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CHARACTERIZATIONS OF A LIMITING CLASS B∞ OF
BÉKOLLÉ-BONAMI WEIGHTS

ALEXANDRU ALEMAN, SANDRA POTT, AND MARIA CARMEN REGUERA

Abstract. We explore properties of the class of Békollé-Bonami weights B∞ introduced
by the authors in a previous work. Although Békollé-Bonami weights are known to be ill-
behaved because they do not satisfy a reverse Hölder property, we prove than when restricting
to a class of weights that are “nearly constant on top halves”, one recovers some of the
classical properties of Muckenhoupt weights. We also provide an application of this result
to the study of the spectra of certain integral operators.

1. Introduction

Let w be a weight on the unit disk D, that is, a positive measurable function on D.
Following Békollé and Bonami [6], we say that w belongs to the class Bp for 1 < p < ∞, or
equivalently satisfies the Bp condition, if and only if

(1.1) Bp(w) := sup
I interval
I⊂T

(
1

|QI |

∫
QI

wdA

)(
1

|QI |

∫
QI

w1−p′dA

)p−1
<∞.

Here dA is the normalized area measure on D, and QI denotes the Carleson box associated
to the interval (arc) I on the unit circle T, i.e.

(1.2) QI = {z = reiα : 1− |I| < r < 1, |θ − α| < |I|/2 },

where eiθ is the center of I and |I| denotes its length. In this paper we introduce some key
properties of the limiting class B∞ of Békollé-Bonami weights, previously introduced by the
authors in [4]. Békollé-Bonami weights fail to satisfy a reverse Hölder property, which has
prevented the development of a proper theory for the limiting class. On the other hand, a
notion of B∞ appears naturally when looking at sharp estimates for the Bergman projection,
as the authors discovered in [4]. In this paper we complete the picture of the B∞ theory
when restricting attention to a very natural class of weights.

2010 Mathematics Subject Classification. Primary: 30H20, 42C40, Secondary: 42A61, 42A50, 47B38.
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2 A. ALEMAN, S. POTT, AND M.C. REGUERA

Definition 1.3. We say that a weight w belongs to the class B∞, if and only if

(1.4) B∞(w) := sup
I interval
I⊂T

1

w(QI)

∫
QI

M(w1QI ) <∞,

where M stands for the Hardy-Littlewood maximal function over Carleson cubes and QI

denotes the Carleson cube associated to the interval I ⊂ T as defined in (1.2).

This definition of B∞ appears in earlier work of the authors on sharp estimates for the
Bergman projection [4] and is motivated by a version of the Muckenhoupt condition A∞
introduced by Fujii [11] and also studied by Wilson in [18–20]. This A∞ definition appears in
the recent works of Lerner [16], Hytönen and Pérez [15] and Hytönen and Lacey [14] among
others, where it is used to find sharp estimates in terms of the Muckenhoupt Ap and A∞
constants. Moreover, B∞ is a very natural class to provide sufficient conditions for two-
weighted estimates for the Bergman projection in terms of the joint B2 condition, as one can
see from inspecting the work of the authors in [4].

It is easy to see that in general weights in the B∞ and Bp classes do not have the reverse
Hölder property, as an arbitrarily small subset E of a Carleson cube QI can carry the entire
weight. In this paper we restrict to a class of weights which are more tractable from this point
of view. These are weights which are almost constant on ρ-tops of Carleson boxes defined
below.

Definition 1.5. Let I be an interval on T, and 0 < ρ < 1. The ρ-top of QI is the set

TI,ρ := {z = reiα : 1− |I| < r < 1− (1− ρ)|I|, |θ − α| < |I|/2 }.}.
In the special case in which ρ = 1/2, we will call TI,1/2 the top half of QI and we will denote
it by TI .

In what follows we shall consider strictly positive weights w such that there exists 0 < ρ < 1,
and a constant Cρ such that for every interval I on the boundary of D we have

(1.6) C−1ρ w(ξ) ≤ w(z) ≤ Cρw(ξ) for all z, ξ ∈ TI,ρ,

An equivalent formulation of this condition is that the weight w is almost constant (in the
sense of (1.6)) on balls of fixed radius in the Bergman metric on D (see [13], p. 16).

It is important to note that this regularity condition is independent of the ρ, or the radius
of the Bergman balls above. Indeed, if w satisfies (1.6) for some ρ0, then it will satisfy this
condition for all ρ ∈ (0, 1). This follows easily from the fact that if 1 > ρ > ρ0, then TI,ρ is
contained in a finite union of ρ0-tops

N⋃
k=1

TJk,ρ0 ,

where Jk ⊂ I, Jk ∩ Jk+1 6= ∅, and N is independent of I. This yields for z, ξ ∈ TI,ρ
C−Nρ w(ξ) ≤ w(z) ≤ CN

ρ w(ξ).
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Therefore, in what follows we shall refer to weights satisfying (1.6) without specifying
the value of ρ. It turns out that for such weights the class B∞ is very natural and enjoys
similar properties as the analogous Muckenhoupt A∞ class. These properties are collected
in the following theorem. For a countable union of disjoint intervals E = ∪iIi ⊂ T, we write
QE = ∪iQIi .

Theorem 1.7. Let w be a weight satisfying (1.6). Then the following are equivalent:

(1) w ∈ B∞;
(2) There exists a constant C > 0 such that∫

QI

w(x) log

(
e+

w(x)|QI |
w(QI)

)
dx ≤ Cw(QI)

for all Carleson cubes QI ;
(3) For each 0 < ε < 1, there exists δ > 0 such that for any interval I ⊂ T and any

countable union of disjoint intervals E ⊂ I with |QE|/|QI | < δ, w(QE) < εw(QI);
(3′) For each 0 < ε < 1, there exists δ > 0 such that for any interval I ⊂ T and any

measurable subset Ω ⊂ QI with |Ω|/|QI | < δ, w(Ω) < εw(QI);
(4) w has the reverse Hölder property on Carleson cubes. That means, there exists r > 1

and C > 0 such that (
1

|QI |

∫
QI

wr
)1/r

≤ C
1

|QI |

∫
QI

w

for all Carleson cubes QI ;
(5) There exists p > 1 such that w ∈ Bp;
(6) There exists C > 0 such that(

1

|QI |

∫
QI

w(z)dA

)
exp

(
1

|QI |

∫
QI

log(w−1)(z)dA(z)

)
≤ C.

Here, in (2) we can choose C as C ′B∞(w), where C ′ is an absolute numerical constant. More-
over, (2), (3), (3′), and (4) are even equivalent for general weights which do not necessarily
satisfy (1.6).

The proof of this theorem presents several difficulties. One is the lack of control of the
weight by the maximal function of the weight, due to the geometric arrangement of Carleson
boxes. This is a major obstruction to obtain a reverse Hölder property. But even if we had
this control, B∞ weights lack a strong doubling property, characteristic of Bp weights. We
overcome these obstacles by using weights that are nearly constant on ρ-top halves.

Previous to this paper is the work of A. Borichev [7]. Although not properly working on
the limiting B∞ case, he considers self-improvement of the Békollé-Bonami Bp class to a Bp−ε
class. He obtains such an improvement when working with weights that are exponentials of
subharmonic functions. Subsequently also weights that are constant on top halves appear in
his argument. This self-improving property is classically associated with the reverse Hölder
property and it is well-known for Muckenhoupt weights. Another paper which is close to the
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topic of this paper is the work of Duoandikoetxea et. al. [10], where properties of the A∞
class associated to general bases, for instance Carleson boxes or rectangles, are studied. Many
of the implications that we prove in our paper for weights that are constant on top-halves
have counterexamples in the general case of their paper.

This paper is organized as follows. In Section 2 we list some properties of the weights
satisfying (1.6), and then proceed to state precisely some of the definitions and describe
some of the preliminaries needed for the proof of the main theorem. Section 3 contains the
proof of the main theorem. In Section 4 we present an interesting characterization of the B∞
class with corresponding applications in the study of the spectra of certain integral operators.
These act on the weighted Bergman spaces Lpa(w) = Lp(w) ∩ Hol(D), where w ∈ B∞ and
satisfies (1.6), and are defined for a fixed Bloch function g on D by

Tgf(z) =

∫ z

0

f(ζ)g′(ζ)dζ, f ∈ L2
a(w).

The results in Section 4 show that a point λ ∈ C belongs to the resolvent set of Tg if and
only if the weight w exp(pRe g

λ
) belongs to B∞. For Hardy spaces a similar result holds using

A∞ instead (see [3]).

2. Preliminaries

We begin with some remarks about the class of weights considered in this paper.

Proposition 2.1. (a) A differentiable strictly positive weight w on D satisfies (1.6) if there
exists Cw > 0 such that

(1− |z|2)|∇w(z)| ≤ Cww(z), z ∈ D.

(b) If w satisfies (1.6), then there exists a differentiable weight w̃ which satisfies (1.6) and

K−1w w(z) ≤ w̃(z) ≤ Kww(z)

for some fixed constant Kw > 0 and all z ∈ D.
(c) If w satisfies (1.6), then there exist constants aw, bw > 0 such that

a−1w (1− |z|2)bw ≤ w(z) ≤ aw(1− |z|2)−bw , z ∈ D.

Proof. (a) follows immediately from the inequality

| logw(z)− logw(ξ)| ≤ |z − ξ| sup
ζ∈TI,ρ

|∇w(ζ)|
w(ζ)

, z, ξ ∈ TI,ρ.

(b) If u is a smooth positive function supported on {|z| < 1
2
}, with∫

C
udA = 1,



THE CLASS B∞ 5

the weight

w̃(z) = (1− |z|)−2
∫
C
u

(
z − ξ

1− |z|

)
w(ξ)dA(ξ)

is differentiable and satisfies

inf

{
w(ξ) :

|z − ξ|
1− |z|

<
1

2

}
≤ w̃(z) ≤ sup

{
w(ξ) :

|z − ξ|
1− |z|

<
1

2

}
,

which easily implies the inequalities in (b).
Moreover, a direct estimate gives

|∇w̃(z)| . (1− |z|)−1w̃(z) + (1− |z|)−3
∫
C
|∇u|

(
z − ξ

1− |z|

)
w(ξ)dA(ξ)

. (1− |z|)−1w̃(z) + (1− |z|)−1w(z)

∫
C
|∇u|dA.

Together with the inequalities in (b) it follows that w̃ satisfies (a), hence it satisfies (1.6).
(c) For differentiable weights w satisfying (1.6) we can integrate on rays from the origin to
obtain ∣∣∣∣log

w(z)

w(0)

∣∣∣∣ ≤ ∫ |z|
0

|∇w|(tz)dt,

and the assertion follows by a direct calculation. The general case follows by (b). �

Recall the definition of a Carleson box given in (1.2).
Throughout the paper, given an interval I ⊂ T, we will denote by D(I) the set of dyadic
descendants of I. The first descendants of I will be the two disjoint intervals of size 2−1|I|,
each of which contains exactly one end point of I. The remaining descendants will be defined
recursively. Given a set E ⊂ D, and a non-negative integrable function f , we write f(E) :=∫
E
fdA(x). We will need the following basic lemmas:

Lemma 2.2. Let w ∈ B∞ with constant B∞(w). Then there exists ρ > 0, depending only
on B∞(w), such that for every I interval in T, the ρ-top of QI , TI,ρ, satisfies w(TI,ρ) ≥

1
B∞(w)

w(QI).

Proof. We prove this by a corona decomposition and introduce some notation for the proof.
For fixed I, letG0 := TI , and more generallyGi := ∪J∈D(I) dyadic

|J |/|I|=2−i
TJ . Notice thatQI = ∪i≥0Gi.

The definition of the class B∞ implies

(2.3)
∑
i≥0

iw(Gi) ≤ B∞(w)
∑
i≥0

w(Gi).

Let us fix i0 minimal such that i0 ≥ B∞(w). Using (2.3) we have∑
i≥0

w(Gi) ≤
i0∑
i=0

iw(Gi) +
∑
i>i0

(i−B∞(w))w(Gi) ≤ B∞(w)
∑
i≤i0

w(Gi).
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Now there exists 0 < ρ < 1 depending on B∞(w) but not on I such that ∪i0i=0Gi ⊂ TI,ρ and
hence w(TI,ρ) ≥

∑
i≤i0 w(Gi) ≥ 1

B∞(w)
w(QI) as desired. �

We will now construct a further corona decomposition, which will be crucial for the proof
of Theorem 1.7. Given an interval I ⊂ T, a weight w and R > 4, we define a collection of
cubes L (which depends on the choice of the initial I, w and R) as follows:

(1) Firstly, we define the stopping children of a given interval I, L(I):

L(I) :=

{
maximal intervals L ∈ D(I) such that

w(QL)

|QL|
> R

w(QI)

|QI |

}
(2) Iterating this stopping procedure we construct collections of intervals L1 := L(I) and

in general for j ≥ 2, Lj := ∪L∈Lj−1
L(L). We write L := ∪j≥1Lj.

A couple of remarks are in order. First, from the stopping procedure we obtain that for
any L ∈ Lj ,

(2.4)
∑

L′∈Lj+1

L′⊂L

|QL′ | < R−1|QL|
1

w(QL)

∑
L′∈Lj+1

L′⊂L

w(QL′) ≤ R−1|QL|.

Second, by maximality one obtains

(2.5) Rjw(QI)

|QI |
<
w(QL)

|QL|
≤ (4R)j

w(QI)

|QI |
for all L ∈ Lj, j ∈ N. Finally, let us consider the dyadic maximal function on Carleson cubes
associated to a dyadic grid D, Md, where for x ∈ D

Md(f)(x) := sup
x∈QJ
J∈D

1

|QJ |

∫
QJ

f(y)dA(y).

We will usually choose D = D(I) for some fixed subinterval I ⊆ T. Then it follows immedi-
ately from (2.5) that

(2.6) Md(1QIw) .

1 +
∑
j

∑
L∈Lj

(4R)j1QL

 w(QI)

|QI |
.

The following observation is crucial in the proof of the main theorem.

Remark 2.7. Let z ∈ QI for some I ⊂ T, then there exists J ∈ D(I) such that z ∈ TJ , where
we use the notation from Def. 1.5. Using (1.6), we have

w(z) .
w(TJ)

|TJ |
.
w(QJ)

|QJ |
,

and we conclude that

(2.8) w(z) .Md(w)(z),

with constants only depending on the constant C1/2 in (1.6).
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3. Proof of Theorem 1.7

Proof. We first notice that the equivalence of (1) and (2) is not true for general Muckenhoupt
bases, see Counterexample 4 in [10]. One of the directions always holds, namely (2) ⇒ (1).
Since Carleson cubes form a Muckenhoupt basis, the proof of this implication can be found in
[10]. We prove the opposite implication, where the use of weights satisfying (1.6) is crucial.

Let QI be a Carleson cube. Without loss of generality, we can assume that w(QI)
|QI |

= 1. We

consider the dyadic grid associated to I, D(I), the maximal function Md, and the corona
decomposition L of D(I) with R > 4 as described in section 2. We write L0 for the collection
{QI}. If L ∈ Lj and x ∈ QL \ ∪L′∈Lj−1

L′⊂L
QL′ , then

Mdw(x) ≈ w(QL)

|QL|
≈ 2j

w(QI)

|QI |
= 2j

and

log (e+Mdw(x)) ≈ j + 1.

Using (1) and the estimates above, we conclude

B∞(w)w(QI) ≥
∫
QI

M(w1QI )(x)dA(x) ≥
∫
QI

Md(w1QI )(x)dA(x)

&
∫
QI

∑
j≥0

∑
L∈Lj

w(QL)

|QL|
1QLdA(x)

=

∫
QI

w(x)
∑
j≥0

∑
L∈Lj

1QLdA(x)

=

∫
QI

w(x)

∑
j≥1

j
∑
L∈Lj

1QL\∪L′∈Lj+1

L′⊂L
QL′

+ 1

 dA(x)

≈
∫
QI

w(x) log (e+Mdw(x)) dA(x)

&
∫
QI

w(x) log (e+ w(x)) dA(x),

where we have used that w satisfies (1.6) and (2.8) in the last inequality. This proves the
implication (1) ⇒ (2). The implications (2) ⇒ (3′) and (3′) ⇒ (1) correspond to Theorem
4.1 and 6.1 in [10] and we will not include them here.

To prove the equivalence of (4), (3′) and (3), first note that clearly (4) ⇒ (3′) ⇒ (3) and
(4) ⇒ (2) by Hölder’s inequality. The proof of the reverse implication (3) ⇒ (4) runs along
the lines of Theorem 3.3 in Wilson [20], page 46. Let us fix a Carleson cube QI . Choose
δ > 0 from (3) for ε = 1/5r. Now consider the corona decomposition L with R = 1

δ
as defined

in Section 2. For this choice of R, (2.4) gives
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∑
L′∈Lj+1

L′⊂L

|QL′| ≤ δ|QL|,

and thus by the definition of δ together with (3)∑
L′∈Lj+1

w(QL′) ≤
1

5r

∑
L∈Lj

w(QL) ≤ 1

5r(j+1)
w(QI),

where the second inequality is obtained by iterating the argument. Using (2.6), we thus
estimate

1

|QI |

∫
QI

wr .
1

|QI |

∫
QI

(Md(1QIw))r .
w(QI)

r

|QI |1+r

∫
QI

(1 +
∑
k≥1

∑
L∈Lk(QI)

(4R)k1QL)r

≈ w(QI)
r

|QI |1+r

∫
QI

1 +
∑
k≥1

∑
L∈Lk(QI)

(4R)rk1QL


=

(
w(QI)

|QI |

)r
+
w(QI)

r

|QI |1+r
∑
k≥1

(4R)rk
∑

L∈Lk(QI)

|QL|

≤
(
w(QI)

|QI |

)r
+
w(QI)

r−1

|QI |r
∑
k≥1

4rkR(r−1)k
∑

L∈Lk(QI)

w(QL)

≤
(
w(QI)

|QI |

)r
+
w(QI)

r

|QI |r
∑
k≥1

1

5rk
4rkR(r−1)k

≤
(
w(QI)

|QI |

)r
(1 +

∑
k≥1

1

5rk
(4rR(r−1))k ≤ Cr

r

(
w(QI)

|QI |

)r
,

provided r is chosen such that 4rR1−r

5r
< 1.

This finishes the proof of the equivalence of (2), (3), (3′), and (4) for general weights.
We now prove (3)⇒ (5). First, we have to prove that (3) implies a doubling condition on

the weight. The proof is similar to the classical proof in the case of Muckenhoupt weights,
but we have to take some care to adapt it to our setting.

Definition 3.1. We say that the weight w is doubling, if there exists a constant C > 0 such
that

w(Q2I) ≤ Cw(QI).

In particular, this implies that w(QI) ≤ C2w(QI′), whenever I ′ is one of the two first dyadic
descendants of I.

Coming back to our proof, in order to show that a weight w satisfying (3) is indeed doubling,
choose δ < 1 corresponding to ε = 1/2 in (3) and choose ρ such that 1 > ρ ≥ max{1−δ, 3/4},
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and such that 1/4 is an integer multiple of 1− ρ. Let T2I,ρ be as in Definition 1.5, and let Cρ
be the constant in (1.6). Then

w(T2I,ρ) ≤ C2
ρw(T2I,ρ ∩QI)

|T2I,ρ|
|T2I,ρ ∩QI |

≤ 6C2
ρw(QI).

Now let us consider the remainder Q2I\(QI ∪ T2I,ρ). For any union E of countably many
disjoint intervals of length less than 2(1− ρ)|I| contained in 2I\I, we have

|QE| < 2|I|(1− ρ)|I| < δ|Q2I |
and therefore by (3)

w(QE) <
1

2
w(Q2I).

Taking the supremum of such unions E and using the fact that 1/2|I| is an integer multiple
of 2(1− ρ)|I|, we obtain

w(Q2I\(QI ∪ T2I,ρ)) ≤
1

2
w(Q2I)

and therefore

(3.2) w(Q2I) ≤ 2w(QI ∪ T2I,ρ) ≤ (6C2
ρ + 1)w(QI).

Hence w is doubling. Consequently, there exists a constant C > 0 such that

(3.3) w(QI) ≤ CNw(QI(N)) for any dyadic N -th descendant I(N) of I.

We use this fact to state the following lemma.

Lemma 3.4. Let w be a doubling weight. Then for any 1 > η > 0, there exist 1 > τ > 0
such that for any interval I ⊆ T and any set E that is a countable union of disjoint intervals
in D(I) such that w(QE) < τw(QI), one has |QE| < η|QI |.

Proof. Let C be the dyadic doubling constant of w as in (3.3). Let us fix 0 < η < 1, then
there exists a natural number N such that 2−2(N+1) < η ≤ 2−2N . Consider τ < 1

CN
, let I be

an interval and E a countable union of intervals contained in I with w(QE) < τw(QI). By the
doubling property, QE cannot contain the Carleson box associated to any N -th descendant
of I. Thus |QE| ≤ 2−2(N+1)|QI | < η|QI |, concluding our proof. �

Using (1.6) and Lemma 2.2, we have that if z ∈ Tρ,I for some interval I,

(3.5) w(z) ≈ w(Tρ,I)

|Tρ,I |
&
w(QI)

|QI |
,

with constants only depending on Cρ and B∞(w).
We will also need the following stopping decomposition. Let A be a constant so that A > 1

τ
,

where τ is as in the Lemma 3.4. Given a Carleson box Q0, we define

L(Q0) :=

{
maximal dyadic Carleson boxes QI ⊂ Q0 :

w(QI)

|QI |
< A−1

w(Q0)

|Q0|

}
.
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Then ∑
QI∈L(Q0)

w(QI) ≤ A−1w(Q0) < τw(Q0),

and by Lemma 3.4, ∑
QI∈L(Q0)

|QI | ≤ η|Q0|.

We define L1 := L(Q0) and more generally, Lk := ∪QI∈Lk−1
L(QI) for k > 1. We also define

L = ∪k≥1Lk. Given QL ∈ L, we define D(QL) as the set of dyadic Carleson boxes that have
QL as their stopping father. We have the following properties:

For k ≥ 1, QI ∈ Lk and QJ ∈ D(QI),

(3.6)
w(QJ)

|QJ |
< A−1

w(QI)

|QI |
,

and

w(QJ)

|QJ |
>
C

4
A−1

w(QI)

|QI |
,

where C is the dyadic doubling constant.
Hence by iteration

(3.7)
w(QI)

|QI |
< A−k

w(Q0)

|Q0|
,

(3.8)
w(QI)

|QI |
>

(
C

4

)−k
A−k

w(Q0)

|Q0|
,

and

(3.9)
∑
QI∈Lk

|QI | ≤ ηk|Q0|.

We have now all the ingredients to complete the proof:

1

|Q0|

∫
Q0

w(z)−εdA(z) =
1

|Q0|
∑
QL∈L

∑
QI∈D(QL)

∫
TI

w(z)−εdA(z)

≤ 1

|Q0|
∑
QL∈L

∑
QI∈D(QL)

∫
Tρ,I

w(z)−εdA(z)

≈ 1

|Q0|
∑
QL∈L

∑
QI∈D(QL)

(
w(Tρ,I)

|Tρ,I |

)−ε
|TI |

≤ C(A, ε, B∞(w))
1

|Q0|
∑
QL∈L

(
w(QL)

|QL|

)−ε
|QL|
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≤ C(A, ε, B∞(w))
1

|Q0|

(
w(Q0)

|Q0|

)−ε∑
k

(
4

C

)εk
Aεk

∑
L∈Lk

|QL|

≤ C(A, ε, B∞(w))

(
w(Q0)

|Q0|

)−ε∑
k

(
4

C

)εk
Aεkηk

≤ C̃(A, ε, B∞(w))

(
w(Q0)

|Q0|

)−ε
,

where the geometric series in the penultimate line converges when choosing ε sufficiently
small. This concludes the proof of (3)⇒ (5).

For the proof of (5)⇒ (1), let w ∈ Bp and recall that Bp(w) = Bp′(w
′), where w′ = w1−p′ .

Hence ∫
QI

M(1QIw) ≤
(∫

QI

M(1QIw)p
′
w′
)1/p′ (∫

QI

w

) 1
p

≤ ‖M(w·)‖Lp′ (w)→Lp′ (w′)w(QI)
1/p′w(QI)

1/p

= ‖M‖Lp′ (w′)→Lp′ (w′)w(QI) ≤ Bp(w)
1

p′−1w(QI),

where we have used the estimate (4.7) from [17] for the maximal function in the last line.
The implication (5)⇒ (6) is a consequence of the fact that if w ∈ Bp, then also w ∈ Bq for

any q > p, and the limit of the Bp(w) as p → ∞ is precisely the expression in (6). Finally,
the proof of (6) ⇒ (1) can be found in [10], as Carleson boxes form a Muckenhoupt bases,
and the maximal function associated to it satisfies Lp bounds. Note that we have used the
property (1.6) only in the implications (1)⇒ (2) and (3)⇒ (5).

�

4. Further characterizations and applications

We relate B∞ to the more general classes Bp(η) defined as follows. A measurable positive
function w, belongs to the class Bp(η) for 1 < p <∞, η > −1, if and only if

(4.1) Bp(w, η) := sup
I interval
I⊂T

(
1

Aη(QI)

∫
QI

wdAη

)(
1

Aη(QI)

∫
QI

w1−p′dAη

)p−1
<∞,

where dAη = (1− |z|2)ηdA. It is a result of Bekollé [5] that

w(z)

(1− |z|2)η
∈ Bp(η) if and only if Pη : Lp(w) 7→ Lpa(w),

where Pη is defined as

Pηf(z) =

∫
D

f(ξ)

(1− ξ̄z)η+2
(1 + η)(1− |ξ|2)ηdA(ξ).
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The result in [5] is actually stronger. If w
(1−|z|2)η ∈ Bp(η), then also the maximal version of

Pη,

(4.2) P+
η f(z) =

∫
D

f(ξ)

|1− ξ̄z|η+2
(1 + η)(1− |ξ|2)ηdA(ξ),

defines a bounded operator from Lp(w) into itself.
Clearly, if w

(1−|z|2)η ∈ Bp(η), p > 1, η > −1 then w
(1−|z|2)δ ∈ Bq(δ), whenever q ≥ p, δ ≥ η.

In the opposite direction, we have the following result.

Lemma 4.3. Let 1 < p <∞ and η > δ > −1. If w
(1−|z|2)η ∈ Bp(η) then there exists q ∈ (1,∞)

such that w
(1−|z|2)δ ∈ Bq(δ).

Proof. By Hölder’s inequality we have for q ∈ (p,∞)∫
QI

w1−q′(1−|z|2)δq′dA ≤
(∫

QI

w1−p′(1− |z|2)ηp′dA
) p−1

q−1
(∫

QI

(1− |z|2)−ηp
′ q′−1
p′−q′+δq

′ p′−1
p′−q′ dA

) p′−q′
p′−1

.

If q is sufficiently large, then(∫
QI

(1− |z|2)−ηp
′ q′−1
p′−q′+δq

′ p′−1
p′−q′ dA

) p′−q′
p′−1

. |I|−ηp
′ q′−1
p′−1

+δq′+2 p
′−q′
p′−1 ,

and a direct calculation leads to(
1

Aδ(QI)

∫
QI

w1−q′(1− |z|2)δq′dA
)q−1

≤ Aδ(QI)

Aη(QI)

(
1

Aδ(QI)

∫
QI

w1−p′(1− |z|2)ηp′dA
)p−1

,

which finishes the proof. �

Theorem 1.7 and the above remarks, together with some existing results, yield the following
addtional characterizations of B∞.

Corollary 4.4. Let w be a weight satisfying (1.6). Then the following are equivalent:

(a) w ∈ B∞.
(b) There exist p > 1 and η > −1 such that w

(1−|z|2)η ∈ Bp(η).

(c) There exists γ > 0 such that∫
D

w(ξ)

|1− ξ̄z|γ+2
dA(ξ) .

w(z)

(1− |z|2)γ
, z ∈ D.

(d) For all q > 0 and all analytic functions f in D,

‖f‖Lq(w) ≈
n−1∑
j=0

|f (j)(0)|+
(∫

D
|f (n)|q(1− |z|)qnwdA

)1/q

.



THE CLASS B∞ 13

Proof. If (a) holds then (b) follows by Theorem 1.7, using the equivalence (1) ⇔ (5). Con-
versely, if (b) holds with p > 1 and −1 < η ≤ 0, then by the simple observation preceding
Lemma 4.3 we have w ∈ Bp, and the equivalence (1) ⇔ (5) in Theorem 1.7 gives (a). If (b)
holds with p > 1 and η > 0, we can apply Lemma 4.3 to conclude that w ∈ Bq for some
q > 1, and (a) follows as above. The implication (b) ⇒ (c) was actually proved in [8]. We
sketch an argument for the sake of completeness. If (b) holds, it follows from (a) together
with Theorem 1.7 that w ∈ Bq for some q > 1. This implies by the Békollé-Bonami Theorem
in [6], [5] that the operator P+

0 : Lq(w)→ Lq(w) is bounded.
Given z ∈ D, let

∆z = {ξ : |z − ξ| < 1− |z|
2
},

and denote by χz its characteristic function. If ξ ∈ ∆z and ζ ∈ D then

|1− ξ̄ζ|
|1− z̄ζ|

≤ 1 +
|ξ − z|
1− |z|

<
3

2
,

and similarly,

|1− ξ̄ζ|
|1− z̄ζ|

≥ 1− |ξ − z|
1− |z|

>
1

2
.

Thus

P+
0 χz(ζ) ∼ A(∆z)

|1− ζ̄z|2
,

and

‖P+
0 χz‖

q
Lq(w) ∼ (A(∆z))

q

∫
D

w(ζ)

|1− ζ̄z|2q
dA(ζ).

On the other hand, ∆z is contained in a top half TI,ρ, hence by (1.6) it follows that

‖χz‖qLq(w) ∼ w(z)A(∆z).

Then (c) follows directly from

‖P+
0 χz‖Lq(w) ≤ C‖χz‖Lq(w).

Assume that (c) holds and let I be an arc on T. It is a simple exercise to show that for
z, ξ ∈ QI we have

|1− ξ̄z| ∼ |QI |1/2 = (Aγ(QI))
1

γ+2 .

The (c) gives for z ∈ QI ∫
QI

wdA . Aγ(QI)
w(z)

(1− |z|2)γ
,

hence for every p > 1,(
w(z)

(1− |z|2)γ

)1−p′ (∫
QI

wdA

)p′−1
. (Aγ(QI))

p′−1, z ∈ QI .
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Thus (∫
QI

wdA

)p′−1 ∫
QI

(
w(z)

(1− |z|2)γ

)1−p′

dAγ(z) . (Aγ(QI))
p′ ,

which shows that w
(1−|z|2)γ ∈ Bp(γ) for all p > 1.

(b) ⇔ (d) is proved in [[1], Theorem 3.2] for differentiable weights satisfying the condition
in Proposition 2.1 (a). Using Proposition 2.1 (b), we see that the equivalence holds for all
weights satisfying (1.6). �

Finally we mention an application concerning integral operators of the form

(4.5) Tgf(z) =

∫ z

0

f(ξ)g′(ξ)dξ.

on the weighted Bergman spaces Lpa(w) = Lp(w) ∩Hol(D), 1 ≤ p <∞, where w is a weight
on D satisfying (1.6). There is a vast literature on the subject (see [1] and the references
therein.) The results in [1] are proved for differentiable weights satisfying the condition
in Proposition 2.1 (a), hence by Proposition 2.1 (b) they continue to hold for all weights
satisfying (1.6). For example, Tg is bounded on Lpa(w) if and only if the symbol g belongs to
the Bloch space, that is

|g′(z)| . 1

1− |z|
.

Using Corollary 4.4 (and Proposition 2.1 (b)) the description of the spectrum of Tg provided
by Theorem 5.1 in [1] can be reformulated as follows.

Corollary 4.6. Let w be a weight satisfying (1.6). Then a point λ ∈ C \ {0} belongs to the
resolvent set of Tg on Lpa(w), if and only if w exp(pRe g

λ
) ∈ B∞.

This illustrates again the analogy to A∞, since for Hardy spaces the spectrum of Tg is
described in the same manner using A∞ instead (see [3]).

5. Acknowledgement

We thank the Swedish Agency for Innovation, VINNOVA, for the partial support provided
to carry out this research through its Marie Curie Incoming project number 2014-01434 with
title “Dyadisk harmonisk analys och viktad teori i Bergmanrummet”. The second author
was also supported by VR grant 2015-05552.

References

[1] Alexandru Aleman and Olivia Constantin, Spectra of integration operators on weighted Bergman spaces,
J. Anal. Math. 109 (2009), 199–231, DOI 10.1007/s11854-009-0031-2. MR2585394

[2] Alexandru Aleman and Olivia Constantin, The Bergman projection on vector-valued -spaces with
operator-valued weights, Journal of Functional Analysis 262 (2012), no. 5, 2359 - 2378.
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