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Abstract: 19 

During the leptotene stage of prophase I of meiosis chromatids become organized 20 

into a linear looped array by a protein axis that forms along the loop bases. 21 

Establishment of the axis is essential for the subsequent synapsis of the homologous 22 

chromosome pairs and the progression of recombination to form genetic crossovers. 23 

Here we describe ASY4 a new component of the meiotic protein axis in Arabidopsis 24 

thaliana. ASY4 is a small coil-coiled protein that exhibits limited homology with the C-25 

terminal region of the axis protein ASY3. We show using an eYFP-tagged ASY4 that 26 

the protein localizes to the chromosome axis throughout prophase I. Bi-molecular 27 

fluorescence reveals that ASY4 interacts with ASY1 and ASY3 and yeast two-hybrid 28 

analysis confirms a direct interaction between ASY4 and ASY3. Mutants lacking full-29 

length ASY4 exhibit defective axis formation and are unable to complete synapsis. 30 

Although initiation of recombination appears unaffected in an asy4 mutant, 31 

crossovers are significantly reduced and tend to group in the distal parts of the 32 

chromosomes. In summary, we have identified a new component of the meiotic 33 

chromosome axis that is required for normal axis formation and controlled crossover 34 

formation.  35 

 36 

  37 
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 38 

Introduction 39 

 40 

Meiosis is the specialised cell division that generates the haploid cells from which the 41 

gametes will be generated. In most organisms this ploidy reduction is achieved by 42 

segregating, first, the homologous chromosomes from each other (meiosis I), then, 43 

by separating the sister chromatids at meiosis II. The correct meiotic course relies on 44 

a series of coordinated mechanisms that take place during meiotic prophase I. They 45 

include the organisation of sister chromatids along a common proteinaceous axis 46 

(the axial element, AE), the pairing and the synapsis of these axes, recombination 47 

and the formation of at least one crossover (CO) per homologous pair (Zickler and 48 

Kleckner, 1999). 49 

 50 

The AEs are assembled early during meiotic prophase I, defining the leptotene stage. 51 

Then, axes from the homologous chromosomes become connected by the 52 

polymerisation of the central element of the synaptonemal complex (SC), forming the 53 

lateral elements (LEs) of the SC. The polymerisation of the SC is complete by 54 

pachytene, a stage at which the maturation of recombination intermediates into COs 55 

is achieved, at least in S. cerevisiae (Zickler and Kleckner, 1999). Next, the central 56 

element of the SC is disassembled while the chromosome axis participates in the 57 

dramatic chromosome condensation that occurs during the remaining steps of 58 

meiotic prophase I (diplotene, diakinesis). 59 

 60 

Therefore, a defining feature of meiotic chromosomes is that sister chromatids share 61 

a chromosome axis to which they are anchored, forming regular arrays of chromatin 62 

loops. Because most of the recombination proteins are axis-associated, it has been 63 

proposed that meiotic chromosome axes form a scaffold on which meiotic 64 

recombination takes place (Blat et al., 2002; Panizza et al., 2011). Notwithstanding 65 

these structural roles, chromosome axes also appear highly flexible and dynamic. 66 

Their physical association with the chromosomes depends on and is responsive to 67 

underlying transcriptional activity (Sun et al., 2015). Some of their components are 68 

displaced upon synapsis and during recombination, where there is a requirement for 69 

localized axis exchange at CO sites.  70 

 71 
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Chromosome axes are composed of various protein families (Zickler and Kleckner, 72 

1999). Cohesins (and notably the meiosis-specific Rec8 protein) as well as cohesin-73 

associated factors such as the condensins are key components of the AEs. Cohesins 74 

form ring-shaped complexes that associate sister chromatids together after 75 

replication and that in S. cerevisiae anchor the other axial element proteins to 76 

chromatin (Sun et al., 2015). The HORMA domain proteins (Hop1 in S. cerevisiae, 77 

HormaD1 and HormaD2 in mammals, ASY1/PAIR2 in plants, HIM-3, HTP-1, HTP-2, 78 

and HTP-3 in C. elegans) also represent major components of the meiotic 79 

chromosomal axes that in C. elegans constitute the linker between the cohesins and 80 

the SC central element (Pattabiraman et al., 2017). In several organisms, including 81 

A. thaliana, their axis association is negatively regulated by synapsis (Börner et al., 82 

2008; Wojtasz et al., 2009; Lambing et al., 2015). The last class of known axial 83 

element proteins contains the S. cerevisiae Red1, the mouse SYCP2 and SYCP3 84 

(SCP2 and SCP3 in rat), and the plant ASY3/PAIR3/DSY2 (Wang et al., 2011; 85 

Ferdous et al., 2012; Lee et al., 2015). All these proteins are meiosis-specific 86 

components of the axial element. Red1, SYCP2/SCP2 and ASY3/PAIR3 are large 87 

proteins that show limited sequence similarities, suggesting that they could be 88 

distantly related (Offenberg et al., 1998; Ferdous et al., 2012). Concerning the 89 

mammalian SYCP3/SCP3, they are small proteins that show sequence similarities 90 

with SYCP2/SCP2 with which they interact through their coiled-coil regions. They are 91 

thought to represent key structural components of the mammalian meiotic 92 

chromosome axes since notably, they form multi-stranded fibres that mimic the AEs 93 

when ectopically expressed in somatic cells (Yuan et al., 1998; Pelttari et al., 2001). 94 

In addition, structural resolution of the human SYCP3 protein revealed that it forms 95 

elongated helical tetrameric structures that self-assemble into AE-like fibres that 96 

possess the intrinsic capacity of mediating dsDNA compaction (Syrjänen et al., 2014; 97 

Syrjänen et al., 2017).  98 

 99 

Mutants defective in any component of the AE exhibit substantial perturbation of the 100 

meiotic recombination process. The plant HORMA domain-containing protein ASY1 101 

is not required for normal DSB formation but for DMC1 stabilisation on recombination 102 

sites (Armstrong et al., 2002; Sanchez-Moran et al., 2007). In consequence, in asy1 103 

mutants, meiotic DSBs are predominantly repaired using a sister chromatid as 104 

template, as is the case in a dmc1 mutant, provoking a shortage in CO formation 105 
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(Sanchez-Moran et al., 2007). The axial protein ASY3/PAIR3/DSY2, on the other 106 

hand, is required for normal levels of DSB formation in A. thaliana and in maize 107 

(Ferdous et al., 2012; Lee et al., 2015). It is also required for normal ASY1 assembly 108 

onto the chromosome axis, and it interacts with ASY1 (Ferdous et al., 2012; Lee et 109 

al., 2015) and with ZYP1 (Lee et al., 2015).  110 

 111 

In this manuscript, we present the identification of ASY4, a short coiled-coil 112 

containing protein showing similarity with the ASY3 C-terminus coiled coil region. We 113 

show that ASY4 is an axis-associated protein that interacts with ASY1 and ASY3. We 114 

also found that ASY4 is required for normal ASY1 and ASY3 localisation, for full 115 

synapsis and for CO formation. 116 

 117 

 118 

  119 
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Results 121 

 122 

Identification of ASY4, a meiotic gene with similarity to ASY3 123 

 124 

A BlastP search against the A. thaliana genome using the ASY3 protein (At2G46980) 125 

as a query identified the uncharacterised At2g33793 protein (hereafter called ASY4) 126 

as showing 29% identity and 45% similarity with 142 aa of the C-terminus region of 127 

ASY3 (Figure 1). While ASY3 is a large protein (793 aa, 88 kD), ASY4 is only 212 aa 128 

long (25kD). Its sequence does not contain any known functional domains and most 129 

of the ASY4 protein is predicted to form coiled-coils (aa 71-183, Figure 1). ASY4 130 

homologous proteins can be identified in Tracheophyta sequenced genomes (that 131 

include flowering plant genomes and Sellaginella moellendorffii). Outside 132 

Tracheophyta, ASY4 homologous sequence is found in Marchantia polymorpha but 133 

not in mosses. RT-PCR on cDNAs isolated from different organs from wild-type 134 

plants showed that ASY4 is expressed predominantly in flower buds (SupData_1). 135 

 136 

To analyse ASY4 function, we characterised two independent mutant lines in 137 

At2g33793. One was available in the public databases: line SK22114 (Stock: 138 

CS1006148, later referred to as asy4-1). The second one (asy4-2) was isolated by 139 

PCR-screening of MPIPZ (Cologne) A. thaliana T-DNA insertion mutants (Ríos et al., 140 

2002). Insertions in asy4-1 and asy4-2 are located in ASY4 fourth and fifth exons, 141 

respectively and are associated with deletions of 17 and 19 bp respectively (Figure 1 142 

and SupData_2). Residual transcription corresponding to the 5’ end of the gene can 143 

be detected in both mutants (SupData_1). They could potentially generate a C-144 

terminally truncated protein of 92 or 106 aa respectively.  145 

 146 

Both asy4 mutants investigated in this study showed normal vegetative growth (not 147 

shown) but fertility defects (SupData_3) that correlated with meiotic defects (Figure 148 

2). During prophase I in wild-type meiosis the ten A. thaliana chromosomes 149 

condense and recombine resulting in the formation of five bivalents, each consisting 150 

of two homologous chromosomes attached to each other by sister chromatid 151 

cohesion and chiasmata (the cytological manifestation of COs), which become visible 152 

at diakinesis. Synapsis (the close association of two chromosomes mediated by the 153 

SC) begins at zygotene and is complete by pachytene. At metaphase I, the five 154 
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bivalents are easily distinguishable aligned on the metaphase plate. During 155 

anaphase I, each chromosome separates from its homologue, leading to the 156 

formation of dyads corresponding to two pools of five chromosomes. The second 157 

meiotic division then separates the sister chromatids, generating four pools of five 158 

chromosomes, which gives rise to tetrads of four haploid daughter cells. In asy4 159 

mutants, each of these meiotic stages can be identified, although full synapsis was 160 

not detected. Moreover, the presence of univalent chromosomes at diakinesis and 161 

unbalanced tetrads (illustrated for asy4-1 in Figure 2) indicates a defect in CO 162 

formation. 163 

 164 

The reduction in chiasma number observed in asy4 meiocytes was quantified at the 165 

transition between metaphase I and anaphase I by estimating the number of chiasma 166 

based on bivalent shape. Rod bivalents reflect the occurrence of a minimum of one 167 
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chiasma on a single chromosome arm pair whereas ring bivalents reflect the 168 

occurrence of at least one chiasma per chromosome arm. This estimation provides a 169 

minimum chiasma number (MCN, as defined in (Jahns et al., 2014)), because 170 

multiple chiasmata on a single bivalent arm cannot generally be discriminated from 171 

single chiasma. In both asy4 mutants MCN is significantly decreased in comparison 172 

to wild type, with the asy4-1 allele being the most affected, showing an average of 173 

5.9 ± 1.5 MCN/cell (in wild type the mean number of MCN per cell is 8.9 ± 0.89, t test 174 

P<0.0001) (Figure 2 and SupData_4). In consequence, all subsequent analyses 175 

were conducted with asy4-1. 176 

 177 
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This phenotype of a decrease in chiasma formation associated with abnormal 178 

synapsis has previously been described for mutants defective in axis formation 179 

typified by asy1 and asy3 (Armstrong et al., 2002; Ferdous et al., 2012). We 180 

therefore analysed the epistatic relationships between these various mutations. This 181 

revealed that, in terms of chiasma level, the asy1 mutation is epistatic to asy3 and 182 

asy4, with asy1 asy3 and asy1 asy4 double mutant combinations showing only 2 183 

MCN/cell (Figure 2, and SupData_4). When analysing the double mutant asy3 asy4 184 

however, we found that the average number of chiasmata per cell is intermediate 185 

between asy3 and asy4 (4.1±1.3 MCN/cell) and significantly different from each 186 

single mutant (one-way ANOVA, P<0.0005). 187 

 188 

asy4 mutants are defective in meiotic recombination 189 

 190 

In order to understand the origin of the reduced chiasma formation observed in asy4, 191 

we investigated meiotic recombination in further detail. First, we immunolocalised 192 

DMC1, a meiosis-specific recombinase, that forms foci at recombination sites. In wild 193 

type, DMC1 foci appear at late leptotene/early zygotene reaching an average of 240 194 

foci per nucleus (Chelysheva et al., 2007). In asy4-1, we counted an average of 222 195 

± 107 (n=15) foci per cell suggesting that early recombination events are not affected 196 

in asy4 (SupData_5). We then immunolocalised the ZMM proteins MSH5, the MutS 197 

homolog, that is involved in the stabilization of progenitor double-Holliday Junctions 198 

and HEI10 which has been shown to mark a subset of recombination intermediates 199 

that are channelled into the ZMM pathway (Snowden et al., 2004; Higgins et al., 200 

2008; Chelysheva et al., 2012). MSH5 foci were detected in both wild type and asy4-201 

1 at late leptotene/early zygotene (Figure 3, A-B). No significant difference in the 202 

number of foci was observed (wild type = 110.9 ± 38.61, n=15; asy4-1 = 121.1 ± 203 

29.55, n=15; Mann-Whitney U test, P = 0.3835). This implies that recombination in 204 

asy4-1 progresses beyond DMC1 catalysed strand-invasion. HEI10 is loaded early 205 

during prophase I on a large number of recombination sites, forming foci of different 206 

sizes on chromosomes. As meiosis progresses, HEI10 foci become brighter and 207 

associated with the central element of the SC (ZYP1) (Figure 3C). During pachytene 208 

a limited number of these foci remain at sites that correspond to class I COs where 209 

they co-localise with MLH1 until the end of prophase (not shown). In asy4-1, the 210 

HEI10 dynamics was similar as in wild type, with mixed sized foci co-localising with 211 
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ZYP1 while synapsis progresses (Figure 3D). However, ZYP1 staining was very 212 

limited, never progressing to full synapsis, confirming the chromosome synapsis 213 
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defects detected after DAPI staining of the chromosomes (Figure 2). In 214 

consequence, the pachytene-like HEI10 foci observed on the partially synapsed 215 

nuclei were strongly decreased in comparison to wild type (Figure 3D).   216 

 217 

We then analysed the level of recombination in four genetic intervals located on 218 

chromosome 5 using the Fluorescent Tagged Lines (FTL) tool developed by 219 

Copenhaver et al. (Berchowitz et Copenhaver, 2008). For most intervals (3 out of 4) 220 

recombination rates decrease significantly but moderately in asy4, reaching on 221 

average 75% of the wild-type level of recombination (Table 1). This effect is 222 

comparable to the decrease in chiasma number observed in asy4 (Figure 2). 223 

However, the I5b interval, which is distally located on chromosome 5, appears 224 

differentially affected since meiotic recombination increases slightly but significantly 225 

in asy4 (from 16 to 20 cM) (Table 1). In conclusion, asy4 mutation provokes a 226 

decrease in meiotic recombination, but this effect appears to vary according to the 227 

chromosomal intervals considered.  228 

 229 

In A. thaliana, most COs (85%) exhibit interference. From the FTL data, we 230 

estimated the level of interference between COs in each interval by calculating the 231 

ratio between the observed number of double COs to the expected number of double 232 

COs under the hypothesis of no interference (NPD ratio as defined by (Snow, 1979)). 233 

We observed that in most intervals considered, in asy4 as in wild type, the NPDr is 234 

smaller than 1, revealing the presence of interference between adjacent COs. Then 235 

the interference between COs occurring in adjacent intervals (I5a/I5b or I5c/I5d) was 236 

estimated by calculating the interference ratio (IR) as defined by Malkova et al. 237 

(Malkova et al., 2004). The IR compares the genetic length of one interval with and 238 

without the presence of a simultaneous event in the neighbouring interval.  When the 239 

occurrence of a CO in one interval reduces the probability of a CO occurring in the 240 

adjacent interval, the IR is less than 1, indicating CO interference. When COs in the 241 

two adjacent intervals are independent of each other, the IR is 1, and if the presence 242 

of one CO in an interval increases the probability of an additional CO in the adjacent 243 

interval, the IR is greater than 1, indicating negative interference. IRs revealed the 244 

presence of interference between COs in wild type (for both pairs of intervals) and for 245 

asy4 for the I5c/I5d pair of intervals (Table 1). However, for the I5a/I5b pair of 246 
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intervals, the IR in asy4 is above 1, suggesting that in that chromosomal region 247 

adjacent COs occur more frequently than in wild type.  248 

 249 

In wild-type Arabidopsis, the majority of COs (85%–90%) depend on the ZMM 250 

proteins (MSH4, MSH5, MER3, ZIP4, SHOC1/ ZIP2, HEI10, and PTD) as well as on 251 

MLH1 and MLH3 (Mercier et al., 2015). We analysed chiasma frequencies in asy4 252 

zip4 and asy4 msh5 double mutants (Figure 2). In both cases, the level of bivalent 253 

formation was dramatically reduced by more than 95%, showing that almost all the 254 

COs in asy4 are ZMM-dependent. We then estimated the average number of these 255 

class I COs in asy4 mutant by immuno-labelling chromosomes with antibodies 256 

directed against MLH1, a marker of class I COs (Figure 4). We found that asy4-1 257 

shows a limited but significant decrease in MLH1 foci from 11 ± 1.5 (mean ± SD; 258 

n=60) in wild type to 8.6 ± 2.2 (n=147) in asy4-1 (t-test, P<0.05), confirming the 259 

above genetic results that asy4 mutation decreases CO formation. We then analysed 260 

the distribution of these foci within bivalents. We kept in our analysis all pairs of 261 

chromosome arms where at least one MLH1 foci can be observed at diakinesis. In 262 

wild-type meiocytes the mean number of MLH1 foci per chromosome arm is 1.4 ± 263 

0.52 (n=180) (range 1-3) whereas in asy4-1 it increased highly significantly 264 

(P<0.0001, t test) to a mean of 1.8 ± 0.85 (n=134), with a much greater range of 265 

values than in wild type (1- 6 compared to 1-3 in wild-type). These cytological data 266 

are in agreement with the FTL analyses and show that asy4 mutation perturbs 267 

meiotic recombination quantitatively (by decreasing it) and qualitatively (by altering 268 

CO location).  269 

 270 

asy4 mutation is associated with axis defects 271 

 272 

We investigated the behaviour of several components of the meiotic chromosome 273 

axis (ASY1, ASY3, REC8 and SCC3) in the asy4 mutant in comparison to wild type 274 

(Figure 3, Figure 5, and SupData_6). ASY1, ASY3, REC8 and SCC3 are detected 275 

during meiotic prophase I and exhibit different dynamics as meiosis progresses 276 

(Armstrong et al., 2002; Cai et al., 2003; Chelysheva et al., 2005; Ferdous et al., 277 

2012). At leptotene, all these proteins brightly decorate meiotic chromosomes, 278 

revealing the typical thread-like chromosomal axis. As synapsis proceeds and the 279 

central element connects the axial elements of the homologous chromosomes, ASY1 280 
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is depleted from the axis and consequently the ASY1 signal appears faint and fuzzy 281 

(Figure 3 arrows, SupData_6). ASY3, REC8 and SCC3 also mark the chromosome 282 

axes, but contrary to ASY1, they are not removed during synapsis (Figure 5 and 283 

SupData_6). In the case of the cohesins REC8 and SCC3, no obvious modification in 284 

their pattern could be detected (Figure 5 and SupData_6). The two axis-associated 285 
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proteins ASY1 and ASY3 are loaded onto the chromosome axis and chromosome 286 

threads typical of leptotene stages can be seen. However, ASY1 and ASY3 signals 287 

adopt an abnormally patchy and lumpy aspect (Figure 3 and Figure 5), suggesting 288 

that in asy4, the meiotic chromosome axis is aberrantly structured. In addition, we 289 

observed no displacement of ASY1 from the synapsed chromosome axes (Figure 3), 290 
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revealing abnormal axis dynamics. We investigated the chromosome axis further by 291 

silver-staining of chromosome spreads and wild-field microscopy observation as 292 

described in (Armstrong and Jones, 2001). This chromatin staining permits the 293 

detection of the meiotic chromosome axis from leptotene to the end of meiosis. In the 294 

asy4 mutant but also in asy3 asy4 and asy1 asy3 asy4, no modification of the silver-295 
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stained axis could be detected (Figure 5), suggesting that even if axis composition 296 

and/or dynamics is affected in asy4, at this level of resolution the overall structure of 297 

the axis appears physically intact. 298 

 299 

ASY4 is an axial-associated protein 300 

 301 

To examine the cellular localisation of ASY4 we used fluorescent protein tagging. An 302 

ASY4-eYFP construct was produced and introduced into homozygous asy4-1 plants, 303 

the most severely affected mutant background. Seed counts were performed on 304 

siliques from T2 generation plants (SupData_7). Fertility levels across the 305 

transformant lines were wide ranging, from those comparable to asy4-1, to a line that 306 

was not significantly different to wild-type (line 165.15, subsequently referred to as 307 

asy4-1::ASY4eYFP; SupData_7). Analysis of DAPI-stained chromosome spreads of 308 

asy4-1::ASY4eYFP male meiocytes from T3 plants at metaphase I revealed a 309 

chiasma frequency of 7.7 ± 1.1 (n=75). This was significantly higher than asy4.1 (5.9 310 

± 1.43 (n= 64); Mann-Whitney U test, p<0.01). However, it was slightly lower than 311 

wild-type (8.6 ± 0.83 (n=28); (Mann-Whitney U test, p<0.01)) (Figure 2, SupData_7). 312 

In addition, occasional seed gaps in its siliques were apparent, suggesting that 313 

fertility was not completely restored (SupData_7). 314 

 315 

Examination of the anthers from asy4-1::ASY4eYFP using epi-fluorescence 316 

microscopy confirmed expression of the tagged gene within male meiocytes 317 

(SupData_7). Localization of ASY4eYFP was then investigated in prophase I 318 

chromosome spread preparations by direct fluorescence combined with immuno-319 

staining of the chromosome axis protein, ASY1 and the SC protein, ZYP1. This 320 

revealed that ASY4 localises as a linear, axis-associated signal at leptotene where it 321 

follows the localisation pattern of ASY1 with alternating regions of high and low 322 

intensity (Figure 6). However, in contrast to ASY1 which becomes depleted from the 323 

axes as zygotene progresses, it persists on synapsed regions of the chromosomes 324 

(Figure 6). In this respect, its behaviour is similar to that of ASY3, REC8 and SCC3. 325 

 326 

Considering the similarity between the ASY3 and ASY4 protein sequences, the axial 327 

association of these two proteins ((Ferdous et al., 2012) and this study), and the 328 

perturbed ASY1 and ASY3 signals observed in asy4, we investigated whether these 329 
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proteins physically interact. Interaction between ASY1 and ASY3 has already been 330 

demonstrated for Brassica oleracea and Arabidopsis proteins either in planta by co-331 

immunoprecipitation of ASY3 from anthers by antibodies directed against ASY1 or in 332 

yeast two hybrid (Y2H) experiments using the A. thaliana proteins (Ferdous et al., 333 
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2012). Here, we used bimolecular fluorescence complementation assays in leaf 334 

epidermal cells of Nicotiana benthamiana plants (BiFC) (Hu et al., 2002). Fusion 335 

proteins with complementary YFP truncations (YFPN + YFPC) were co-infiltrated in N. 336 

benthamiana leaves expressing a CFP nuclear marker. As shown in Figure 7 and 337 
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SupData_8, this assay revealed interactions among the three ASY proteins and also 338 

self-interaction of these three proteins. The YFP signal recovered in these 339 

experiments using ASY3 or ASY4 fusion proteins revealed non-uniform nucleus-340 

targeted signals, suggesting that these proteins when overexpressed in plant cells 341 

form nuclear aggregates. Y2H experiments confirmed ASY3/ASY4 interactions as 342 

well as ASY3/ASY3 and ASY4/ASY4 self-interactions (SupData_9). 343 

  344 
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Discussion 346 

 347 

Identification of a new component of the meiotic chromosome axis 348 

We identified the ASY4 protein that shows sequence similarity with the ASY3 C-349 

terminal region and that is closely related with two of the known plant axial 350 

components, ASY1/PAIR2 and ASY3/PAIR3/DSY2. The three proteins interact 351 

together and ASY4 is required for normal loading and/or stabilisation of ASY1 and 352 

ASY3 onto chromosomes. We also found that an ASY4-eYFP fusion protein is axis-353 

associated, leading us to conclude that ASY4 is a new component of the meiotic 354 

chromosome axis.  355 

The link between ASY3 and ASY4 can be viewed as a parallel with those existing 356 

between the mammalian SYCP2/SCP2 and SYCP3/SCP3: ASY3 and SYCP2/SCP2 357 

are large proteins that show limited sequence similarities with the small coiled-coil 358 

proteins ASY4 and SYCP3/SCP3 respectively (as an example SCP3 shows 19% aa 359 

identity and 47% aa similarity with the last 163 aa of SCP2); ASY3 and ASY4 interact 360 

together (this study) as well as the mammalian SYCP3 and SYCP2 (Yang et al., 361 

2006); all these proteins are axial associated proteins (Offenberg et al., 1998; Schalk 362 

et al., 1998; Yang et al., 2006; Ferdous et al., 2012) (this study). In addition, limited 363 

sequence similarities can be detected between ASY3/SYCP2 and the S. cerevisiae 364 

Red1 axial component (Offenberg et al., 1998; Ferdous et al., 2012). The close 365 

interconnection between these proteins and the HORMA domain-containing proteins 366 

ASY1 in plants (this study and (Wang et al., 2011; Ferdous et al., 2012; Lee et al., 367 

2015)) and HormaD1 and D2 in mammals (Wojtasz et al., 2009) suggests that all 368 

together they form a protein complex crucial for the biogenesis of the meiotic 369 

chromosome axis scaffold. Taken together these data suggest that ASY3/ASY4 are 370 

the functional homologues of the mammalian SYCP2/SYCP3. It is interesting to note 371 

that these proteins of the AE as well as those that form the CE of the SC are very 372 

poorly conserved at the sequence level but all show the same structure and 373 

assembly characteristics (Fraune et al., 2016). This limited sequence conservation 374 

among SC proteins from different species is probably due to rapid sequence 375 

divergence as has been observed for plant and mammalian SC proteins (Ferdous et 376 

al., 2012; Fraune et al., 2016). 377 

 378 

ASY4 is required for normal meiotic recombination 379 
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According to chiasma and MLH1 counting and to genetic measurement of 380 

recombination using FTL lines, CO formation is reduced by a factor of 1.5 in asy4 381 

mutants. This was correlated with a clear decrease in HEI10 and MLH1 foci at late 382 

prophase I and diakinesis, showing that ASY4 is required for normal recombination. It 383 

should be noted that the CO decrease observed in asy4 is lower than the one 384 

associated with disruption of either of the two ASY4 partners, ASY1 and ASY3.  In 385 

terms of chiasma level, the asy1 mutation is the most affected and is epistatic to asy3 386 

and asy4. This suggests that among the three axis components ASY1, ASY3 and 387 

ASY4, the HORMA-domain containing protein ASY1 is a key player, while ASY3 and 388 

ASY4 could be seen as accessory proteins. Nevertheless, we cannot exclude the 389 

possibility that the partially penetrant phenotype of asy4 is due to leaky mutations 390 

since we could detect the transcription of the 5’ end of the gene in both mutants.  391 

Interestingly we observed that the decrease in recombination observed in asy4 392 

mutants is differentially distributed within the genome since we found that one 393 

interval out of four tested (I5b) revealed an increase in CO level (from 16 to 20 cM). 394 

This could be related to the distal location of this interval on chromosome 5 and to 395 

the observation that the vast majority of chiasma are terminally-located in asy3 and 396 

asy1 mutants (Ross et al., 1997; Ferdous et al., 2012). Two other findings of our 397 

study confirm that CO location is modified in asy4. First, despite the average 398 

decrease in MLH1 foci in asy4 mutants, we detected an increased number of MLH1 399 

foci per chromosome arm in comparison to wild type, with up to 6 foci in the same 400 

arm while we have never observed more than 3 per chromosome arm in wild type. 401 

Second, we found an interference ratio greater than 1 for one pair of intervals tested 402 

by FTL (I5a/I5b). This latter result involves the I5b terminally located interval on 403 

chromosome 5, suggesting that the two phenomena may be connected and that, in 404 

asy4, COs are not only decreased but also tend to group in the distal parts of the 405 

chromosomes. In this regard, it is interesting to note that we reported recently that, in 406 

Arabidopsis as in most species, synapsis is preferentially initiated from the distal 407 

parts of the chromosomes (Hurel et al. Plant J. in press).  If this is also the case in 408 

asy4, the limited number of ZYP1-labelled central elements on which recombination 409 

events appear to be restricted (according to HEI10 labelling, Figure 3) are expected 410 

to be predominantly distally located. This could explain why we observed a bias in 411 

location of the COs in asy4. Further studies will be required to confirm these 412 

observations genome-wide and to understand the mechanisms involved. 413 
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According to our study, the decrease in CO formation measured in asy4 is not 414 

correlated with a decrease in the overall number of early initiation events since the 415 

number of DMC1 and MSH5 foci was unchanged in asy4-1 in comparison to wild 416 

type. It is interesting to note that the role in recombination of the three ASY proteins 417 

can be differentiated: ASY1, like ASY4, is not required for normal DSB formation but, 418 

contrary to ASY4, is mandatory for the formation of stable DMC1 nucleofilaments 419 

(Sanchez-Moran et al., 2007) while ASY3 is required at the step of DSB formation 420 

(Ferdous et al., 2012). Chromosome fragmentation was not detected in asy4, 421 

showing that the DMC1-labelled recombination events are eventually repaired, either 422 

using the sister chromatid or the homologous chromosome as a template. Since the 423 

number of MSH5 foci at early/mid prophase I appeared normal in asy4-1, it would 424 

seem likely that recombination proceeds beyond the initial strand invasion stage. 425 

This would imply that CO designation, which occurs in early prophase I (Lambing et 426 

al., 2017), is normal in the mutant but that a proportion of the designated 427 

intermediates fail to mature into COs, consistent with the observed reduction in 428 

MLH1 and HEI10 foci. The defect in SC polymerization observed in asy4 may result 429 

in CO designated recombination intermediates that lie within regions of the homologs 430 

that remain aysynaptic failing to form COs. Establishing the exact relationship 431 

between the loss of ASY4 and the defect in SC formation will be the target of future 432 

investigation.  433 

 434 

 435 

 436 

  437 
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 438 

Materials and Methods 439 

 440 

Plant material and growth conditions 441 

asy4-1 (SK22114, CS1006148) was available in the public databases and was 442 

provided by the NASC (http://arabidopsis.info/) (Scholl et al., 2000). asy4-2 (line 443 

65433) was identified through a PCR-based screen of the Koncz’s collection (Ríos et 444 

al., 2002). Other mutant alleles used in this study are asy1 (SALK_046272, 445 

N546272), asy3 (SALK_143676, N643676), dmc1 (SAIL_170_F08, N871769), mer3 446 

(SALK_091560, N591560), mlh1 (SK25975, N1008089), msh5 (SALK_026553, 447 

N526553), rad51 (GABI_134A01) and zip4 (SALK_068052, N568052). Genotyping 448 

conditions and primer sequences are given in SupData_10 and SupData_11). 449 

 450 

Arabidopsis thaliana and Nicotiana benthamiana plants were grown in the 451 

greenhouse (photoperiod 16 h/day and 8 h/night; temperature 20°C day and night; 452 

humidity 70%; photoperiod 13 h/day and 11 h/night; temperature 25°C day and 17°C 453 

night, respectively). 454 

 455 

Clone construction  456 

ASY4 cDNA was amplified on flower bud cDNA (Col-0) after two rounds of nested 457 

PCR (PCRI: AtASY4RTF and AtASY4RTR, PCRII: AtASY4attB1and AtASY4attB2, 458 

SupData_10) and cloned into pDONR207 (Invitrogen) following the manufacturer’s 459 

instructions. The generated entry vector was sequenced and used to transfer ASY4 460 

cDNA into the yeast two hybrid expression vectors pDEST-GADT7 and pDEST- 461 

GBKT7 (Rossignol et al., 2007). To generate the C-terminus Split-YFP 462 

clones (Azimzadeh et al., 2008), a version of the cDNA without a STOP codon was 463 

amplified beforehand using primers  AtASY4attB1 and AtASY4-attB2wostop 464 

(SupData_10). Similar approaches were undertaken for ASY1 and ASY3 cDNAs 465 

except that using primers AtASY1-attB1, AtASY3-attB1, AtASY3-attB2, AtASY3-466 

attB2wostop, and AtASY1-attB2 (SupData_10). 467 

 468 

Yeast two hybrid 469 

Yeast two hybrid assays were carried out using the GAL4-based system (Clontech). 470 

SV40 Antigen T (AgT) and p53 protein were used as positive controls. Yeast 471 
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plasmids were introduced in AH109 or Y187 strains by lithium acetate transformation 472 

following the protocol in the MATCHMAKER GAL4 Two hybrid System 3 manual 473 

(Clontech). After mating in appropriate pairwise combinations, the resulting diploids 474 

cells were selected on SD medium lacking a combination of amino acids, driven by 475 

the auxotrophy genes carried by the cloning vectors. Protein interactions were 476 

assayed by growing diploid cells on SD-LWH, and SD-LWHA. 477 

 478 

Bimolecular fluorescence complementation  479 

Protein interactions were tested in planta using bimolecular fluorescence 480 

complementation (BiFC) assays (Hu et al., 2002) in leaf epidermal cells of N. 481 

benthamiana plants expressing a nuclear cyan fluorescent protein (CFP fused to 482 

histone 2B) (Martin et al., 2009). For each protein, four expression vectors were 483 

produced, generating inactive N- or C-termini of the YFP (YFPN, YFPC) fused with the 484 

target sequence in N- or C-termini. Combinations bringing together the two YFP 485 

complementary regions (YFPN + YFPC) were co-infiltrated in N. benthamiana leaves 486 

as described in (Azimzadeh et al., 2008; Vrielynck et al., 2016). 487 

 488 

Bioinformatics 489 

PSI BLAST on nr database using ASY3 as a query picked up at the first round of 490 

iteration At2g33793 with its C terminal region (aa 636-777, where coiled coils lie (aa 491 

625-785, according to (Ferdous et al., 2012)). BLASTP and TBLASTN on plant 492 

sequenced genomes present in phytozome 12 database (Blosum45) were done to 493 

identify for homologues. 494 

 495 

Recombination measurement 496 

We used the fluorescent-tagged lines (FTLs) described in (Berchowitz and 497 

Copenhaver, 2008) to estimate recombination rates in four different genomic 498 

intervals (I5a, I5b, I5c and I5d). We generated plants that were homozygous for the 499 

qrt mutation, heterozygous for pairs of linked fluorescent markers RY/++ (I5a and 500 

i5d) or YC/++ (I5b and I5c) (R red, Y yellow, C Cyan) and either wild type or 501 

homozygous for the asy4-1 mutation. Tetrad analyses were carried out as described 502 

in (Berchowitz and Copenhaver, 2008) on tetrads where each fluorescent marker 503 

segregated correctly. 504 

 505 
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Fluorescent protein tagging 506 

The ASY4 genomic locus, comprising 1835 base pairs upstream of the start codon to 507 

502 base pairs downstream of the stop codon and including all introns and UTRs, 508 

was amplified with the primers At2g33793-P9 and At2g33793-P10 (SupData_10). 509 

The eYFP sequence was inserted in frame at amino-acid position 202, downstream 510 

of the predicted coiled-coil region and close to the C-terminus. The construct was 511 

inserted into p35-Nos-BM cloning vector using Sfi I sites incorporated into the 512 

primers. The resulting expression cassette was subcloned via Sfi I into pLH9000 513 

binary vector and used for Agrobacterium-mediated transformation of plants using 514 

floral dip. Transformants were selected on kanamycin (50 µg/ml) Murashige and 515 

Skoog media (Murashige and Skoog, 1962).  516 

 517 

Cytological procedures  518 

Meiotic chromosome spreads were DAPI stained as described previously in (Ross et 519 

al., 1996) or silver nitrate stained as described in (Armstrong et al., 2001). 520 

Immunostaining of male meiotic spreads was carried out as in (Armstrong and 521 

Osman, 2013; Chelysheva et al., 2013). Antibodies used for immunolocalisation were 522 

anti-ASY1 (rat, 1 in 1000 dilution) (Armstrong et al, 2002), anti-AtZYP1 (rabbit, N-523 

terminus Ab aa residues 1-415, 1 in 500 dilution) (Higgins et al., 2005), anti-ASY3 524 

(rabbit, 1 in 250 dilution) (Ferdous et al., 2012), anti-REC8 (rat, 1 in 250 dilution) 525 

(Cromer et al., 2013), anti-DMC1 (rat, 1 in 20 dilution) (Vignard et al., 2007), anti-526 

MSH5 (rabbit, 1 in 200 dilution) (Higgins et al., 2008), anti-MLH1 (rabbit, 1 in 200 527 

dilution) (Chelysheva et al., 2013) and anti-HEI10 (rabbit, 1 in 250 dilution) 528 

(Chelysheva et al., 2012). 529 

 530 

Image analysis 531 

asy4-1::ASY4eYFP zygotene male meiocyte nucleus image was captured with Nikon 532 

90i, 100x objective as a Z-stack. The green channel (eYFP) was processed as an 533 

average intensity projection using Fiji, due to more rapid bleaching of eYFP relative 534 

to the red (Texas red-ASY1) and blue (Alexa350-ZYP1) channels, which were 535 

processed as maximum intensity projections. Col-0 was imaged using the same 536 

exposure times and processed in the same way. MSH5 foci were scored using Z-537 

stack images and ‘Mexican Hat’ deconvolution as described in (Ferdous et al., 2012).   538 

 539 
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Tables 572 

 573 

Table 1: 574 

 575 

 interval Nb of tetrads d (cM) 
d ratio 

(asy4/wt) 
NPD ratio IR 

wt 

i5a 10,303 27 - 0.3** 
0.4** 

i5b 10,303 16.1 - 0.2** 

i5c 14,590 7.7 - 0.3** 
0.3** 

i5d 14,590 7.4 - 0.3** 

asy4-1 

i5a 7,462 15.5 0.6 0.9 
1.2** 

i5b 7,462 20 1.2 0.6** 

i5c 13,753 6.8 0.9 0.4** 
0.7** 

i5d 13,753 5.6 0.8 0.5* 

 576 

 577 

 578 

  579 
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Figure Legends: 580 

 581 

Figure 1: Schematic representation of ASY4 protein and gene. 582 

A. The ASY4 protein shows similarities with ASY3 C-terminal region (dashed lines). 583 

Predicted coiled-coils of both proteins are indicated by grey boxes.  584 

B. ASY4 open reading frame and position of the T-DNA insertion in asy4-1 and asy4-585 

2 mutants. Exons are shown as grey boxes.  586 

 587 

Figure 2: ASY4 is required for normal meiosis. 588 

(A-J) DAPI staining of meiotic chromosomes in wild type (A,C,E,G,I) and asy4-1 589 

(B,D,F,H,J). (A,B) Leptotene; (C) Pachytene; (D) Partial synapsis typical of the 590 

defects of synapsis observed in asy4 mutants; (E,F) Diakinesis; (G,H) Metaphase I; 591 

(I,J) End of Anaphase II. u: univalent; *rod bivalent. Scale bars = 5 μm 592 

(K) Quantification of the number of chiasma that can be identified at metaphase I 593 

(minimum chiasma number, MCN) in both asy4 mutants as well as in a series of 594 

mutants and multi-mutants. Numbers give the average MCN per cell. The detailed 595 

data set can be found in SupData_4. 596 

 597 

Figure 3: asy4 mutant is defective in recombination, axis biogenesis and 598 

synapsis.  599 

A-B: Dual ASY1 and MSH5 immuno-detection. ASY1(green), MSH5 (red), DAPI 600 

(blue). Images are a single frame from mid Z-stack. Scale bars = 2 μm 601 

C-D: Dual ZYP1 and HEI10 immuno-detection together with DAPI (Blue) on male 602 

meiocytes at comparable stage. Scale bars = 2 μm 603 

E-H: Dual ASY1 (green) and ZYP1 immuno-detection (red). Arrows indicate 604 

synapsed regions where ASY1 is depleted in wild type but not in asy4-1. Scale bars 605 

= 2 μm 606 

 607 

Figure 4: MLH1 detection and quantification. 608 

(A) MLH1 was immunolocalised (green) on diakinesis chromosomes from wild-type 609 

(wt) or asy4-1 (asy4) mutant. Chromosomes were stained by DAPI (red). Scale bars 610 

= 5 μm  611 

(B) Average number of MLH1 foci per cell (black) or per bivalent arm (green). 612 
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 613 

 614 

Figure 5: Chromosome axis investigation 615 

(A-D) Dual ASY3 (green) and REC8 (orange) immunolocalisation on wild-type (A,B) 616 

or asy4-1 mutant (asy4) (C,D) male meiocytes. (E,F) Silver staining of wild-type (wt) 617 

and triple asy1asy3asy4 mutant male meiocytes. Scale bars = 2 μm 618 

 619 

Figure 6: Localization of ASY4eYFP in prophase I chromosome spreads of asy4-620 

1::ASY4eYFP. (A) Wild-type (Col 0) zygotene showing absence of eYFP 621 

fluorescence. (B) asy4-1::ASY4eYFP leptotene and (C) asy4-1::ASY4eYFP 622 

zygotene. (D) Detail shows the ASY4eYFP fluorescence present on the axis in 623 

regions of intense ASY1 staining (unsynapsed) and ZYP1 staining (synapsed). Note 624 

reduction in intensity of ASY1 signal in synapsed regions (white arrows). (E) 625 

ASY4eYFP fluorescence is not uniform and alternates between regions of high 626 

(arrowed) and low intensity. ZYP1 (blue), and ASY1 (red) immunostaining with 627 

ASY4-eYFP fluorescence (green). Scale bars = 5µm 628 

 629 

 630 

Figure 7: Split-YFP assays in N. benthamiana epidermal cells. 631 

N. benthamiana epidermal cells were co-infiltrated with Agrobacterium cultures 632 

expressing two complementary YFP fusions (N or C-terminal truncations, YFPN or 633 

YFPC). Nuclei are identified thanks to a constitutively-expressed fluorescent nuclear 634 

protein (H2B-CFP, here shown in red). Interaction between the two tested proteins 635 

revealed a YFP signal (green). For each interaction tested, a negative control 636 

corresponding to the co-infiltration of one of the fusion protein of interest with the 637 

complementary YFP moiety fused with an unrelated protein (Anthirrinum majus 638 

MADS box transcription factors DEFICIENS -DEF- or GLOBOSA –GLO-). The 639 

complete set of split-YFP data can be found in SupData_8. Scale bars = 25 µm 640 

  641 
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