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Abstract 
In railway track, under sleeper pads (USPs) have recently been adopted as a resilient component placed 

underneath the concrete sleepers to moderate track stiffness. By the insertion, USPs are generally used to 

improve railway track resilience in special locations such as turnouts, bridge ends, viaducts, track 

transitions etc. However, railway tracks usually face high-intensity impact loading due to any imperfection 

of either wheel or rail. This paper presents a nonlinear 3D finite element model of prestressed concrete 

sleepers with under sleeper pads in to order to study the effect of USPs under high impact loading. This 

study has confirmed field studies that the sleepers with USPs tend to have lesser flexures, contact force 

and impact energy. However, this study reveals that the sleeper with USPs could be amplified by the large 

amplitude impact energy. These behaviours imply that the applications of USPs should be very careful 

since the USPs could trade off the desired benefits by aggravating dynamic behaviour of sleepers with 

under sleeper pads. 

1 Introduction 

Railway sleepers are a major structural component in ballasted railway tracks. The main functions of 

sleepers are to transfer train axle loads from the rails onto the underlying ballast bed and supporting 

system, and to secure rail gauge for safe passages of trains and rolling stocks. It has been noted that 

railway sleepers are safety-critical components [1, 2]. Generally, there are two groups of track 

components: superstructure and substructure. Superstructure components consist of rail, fastening system, 

sleeper and ballast, they sometimes include rail pad, under sleeper pad, and ballast mat. Substructure 

counterparts comprise subballast, formation, geotextiles and foundation [3, 4]. Under sleeper pads (USP) 

are resilient pads installed underneath the sleepers as an attachment to provide additional track resiliency 

between the sleepers and ballast. The typical cross section of the ballasted railway track with under sleeper 

pad is shown in figure 1. USP is often used in ballasted tracks with concrete sleepers. USP can also be 

applied in various operational environments such as conventional main lines, urban or high speed lines or 

light rail and metro lines. Nowadays, USP has been developed and used widely and heavily in central 

Europe such as in Austria, Czech Republic and Germany. Additionally, several counties have carried out 

pilot trials such as in Sweden, Australia, and China. USP is made of polyurethane elastomer with a foam 

structure including encapsulated air voids. USP is classified by the bedding modulus as very soft, soft, 

medium stiff and stiff USP [5-10]. Different types of USP can be used at different locations and for 

different purposes, as described in table 1. 
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Figure 1: Typical ballasted railway track and its components with USP [1] 

Table 1: USP applications and characterisations [11] 

Fields of application of 

USP 

USP 

Very soft Soft Medium stiff Stiff 

Cstat ≤ 0.10 0.10 < Cstat ≤ 0.15 0.15 < Cstat ≤ 0.25 0.25 < Cstat ≤ 0.35 

Improve track quality 

(reduce ballast breakage 

and track/turnout pressure) 

    

Transition zones     

On existing structures with 

reduced ballast thickness 
    

Reduction of long-pitch 

low-rail corrugation in 

tight curves 

    

Reduction of ground-borne 

vibration 
    

 

The main objectives for using USP are to moderate track stiffness; to reduce ground borne vibrations; and 

to reduce ballast breakage [12-16]. USPs could reduce track stiffness in special areas such as turnout 

systems (switches and crossings) or bridge transitions. The vibration of sleepers could also be isolated by 

the USP so that the ballast and formation are uncoupled from the wheel/rail interaction, reducing the 

ground vibrations affecting surrounding areas and structures. The reduced ballast damage is accomplished 

by a reduction of contact pressure, and thus wears, in the sleeper/ballast interface. A more uniform load 

distribution is achieved by the use of USP, resulting in the reduction of the contact pressure and the 

smaller variations of support stiffness along the track. It was also noted that USP can lead to higher 

railway track economic values and to have substantial wider social benefits [17-20]. 

An application of USPs in Australia was initially trailed back in 1980s on open plain tracks. The outcome 

showed little improvement at the time whilst the delamination and degradation of the USP material were 

the key negative issues found in the field [21-28]. In recent years, the performance of the USPs has been 

improved through the outcomes from the test results in central Europe and in Austria, which show a 

promising quality and durability of USPs. Despite the benefits of USP have been presented [29], 

contradict outcome has been reported by Trafikverkets (Swedish Transport Administration). After several 

years of field inspections and observations, Trafikverkets reported that there has been no or very little 

influence of USPs on ballast size reduction and contamination resulting in track quality [30]. This could 

be a reason why the utilisation of USPs is not significant globally. Moreover, The USP has different 

effects on lateral track resistance. It cannot be confirmed whether positive or negative effects will occur at 

this stage. However, USP can lead to excessive sleeper vibration, resulting in ballast dilation or ballast 

spreading. Generally, railway track experience impact load, which is a shock load applied in short duration 

[2, 31]. The use of USPs for attenuating impact load and excessive vibration has been studied in the fields 



at specific locations such as dipped rails/welds, glue insulated joint etc [32-38]. However, the numerical 

studies into such the behaviour have been limited and not investigated. 

The dynamic responses of railway concrete sleepers with under sleeper pads to high-intensity impact 

loading conditions are presented in this study. A three-dimensional finite element model has been 

established that can simulate and predict the responses of reinforced and prestressed concrete members. A 

three-dimensional nonlinear finite element model of a full-scale railway prestressed concrete sleeper for 

static analysis was firstly developed using the general-purpose finite element analysis package, ANSYS 

[39-41]. The static finite element model has been validated by the static full-scale experiment [41]. The 

experimental details were based on the European Standard [42]. The calibrated finite element model has 

been extended to include ballast support and in situ boundary conditions [43]. The extended model was 

linked to LS-Dyna for impact analysis. The impact analysis has been validated against the drop impact 

tests [44-46]. The initial velocities of drop mass corresponding to actual train load were applied to the rail. 

These can generate different impact energies. This study will focus on the sensitivity of impact energy to 

the dynamic responses of prestressed concrete sleepers with stiff USP. The dynamic responses including 

von mis stress, maximum displacements and accelerations of concrete sleepers with and without USP are 

highlighted. 

2 Finite Element Modelling 

Firstly, the general-purpose finite element analysis package, ANSYS was used to develop and model a 

three-dimensional finite element model of a full-scale railway prestressed concrete sleeper for static 

analysis. Concrete was modelled using SOLID65 solid elements where each node has three degree of 

freedom (trainslation in x,y and z). The modulus of elasticity of concrete (f’c) was estimated based on 

AS3600 [47] using the compressive strengths of 80 MPa. As for prestressing wire, LINK8 truss element 

was taken into account to withstand the initial strain attributed to prestressing forces, by assuming perfect 

bond between these elements and concrete. It should be note that this truss element cannot resist neither 

bending moments nor shear forces. Since bond slip is hardly observed under failure modes [48-50], the 

perfect bond between pre-stressing wires and concrete was assumed. The dynamic materials properties 

associated with strain rate of concrete and prestressing wires can be calculated. The 0.2% proof stress is 

1,700 MPa and the ultimate stress is 1,930 MPa. The static and dynamic elasticity of moduli of pre-

stressing wire are 190,000 MPa. 

The extended finite element model was calibrated using vibration data [41, 49]. The updated finite 

element model was then transferred to LS-Dyna [45, 46], as shown in figure 2. The simulation results 

were achieved by assigning the initial velocity to the drop mass to generate an impact event, similarly to 

the actual drop tests. There are two cases considered in this study, 1.94m/s and 4.34 m/s. It is noted that 

these velocities are equivalent to the 600kg falling mass with the drop height of 0.2m and 1m, 

respectively. It is found that the finite element model is fairly sufficient for use in predicting impact 

responses of the prestressed concrete sleepers. The trends of peak acceleration responses are quite close to 

each other, although there is certain phase difference. 

 

Figure 2: Finite element model of sleeper with under sleeper pad  



3 Results and discussions 

In this study, the stiff USP, which has the elastic modulus of 550MPa, is used. In this analysis, the initial 

velocities of 0.74m/s, 1.94m/s, 3.14m/s, 4.34m/s and 5.45m/s of drop mass are considered. Time histories 

of wheel-rail contact force are presented in figure 3. It is clearly seen that wheel-rail forces reduce 

significantly when using USP. It is interesting that pulse duration increases when USP is used because the 

support is softer. Thus, the support play a role on impact response as the impact magnitude decreases as 

the track stiffness, whilst, pulse duration is inversely proportional to the stiffness [50]. It should be note 

that the pulse durations are in the range of 3-4 ms. It is clearly seen that the use of USP can significantly 

reduce wheel/rail contact force by about 10%. The impact energy input is then calculated. It should be 

noted that the impulse is the area under the impact load history or the integral of force over the time. The 

different initial velocities of drop mass generate different impact energy. The impact energies of applied 

force to sleepers with and without USP are presented in table 2.  It should be noted that even contact 

forces significantly reduce when using USP, the impact energies slightly decrease since pulse durations 

increase. 
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                           e) 

Figure 3: Wheel-rail contact force subjected to impact loads with the initial velocities of                                  

a) 0.74m/s b) 1.94m/s c) 3.14m/s d) 4.34m/s e) 5.54m/s 

Table 2: Contact force and impact energy  

Case Initial velocity (m/s) 
Contact force (kN) Impact energy (kNs) 

Without USP With USP Without USP With USP 

A 0.74 288 258 647 639 

B 1.94 843 785 1766 1755 

C 3.14 1380 1279 2888 2866 

D 4.34 1905 1699 4001 3974 

E 5.54 2461 2171 5121 5066 

 



Figure 4 shows the comparison of von mises stress contour between sleepers without and with USP before 

applying load. It is seen that the dynamic stress concentration on the concrete sleeper is less than that with 

USP especially at rail seat. Figure 5 illustrates the distribution of contact pressure on ballast under impact 

load case E. It is clearly seen that USP can significantly reduce the contact pressure especially at rail seat. 

This illustrates that USP can redistribute the impact load actions better along the concrete sleeper. 

 

a) 

 

  b) 

Figure 4: Von-mises stress contour of sleeper a) without USP b) with USP 

 

 

a) 

 

b) 

Figure 5: Contact pressure distribution on ballast a) without USP b) with USP under impact load 

Figure 6 presents the effects of stiff USP on the dynamic responses of the concrete sleepers subjected to 

impact loads. Even though it is noticeable that the use of USP can obviously decrease the contact force 

and impact energy stress, von-mises stresses, displacements and accelerations of sleeper at both rail seat 

and mid-span slightly increase when using USP. USP has negative effect on sleeper maximum 

displacements at both rail seat and mid-span. It is interesting that about 30-40% increase of displacement 

at rail seat in all velocities are observed. This is because there is a reduction of concrete sleeper stiffness 

due to the adaptation of USP. This is confirmed by the previous field measurement conducted that the rise 

of sleeper vibration was observed when USP were taken into account. Although the impact force and 

impact energy reduce when using USP, the sleeper displacement slightly decreases. This is because the 

use of USP affects the overall track characteristics by reducing track stiffness and making track softer. 

This has more influence than impact force which leads to increase the sleeper displacement. The 

acceleration vibrations are also presented in term of insertion gain. Figure 7 demonstrates the insertion 

loss in concrete sleepers due to USP. It is clearly seen that USP can increase vibrations of concrete 

sleepers at both rail seat and mid-span. Thus, USPs tend to have large acceleration amplitude vibrations, 

especially when excited by a high-frequency impact force. 
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Figure 6: Effects of USP on the maximum dynamic responses of railway concrete sleeper subjected to 

impact loads 

  
a) b) 

Figure 7: Insertion loss due to USP at a) rail seat b) mid-span 

4 Conclusions 

The emphasis of this study is placed on the effects of under sleeper pads on the dynamic responses of 

railway concrete sleeper subjected to high intensity impact loading. Finite element models of sleeper with 

USP have been conducted and analyzed using LS-DYNA. The initial velocities of drop mass are applied 

as an impact load. The models have been validated against the experimental results. The velocities applied 

to the mass corresponds to the drop mass of 600kg with the variations of height. The results show that the 

USPs will decrease stiffness of sleepers, then significantly reduce contact forces by about 10-30%. 

However, only the slight reductions of impact energy are observed in all cases. This is because the pulse 

duration may increase when using USPs which can increase the impact energy even the contact forces 

reduce. Although the studies have found that the sleepers with USPs tend to have lesser flexures, contact 

forces, this numerical study and previous field data also confirm that a railway track with USPs could 

experience a large displacement and acceleration amplitude vibrations, especially when excited by a high-

frequency impact force. It can be concluded that the use of USPs should be very careful since the USPs 

may have a trade-off impact that could aggravate dynamic behaviour of sleepers with under sleeper pads.  
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