. We first prove the
case when the inequality (A.4) is an equality. Notice that (A.4) (with in-
equality replaced by equality) can be written as

g(t, x, x′) = J∗(t, x, x
′) + λ2(L0 B g)(t, x, x′; 0).

Let

gn(t, x, x′) =

{
J∗(t, x, x

′) if n = 0,

J∗(t, x, x
′) + λ2 (L0 B gn−1) (t, x, x′; 0) for n ≥ 1.

(A.7)

Then by the associativity of the operator B, we see that

gn(t, x, x′) = J∗(t, x, x
′) +

n−1∑
k=0

λ2(k+1) (Lk B J∗) (t, x, x′; 0).

Therefore,

g(t, x, x′) = lim
n→∞

gn(t, x, x′) = J∗(t, x, x
′) +

∞∑
k=0

λ2(k+1) (Lk B J∗) (t, x, x′; 0)

= J∗(t, x, x
′) + (Kλ B J∗) (t, x, x′; 0)

≤ J∗(t, x, x′) +H(t; 2λ2) (L0 B J∗) (t, x, x′; 0),

where the last step is due to (A.3). This proves the equality case.
We proceed to prove the inequality case. Let g∗(t, x, x

′) be the solution to
(A.4) with the inequality replaced by equality. Since g satisfies the inequality
(A.4), by denoting F (t, x, x′) := g(t, x, x′) − g∗(t, x, x′), we need only show
that F ≤ 0. Notice that

F (t, x, x′) ≤ λ2 (L0 B F ) (t, x, x′; 0).
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Apply the asymmetric convolution with respect to λ2L0 on the both sides
of the above inequality to see that

λ2 (L0 B F ) (t, x, x′; 0) ≤ λ4 (L1 B F ) (t, x, x′; 0),

where we have used the associativity of B (see Lemma B.1 in [7]). Combining
the above two inequalities we see that

F (t, x, x′) ≤ λ4 (L1 B F ) (t, x, x′; 0).

In this way, one can show by induction that

F (t, x, x′) ≤ λ2(k+1) (Lk B F ) (t, x, x′; 0), for all k ∈ N.

Now we are going to send k to +∞. Because (see Lemma 2.7 of [7])

0 ≤ Lk(t, x, x′; y) ≤ 2khk(t)L0(t, x, x′),

for all t > 0, x, x′, y ∈ Rd and k ∈ N, we see that∣∣∣λ2k (Lk B F ) (t, x, x′; 0)
∣∣∣ ≤ (2λ2)khk(t) (L0 B |F |) (t, x, x′; 0).(A.8)

By the integrability of g, (L0 B |F |) (t, x, x′; 0) <∞. Lemma 2.1 implies that
H(t; 2λ2) =

∑∞
k=0(2λ

2)khk(t) <∞. Hence, the right-hand side of (A.8) goes
to zero as k →∞. Therefore, F (t, x, x′) ≤ 0, which completes the proof.

APPENDIX B: SOME TECHNICAL LEMMAS

In this section, we list some technical lemmas that are used in the paper.

Lemma B.1. If g(t) is a monotone function over [0, T ], then for all β > 0
and t ∈ (0, T ],∫ t

0
g(t− s) exp

(
−2βs(t− s)

t

)
ds =

∫ t

0
g(s) exp

(
−2βs(t− s)

t

)
ds(B.1)

≤


2

∫ t

0
g(s)e−β(t−s)ds if g is nondecreasing,

2

∫ t

0
g(s)e−βsds if g is nonincreasing.

(B.2)

Proof. Equality (B.1) is clear by change of variables. We first assume
that g(t) is nondecreasing in [0, T ]. Denote the integral by I. Then

I =

∫ t/2

0
g(s) exp

(
−2βs(t− s)

t

)
ds+

∫ t

t/2
g(s) exp

(
−2βs(t− s)

t

)
ds
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≤
∫ t/2

0
g(s) exp (−βs) ds+

∫ t

t/2
g(s) exp (−β(t− s)) ds

≤
∫ t

t/2
g(t− s) exp (−β(t− s)) ds+

∫ t

t/2
g(s) exp (−β(t− s)) ds

≤2

∫ t

t/2
g(s) exp (−β(t− s)) ds

≤2

∫ t

0
g(s) exp (−β(t− s)) ds.

If g is nonincreasing in [0, T ], we simply replace the above g(s) by g(t − s)
thanks to (B.1). This proves Lemma B.1.

Lemma B.2. Let Rε be defined in (6.4). If f satisfies (1.4) with α = 1,
then there exists a constant C > 0 such that for all 0 ≤ s, ε ≤ t and x ∈ Rd,∫∫

R2d

dy1dy2 f(y1 − y2) (Rε(t− s, ·) ∗G(ε, ·)) (x− y1)

× (Rε(t− s, ·) ∗G(ε, ·)) (x− y2) ≤ C .

Proof. Denote the integral by I. Using the Fourier transform we have

I ≤
∫
Rd
e−

2(t−s)
ε

∞∑
n,m=1

(
t−s
ε

)n
n!

(
t−s
ε

)m
m!

e−
(n+m)ε

2
|ξ|2 f̂(dξ)

≤ Ce−
2(t−s)
ε

∞∑
n,m=1

(
t− s
ε

)m+n 1

n!m!
.

Letting n+m = k and using the fact that

k−1∑
n=1

1

n!(k − n)!
=

1

k!
(2k − 2) ,

we see that the above double sum is equal to

∞∑
k=1

k−1∑
n=1

(
t− s
ε

)k 1

n!(k − n)!
≤
∞∑
k=1

(
t− s
ε

)k 2k

k!
≤ e

2(t−s)
ε − 1 ,

which proves Lemma B.2.

Lemma B.3. There exists a finite constant C > 0 such that

(B.3)

∫
Rd
|Rε(t, x)−G(t, x)|dx ≤ e−t/ε + C

(ε
t

)1/2
,
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and

(B.4)

∫
Rd
|G(t+ ε, x)−G(t, x)|dx ≤ C log

(
1 +

ε

t

)
,

for all ε > 0 and t > 0.

Proof. Because
∣∣ ∂
∂tG(t, x)

∣∣ ≤ Ct−1G(2t, x), we see that for any t and t′

such that 0 < t ≤ t′,∫
Rd
|G(t′, x)−G(t, x)|dx ≤

∫
Rd

dx

∫ t′

t
ds| ∂

∂s
G(s, x)|

≤ C
∫
Rd

dx

∫ t′

t
ds s−1G(2s, x)

≤ C log
(
t′/t
)
.

The rest of the proof will follow exactly the same lines as those in the proof
of Lemma 8.2 in [8] and we will not repeat here.

Lemma B.4. The function g(t, x) :=
∫ t
0 (2πs)−d/2 exp

(
−x2

2s

)
ds, for t, x ≥

0, satisfies the following properties,

(1) x 7→ g(t, x) is strictly decreasing functions on x ∈ (0,∞).
(2) If d = 1, then g(t, x) doesn’t blow up at x = 0 and g(t, x) ≤ g(t, 0) =√

2t/π. If d ≥ 2, then g(t, x) blows up at x = 0.
(3) If d = 1, 2, then for all θ > 0 and t > 0,∫

Rd
g(t, |x|)θdx <∞.(B.5)

(4) If d ≥ 3, then for all 0 < θ < d
d−2 and t > 0, (B.5) holds.

Proof. (1) It is clear x 7→ g(t, x) is nonincreasing on (0,∞) because

∂

∂x
g(t, x) = −

∫ t

0
(2πs)−d/2

x

s
exp

(
−x

2

2s

)
ds < 0, for x > 0.

(2) If d = 1, then by (1), we see that g(t, x) ≤ g(t, 0) =
√

2t/π. By change
of variables z = x2/(2s),

g(t, x) =
1

2πd/2
x2−d

∫ ∞
x2

2t

e−zz
d
2
−2dz.(B.6)
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If d = 2, then the integral in (B.6) blows up as x→ 0+. When d ≥ 3,

g(t, x) ≤ 1

2πd/2
x2−d

∫ ∞
0

e−zz
d
2
−2dz =

Γ(d/2− 1)

2πd/2
x2−d,(B.7)

which blows up as x→ 0+.
(3) If d = 1, for all t > 0 and x ≥ 0,

g(t, x) ≤ 1√
2π
e−

x2

2t

∫ t

0

1√
s

ds =

√
2t√
π
e−

x2

2t ,

which shows (B.5) for d = 1. If d = 2, then

g(t, x) =
1

2π

∫ ∞
x2/(2t)

e−zz−1dz.

Then by l’Hopital’s rule,

lim
x→0+

g(t, x)

log(1/x)
=

1

2π
lim
x→0+

−e−x
2

2t
2t
x2

x
t

−1/x
=

1

π
.

Hence, this case is proved by noting that for x ≥ 1,

g(t, x) =
1

2π

∫ ∞
x2

2t

e−zz−
3
2 dz ≤ 1

2π

(
x2

2t

)− 3
2
∫ ∞
x2

2t

e−zdz ≤ (2t)3/2

2π
e−

x2

2t .

(4) For d ≥ 3, note that there is a constant Cd > 0 which only depends on

d such that z
d
2
−2e−z ≤ Cde−

z
2 for all z ≥ 0. Then for x ≥ 1,

g(t, x) =
1

2πd/2
x2−d

∫ ∞
x2

2t

e−zz
d
2
−2dz ≤ Cd

2πd/2

∫ ∞
x2

2t

e−
z
2 dz ≤ Cd

πd/2
e−

x2

4t ,

this shows that for any θ > 0,

(B.8)

∫
|x|≥1

g(t, |x|)θdx <∞ .

The restriction that θ < d
d−2 comes from the integrability on |x| ≤ 1, which

is clear from the upper bound of g(t, x) in (B.7).

Lemma B.5. Recall the function g(t, x) is defined in Lemma B.4. Let
ψ ∈ Cc(Rd) be an arbitrary mollifier such that

∫
Rd ψ(x)dx = 1. Denote

ψε(x) = ε−dψ(x/ε). For each fixed t > 0, suppose that h : Rd 7→ R+ is a
nonnegative and measurable function such that∫

Rd
h(x)g(2t, |x|)dx <∞.

Then the following statements hold:
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(1) For any η > 0, there exists φ ∈ Cc(Rd) such that

sup
ε∈(0,

√
t)

∫
Rd
gε(t, |x|) |h(x)− φ(x)|dx < η,

where gε(t, |x|) =
∫
Rd g(t, |y|)ψε(x− y)dy.

(2) By denoting hε(x) = (h ∗ ψε)(x), we have that

lim
ε→0

∫
Rd
g(t, |x|) |h(x)− hε(x)| dx = 0.

Proof. Without loss of generality, we may assume that t = 1.
(1) Fix η > 0. It is clear that for some constant C > 0, we have

ψ(x) ≤ CG(1, x), for all x ∈ Rd.

Hence, ψε(x) ≤ CG(ε2, x), which implies that

gε(1, |x|) ≤ C
∫
Rd

dy G(ε2, x− y)

∫ 1

0
ds G(s, y)

= C

∫ 1

0
ds G(s+ ε2, x)

= C

∫ 1+ε2

ε2
ds G(s, x) ≤ Cg(2, |x|) ,(B.9)

where the last inequality is due to the definition of g(t, x) and ε ∈ (0, 1). Since
h is nonnegative, it is known that one can find a monotone nondecreasing
sequence {sj} of simple functions such that sj(x) ↑ h(x) pointwise; see, e.g.,
Theorem 1.44 in [1]. Hence, by the dominated convergence theorem,

sup
ε∈(0,1)

∫
Rd
gε(1, |x|) |h(x)− sj(x)| dx < C

∫
Rd
g(2, |x|) |h(x)− sj(x)|dx→ 0

as j →∞. Therefore, for some s ∈ {sj},

sup
ε∈(0,1)

∫
Rd
gε(1, |x|) |h(x)− s(x)| dx ≤ η/2.

Now we choose and fix q > 1 such that

(B.10) C(g, d, q) :=

∫
Rd
g(t, |x|)qdx <∞ .

This is possible thanks to Lemma B.4: q > 1 can be any number for d = 1, 2
and q ∈ (1, d

d−2) for d ≥ 3. Since s is a simple function with bounded
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support, by Lusin’s theorem (see e.g., Theorem 1.42 (f) in [1]) there exists
φ ∈ Cc(Rd) such that

|φ(x)| ≤ ||s||L∞(Rd) , for all x ∈ Rd

and

Vol
({
x ∈ Rd : φ(x) 6= s(x)

})
≤ ηp

(
4C ||s||L∞(Rd)C(g, d, q)1/q

)−p
,

where 1/p+ 1/q = 1 and C is as in (B.9). Thus, using (B.9),

sup
ε∈(0,1)

∫
Rd
gε(1, |x|) |s(x)− φ(x)|dx

≤ C
∫
Rd
g(2, |x|) |s(x)− φ(x)| dx

≤ 2C ||s||L∞(Rd)

∫
Rd

1I{x∈Rd: φ(x)6=s(x)}g(2, |x|)dx

≤ 2C ||s||L∞(Rd)

(∫
Rd

1I{x∈Rd: φ(x) 6=s(x)}dx
) 1
p
(∫

Rd
g(2, |x|)qdx

) 1
q

≤ η

2
.

(2) For any η > 0, we can write∫
Rd
|hε(x)− h(x)|g(1, |x|)dx

=

∫
Rd

∣∣∣∣∫
Rd
ψε(x− y) [h(y)− h(x)] dy

∣∣∣∣ g(1, |x|)dx

=

∫
Rd

∣∣∣∣∫
Rd
ψε(x− y) [h(y)− φ(y)] dy

∣∣∣∣ g(1, |x|)dx

+

∫
Rd

∣∣∣∣∫
Rd
ψε(x− y) [φ(y)− φ(x)] dy

∣∣∣∣ g(1, |x|)dx

+

∫
Rd

∣∣∣∣∫
Rd
ψε(x− y) [φ(x)− h(x)] dy

∣∣∣∣ g(1, |x|)dx

=: I1 + I2 + I3 .

For I1, choose φ ∈ Cc(Rd) according to (1), such that I1 <
η
3 . From the

proof of (1) it is obvious that with the same choice of φ, I3 <
η
3 . For I2,

since ψ is compactly supported, we may choose ε0 > 0 such that whenever
0 < ε < ε0, we have I2 <

η
3 because of the uniform continuity of φ.
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